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Asthma is a chronic airway disease often due to sensitization to aeroallergens, especially
house dust mite allergens (HDMs). The Dermatophagoides pteronyssinus group 2 (Der p
2), is one of the most representative HDM allergens and is recognized by more than 90%
of HDM-allergic patients. In mouse models, all asthma-related features can be prevented
by prophylactic administration of Dermatophagoides pteronyssinus 2-derived peptide
(Der p 2.1). However, it is unknown whether it is able to treat well-established asthma in
mice and humans. We aimed here to evaluate the efficacy of Der p 2.1 immunotherapy in a
mouse, humanized mouse, and asthmatic patients. Asthma related-features were
analyzed through airway hyperresponsiveness (AHR), allergen-specific IgE, and lung
histology in mice and humanized mice. Immune profile was analyzed using lung and
blood from mice and severe asthmatic patients respectively. T cell and dendritic cell (DC)
polarization was evaluated using co-culture of bone marrow derived cells (BMDCs) and
naïve T cell from naïve mice. Mice and humanized mice both have a reduced AHR, lung
tissue alteration, and HDM-specific IgE under Der p 2.1 treatment. Concerning the
immune profile, T helper 2 cells (Th2) and T helper 17 cells (Th17) were significantly
reduced in both mice and humanized mice lung and in peripheral blood mononuclear cells
(PBMCs) from severe asthmatic patients after Der p 2.1 incubation. The downregulation of
T cell polarization seems to be linked to an increase of IL-10-secreting DC under Der p 2.1
treatment in both mice and severe asthmatic patients. This study shows that allergen-
derived peptide immunotherapy abrogates asthma-related features in mice and
humanized mice by reducing Th2 and Th17 cells polarization via IL-10-secreting DC.
These results suggest that Der p 2.1 peptide immunotherapy could be a promising
approach to treat both Th2 and Th17 immunity in asthma.
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INTRODUCTION

Asthma prevalence has constantly increased over the last
decades, becoming one of the most prevalent airway diseases
that affect more than 300 million people worldwide. Despite the
efficacy of controller treatments, asthma still results in altered
quality of life, morbidity and economic burden (1). Severe
asthma represents 5 to 10% of the asthmatic population
and results in permanent respiratory limitation, frequent
exacerbations and sometimes death (2). Due to the importance
of allergy and eosinophilic inflammation in patients displaying a
Th2 phenotype (3), biologics such as anti-IgE and anti-IL-5 have
been proposed, which are efficacious in 70% of Th2 patients (4–
6). However these biologics only block specific immune pathway
involved in asthma but do not act on allergy establishment itself,
that affects 70% of asthmatic patients (7) and represent the main
cause of Th2 asthma with house dust mites (HDM) being the
most implied kind of allergens (8). Allergen immunotherapy
(AIT) represents the only asthma therapy that can modify the
natural course of allergy (9, 10) with a sustained protection,
lasting several years after treatment is stopped (11, 12). AIT is
based on daily exposure to a high dose of allergen, and according
to the European Academy of Allergy and Clinical Immunology
(EAACI), to achieve long-term efficacy, it is recommended that a
minimum of 3 years of therapy is used depending of ages and
type of allergen (13). Induction and activation of regulatory T
cells (Tregs) are considered the main mechanism of action of
AIT (14). However, the induction of allergen tolerance following
AIT requires approximately 1 to 2 years to reach full efficacy;
adverse effects due to the use of crude allergen extracts, such as
throat irritation, ear pruritus, mouth edema and swollen tongue
(12), are frequent. The risk of asthma exacerbations in asthmatic
patients still precludes AIT use especially in uncontrolled or
partially controlled patients (15).

