Motion of the triple contact line

Résumé :

Dans cet exposé la cinétique de la ligne triple de contact liquide gaz solide en présence de défauts de surface est discutée. Le piégeage de la ligne triple par des défauts est analysé. On montre en quoi le piégeage de la ligne triple est différent du piégeage de la surface entre deux phases dans des milieux aléatoires. La dépendance force-vitesse est considérée pour le cas des défauts périodiques. Elle se révèle d'être fortement non linéaire près du seuil de piégeage ainsi que pour des grandes vitesses où la force se sature.

Abstract :

We propose an equation that describes the shape of the driven contact line in dynamics in presence of arbitrary (possibly random) distribution of the surface defects. It is shown that the triple contact line depinning differs from the depinning of interfaces separating two phases ; the equations describing two these phenomena have an essential difference. The force-velocity dependence is considered for a periodical defect pattern. It appears to be strongly non-linear both near the depinning threshold and for the large contact line speeds. These nonlinearity is comparable to experimental results on the contact line depinning from random defects.
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Motion of interphase boundaries in a random environment remains an open problem of general interest. Much attention has been paid to the depinning transition in the systems where collective pinning creates non-trivial critical behavior of the interface separating two different phases : fluid invasion in porous media, magnetic domain wall motion, flux vortex motion in type II superconductors, charge density wave conduction, dynamics of cracks, solid friction [START_REF] Barabási | Fractal Concepts in Surface Growth[END_REF][START_REF] Daniel | Collective transport in random media : from superconductors to earthquakes[END_REF]. The theory of the depinning transition is based on the analysis of the following equation for the interface position h :

∂h ∂t = F + η(h) + G[h], (1) 
where F is the externally imposed force, η is the noise due to the randomness of the media, t is time, and G[•] is some operator. When F is close to the depinning threshold F c (where the interface begins to move), this approach generally results in the power law for the average interface velocity v ∼ (F -F c ) β . When F ≫ F c , a conventional linear mobility law becomes valid.

Depinning of the triple gas-liquid-solid contact line on a solid surface with defects is another example of the depinning transition. The outlined above general approach to the interface depinning phenomena is frequently applied to the contact line depinning [START_REF] Ertas | Critical dynamics of contact line depinning[END_REF]. However, the discrepancy between the theory and the experimental data on contact line motion is notable. First, β < 1 according to the theoretical studies while β ≥ 1 is found experimentally [START_REF] Moulinet | Dissipation in the dynamics of a moving contact line : effect of the substrate disorder[END_REF]. Second, the linear mobility regime was never obtained [START_REF] Moulinet | Dissipation in the dynamics of a moving contact line : effect of the substrate disorder[END_REF]. In this paper we propose a framework suitable to explain these results.

Modelling of the contact line motion

Most contact line motion quasistatic models [START_REF] Ramé | Moving contact line problem : state of the contact angle boundary condition[END_REF] result in the following expression for the contact line velocity v n as a function of the dynamic contact angle θ :

v n = σ ξ (cos θ eq -cos θ), (2) 
where θ eq is the equilibrium (Young) value of the contact angle, σ is the surface tension, and ξ is a mechanism-dependent coefficient that has the same dimension as the shear viscosity µ.

The equation for the spontaneous motion has been derived in [START_REF] Nikolayev | Equation of motion of the triple contact line along an inhomogeneous surface[END_REF]. In this paper we deal with the Wilhelmy geometry (Fig. 1), where the vertical plate with surface defects can be moved up and down with a constant velocity u (u > 0 for the advancing contact line is assumed).

The account of the gravity influence permits [START_REF] Nikolayev | Equation of motion of the triple contact line along an inhomogeneous surface[END_REF] to avoid logarithmic divergences and thus obtain the contact line profile.

The average value of the force F exerted on this plate due to the presence of the moving contact line can be measured with a high precision [START_REF] Moulinet | Dissipation in the dynamics of a moving contact line : effect of the substrate disorder[END_REF]. The liquid-gas interface is assumed to be described by the function z = f (x, y, t) where t is time and

|∇f | ≪ 1 (3) 
is assumed. The position of the contact line is then given by its height h = h(y, t) such that h(y) = f (x = 0, y). From now on, we omit the argument t.

