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AlphaFold2 predicts interactions amidst confounding structural compatibility

Predicting physical interactions is one of the holy grails of computational biology, galvanized by rapid advancements in deep learning. AlphaFold2, although not developed with this goal, seems promising in this respect. Here, I test the prediction capability of AlphaFold2 on a very challenging data set, where proteins are structurally compatible, even when they do not interact. AlphaFold2 achieves high discrimination between interacting and non-interacting proteins, and the cases of misclassifications can either be rescued by revisiting the input sequences or can suggest false positives and negatives in the data set.

Alphafold2 is thus not impaired by the compatibility between protein structures and has the potential to be applied at large scale.

Introduction

Prediction of protein-protein interactions has profound implications to suggest functions for uncharacterized proteins, understand protein activity and regulation at the molecular level, and more generally, highlight protein functions in the context of global interactomes. Numerous computational methods have been developed to predict whether or not two proteins physically interact, based on their sequences and 3D structures, see the following references for review [START_REF] Hu | Deep learning frameworks for protein-protein interaction prediction[END_REF][START_REF] Dunham | Benchmark Evaluation of Protein-Protein Interaction Prediction Algorithms[END_REF][START_REF] Casadio | Machine learning solutions for predicting proteinprotein interactions[END_REF][START_REF] Zahiri | Computational Prediction of Protein-Protein Interaction Networks: Algo-rithms and Resources[END_REF][START_REF] Shoemaker | Deciphering Protein-Protein Interactions. Part II. Computational Methods to Predict Protein and Domain Interaction Partners[END_REF][START_REF] Wass | Challenges for the prediction of macromolecular interactions[END_REF] .
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The formidable capability of AlphaFold2 (AF2) to predict protein 3D structures [START_REF] Jumper | Highly accurate protein structure prediction with AlphaFold[END_REF] has stimulated the creativity of the scientific community to evaluate what are the application range and limits of AF2 predictions [START_REF] Johansson-Åkhe | Benchmarking Peptide-Protein Docking and Interaction Prediction with AlphaFold-Multimer[END_REF][START_REF] Akdel | A structural biology community assessment of AlphaFold2 applications[END_REF][START_REF] Pozzati | Limits and potential of combined folding and docking[END_REF][START_REF] Saldaño | Impact of protein conformational diversity on AlphaFold predictions[END_REF][START_REF] Fowler | The accuracy of protein structures in solution determined by AlphaFold and NMR[END_REF][START_REF] Chakravarty | AlphaFold2 fails to predict protein fold switching[END_REF][START_REF] Sawicki | Conformational epistasis impairs AlphaFold structural predictions[END_REF][START_REF] Wong | Benchmarking AlphaFold enabled molecular docking predictions for antibiotic discovery[END_REF][START_REF] Yin | Benchmarking AlphaFold for protein complex modeling reveals accuracy determinants[END_REF][START_REF] Holcomb | Evaluation of AlphaFold2 structures as docking targets[END_REF][START_REF] Bryant | Predicting the structure of large protein complexes using AlphaFold and sequential assembly[END_REF][START_REF] Mccafferty | Does AlphaFold2 model proteins' intracellular conformations? An experimental test using cross-linking mass spectrometry of endogenous ciliary proteins[END_REF][START_REF] Martin | When Alphafold2 predictions go wrong for protein-protein complexes, is there something to be learnt?[END_REF] and extend the tool beyond its initial prediction task [START_REF] Bryant | Predicting the structure of large protein complexes using AlphaFold and sequential assembly[END_REF][START_REF] Bruley | A sequence-based foldability score combined with AlphaFold2 predictions to disentangle the protein order/disorder continuum[END_REF][START_REF] Jussupow | Effective Molecular Dynamics from Neural-Network Based Structure Prediction Models[END_REF][START_REF] Alamo | Sampling alternative conformational states of transporters and receptors with AlphaFold2[END_REF][START_REF] Ghani | Improved Docking of Protein Models by a Combination of Alphafold2 and ClusPro[END_REF][START_REF] Roney | State-of-the-art estimation of protein model accuracy using AlphaFold[END_REF][START_REF] Sala | Biasing AlphaFold2 to predict GPCRs and kinases with user-defined functional or structural properties[END_REF][START_REF] Stein | Modeling Alternate Conformations with Alphafold2 via Modification of the Multiple Sequence Alignment[END_REF][START_REF] Yu | AlphaPulldown -a Python package for protein-protein interaction screens using AlphaFold-Multimer[END_REF][START_REF] Andorf | FASSO: An AlphaFold based method to assign functional annotations by combining sequence and structure orthology[END_REF][START_REF] Monzon | Reciprocal Best Structure Hits: Using AlphaFold models to discover distant homologues[END_REF][START_REF] Baltzis | Improving sequence alignments with AlphaFold2 regardless of structural modeling accuracy[END_REF][START_REF] Bordin | AlphaFold2 reveals commonalities and novelties in protein structure space for 21 model organisms[END_REF][START_REF] Brems | AlphaFold predicts the most complex protein knot and composite protein knots[END_REF][START_REF] Wayment-Steele | Prediction of multiple conformational states by combining sequence clustering with AlphaFold2[END_REF][START_REF] Gao | AF2Complex predicts direct physical interactions in multimeric proteins with deep learning[END_REF][START_REF] Chang | Ranking Peptide Binders by Affinity with AlphaFold**[END_REF][START_REF] Tsaban | Harnessing protein folding neural networks for peptide-protein docking[END_REF][START_REF] Wallner | AFsample: Improving Multimer Prediction with AlphaFold using Aggressive Sampling[END_REF] . Prediction of protein-protein complex structures, a task traditionally addressed by protein-protein docking, has rapidly been tackled by modification in the input for the AF2 monomer pipeline [START_REF] Ghani | Improved Docking of Protein Models by a Combination of Alphafold2 and ClusPro[END_REF] . A specific model for protein-protein complexes is now available, with breakthrough prediction results [START_REF] Evans | Protein complex prediction with AlphaFold-Multimer[END_REF] . Note that in this case, predictions are made with the prior knowledge that the proteins physically interact.