Based on these observations, AIT efficacy and safety must
be improved to make it a full treatment of asthma, including
severe or uncontrolled asthma, frequently associated with a
non-Th2 difficult-to-treat neutrophilic infiltration. Purified
Dermatophagoides pteronyssinus protein 2 (Der p 2) was shown
to be efficient to as a prophylactic AIT to prevent type 2 immunity
in murine asthma (16). Genetic engineering led to the
development of new therapeutic recombinant hypoallergenic
peptides derived from whole allergens displaying interesting
properties, such as low IgE induction and T cell reactivity (17).
Recombinant hypoallergenic peptides derived from Der p 2 were
described to exhibit less in vivo allergenicity than Der p 2 whole
allergen, while preserving immunogenicity (18, 19). Thus, we
previously demonstrated in a mouse model of HDM-induced
asthma that the use of Der p 2-derived peptides as a vaccine
prevents airway hyperresponsiveness (AHR) and inflammation
(20), the two main characteristics of asthma. Recently, non-
allergic individuals vaccinated with recombinant hypoallergenic
peptide derived from birch pollen allergen Bet v 1 were protected
against birch allergy over 2 years with only four subcutaneous
injections of the peptide (21). However, the prediction of asthma is
still too uncertain to propose AIT as a preventive strategy, and
this treatment is proposed mainly once the disease is established.
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In this paper, we investigated whether Der p 2-derived
peptide after HDM sensitization and challenge would decrease
HDM-induced asthma features in mice and humanized mice, and
the peptide effects was assessed on asthmatic patients’
circulating cells.
MATERIAL AND METHODS

Mouse Model
Female BALB/c mice (n = 6–8 mice per group), purchased from
Charles River Breeding Laboratories (L’Arbresle, France), were
used for all experiments. Mice were housed in a ventilated cage
system. The protocol was approved by the Ethics Committee on
Animal Experimentation of the Pays de la Loire (accreditation
number: 9456). Mice were sensitized on days 0, 7, 14, and 21 by
percutaneous application of 500 mg of crude extract of
Dermatophagoides farinae (Der f, Stallergenes Greer, Antony,
France) diluted in 20 ml of dimethyl sulfoxyde (DMSO) (Sigma-
Aldrich, Saint Louis, Missouri, USA) on the ears, without any
synthetic adjuvant. They were challenged intranasally with 250 mg
of Dermatophagoides farinae (Der f, Stallergenes Greer, Antony,
France) in 40ml of sterile phosphate buffered saline (PBS) onday 28
to induce AHR and again on days 29, 30, 35, 36, and 37 to enhance
AHR. Mice were sacrificed on day 38 (Figure 1A).
Humanized Mouse
Four-week-oldNOD scid gammamouse-IL3-GM-SF (NSG-SGM3)
mice (n = 4–6 mice per group) purchased from the Jackson
Laboratory’s (Sacramento, California, USA) were irradiated with a
dose of 1.5 Gy and anesthetized 6 h later to receive intravenously 0.5
to 1 × 105 cord blood-derived human CD34+ hematopoietic stem
cells (reference: 2C-101, Lonza, Levallois, France) as previously
described (22). After three months, mice were considered
humanized when their peripheral blood contained more than 10%
of human T cells (Supplementary Figure 1). After that, humanized
mice were sensitized and challenged with HDM extract as described
above. The protocol was approved by the Ethics Committee on
Animal Experimentation of the Pays de la Loire (accreditation
number: 9456).

Patients
This study was performed in accordance with recommendations
of the Nantes University Hospital Ethical Committee and the
Committee for the Protection of Patients from Biologic Risks. All
subjects provided written informed consent in accordance with
the Declaration of Helsinki. Blood samples were collected from
patients included in the EXacerbation PREdictive factors in
Severe Asthma (EXPRESA) cohort study (NCT00721097),
which is a prospective cohort of severe asthmatic patients
sensitized to HDM. Pulmonary function tests, clinical data,
and blood samples were collected each month for 1 year. Four
severe asthmatic patients were selected within the EXPRESA
cohort. Four age- and sex-matched healthy volunteers (HVs),
who were free from atopy, asthma, allergic rhinitis, atopic
November 2020 | Volume 11 | Article 565431
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dermatitis, any other inflammatory diseases and treatments were
used as controls. All severe asthmatic patients were treated with
high dose of inhaled corticosteroids. In HV, % of predicted
forced expiration volume (FEV1), and its coefficient of variation
was assumed to 100% and age-matched according to reference
lung values (23, 24) (Supplementary Figure 2).