Under the assumption (3), the minimization of the potential energy U of the liquid with respect to f results [START_REF] Nikolayev | Equation of motion of the triple contact line along an inhomogeneous surface[END_REF] in the following expression :

f = 1 2L ∞ n=-∞ exp -x l -2 c + π 2 n 2 /L 2 L -L dy ′ h(y ′ ) cos πn(y -y ′ ) L , (4) 
where l c = σ/ρg is the capillary length, ρ is the liquid density and g is the gravity acceleration. We assume that f is periodic (period 2L) in the y-direction perpendicular to the direction of u. Following [START_REF] Pomeau | Contact angle on heterogeneous surfaces : weak heterogeneities[END_REF][START_REF] Schwartz | Contact angle hysteresis on heterogeneous surfaces[END_REF], the surface defects are modelled by the spatial variation of the equilibrium value of the contact angle θ eq (y, z) along the plate. The contact line velocity with respect to the solid reads v n = ḣ + u. Taking into account the expression for the dynamic contact angle θ obtained under the condition (3),

cos θ = -∂f /∂x| x=0 , (5) 
one obtains from Eq. ( 2) the following governing equation for h

ḣ(y) + u = σ ξ c[y, h(y) + ut] - 1 2L ∞ n=-∞ l -2 c + π 2 n 2 /L 2 L -L dy ′ h(y ′ ) cos πn(y -y ′ ) L , (6) 
where c(y, z) = cos[θ eq (y, z)] is introduced for brevity.

One can easily derive a simpler "long-wave limit" version of Eq. ( 6) by expanding h(y ′ ) around h(y) in the Taylor series and tending L → ∞ :

ḣ + u = σ ξ c(y, h + ut) - h l c + l c 2 ∂ 2 h ∂y 2 . (7) 
Notice that Eqs. (6,7) have the form [START_REF] Barabási | Fractal Concepts in Surface Growth[END_REF], where the random term η is replaced by the random term c. However, the external force F is missing.

External force

The additional force F that acts on the Wilhelmy plate due to the presence of the contact line (per unit plate width in y-direction) consists of two parts [START_REF] Joanny | Motion of a contact line on a heterogeneous surface[END_REF] : the contribution of the interface tensions at the contact line and the "friction" force due to the energy dissipation :

F = 1 2L L -L dy σ LS -σ GS + ξ ḣ(y) + u , (8) 
where the surface tensions of the gas-solid (σ GS ) and liquid-solid (σ LS ) interfaces are introduced. According to the Young formula, c(y, z) = (σ GS -σ LS )/σ. By using Eq. ( 2), one obtains the final expression

F = - σ 2L L -L cos θ(y) dy, (9) 
which means that the force in σ units at each time moment can be obtained by averaging the cosine of the dynamic contact angle along the contact line. This force can be measured directly by separating it out from viscous drag using special experimental techniques [START_REF] Moulinet | Dissipation in the dynamics of a moving contact line : effect of the substrate disorder[END_REF] and presented as a counterpart of the external force F in Eq. ( 1) for the case of contact line depinning. We consider below a periodical both in the directions y and z pattern of round spots of the radius r shown in Fig. 2. Inside the spots, θ eq = θ d , the rest of the plate having θ eq = θ s .

Because of the nonlinearity in the c term, Eq. ( 6) seems to be complicated and difficult to solve numerically. However, both the integration and the n-summation can be performed numerically with highly efficient Fast Fourier Transform algorithm. We are interested in the solutions periodic both in y and t. The time periodicity is sought to obtain time averaged values independent on the initial position of the liquid surface. The time averages are denoted by the angle brackets, e.g. the average force is

F = 1 P P 0 F (t) dt, (10) 
where P = 2L/|u| is the time period. The average contact line speed v ≡ v n = u. The timeperiodic behavior appears after the contact line goes through several first rows of the defects.

An example for such a double periodic solution is shown in Fig. 2. The snapshots of the contact line are "taken" with the equal time intervals, the contact line speed can be evaluated from the density of the snapshots. One can see that when the contact line meets a line of defects, its central portion remains stuck until the whole contact line slows down to let the liquid surface accumulate its energy for the following fast slip motion.