Logically then, the capability of AlphaFold2 to predict interaction between proteins has recently been explored, by using the predicted quality of modeled interfaces as prediction criterion, with very encouraging discrimination capability [START_REF] Yu | AlphaPulldown -a Python package for protein-protein interaction screens using AlphaFold-Multimer[END_REF][START_REF] Gao | AF2Complex predicts direct physical interactions in multimeric proteins with deep learning[END_REF][START_REF] Bryant | Rapid protein-protein interaction network creation from multiple sequence alignments with Deep Learning[END_REF][START_REF] Bryant | Improved prediction of protein-protein interactions using AlphaFold2[END_REF] .

In this short article, I challenge AF2 on a particular, presumably difficult data set in which non-interacting protein pairs are special cases, in which the two (non-interacting) proteins are structurally similar to available experimental complexes [START_REF] Launay | Non-interacting proteins may resemble interacting proteins: prevalence and implications[END_REF] . This feature should challenge AF2, since the proteins are compatible in terms of structures. Using the iPTM score of AF2, I found that AF2 is very accurate at discriminating interacting from noninteracting pairs, even in this challenging context, attending an AUC value of 0.93. Interestingly, model recycling did not improve the discriminative power. The analysis of the few misclassified cases provides suggestions to further improve the discrimination and how to use AF2 for pair screening.

Material and Methods

Data set

Protein pairs from S cerevisiae are taken from our previous study [START_REF] Launay | Non-interacting proteins may resemble interacting proteins: prevalence and implications[END_REF] , details about these datas set can be bound in [START_REF] Launay | Non-interacting proteins may resemble interacting proteins: prevalence and implications[END_REF] and briefly summarized below.

Interacting protein pairs

The initial data set of interacting protein pairs was extracted from three sources: high confidence physical interactions from BioGrid [START_REF] Oughtred | The BioGRID database: A comprehensive biomedical resource of curated protein, genetic, and chemical interactions[END_REF] , direct interactions from the KUPS resource [START_REF] Chen | KUPS: constructing datasets of interacting and noninteracting protein pairs with associated attributions[END_REF] , and high confidence physical interactions detected by yeast-two-hybrid from Ito et al [START_REF] Ito | A comprehensive two-hybrid analysis to explore the yeast protein interactome[END_REF] .