Treatment
Dexamethasone was diluted in PBS and given intraperitoneally
(i.p.) at 1 mg/kg 2 h after each HDM challenge. Derivative
peptide (Der p 2.1, amino acids 1-53) was purified as previously
described (18). Der p 2.1 was solubilized with a 10 mMNaH2PO4

(pH 7) solution to a final concentration of 450 mg/ml.
Approximately 200 ml of a solution of PBS containing 5 mg of
the peptide without adjuvant was injected subcutaneously into
the neck of the mice on days 31 and 34 (Figure 1A).
Frontiers in Immunology | www.frontiersin.org 3
Cell Culture
Bone marrow-derived dendritic cells (BMDCs) were collected from
female BALB/c mice shinbones and femurs in a PBS/10% FBS/1%
EDTA solution. Cells were counted and cultured for 8 days in non-
treated Petri dishes with 10 ml of complete growth medium (RPMI,
1% penicillin/streptomycin, 1%NaPy, 1%HEPES, 10% FBS, 100 ml/
L b-mercapto ethanol, and 1% L-glutamine) supplemented with 50
mg/ml of purified mouse cytokines GM-CSF (Miltenyi Biotech,
Paris, France) and then incubated at 37°C with 5% CO2. The cells
were harvested on day 8 and cultured for 24 h with 100 mg HDM
extract, 10 mg Der p 2.1 or both. Then, 5.105 BMDCs were
cocultured for 3 days with 1.106 mouse T CD4+ cells sorted from
the mouse spleen with an EasySep™ Mouse Naïve CD4+ T Cell
Isolation Kit (Stemcell, Grenoble, France) according to the
manufacturer’s specifications, and cells were harvested for
flow cytometry.
A

B D

E F

C

FIGURE 1 | Der p 2.1 decreases asthma features in mouse model of asthma. (A) A mouse model of HDM-induced allergic asthma. (B) Lung resistances of control
(white circles), asthmatic (black circles), and dexamethasone (white triangles) and Der p 2.1-treated (black squares) mice (n = 7–8 mice per group). (C) Lungs were
stained with hematoxylin eosin coloration: CTL (control), HDM (asthmatic), Dexa (dexamethasone), and Der p 2.1 (Der p 2.1 peptide) (n = 6–8 mice per group).
(D) Histological slices were scored on 12 points; four points were dedicated to morphologic alteration, and eight points to inflammation (n = 6–8 mice per group).
(E) and (F) BAL lymphocytes, macrophages, eosinophils, and neutrophils (control n = 4, asthmatic n = 6, dexamethasone n = 6, and Der p 2.1 n = 8). Data are
presented as the mean ± SEM. *P < 0.05, **P < 0.01, ***P < 0.001 and ****P < 0.0001.
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Peripheral blood mononuclear cells (PBMCs) were isolated
using a Ficoll gradient. 1.106 PBMCs were incubated in complete
growth medium for 3 days for cytokine production and 8 days
for T cell polarization with 100 mg HDM alone, 10 mg Der p 2.1
alone and both for a specific re-stimulation, or with phorbol
myristate acetate (PMA) 50 ng/ml (Sigma-Aldrich, Saint
Quentin Fallavier, France) and Ionomycine 500 ng/ml (Sigma-
Aldrich, Saint Quentin Fallavier, France) mix or recombinant Bet
v 1 10 mg (Indoor Biotechnologies, Charlotteville, USA) for a
non-specific re-stimulation at 37°C with 5%CO2. Then, cells
were harvested and stained for flow cytometry analysis.

Immunoglobulin and Cytokine
Measurements
Mice blood was collected via cardiac puncture 24 h after the last
HDM challenge and then centrifuged, and supernatants were
frozen at −20°C. The assay for the quantification of HDM-
specific IgE was performed in serum samples via indirect
ELISA. Cytokine concentrations in bronchoalveolar lavage
(BAL) supernatants were quantified by Luminex technology
(BioPlex 200 system, Bio-Rad Laboratories, Munich, Germany)
using a Pro Mouse Group I Cytokine 23-plex kit (Bio-Rad
Laboratories, Munich, Germany). Assays were performed
according to the manufacturer’s specifications.

Flow Cytometry
Bronchoalveolar lavage (BAL) was performed with 1 ml of PBS
administered intratracheally through a flexible catheter; the
lungs were removed and mechanically disrupted to obtain a
single-cell suspension and filtered using a 40 mmmesh. BAL and
lung cells, BMDCs and human PBMCs were stained with
markers described in Supplementary Methods.

Data were acquired using DIVA software (BD Biosciences,
Paris, France) and analyzed with FlowJo 10.4 (BD Biosciences,
Paris, France).

Airway Hyperresponsiveness
AHR was measured on age-matched (11 weeks) BALB/c female
mice using the forced oscillation technique with a FlexiVent
(SCIREQ Inc., Montreal, Canada) in response to increasing
concentrations of methacholine (0, 5, 10, 15, and 20 mg/ml),
as previously described (20). FlexiWare software was used for
data analysis.

