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Résumé :

Dans cet exposé la cinétique de la ligne triple de contact liquide gaz solide en présence de défauts de surface est

discutée. Le piégeage de la ligne triple par des défauts est analysé. On montre en quoi le piégeage de la ligne triple

est différent du piégeage de la surface entre deux phases dans des milieux aléatoires. La dépendance force–vitesse

est considérée pour le cas des défauts périodiques. Elle se révèle d’être fortement non linéaire près du seuil de

piégeage ainsi que pour des grandes vitesses où la force se sature.

Abstract :

We propose an equation that describes the shape of the driven contact line in dynamics in presence of arbitrary

(possibly random) distribution of the surface defects. It is shown that the triple contact line depinning differs

from the depinning of interfaces separating two phases ; the equations describing two these phenomena have an

essential difference. The force-velocity dependence is considered for a periodical defect pattern. It appears to be

strongly non-linear both near the depinning threshold and for the large contact line speeds. These nonlinearity is

comparable to experimental results on the contact line depinning from random defects.

Mots-clefs :

ligne triple ; piégeage ; défauts ; mouillage

1 Introduction

Motion of interphase boundaries in a random environment remains an open problem of

general interest. Much attention has been paid to the depinning transition in the systems where

collective pinning creates non-trivial critical behavior of the interface separating two different

phases : fluid invasion in porous media, magnetic domain wall motion, flux vortex motion in

type II superconductors, charge density wave conduction, dynamics of cracks, solid friction

[1, 2]. The theory of the depinning transition is based on the analysis of the following equation

for the interface position h :
∂h

∂t
= F + η(h) + G[h], (1)

where F is the externally imposed force, η is the noise due to the randomness of the media,

t is time, and G[·] is some operator. When F is close to the depinning threshold Fc (where

the interface begins to move), this approach generally results in the power law for the average

interface velocity v ∼ (F − Fc)
β . When F ≫ Fc, a conventional linear mobility law becomes

valid.

Depinning of the triple gas-liquid-solid contact line on a solid surface with defects is ano-

ther example of the depinning transition. The outlined above general approach to the interface

depinning phenomena is frequently applied to the contact line depinning [3]. However, the dis-

crepancy between the theory and the experimental data on contact line motion is notable. First,
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liquid surface z=f(x,y) 

z 
x y 2L u O F 

FIG. 1 – Reference system to describe the Wilhelmy balance experiment. The Wilhelmy plate

is positioned in yOz plane. The positive directions for u and F are shown too.

β < 1 according to the theoretical studies while β ≥ 1 is found experimentally [4]. Second, the

linear mobility regime was never obtained [4]. In this paper we propose a framework suitable

to explain these results.

2 Modelling of the contact line motion

Most contact line motion quasistatic models [5] result in the following expression for the

contact line velocity vn as a function of the dynamic contact angle θ :

vn =
σ

ξ
(cos θeq − cos θ), (2)

where θeq is the equilibrium (Young) value of the contact angle, σ is the surface tension, and ξ
is a mechanism-dependent coefficient that has the same dimension as the shear viscosity µ.

The equation for the spontaneous motion has been derived in [6]. In this paper we deal with

the Wilhelmy geometry (Fig. 1), where the vertical plate with surface defects can be moved up

and down with a constant velocity u (u > 0 for the advancing contact line is assumed).

The account of the gravity influence permits [6] to avoid logarithmic divergences and thus

obtain the contact line profile.

