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a CNRS, IM2NP UMR7334, Campus Scientifique de St Jérôme, Aix-Marseille University, 13397 Marseille cedex 20, France 
b STMicroelectronics, 850 rue Jean Monnet, Crolles 38920, France   

A R T I C L E  I N F O   

Keywords: 
Ge2Sb2Te5 

Phase change material 
Phase change random access memory 

A B S T R A C T   

Ge-rich Ge-Sb-Te (GGST) alloys are being currently integrated to the complementary metal oxide semiconductor 
technology for industrial production of new generation of non-volatile memories, able to support the develop
ment of raising technologies such as internet-of-things and artificial intelligence. These phase-change random 
access memories are based on ultra-fast reversible crystallization/amorphization of the Ge2Sb2T5 (GST225) 
chalcogenide compound exhibiting a large resistivity contrast between the amorphous and crystalline states. 
GGST film crystallization is accompanied by the phase separation of Ge and an fcc-GST225 phase of unknown 
composition, which should vary with Ge excess of GGST films. However, device properties and reliability are 
expected to vary with fcc-GST225 stoichiometry. This work reports atom probe tomography, X-ray diffraction, 
and scanning transmission electron microscopy investigations of the crystallization of an amorphous GST225 
layer containing pseudo-periodic local composition variations. The results show that the compound fcc-GST225 
is not stoichiometric, accepting 10 Ge at% variations, 7.5 Sb at% variations, and 6 Te at% variations. Further
more, the microstructure as well as element distributions in the crystallized fcc-GST225 film suggest that fcc- 
GST225 nucleation is piloted by local composition variations. Fcc-GST225 nuclei formed in the Te-richest re
gions of the amorphous layer, corresponding to bulk hetero-nucleation, lowering the nucleation temperature.   

1. Introduction 

Phase change materials (PCM) and phase change random access 
memories (PCRAM) are expected to support the development of next- 
generation technologies such as Internet-of-Things [1,2] and artificial 
intelligence technologies [3–7], with applications in a wide range of 
domains from automotive (autonomous vehicles) [8–11] to health [7, 
12] and environmental [13,14] domains, for example. PCM-based 
technologies use the large difference of optical, electrical, or thermal 
properties between the material amorphous and crystalline states, as 
well as the nanosecond-speed reversible switch between these two states 
[15,16]. Among PCM, Ge-Sb-Te (GST) chalcogenide compounds are 
studied with great interest as such materials are compatible with the 
complementary metal oxide semiconductor (CMOS) technology, having 
a strong impact on technology as well as industrial production poten
tials. Indeed, the CMOS technology allows the production of highly 
reliable micro- to nano-devices at relatively low cost and high produc
tion rate, and offers strong integration potential [8,10,17]. In particular, 
GST-based technology involves much lower fabrication thermal budgets 

as well as a different integration scheme compared to Si(Ge) technology, 
allowing GST devices to be integrated on top of current microelectronic 
devices on the same Si wafer [8,10,17,18]. 

PCRAM combines fast programming (nanosecond Write-time), high 
scalability and higher endurance compared to usual non-volatile mem
ories [19,20]. They are based on PCM, and can be used for neuro-inspire 
as well as all-photonic in-memory computing [3,7,21,22]. The proto
typical GST compound Ge2Sb2Te5 (GST225) has been largely studied as 
suitable candidate for PCRAM [2–5]. However, its relatively low crys
tallization temperature (TX ~ 150◦C [10]) is incompatible with some 
industrial techniques, such as the soldering reflow process, and 
high-temperature data retention required for automotive markets [10, 
23–25]. 