Lung Histology
Lungs were fixed in 4% paraformaldehyde for at least 48 h,
embedded in paraffin, cut and stained with hematoxylin and
eosin for inflammatory scoring. The histological score was
calculated blindly based on bronchial morphology and
inflammation (12 points) as previously described (25).

Statistics
Statistical analysiswas performedwithPrism7 software (GraphPad
Software Inc., La Jolla, USA) using two-way ANOVA followed by
Bonferroni correction for repeated measures. Error bars indicate
SEM. *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001.
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RESULTS

Der p 2.1 Treatment in Mice Model of
Asthma
To investigate the therapeutic potential of Der p 2.1 peptide, we
measured its effects onAHR, cell inflammation, andhistology in the
HDM-induced asthmamodel (Figure 1A). As expected, asthmatic
mice displayed an increase in lung resistance in response to
methacholine compared with that of control mice (8.68 versus
3.23 cmH2O/l/ml, P < 0.001) (Figure 1B). On the contrary, inmice
receiving Der p 2.1, we observed a decrease in lung resistance
compared to asthmatic mice (3.63 versus 8.63 cmH2O/l/ml, P <
0.001) to a control level. Surprisingly, dexamethasone in asthmatic
mice did not decrease lung resistance (Figure 1B). Then,
pulmonary lesions were investigated by histology (Figures 1C,
D). Concordant with lung functionmeasurements, asthmatic mice
displayed perivascular and peribronchial cell infiltration and
epithelial cell hyperplasia (Figures 1C, D). Der p 2.1 reduced
pulmonary lesions (P < 0.0001) in a similar extent as
dexamethasone based on lung histological scoring (7.75 versus
8.87, P = 0.0918) (Figures 1C, D). Finally, we explored the effect
of Der p 2.1 peptide on lung inflammation (Figures 1E, F). A
dramatic increase in BAL total cells was observed in asthmaticmice
(P < 0.0001) compared to controls, which was distributed among
lymphocytes (P < 0.0001), macrophages (P < 0.0001), eosinophils
(P < 0.0001), and neutrophils (P = 0.0002) (Figures 1E, F). Mice
receivingDer p 2.1 injections displayed a decrease in BAL total cells
(P < 0.0001) as well as in all types of inflammatory cells (P < 0.0001
for lymphocytes, P < 0.0001 for macrophages, P = 0.0006 for
eosinophils, and P = 0.0016 for neutrophils). By contrast,
dexamethasone induced a decrease in BAL total cells (P =
0.0263), lymphocytes (P < 0.0001), and eosinophils (P < 0.0001
and, to a lesser extent, in macrophages (P = 0.0244) but not in
neutrophils (Figures 1E, F). Altogether, our results demonstrate
that Der p 2.1HDM-derived peptide considerably reduced globally
the features of asthma, reducing the whole inflammation response,
including neutrophilia and thus AHR, two cardinal characteristics
shared by all asthma phenotypes. The effect on the neutrophilic
component and on AHR was induced by the peptide but not
dexamethasone, demonstrating the relevance of the treatment for
steroid non-sensitive asthma. Therefore, Der p 2.1 displays highly
interesting anti-inflammatory properties that are relevant for
severe asthma.

To decipher the anti-inflammatory properties of Der p 2.1
peptide, we investigated its effects on the humoral and adaptive
responses (Figure 2). We quantified BAL cytokines and observed
significantly decreased concentrations of IL-5 (P = 0.0021 and
0.0012), IL-13 (P = 0.0019 and 0.0043) and IL-17A (P < 0.0001
and P = 0.0334) in Der p 2.1 and dexamethasone-treated mice
respectively compared to those in asthmatic mice (Figure 2A). To
assess how T cells were involved in this cytokine modulation, we
analyzed pulmonaryTreg, Th2 andTh17 cells byflowcytometry by
both specific transcription factor expression and cytokine
production (Figures 2B, C). According to assays of BAL, the Der
p 2.1 peptide reduced the Th2 response, with a decrease in both
CD4+GATA3+ cells (P = 0.0151) and CD4+IL-13+ cells (P = 0.049)
November 2020 | Volume 11 | Article 565431
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compared to those in asthmatic mice (Figure 2B). This treatment
also decreased CD4+RORyt+ and CD4+IL-17A+ cells,
representative of Th17 cells (P = 0.0093 for RORgt and 0.0362 for
IL-17A) (Figure 2C). The levels of bothTh2 andTh17 cells inDer p
2.1-treated mice were similar to those in control mice (Figures 2B,
C). However, Der p 2.1 induced an increase in Treg frequency (P =
0.0226) (Figure 2D). In contrast, dexamethasone hadno significant
effect on T cells population (Figures 2B–D). Finally, HDM-specific
IgE was measured in the serum of mice as a reflection of the Th2
humoral response (Figure 2E). As observed with dexamethasone,
Derp2.1decreased specific IgE levels inasthmaticmice (P=0.0016)
(Figure 2E). These results show a global effect of Der p 2.1 on the
whole inflammatory response by decreasing not only the Th2
response but also the Th17 response and increasingTreg frequency.