Non-interacting protein pairs

The initial negative data set was extracted from three sources : the negative data set used by Yu et al which are simply sampled from pairs without experimental evidence of interaction [START_REF] Yu | Simple sequence-based kernels do not predict protein-protein interactions[END_REF] , pairs of protein from the KUPS resource [START_REF] Chen | KUPS: constructing datasets of interacting and noninteracting protein pairs with associated attributions[END_REF] , which have no evidence of interaction and also distant GO annotations, and the negative data set built by Trabuco et al [START_REF] Trabuco | Negative protein-protein interaction datasets derived from large-scale two-hybrid experiments[END_REF] from the Ito data set, where the yeast-two-hybrid data set is used to select proteins pairs without interaction but correctly detected in the experiment .

In our previous study, those pairs were compared with known structures. We had screened homology models of S. cerevisiae proteins against a non-redundant database of experimentally known dimers and we had selected pairs where the monomers structurally matched with the experimental dimers (TM score >0.8), and, once superimposed on those dimers, could form an interface of reasonable size (> 20 residues) and without extensive clashes (less than 3 between Cαs). Using these criteria resulted in a data set of 22 noninteracting and 222 interacting proteins. In this work, I use the data set of 22 non-interacting proteins and a random sample of 22 interacting pairs, see Table S1. The resulting 5 models are ranked according to the ipTM computed by AF2 and this score is used as a predictor of protein interaction.

AlphaFold2 Models

Assessing classification performance

The separation between scores of interacting and non-interacting pairs is measured by the AUC value when using the score to predict interaction. This is done for the AF2 ipTM score and the pDockQ, recently introduced by Bryant et al [START_REF] Bryant | Rapid protein-protein interaction network creation from multiple sequence alignments with Deep Learning[END_REF] , which is a derived from the plDDT scores of interface residues. Statistical significance between AUC values is assessed using the non-parametric DeLong's test [START_REF] Delong | Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach[END_REF] implemented in the pROC package [START_REF] Robin | pROC: an open-source package for R and S+ to analyze and compare ROC curves[END_REF] .

The classification performance is measured by the accuracy, i.e., percentage of correctly classified pairs. Statistical difference between accuracies is assessed using the MacNemar test [START_REF] Walters | Comparing classification models-a practical tutorial[END_REF] .

Results

Although AF2 has recently been used to discriminate interacting from non-interacting pairs with promising results [START_REF] Yu | AlphaPulldown -a Python package for protein-protein interaction screens using AlphaFold-Multimer[END_REF][START_REF] Gao | AF2Complex predicts direct physical interactions in multimeric proteins with deep learning[END_REF][START_REF] Bryant | Rapid protein-protein interaction network creation from multiple sequence alignments with Deep Learning[END_REF][START_REF] Bryant | Improved prediction of protein-protein interactions using AlphaFold2[END_REF] , it is always worthy of pushing the system to the limits to better know its applicability range. Here, I propose to further test AF2 prediction capability in extreme conditions. I submitted to AF2 prediction a particularly challenging data set from a previous study [START_REF] Launay | Non-interacting proteins may resemble interacting proteins: prevalence and implications[END_REF] . In this data set, all the pairs are supported by structural data:, interacting but also non-interacting pairs are compatible in shape, as assessed by their high similarity to experimental dimers, as explained in the Methods section. without the disordered part at the interface (see Figure S2). However, model recycling significantly increases the computation time, which is a limiting factor in the perspective of pair screening. Alternatively to model recycling, the prediction can be run with the disordered part chopped from the sequence, which produces a model similar to the recycled one, with an ipTM score equal to 0.63 (see Figure S2). So, in that case, it is possible to 'rescue' the prediction by chopping the sequence.

The pair formed by the saccharopepsin and its inhibitor (Uniprot ids P07267 and P01094) obtains an ipTM score equal to 0.429, see Figure 2C. The full-length sequence of the saccharopepsin contains an N-terminal propeptide of 75 residues that is cleaved upon activation of the enzyme [START_REF] Dreyer | Primary structure of the aspartic proteinase A from Saccharomyces cerevisiae[END_REF] . The comparison of the AF2 model with the experimental structure (PDB id 3COJ) reveals that the binding cleft where the inhibitor is supposed to bind is occluded by the N-terminal region of the enzyme corresponding to the propeptide. Rerunning the prediction after chopping the propeptide sequence results in a model with a good ipTM score equal to 0.63 and in good agreement with the experimental structure (see Figure S3). So, in this case also, it is possible to rescue the prediction with appropriate sequence chopping.