Consequently, instead of GST layers with the “225” stoichiometry, 
Ge-rich GST (GGST) alloys with Ge composition higher than 30% are 
considered for industrial production, since TX of GST225 was shown to 
increase linearly with GGST alloy Ge composition [10,26]. However, the 
alloy crystallization is characterized by the phase separation of Ge and 
GST225 starting in the amorphous state in this case, leading to the 
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formation of Ge and fcc-GST225 nano-grains [25,27,28]. The micro
structure of crystallized GGST layers is generally characterized using 
X-ray diffraction (XRD) and transmission electron microscopy (TEM), 
including scanning TEM (STEM), Energy-dispersive X-ray spectroscopy 
(EDS) and Electron Energy Loss Spectroscopy (EELS) [25–33]. However, 
the composition of fcc-GST225 grains is difficult to quantitatively 
determine. EDS measurements [27] as well as ab initio calculations 
[34–36] reported so far in the literature suggest that the composition of 
fcc-GST225 grains crystallized from amorphous GGST layers does not 
match the “225” stoichiometry. Furthermore, recent atomistic kinetic 
Monte Carlo simulations showed that the experimental crystallization 
kinetics of GGST layers can be explained by a significant 
off-stoichiometry degree of the fcc-GST225 phase [26]. It is important to 
stress that any composition variation could influence the fcc-GST225 
properties of interest [24,26,33,37–39], and thus could have an 
impact on device properties. If the compound fcc-GST225 accepts sub
stantial composition variations, the stoichiometry of the fcc-GST225 
nano-grains in GGST layers is probably different for different Ge 
excess. The knowledge of the fcc-GST225 phase stoichiometry is thus 
mandatory. 

The goal of the present experiments is to answer two essential 
questions. First, is the phase fcc-GST225 stoichiometric? And if not, 
what is its composition degree of variation? And second, if fcc-GST225 
not stoichiometric, what is the effect of local composition variations 
on GST225 crystallization? To this aim, the composition of a GST225 
layer containing pseudo-periodic composition variations was quantita
tively measured in three-dimensional space (3D) at the atomic scale by 
atom probe tomography (APT), and compared to the layer microstruc
ture studied by XRD and STEM. 

2. Methods 

A 300 nm-thick amorphous GST225 (a-GST225) layer was deposited 
by magnetron sputtering on a substrate made of a 20 nm-thick TiN layer 
on Si(001). The TiN layer acts as a diffusion barrier between the 
deposited layer and the Si atoms of the substrate. A-GST225 deposition 
was performed at room temperature (RT) in a commercial magnetron 
sputtering system exhibiting a base pressure of 10− 8 mbar. Sputtering 
was achieved using a 99.9999% pure Ar gas flow under a work pressure 
of 3.6 × 10− 3 mbar. Ge, Sb, and Te were co-sputtered from three 
monoatomic targets exhibiting a purity of 99.999%, 99.99%, and 
99.99%, respectively. Ge and Sb were sputtered in the DC mode, while 
Te was sputtered in the RF mode. Ge, Sb and Te fluxes were calibrated 
separately by measuring the thickness of sputtered films deposited at RT 
on the native oxide of Si(001) substrates by X-ray reflectivity. The 
sample was rotating at the speed of 5 rpm during deposition, and the 300 
nm-thick GST225 layer was capped with 10 nm of pure Ge at the same 
temperature in order to minimize oxidation effect. After deposition, the 
sample was annealed under a vacuum of ~ 10− 4 mbar in situ in the XRD 
setup, following a heating ramp of ~ 0.9◦C min− 1 between 100◦C and 
250◦C. These annealing conditions usually allow GST225 full crystalli
zation and allow the crystallization temperature TX to be determined as 
the temperature at which the phase is first detected in the DRX pattern 
[26]. TX = 140◦C in the present case. The sample crystallization was 
investigated by both XRD in the Bragg-Brentano geometry (θ− 2θ) using 
a Panalytical Empyrean diffractometer equipped with an PIXcel detector 
and a Cu K-α source (λ = 0.154 nm), and by STEM using a Tecnai OSIRIS 
TEM from FEI operating at 200 kV. TEM lamellas were prepared using 
the in-situ lift out technique in a FIB-SEM system Helios450TM from 
ThermoFisher and mounted onto a copper grid. The final thinning of the 
lamella was performed using an acceleration voltage of 2 kV. The 
composition of the samples before and after annealing was measured by 
APT using a CAMECA LEAP 3000X-HR system in laser mode at T = 50 K, 
with a laser energy of 0.5 nJ, a laser pulse frequency of 100 kHz, and an 
evaporation rate of 0.1%. The APT samples were prepared by focus ion 
beam (FIB) using a Helios NanoLab DualBeam Ga+ FIB from FEI, 