Der p 2.1 Treatment on Mice Cell In Vitro
To further elucidate how Der p 2.1 inhibits Th2 and Th17
responses in asthma, we analyzed in vitro its effect on T cell
differentiation (Figure 3). We cocultured BMDC and T cells
from naïve BALB/c mice in the presence of HDM extract and/or
Der p 2.1. When DCs were incubated in the presence of HDM
extract, the number of Th2 CD4+GATA3+ T cells and CD4+ IL-
13-producing cells increased (P = 0.0026 and P = 0.0002
Frontiers in Immunology | www.frontiersin.org 5
respectively) compared with those of T cells cultured with
control DCs only (Figure 3A). In contrast, no increase in Th2
cells was observed when DCs were incubated with both HDM
extract and Der p 2.1 peptide (Figure 3A). Similar results were
observed in Th17 cells: CD4+RORyt+ and CD4+IL-17A+ cells
increased (P = 0.0061 and 0.0001 respectively) in the presence of
DCs loaded with HDM preparation compared to those in control
conditions, whereas this increase was completely abrogated in
the presence of Der p 2.1 (P = 0.0128 for RORyt and 0.0050 for
IL-17A) (Figure 3B). As a control, DCs incubated with Der p 2.1
alone did not induce T cell differentiation into Th2 or Th17 cells
(Figures 3A, B). Treg frequency did not vary when DCs were
loaded with HDM extract or Der p 2.1 or both (Figure 3C).
These results suggest that Der p 2.1 is able to counteract the
HDM ability to induce Th2 and Th17 differentiation of T cells by
acting on DC activation. Indeed, in the presence of Der p 2.1 or
both HDM extract and Der p 2.1, an increased frequency of
CD11c+ IL-10+ cells was observed (P = 0.0193 and 0.0026
respectively) (Figure 3D). By contrast, IL-10 production from
DCs loaded with HDM extract alone did not increase (Figure
3D). In conclusion, these results suggest that Der p 2.1 induces
IL-10-producing antigen-presenting cells, which could in turn
inhibit HDM-induced T cell differentiation.
A B