The force (9) can be calculated using Eq. ( 5) for each of the h(y) curves like those in Fig. 2. It is convenient to take as a reference value

F CB = σ cos θ CB -ξv, (11) 
where cos θ CB = ε 2 cos θ d +(1-ε 2 ) cos θ s is the Cassie-Baxter value of the static contact angle, and ε 2 = π(r/2L) 2 is the defect density. F CB corresponds to a force that would be induced by a homogeneous solid with the equilibrium contact value equal to θ CB which is simply a spatially averaged value of the contact angle. The dependence of F -F CB on v (inverted for compatibility with Fig. 3b) is shown in Fig. 3a for different defect densities ε 2 that correspond to different L values. Both advancing (v > 0) and receding (v < 0) branches are presented. The deviation of F from F CB increases with the increasing defect density (decreasing distance between the defects) which is explained by the increasingly strong pinning. By recalling that the average cosine of the contact angle is F /σ, one finds out that the cosines of the static advancing and receding contact angles (the values of F /σ at v → ±0) also drift away from the Cassie-Baxter value with the increasing pinning.

One notices that the surface defects manifest itself much stronger at smaller velocities. It is quite a general feature : at |v| ≥ σ/ξ the contact line does not "feel" the θ eq fluctuations any more and the average cosine of the dynamic contact angle is defined by cos θ CB -ξv/σ for any defect pattern until it attains the saturation regime at cos θ ≈ ±1. Unfortunately, we are unable to see this saturation of |F | at the σ value : |F | ≪ σ was implicitly assumed during the derivation of Eqs. [START_REF] Nikolayev | Equation of motion of the triple contact line along an inhomogeneous surface[END_REF][START_REF] Pomeau | Contact angle on heterogeneous surfaces : weak heterogeneities[END_REF].

The decreasing slope of the v(F ) curve at F → F c (that appears due to the influence of defects when β > 1) can explain the extremely slow relaxation observed during the coalescence of sessile drops [START_REF] Andrieu | Coalescence of sessile drops[END_REF][START_REF] Narhe | Contact line dynamics in drop coalescence and spreading[END_REF]. It this case a very small force F was imposed by the surface tension. Since the effective dissipation coefficient was inferred from the v(F ) slope value (inversely proportional to it), it appeared to be very large while the actual ξ value could be much smaller.

Conclusions

It was demonstrated in this paper that the descriptions of the depinning of interface separating two phases (e.g. for fluid invasion of porous media) and of the triple contact line, while similar in many respects, has essential differences. The main of them is related to the external force that can be controlled directly for the case of interface depinning and enters its equation of motion as an additive term. An external force can hardly be imposed directly to the triple contact line and thus does not enter its equation of motion. The experimentally measured force associated with the contact line motion can be calculated and turns out to be essentially nonlinear in the contact line velocity. At small velocities, the nonlinearity is due to the collective pinning at the surface defects, while at large velocities the force per unit contact line length is bounded by the value of the surface tension. Our theoretical results obtained for a periodical defect pattern suggest that the experimentally observed [START_REF] Moulinet | Dissipation in the dynamics of a moving contact line : effect of the substrate disorder[END_REF] nonlinearity of the force-velocity curve is a result of the collective pinning on the defects rather than a consequence of their randomness.

The equations of the contact line motion are derived. They can be applied to analyze the collective effect of surface defects on the contact line motion for random defect patterns.
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 1 FIG. 1 -Reference system to describe the Wilhelmy balance experiment. The Wilhelmy plate is positioned in yOz plane. The positive directions for u and F are shown too.
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 2 FIG.2 -Aunit cell for the periodic defect pattern (the area of a defect is shadowed) and periodic (both in time and space) solution of Eq. (6). 20 snapshots of the contact line with the equal time intervals 0.2ξl c /σ are shown for v = 0.1σ/ξ. The chosen parameters of the defect pattern are 2L = 0.4l c , r = 0.1l c , θ s = 70 • , and θ d = 110 • . The full picture of the contact line motion can be obtained by periodic continuation of this image in both vertical and horizontal directions.
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 3 FIG. 3 -(a) v( F -F CB ) curves calculated for different distances between defect centres 2L (shown as a curve parameter in l c units). Both advancing (v > 0) and receding (v < 0) branches are presented. (b) v( F ) curve for 2L = 0.3l c . The v(F CB ) dependence is shown as a dotted line. The portions of the curves near v = 0 are zoomed in the inserts. Note that the abscissa is the averaged value of cos θ. Same parameters of the defect pattern as for Fig. 2 are used.