following the procedure described in [40]. The size of APT reconstructed 
volumes was set to match TEM and EDS observations. Fig. 1 presents a 
typical mass spectrum obtained by APT (no difference between amor
phous and crystalline films) with mass-to-charge-state peak identifica
tion. Few peaks were not identified (uncolored in Fig. 1). However, they 
correspond to less than 1% of all the atoms. Furthermore, among them, 
less than 0.4% could be suspected to contribute to the GST alloy 
composition. Fig. 1 shows also the details of mass-to-charge-state peak 
identification in the three regions of the mass spectrum where molecules 
are overlapping. 

3. Results and discussion 

The GST225 layer (300 nm-thick) was deposited using magnetron co- 
sputtering of Ge, Sb and Te targets. The Ge, Sb, and Te deposition fluxes 
during deposition were set to match the stoichiometry of the compound 
GST225. However, due to the geometry of the sputtering system [41], 
the continuous rotation of the sample during co-deposition of the three 
elements leads to the formation of pseudo-periodical composition vari
ations along the depth of the layer [41]. This deposition process allowed 
the deposition of amorphous GST225 layers (a-GST225) exhibiting an 
overall GST stoichiometry matching the “225” stoichiometry, but con
taining local concentration variations along the layer thickness. The 
substrate performed 15 rotations during deposition (181 seconds). Fig. 2 
presents the X-ray diffractogram acquired on the as-deposited sample 
(black solid line, star symbol). 

As expected, the film is amorphous due to room temperature (RT) 
deposition. Fig. 3 shows a 50 nm-deep volume of the a-GST225 layer 
analyzed by APT, as well as the Ge, Sb, and Te concentration profiles 
measured in this volume along the layer depth. The entire volume 
contains 29.0 at% of Ge, 22.1 at% of Sb, and 48.9 at% of Te that is close 
to the stoichiometry of the GST225 compound. Several volumes were 
analyzed giving similar results. The 7 Ge at% excess, corresponding to a 
7 Te at% deficiency, can be due to co-sputtering flux interactions, in
accuracy in determining deposition rates [42], or the result of a lack of 
statistic due to the limited lateral size of the APT volumes. 

Fig. 3b shows that the atomic distributions are not homogeneous 
along the depth of the a-GST layer, as expected [41]. The concentration 
profiles are not constant, and pseudo-periodic concentration variations 
exhibiting periods between 20 (Ge and Te) and 25 nm (Sb) are observed. 
One can note that the Ge and Te concentration profiles are in opposition 
of phase, while the Sb variation phase is in between. In average, the local 
concentration variations of the elements (C) in the layer are 17.5 ≤ CGe 
≤ 35 at%, 15 ≤ CSb ≤ 30 at%, and 42.5 ≤ CTe ≤ 62.5 at%, corresponding 
to the average concentration differences ΔCGe ~ 17.5 at%, ΔCSb ~ 15 at 
%, and ΔCTe ~ 20 at%. 