D E

C

FIGURE 2 | Der P 2.1 treatment decreases cell response in mouse model of asthma. (A) BAL cytokines IL-4, IL-5, IL-13, and IL-17 quantification (n = 5–6 mice per
group). (B–D) Lung cells of control (white circles), asthmatic (black circles), and dexamethasone (white triangles) and Der p 2.1-treated (black squares) mice were
stimulated for 6 h with HDM extract and stain for Treg, Th2 and Th17 cells (control n = 4, asthmatic, dexamethasone and Der p 2.1 n = 6 mice per group). (E) Blood
HDM-specific IgE was detected by indirect ELISA. IgE values are expressed in arbitrary units obtained by the ratio of sample fluorescence/basal fluorescence. Data
are presented as the mean ± SEM. *P < 0.05, **P < 0.01, ***P < 0.001, and ****P < 0.0001.
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Der p 2.1 Treatment on Human
Cell In Vitro
Following our previous results on mouse BMDC and T cell
polarization, we investigated Der p 2.1 peptide properties on both
HV and asthmatic human PBMCs. Peripheral blood mononuclear
cells (PBMCs) from healthy volunteers (HVs) and severe asthmatic
patients (ASTHMA) were incubated in the presence of HDM, Derp
2.1, or both. As observed in mouse, HDM-re-stimulated PBMCs
from asthmatic patients exhibit a strong Th2 and Th17 polarization
(P < 0.0001 for GATA3 and P = 0.0003 for RORgt) and cytokine
production (P = 0.0001 for IL-5 and P = 0.0040 for IL-17A) without
any effect on Treg and IL-10 DC frequency compared to HV
(Figures 4A–D). Strikingly, Der p 2.1- and HDM/Der p 2.1-re-
stimulated PBMCs from HV and asthmatic patients do not polarize
nor produce Th2 and Th17 cytokines (Figures 4A, B). Treg cell
frequencydoesn’t change, butweobservean increaseof IL-10DC in
both conditions (P = 0.0306 for Der p 2.1 alone and P = 0.0286 for
Der p 2.1 with HDM) (Figures 4C, D). Non-specific stimulation
of both asthmatic andHVPBMCswith a non-relevant allergen (Bet
v 1) orwith PMA/Ionomycin does notmodulate T cell polarization
(Supplementary Figure 3).
Der p 2.1 Treatment in Humanized Model
of Asthma
To confirm our results in a human immune environment and
therefore the potential of using Der p 2.1 in a therapeutic setting
Frontiers in Immunology | www.frontiersin.org 6
in humans, we reproduced our experiments using a humanized
mouse model of allergic asthma (Figure 5A). Irradiated mice
reconstituted with human CD34+ cells and treated with Der p 2.1
peptide displayed a dramatic decrease in airway resistance in
response to methacholine compared to that in HDM-exposed
mice (9.9 vs 18.2 cmH2O/l/ml; P = 0.0186) (Figure 5B). In Der p
2.1-treated humanized mice, the airway resistance in response to
methacholine was indeed comparable to control non-asthmatic
mice (Figure 5B). These results were confirmed by anatomical
analyses of the lungs (Figures 5C, D). Likewise, our previous
observations showed that humanized mice treated with Der p 2.1
peptide displayed reduced cell infiltrate and epithelial thickening
(Figure 5C). The results blindly quantified indicated that the
histological score of Der p 2.1-treated humanized mice was lower
than that of asthmatic humanized mice (P = 0.0005) (Figure
5D). Collectively, our analyses demonstrate that Der p 2.1
peptide efficiently reduces asthma features in vivo in asthmatic
humanized mice.

Having shown an effect of Der p 2.1 peptide on lung function
and inflammation using humanized mice, we then explored the
human immune response in this model (Figure 6). As expected,
both Th2 (CD4+GATA3+ and CD4+ IL-5-producing T cells) and
Th17 (CD4+ RORgt+ and CD4+ IL-17A-producing T cells) cell
numbers were decreased in the lungs of asthmatic mice treated
with Der p 2.1 (P = 0.0020 for GATA3 and 0.0035 for IL-5, P =
0.0061 for RORgt and 0.0002 for IL-17A) compared with those in
the lungs of untreated asthmatic mice. Moreover, Der p 2.1-treated
A B

DC

FIGURE 3 | Der p 2.1 treatment inhibits mouse cell polarization in vitro. (A–D) BMDC and T cells from naïve BALB/c mice polarization in response to no stimulation
(white circles), HDM stimulation (black circles), Der p 2.1 stimulation (white squares) and HDM plus Der p 2.1 stimulation (black squares) (n = 6 mice per group). Data
are presented as the mean ± SEM. *P < 0.05, **P < 0.01, and ***P < 0.001.
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BA

DC

FIGURE 4 | Der p 2.1 inhibits mouse and severe asthma patients’ T cell polarization. (A, B) PBMC polarization and cytokine production by HDM−, Der p 2.1− or
HDM + Der p 2.1-restimulated from human HV and ASTHMA PBMC, (four patients per group). Data are shown as mean ± SEM. *P <.05, **P <.01, ***P <.001.
A B

DC

FIGURE 5 | Der p 2.1 decreases asthma features in humanized mice model of asthma. (A) A humanized mouse model of HDM-induced asthma. (B) Lung resistances of
control (white circles), asthmatic (black circles) and Der p 2.1 treated (black squares) mice (n = 4 mice per group). (C) Lungs were stained with hematoxylin eosin staining: CTL
(control), HDM (asthmatic) and Der p 2.1 (Der p 2.1 peptide) (n = 4 mice per group). (D) Histological slices were scored on 12 points; four points were dedicated to morphologic
alteration, and eight points to inflammation (n = 4 mice per group). Data are presented as the mean ± SEM. *P < 0.05, **P < 0.01, ***P < 0.001 and ****P < 0.0001.
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mice displayed Th2 and Th17 cell numbers comparable to those of
control mice (Figures 6A, B). The frequency of lung
CD4+CD25+Foxp3+ Tregs was not different between control and
asthmatic humanized mice, although Treg frequency was increased
in the lungs after Der p 2.1 treatment (P = 0.0121) (Figure 6C).
Finally, wemeasured HDM-specific IgE and observed a decrease in
treated mice compared with that in asthmatic mice (P = 0.0281),
with a level comparable to that of the control (Figure 6D). Taken
together, these results demonstrate a decrease in both Th2 and
Th17 cells in response to Der p 2.1 and an increase in Der p 2.1-
induced Treg cells in humanized asthmatic mice.
DISCUSSION