The average value of the force F exerted on this plate due to the presence of the moving

contact line can be measured with a high precision [4]. The liquid-gas interface is assumed to

be described by the function z = f(x, y, t) where t is time and

|∇f | ≪ 1 (3)

is assumed. The position of the contact line is then given by its height h = h(y, t) such that

h(y) = f(x = 0, y). From now on, we omit the argument t.
Under the assumption (3), the minimization of the potential energy U of the liquid with

respect to f results [6] in the following expression :

f =
1

2L

∞
∑

n=−∞

exp
(

−x
√

l−2
c + π2n2/L2

)

∫ L

−L

dy′h(y′) cos
πn(y − y′)

L
, (4)

where lc =
√

σ/ρg is the capillary length, ρ is the liquid density and g is the gravity accelera-

tion. We assume that f is periodic (period 2L) in the y-direction perpendicular to the direction of
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u. Following [7, 8], the surface defects are modelled by the spatial variation of the equilibrium

value of the contact angle θeq(y, z) along the plate.

The contact line velocity with respect to the solid reads vn = ḣ + u. Taking into account the

expression for the dynamic contact angle θ obtained under the condition (3),

cos θ = −∂f/∂x|x=0, (5)

one obtains from Eq. (2) the following governing equation for h

ḣ(y) + u =
σ

ξ

{

c[y, h(y) + ut] −

1

2L

∞
∑

n=−∞

√

l−2
c + π2n2/L2

∫ L

−L

dy′h(y′) cos
πn(y − y′)

L

}

, (6)

where c(y, z) = cos[θeq(y, z)] is introduced for brevity.

One can easily derive a simpler ”long-wave limit” version of Eq. (6) by expanding h(y′)
around h(y) in the Taylor series and tending L → ∞ :

ḣ + u =
σ

ξ

[

c(y, h + ut) −
h

lc
+

lc
2

∂2h

∂y2

]

. (7)

Notice that Eqs. (6,7) have the form (1), where the random term η is replaced by the random

term c. However, the external force F is missing.

3 External force

The additional force F that acts on the Wilhelmy plate due to the presence of the contact line

(per unit plate width in y-direction) consists of two parts [9] : the contribution of the interface

tensions at the contact line and the ”friction” force due to the energy dissipation :

F =
1

2L

∫ L

−L

dy
{

σLS − σGS + ξ
[

ḣ(y) + u
]}

, (8)

where the surface tensions of the gas-solid (σGS) and liquid-solid (σLS) interfaces are introdu-

ced. According to the Young formula, c(y, z) = (σGS − σLS)/σ. By using Eq. (2), one obtains

the final expression

F = −
σ

2L

∫ L

−L

cos θ(y) dy, (9)

which means that the force in σ units at each time moment can be obtained by averaging the

cosine of the dynamic contact angle along the contact line. This force can be measured directly

by separating it out from viscous drag using special experimental techniques [4] and presented

as a counterpart of the external force F in Eq. (1) for the case of contact line depinning.

We consider below a periodical both in the directions y and z pattern of round spots of the

radius r shown in Fig. 2. Inside the spots, θeq = θd, the rest of the plate having θeq = θs.

Because of the nonlinearity in the c term, Eq. (6) seems to be complicated and difficult

to solve numerically. However, both the integration and the n-summation can be performed

numerically with highly efficient Fast Fourier Transform algorithm.
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FIG. 2 – A unit cell for the periodic defect pattern (the area of a defect is shadowed) and periodic

(both in time and space) solution of Eq. (6). 20 snapshots of the contact line with the equal time

intervals 0.2ξlc/σ are shown for v = 0.1σ/ξ. The chosen parameters of the defect pattern are

2L = 0.4lc, r = 0.1lc, θs = 70◦, and θd = 110◦. The full picture of the contact line motion can

be obtained by periodic continuation of this image in both vertical and horizontal directions.

We are interested in the solutions periodic both in y and t. The time periodicity is sought to

obtain time averaged values independent on the initial position of the liquid surface. The time

averages are denoted by the angle brackets, e.g. the average force is

〈F 〉 =
1

P

∫ P

0

F (t) dt, (10)

where P = 2L/|u| is the time period. The average contact line speed v ≡ 〈vn〉 = u. The time-

periodic behavior appears after the contact line goes through several first rows of the defects.