Fig. 4 presents APT analyses performed on the GST225 layer after 
thermal ramp annealing up to 250◦C. According to XRD measurements 
(red solid line, diamond symbol in Fig. 2), this layer was crystallized 
during annealing, and fcc-GST225 is the only phase detected since the 
six diffraction peaks detected at 2θ = 25.67◦, 29.66◦, 42.51◦, 50.26◦, 
52.56◦, and 61.50◦ correspond to the atomic planes (111), (200), (220), 
(311), (222), and (400) of fcc-GST225. Fig. 4a shows a 195 nm-deep 
volume of the crystallized GST225 layer analyzed by APT. The top 
volume presents the entire atomic distribution, while the three others 
display Ge, Sb, and Te iso-concentration surfaces in the same volume. 
The overall composition of the analyzed volume is 24.7 at% of Ge, 21.5 
at% of Sb, and 53.8 at% of Te. This stoichiometry is closer to the “225” 
stoichiometry compared to the overall stoichiometry found in the APT 
volumes analyzed in the as-deposited GST225 layer. The Ge excess and 
the Te deficiency are reduced to 2.7 at% and 2.2 at%, respectively. This 
result suggests that the composition difference between the expected 
composition (from sputtering flux calibration) and the APT measure
ments is mainly related to the reduced statistic in the APT volumes, 
which do not include long-range composition inhomogeneity (in 
particular in the direction parallel to the sample surface). Each iso- 
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surface of concentration Ciso in Fig. 4a delimits a volume in the sample in 
which the concentration of the considered element (Ge, Sb, or Te) is 
higher than Ciso (Ciso-Ge = 27.6 at%, Ciso-Sb = 22.8 at%, and Ciso-Te = 55.3 
at% in Fig. 4a). These iso-concentration surfaces reveal the periodical 
distribution of the elements along the depth of the layer. Depending on 
the element, 10 (for Ge) to 11 (for Sb) regions exhibiting a high amount 
of one of the given elements are found to be regularly separated, from 
the top to the bottom of the volume analyzed by APT. The local pseudo- 
periodic composition variations initiated in the amorphous as-deposited 
film, due to the rotation of the substrate below the three sputtered 
monoatomic targets, led to the formation of local composition variations 

Fig. 1. Mass spectrum of an entire APT volume obtained from a crystallized GST225 film.  

Fig. 2. XRD measurements performed on the sample before (black solid line, 
star symbol) and after (red solid line, diamond symbol) thermal ramp annealing 
up to 250◦C. 

Fig. 3. APT measurements performed on the as-deposited sample: a) APT 
volume showing the entire atomic distribution, each point is a single atom (red 
for Ge, blue for Sb, and green for Te), and b) Ge (red squares), Sb (blue circles), 
and Te (green triangles) concentration profiles measured along the depth of the 
a-GST225 layer in the volume presented in (a). 
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in the film after annealing. The Ge, Sb, and Te concentration profiles 
measured in the same APT volume (Fig. 4b) confirm the pseudo-periodic 
distribution of the three elements in the crystallized GST225 layer. 10 
(for Ge) to 11 (for Sb and Te) concentration oscillations are observed 
depending on the element, Sb and Te variations being in phase and Ge 
variations being in opposition of phase with Sb and Te in the annealed 
layer. The amplitude (i.e. the concentration difference ΔC) of the os
cillations increases towards the GST225 layer surface. 

In average, the element concentrations vary in the crystallized layer 
such as 20 ≤ CGe ≤ 30 at%, 17.5 ≤ CSb ≤ 25.0 at%, and 50 ≤ CTe ≤ 56 at 
%, corresponding to ΔCGe ~ 10 at%, ΔCSb ~ 7.5 at%, and ΔCTe ~ 6 at%. 
These variations are different from that initiated in the amorphous layer, 
meaning that annealing allowed atoms to diffuse aiming at minimizing 
the crystal energy. Accordingly, crystallization involved a significant 
reduction of the average local concentration differences of all the ele
ments: ~ 43% decrease for ΔCGe, ~ 50% decrease for ΔCSb, and ~ 70% 
decrease for ΔCTe. Ge, Sb, and Te composition variations are comprised 
in the composition ranges initiated in a-GST225, their minimum con
centration increased while their maximum concentration decreased 
during annealing (expected behavior for concentration gradient 