In the present study, we first confirmed that our mouse model of
HDM-induced asthma not only exhibited the allergic asthma
features of eosinophilia, Th2 response, and allergen-specific IgE
production (26) but also key features of severe asthma, such as
neutrophilia, Th17 response, and low steroid sensitivity (27).

In our model, steroid resistance was illustrated by the persistent
AHR in asthmatic mice after dexamethasone treatment. As
dexamethasone reduced eosinophilia and Th2 cytokines but could
not diminish neutrophilia and IL-17A secretion, it is possible that
steroid resistance of AHR is related to the IL-17-induced
neutrophilic and Th17 contingents (28). Indeed, IL-17A is well
known to be associated with elevated levels of neutrophils in the
airways and can directly activate smooth muscle cell contraction
(29). By contrast, Der p 2 allergen-derived peptide immunotherapy
abrogated both Th2- and Th17-related asthma features and
Frontiers in Immunology | www.frontiersin.org 8
established AHR. In addition, lung Treg cell frequency increased
under Der p 2.1 treatment. As Treg cells are key players in
inflammation resolution, they are candidates to be responsible for
the Th2/Th17 modulation induced by the peptide. Accordingly,
their increase is associated with success of AIT (30, 31). Moreover,
Der p 2.1 seems to act on lung tissue alteration. It is well known that
bronchial remodeling is a severe asthma feature (32). Interestingly,
our peptide reduced lung infiltrate and decreased epithelium/
smooth muscle thickening (Supplementary Figure 4A)
and decrease alarmin production such as IL-33, thymic
stromal lymphopoietin (TSLP) and IL-25 (Supplementary
Figures 4B–D). Based on these observations, we can expect that
Der p 2.1 may also decreases smooth muscle cell hyperplasia;
however, further investigation like alpha smooth muscle actin
staining needs to be realized to measure impact of Der p 2.1
treatment on smooth muscle.

Preclinical assessments of new therapies require animal models
reflecting human pathogenesis, but existing differences in the
immune physiology of mice and humans limit their
interpretation. Previous NSG mouse strains were not relevant
enough and failed to fully mimic the human immune system (33,
34).Anewmodel ofhumanizedmice calledNSG-SGM3was able to
express functional human Treg, T and B cells, myeloid progenitor,
and dendritic cells and mast cells (22, 35–38). NSG-SGM3 HDM-
induced asthma model is known to exhibit elevated AHR, a
bronchial infiltrate and alteration associated with Th2
inflammation (39). For the first time, we developed a model of
HDM-induced allergic severe asthma in NSG-SGM3 humanized
mice. Indeed, our model exhibits a mixed Th2/Th17 response and
HDM-specific IgEproduction relevant toallergic severe asthma.All
A B

DC

FIGURE 6 | Der p 2.1 modulates cell responses in humanized mice. (A–C) Lung Treg, Th2 and Th17 cells were assessed by flow cytometry (n = 4 mice per group).
(D) Serum HDM-specific IgE was detected by indirect ELISA. IgE values are expressed in arbitrary units obtained by the ratio of sample fluorescence/basal
fluorescence. Data are presented as the mean ± SEM. *P < 0.05, **P < 0.01 and ***P < 0.001.
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these features were decreased under Der p 2.1 treatment and
associated with an increase in Treg frequency in the lungs,
consistent with results in non-humanized mice and with an anti-
inflammatory effect of Treg cells induced by peptide therapy.