The pair formed by the vacuolar protein sorting-associated protein 54 and the GTPbinding protein YPT6 (Uniprot ids Q12071 and Q99260) obtains a very low ipTM score equal to 0.184, see Figure 2D. The 5 models are drastically different from each other, with even drastic situations where the proteins are not in contact in two of the models (see Figure S4).

There is evidence of physical interaction between these proteins, as detected by affinity purification. However, there is no evidence of direct physical interaction by two-hybrid assay.

So there is the possibility that this pair is in fact a false positive case. The pair formed by the cyclin-dependent kinase 1 and the CTD kinase subunit beta (Uniprot id P00546 and P46962) achieves a very high ipTM score equal to 0.834, see Figure 1G. In this case, all models have high ipTM scores (>0.8) and are structurally similar (data not shown). Although there is no evidence of direct interaction between these two proteins, they are reported as interacting in the STRING resource [START_REF] Szklarczyk | The STRING database in 2021: customizable protein-protein networks, and functional characterization of user-uploaded gene/measurement sets[END_REF] , having, among other things, a direct interaction between homologs in Drosophila measured by yeast-two-hybrid assay [START_REF] Stanyon | A Drosophila protein-interaction map centered on cell-cycle regulators[END_REF] . This suggests that this case could be a false negative pair.

In summary, out of 6 misclassified cases, three could be corrected by sequence chopping, two can be questioned as false positive/negative, and one highlights a phenomenon of confusion between chains in interfaces in a macromolecular assembly.

Conclusion

A reduced but challenging data set was submitted to AF2 in order to discriminate interacting from non-interacting pairs, resulting in very high prediction accuracy. Several misclassified cases could be rescued by appropriate sequence chopping, and some others are suggestive of incorrect annotations (false positive or false negative). A potential limitation of AF2 was observed in a case where several protein chains with structural similarity form a supramolecular assembly. The fact that no recycling is required opens the possibility to apply this procedure at large scale. To conclude, AF2 seems a promising technology for predicting protein-protein interactions, even capable of discriminating interacting from non-interacting pairs in presence of confounding structural compatibility.

  ://github.com/YoshitakaMo/localcolabfold), a local installation of ColabFold[START_REF] Evans | Protein complex prediction with AlphaFold-Multimer[END_REF][START_REF] Mirdita | ColabFold: making protein folding accessible to all[END_REF] . ColabFold replaces the time-consuming step of multiple sequence alignment (MSA) creation by an ultra-fast step with MMseqs2[START_REF] Steinegger | MMseqs2 enables sensitive protein sequence searching for the analysis of massive data sets[END_REF] . No templates are used; models are 3 not minimized; I tested both with and without model recycling, and different modes of sequence pairing for the MSA: unpaired+paired (default), paired only, and unpaired only.
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 1 Figure 1. iPTM score distribution for interacting and non-interacting pairs. The vertical dashed line indicates the prediction cutoff (0.5).
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 2 Figure 2. AF2 models of interacting pairs misclassified as non-interacting (ipTM<0.5). A: pair formed by the subunits 8 (Q01939, in blue) and 4 (P40327, in grey) of the 26s proteasome. B: pair formed by the vacuolar protein sorting-associated protein 21 (P36017 in grey) and the GTP-binding protein YPT53 (P36019, in blue). C: pair formed by saccharopepsin (P07267, in grey) and its inhibitor (P01094, in blue). D: pair formed by the vacuolar protein sorting-associated protein 54 (Q12071, in grey) and the GTP-binding protein YPT6 (Q99260, in blue).
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 3 Figure 3: AF2 models of non-interacting pair misclassified as interacting (ipTM>0.5). A: pair formed by the GTP-binding protein GTR1 (Q00582, in grey) and the nucleoporin NUP145 (P49687, in blue). B: pair formed by cyclin-dependent kinase 1 (P00546, in grey) and the CTD kinase subunit beta (P46962, in blue)