mediated diffusion). However, Ge variations stayed in opposition of 
phase with Te variations, while Sb variations are now found to be in 
phase with that of Te. This behavior may be related to the repulsive 
tendency of Sb and Ge atoms (phase separation in binary phase diagram) 
compared to the attractive tendency of Sb and Te atoms (binary com
pound formation). It is interesting to note that even though Ge and Sb 
composition variations are observed to vary below and above the 22 at% 
concentration of the “225” stoichiometry, the Te maximum concentra
tion in the annealed layer corresponds to that of the “225” stoichiometry 
(i.e. Te concentration variations are limited to occur below 56 at% in the 
crystallized layer). This difference between Ge and Sb local concentra
tion variations and Te concentration variations may be related to the 
structure of the GST225 compound. Indeed, Ge and Sb are known to 
randomly occupy atomic sites belonging to a same sublattice (cation 
sites) with a significant amount of structural vacancies [43–45], while 
Te atoms occupy a different sublattice (anion sites). The periodic con
centration oscillations in Fig. 4b can be considered to correspond to two 
different compounds: a Ge-rich compound and a Ge-poor compound, 
both accepting some stoichiometry variations. According to APT mea
surements, the stoichiometry exhibiting the highest Ge content corre
sponds to Ge2.86Sb1.61Te4.46, while the stoichiometry exhibiting the 
lowest Ge content corresponds to Ge1.88Sb2.05Te5, the latter being closer 
to the “225” stoichiometry. 

Fig. 5a presents a STEM high-angle annular dark-field (HAADF) 
image of the crystallized GST225 layer in cross-section. The contrast 
observed in this image is mainly due to crystalline disorientation as a 
long camera length of ~ 195 mm was used for this STEM HAADF image. 
EDS measurements were performed on the same TEM lamella. An 
example of the comparison between STEM HAADF and two-dimensional 
(2D) EDS mapping performed on a same sample region is shown in 
Fig. 5b (red for Ge and blue for Sb). The GST layer is fully crystallized 
(no amorphous region) exhibiting a thickness ~ 288 nm. All the grains 
exhibit the same fcc structure, the contrast differences observed between 
grains being linked to a difference of lattice orientation. Fig. 5c shows 
EDS composition profiles measured on the entire thickness of the GST 
layer. Te exhibits an almost constant composition profile around CTe ~ 
51 at%, while Ge and Sb present 15 periodic concentration variations in 
opposition of phase with 17.5 ≤ CGe ≤ 27.5 at% (ΔCGe ~ 10 at%) and 
22.5 ≤ CSb ≤ 30.0 at% (ΔCSb ~ 7.5 at%). EDS results agree with APT 
measurements considering a usual error of 3% in EDS estimations. In 
particular, one can note that the Te concentration oscillations are not 
clearly evidenced by EDS, as APT showed that Te variations do not 
exceed 6 at% that is precisely in the range of EDS measurement un
certainties (± 3%). Furthermore, Sb composition is overestimated while 
Te composition is underestimated in EDS profiles, due to the over
lapping of Sb and Te EDS signals (L transitions in the 3 to 5 keV range), 
making difficult the separation of Sb from Te (use peak deconvolution). 