We particularly focused on dendritic and T cell polarization.
Dendritic cells are known to be the bridge between innate and
adaptative immunity, especially for the induction of allergen-
specific Th2 response in asthma notably through type 2
conventional dendritic cells (cDC2) (40). In contrast, tolerogenic
IL-10-secreting dendritic cells (IL-10 DC) are responsible for
tolerance induction toward an allergen by inducing allergen-
specific Treg cells during the late phase of successful AIT (41). As
expected, HDM extract increased Th2 and Th17 cell polarization
compared to control in vitro without affecting Treg or IL-10-
secreting dendritic cells, which could be associated with a defect
in regulatory function (42). By contrast, in vivo we observe an
increase in Treg frequency after treatment; this can be partially
explained by the fact that in vitro the number of cells is largely
reduced compared with in vivo. Moreover, in vivo other elements
such as other DC cell or other cytokines may support Treg
expansion and survival, which is not present in vitro. Our results
demonstrate a direct capacity of Der p 2.1 to induce an anti-
inflammatory phenotype of DCs (43) in both mouse and
humanized mice. This direct effect independent of the presence of
allergens may be linked to a potential capacity of Der p 2.1 to exert
an anti-inflammatory bystander effect that could prevent
inflammation from other allergens. In fact, it is likely that Der p
2.1 is able to drive cell polarization toward tolerance not only to
HDM allergen but also to other aggressive agents.

The use of whole allergen could present the inconvenience of
being recognized by specific IgE and then induce asthma rather than
treating it. Several studies have already shown the clinical efficacy and
safety of allergen-modified extract (allergoids) in asthma (44–47).
Bothallergoids andallergen-derivedpeptides induceTreg and IL-10-
secreting DCs to reestablish a tolerance defect (48–50). However,
whereas polymerized allergens called allergoids have lower IgE-
binding capacity and Th2 activation while retaining the capacity to
induce T cell activation (47, 51), Der p 2.1 can also modulate the
Th17 axis, whichpredominates in the severe formof asthma.Despite
their efficacy indecreasing asthma features, allergen-derivedpeptides
may also be improved. Indeed,Martıńez and colleagues showed that
the combination of several Der p allergen-derived peptides exhibits
anti-inflammatory properties (52). Moreover, the use of
nanoparticles as adjuvants (53) in allergen-derived peptide
immunotherapy could potentially improve their ability to polarize
innate and adaptive cells into a tolerogenic phenotype.

We demonstrated that Der p 2.1 immunotherapy abrogates
HDM severe allergic asthma features through the induction of
tolerogenic DCs in both mice and humanized mice. Despite
exhibiting a mixed Th2/Th17 inflammation like severe asthmatic
patients, our study remains limited by the specie features.
Moreover, Der p 2.1-related DC mechanisms were mainly
shown in vitro and required in vivo studies to confirm these
results. Nevertheless, our preliminary results concerning Der p
2.1 effect on the Th17 axis are promising and could be useful for
severe asthmatic patients and need further investigations. Thus,
Frontiers in Immunology | www.frontiersin.org 9
allergen-derived immunotherapy could be considered as a
promising therapeutic approach to treat allergic asthma,
including severe steroid-insensitive forms.
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SUPPLEMENTARY FIGURE 1 | Gating strategy for T cells in humanized mice.
Gating strategy to obtain T cells was as follows: blood cells (side scatter [SSC]-A X
forward scatter [FSC]-A), single cells (forward scatter [FSC]-H X [FSC]-A), human
Frontiers in Immunology | www.frontiersin.org 10
CD45+ cells (anti-human CD45, Biolegend), human CD3+ T cells and human CD3+

CD4+ T cells (anti-human CD3 and anti-human CD4, BD Pharmingen).

SUPPLEMENTARY FIGURE 2 | Demographic and clinical data. Definition of
abbreviations: FEV1, Forced Expiratory Volume in the first second; ACQ, Asthma
Control Questionnaire; NA, non-applicable; BMI, Body Mass Index; OCS, oral
corticosteroid; LABA, Long-Acting Beta-Agonist.

SUPPLEMENTARY FIGURE 3 | Irrelevant allergen Bet v 1 and non-specific PMA/
Ionomycin stimulation do not activate Th2 and Th17 secreting cell in human PBMCs.
(A–D) IL-5-secreting (Th2) and IL-17-secreting (Th17) T cell number from PBMCs
under Bet v 1 or PMA/Ionomycin re-stimulation. 4 HV and 4 ASTHMA patients per
group (Figures 2E, A–D). Data are shown as mean ± SEM. *P <.05, **P <.01.

SUPPLEMENTARY FIGURE 4 | Der p 2.1 reduces bronchial remodeling and
lung innate inflammation. (A) Bronchial epithelium thickness. (B, C, D) Epithelium-
derived cytokine concentration. six to eight (Figures E1, A) and four to six (Figures
E1, B–D) mice per groups. Data are shown as mean ± SEM. *P <.05, **P <.01,
***P <.001, ****P <.0001.
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