An example for such a double periodic solution is shown in Fig. 2. The snapshots of the

contact line are ”taken” with the equal time intervals, the contact line speed can be evaluated

from the density of the snapshots. One can see that when the contact line meets a line of defects,

its central portion remains stuck until the whole contact line slows down to let the liquid surface

accumulate its energy for the following fast slip motion.

The force (9) can be calculated using Eq. (5) for each of the h(y) curves like those in Fig. 2.

It is convenient to take as a reference value

FCB = σ cos θCB − ξv, (11)

where cos θCB = ε2 cos θd+(1−ε2) cos θs is the Cassie-Baxter value of the static contact angle,

and ε2 = π(r/2L)2 is the defect density. FCB corresponds to a force that would be induced by a

homogeneous solid with the equilibrium contact value equal to θCB which is simply a spatially

averaged value of the contact angle.

The dependence of 〈F 〉 − FCB on v (inverted for compatibility with Fig. 3b) is shown in

Fig. 3a for different defect densities ε2 that correspond to different L values. Both advancing

(v > 0) and receding (v < 0) branches are presented. The deviation of 〈F 〉 from FCB increases

with the increasing defect density (decreasing distance between the defects) which is explained

by the increasingly strong pinning. By recalling that the average cosine of the contact angle is
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FIG. 3 – (a) v(〈F 〉 − FCB) curves calculated for different distances between defect centres 2L
(shown as a curve parameter in lc units). Both advancing (v > 0) and receding (v < 0) branches

are presented. (b) v(〈F 〉) curve for 2L = 0.3lc. The v(FCB) dependence is shown as a dotted

line. The portions of the curves near v = 0 are zoomed in the inserts. Note that the abscissa is

the averaged value of cos θ. Same parameters of the defect pattern as for Fig. 2 are used.

〈F 〉/σ, one finds out that the cosines of the static advancing and receding contact angles (the

values of 〈F 〉/σ at v → ±0) also drift away from the Cassie-Baxter value with the increasing

pinning.

One notices that the surface defects manifest itself much stronger at smaller velocities. It is

quite a general feature : at |v| ≥ σ/ξ the contact line does not ”feel” the θeq fluctuations any

more and the average cosine of the dynamic contact angle is defined by cos θCB − ξv/σ for

any defect pattern until it attains the saturation regime at cos θ ≈ ±1. Unfortunately, we are

unable to see this saturation of |F | at the σ value : |F | ≪ σ was implicitly assumed during the

derivation of Eqs. (6,7).

The decreasing slope of the v(F ) curve at F → Fc (that appears due to the influence of

defects when β > 1) can explain the extremely slow relaxation observed during the coalescence

of sessile drops [10, 11]. It this case a very small force F was imposed by the surface tension.

Since the effective dissipation coefficient was inferred from the v(F ) slope value (inversely

proportional to it), it appeared to be very large while the actual ξ value could be much smaller.

4 Conclusions

It was demonstrated in this paper that the descriptions of the depinning of interface sepa-

rating two phases (e.g. for fluid invasion of porous media) and of the triple contact line, while

similar in many respects, has essential differences. The main of them is related to the external

force that can be controlled directly for the case of interface depinning and enters its equation of

motion as an additive term. An external force can hardly be imposed directly to the triple contact

line and thus does not enter its equation of motion. The experimentally measured force associa-

ted with the contact line motion can be calculated and turns out to be essentially nonlinear in

the contact line velocity. At small velocities, the nonlinearity is due to the collective pinning at

the surface defects, while at large velocities the force per unit contact line length is bounded by
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the value of the surface tension. Our theoretical results obtained for a periodical defect pattern

suggest that the experimentally observed [4] nonlinearity of the force-velocity curve is a result

of the collective pinning on the defects rather than a consequence of their randomness.

The equations of the contact line motion are derived. They can be applied to analyze the

collective effect of surface defects on the contact line motion for random defect patterns.

The author would like to thank E. Rolley, S. Moulinet for useful discussions and D.Beysens

for numerous fruitful discussions and friendly support.
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