Nevertheless, one can note that ΔCGe and ΔCSb were found to be 
identical for APT and EDS. 2D EDS element mapping (Fig. 5b) confirmed 
that the observed composition variations occur in single GST225 grains. 
In particular, each grain contains in its center the interface between the 
Sb-rich region (at the bottom of the grain) and the Ge-rich region (on top 
of the grain). Consequently, the local concentration variations (6 to 10 at 
%) observed in the annealed sample correspond to stoichiometry vari
ations accepted by the fcc-GST225 phase. STEM (Fig. 5a) shows that two 
amorphous layers are located on top of the crystalline GST225 layer. 
According to EDS, the fcc-GST225 layer is in contact with a 7 nm-thick 
amorphous Ge layer (a-Ge), which is covered by an 8 nm-thick Ge oxide 
layer, the latter being made of a 5 nm-thick GeOx layer (with x > 1) at 
the surface of the sample and a 3 nm-thick GeO layer in contact with the 
amorphous Ge layer. The 10 nm-thick Ge cap prevented oxidation of the 
GST225 layer, and low annealing temperature prevented the crystalli
zation of the non-oxidized Ge located below the Ge native oxide, 
allowing fcc-GST225 to nucleate in bulk. However, the fcc-GST225 layer 
is made of the stack of 15 polycrystalline layers from top to bottom 
(Fig. 5a), meaning that nucleation was neither homogenous nor random 

Fig. 4. APT measurements performed on the crystallized GST225 layer: a) same 
APT volume showing the entire atomic distribution (top volume, each point is a 
single atom: red for Ge, blue for Sb, and green for Te), as well as Ge, Sb, and Te 
iso-concentration surfaces delimiting sub-volumes of respective concentrations 
above 27.6, 22.8, and 55.3 at%; and b) Ge (red squares), Sb (blue circles), and 
Te (green triangles) concentration profiles measured along the depth of the 
GST225 layer in the volume presented in (a). 
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in the layer as generally reported for homogeneous a-GST225 layers 
[46], and the crystallization temperature was found to be 140 ◦C [26], 
much lower than generally expected for non-oxidized a-GST225 [16]. 
The formation of the 15 polycrystalline layers is obviously related to the 
concentration variations resulting from the 15 rotations of the sample 
during co-sputtering, and linked to the distribution of fcc-GST225 nuclei 
in the initial a-GST225 film. Indeed, the grains of the different layers 
obviously nucleated simultaneously and grew concurrently in the a-GST 
layer until they were in contact. Fig. 3b shows that Te concentration 
maximums were located at the same depth as the interface between the 
Ge-rich and Sb-rich regions in the as-deposited layer. The fact that the 
Ge2.86Sb1.61Te4.46/Ge1.88Sb2.05Te5 interfaces are incorporated in the 
grains of each of the 15 layers (Fig. 5b) strongly suggests that the 
fcc-GST225 phase simultaneously nucleated at each Te concentration 
maximums distributed along the thickness of the a-GST225 layer, pro
moting a lower crystallization temperature (heterogeneous nucleation) 
and leading to the microstructure shown in Fig. 5a. 

4. Conclusion 

In summary, the crystallization of a 300 nm-thick amorphous GST 
film exhibiting an overall stoichiometry matching that of GST225 but 
containing pseudo-periodic Ge, Sb, and Te local composition variations 
was studied by APT, XRD, and STEM. The crystallized film is poly
crystalline and made of a single phase: the fcc-GST225. This phase is not 
stoichiometric, exhibiting Ge, Sb, and Te concentration variations of ~ 
10 at%, ~ 7.5 at%, and ~ 6 at%, respectively. Compared to the (Ge:2, 
Sb:2,Te:5) stoichiometry, these concentration variations are found to 
take place around 22 at% (20 ≤ CGe ≤ 30 at% and 17.5 ≤ CSb ≤ 25.0 at 
%) for Ge and Sb (cation site sublattice), but to occur below 56 at% for 
Te (anion site sublattice). Furthermore, the fcc-GST225 stoichiometries 
respectively displaying the highest and the lowest Ge content were 
found to be Ge2.86Sb1.61Te4.46 and Ge1.88Sb2.05Te5. The microstructure 
and the element distributions in the polycrystalline fcc-GST225 film 
suggest that local concentration variations promote fcc-GST225 het
erogeneous nucleation in Te-rich regions of the a-GST film, lowering the 
crystallization temperature. 
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