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Abstract  

Among the main learning methods reviewed in this paper and used in synthetic biology and 

metabolic engineering are supervised learning, reinforcement and active learning, and in vitro or 

in vivo learning. 

In the context of biosynthesis, supervised machine learning is being exploited to predict  

biological sequence activities, predict structures and engineer sequences, and optimize culture 

conditions. 

Active and reinforcement learning methods use training sets acquired through an iterative 

process generally involving experimental measurements. They are applied to design, engineer 

and optimize metabolic pathways and bioprocesses. 

The nascent but promising developments with in vitro and in vivo learning comprise molecular 

circuits performing simple tasks like pattern recognition and classification.  
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1. Introduction 

We have seen the past few years a growing interest in using machine learning for chemistry and 

biology, synthetic biology and metabolic engineering making no exception to this trend [1]. This 

paper reviews three main techniques used when engineering biological systems. In section 2, we 

present an overview of supervised and semi-supervised machine learning techniques, providing 

examples on searching for promiscuous enzyme activities. In section 3, we discuss active and 

reinforcement learning methods, which are generally based on supervised learning, with training 

sets acquired on-the-fly in an iterative process. These methods are particularly amendable to the 

Design-Build-Test-Learn synthetic biology cycle. Examples are provided in the context of 

predicting enzymatic activities, optimizing metabolic pathways, and performing retro-

biosynthesis. Engineering information processing devices in living systems is a long-standing 

venture of synthetic biology. Yet, the problem of engineering devices that perform basic 

operations found in machine learning remains largely unexplored. Section 4 presents attempts 

to construct in vitro and in vivo perceptron which are the basic units of all artificial neural 

networks.  

 

2. Supervised and semi-supervised learning  

Supervised learning is one of the main machine learning method that is being used in biology, 

and in particular in bioinformatics where it has been extensively developed [2]. Focusing on 

biosynthesis, and to name a few, supervised learning enables one to predict enzyme activities 

[3][4][5][6], to propose protein structures [7], to engineer sequences (DNA, RNA, protein) 

[8][9][10][11], to complete metabolome [12], to optimize culture conditions [13], and to perform 

more unexpected tasks like predicting the lab-of-origin of engineered DNA [14]. The supervised 

learning workflow starts by compiling a training set where each object being studied (promoter 

sequence, RBS sequence, protein sequence, pathways,..) has been labeled (with strength, 

activity, flux,…). In life sciences, labels generally correspond to experimental measurements. 

Disregarding the machine learning technique used, the workflow is composed of two main steps: 

(1) training and (2) validation (cf. Figure 1). Training is not performed on the entire dataset but a 

fraction of it, the rest being set aside for validation.  

The core of supervised learning is of course the learning step, where a mapping between the 

objects and the labels is established. Several mapping techniques have been used in synthetic 

biology and metabolic engineering including support vector machine [3] (SVM for classification 

or SVR for regression), random forests [15] (RF) , Gaussian Processes [16] (GP) and artificial neural 

networks (ANNs) including deep learning networks [4]-[13]. While Figure 1 illustrates the process 

with ANNs, with all machine learning techniques one must first transform the objects into vectors 

of integers or reals. Features extraction is generally the method preferred to compute these 

vectors. For biological sequences, string spectrum [17] (count of kmers top left side of Figure 1), 

motifs counts [4] (like Pfam domains), and one-hot encoding and embeddings [5] are common 

features that are used. With feature vectors in hands, all machine learning techniques mentioned 

above search for a linear or non-linear function mapping features to labels. When using an ANN 

(right side of Figure 1), the function is a recursive weighted sum starting with the feature vector 
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(input layer), propagating to hidden layers to reach an output layer composed of only one node. 

As we wish a 0 or 1 answer the value of the last layer is generally calculated through a sigmoid 

function. Learning here consists in finding the weights (wi) for each weighted sum minimizing the 

difference between the values (0, 1) calculated at the last layer and the values in the training set. 

During validation, values are predicted using the trained network, and true or false positives or 

negatives (TP, FP, TN, FN) are recorded. ROC curves (bottom left side of Figure 1) can also be 

calculated on the validation set changing the threshold between positives and negatives. The 

number provided in Figure 1 are areas under the ROC curves that have been reported in the past 

when using Support Vector Machines [3] and Gaussian Processes [16]. 

In some instances, it is necessary to merge different type of features together, for instance when 

building a classifier to  determine if a given sequence will metabolize a given substrate. In order 

to merge biological and chemical information, one strategy is to compile feature vectors 

separately for each object and then merge these into a tensor product [3], the tensor 

representing the interactions between the objects (sequence-chemical). Such a strategy has 

shown to outperform other techniques for drug-target interactions [18] and enzyme-substrate 

interactions [3]. 

When dealing with classification problems, like for instance finding if a particular sequence is a 

promiscuous enzyme [19], we need positive and negative examples in the training set. Yet, very 

often we are faced with the issue that only positives can be found, as failures are hardly reported 

in the literature.  Comes therefore the problem of generating negative examples. In the past, this 

issue has been tackled using ad-hoc methods to generate negatives arbitrarily, for instance, 

randomly drawing sequences that are not annotated as those in the training set, or sequences 

and chemicals that are distant (similarity wise) to those in the training set [19]. A more thorough 

method is using semi-supervised learning [20]. In semi-supervised learning, the data set is 

composed of two classes, a class of labeled examples (either positive or negative when 

performing classification) for which measurement have been carried out  and a class of unlabeled 

examples. The learning process consists in finding the best partition between positives and 

negatives by shuffling unlabeled data points either in the positive class or in a negative class. 

While numerous papers are making use of machine learning in the life sciences, in the context of 

biosynthesis and bioengineering only a few studies have triggered experimental validation. One 

can cite a work making use of a semi-supervised GP [16], which predicted three native E. coli BL21 

capable of synthesizing L-acetyl-Leucine. These enzymes (ECBD0907, ECBD4067 and ECDB4269) 

are known to transform glutamate into acetyl-glutamate , ornithine into acetyl-ornithine and 

glutamate and methyl-oxovalerate into oxoglutarate and leucine. When overexpressed, two 

(ECBD4067 and ECDB4269) of the three enzymes increased the production of acetyl-leucine. Not 

only this study demonstrated that machine learning could be used to find promiscuous enzyme 

activities, but also revealed that acetyl-leucine was produced in E. coli, which was not known 

prior to that study. In our second example, the DeepEC deep learning method [5] was used to 

find alternative EC numbers for YgbJ, an L-threonate dehydrogenase (annotated 1.1.1.411 in 

Uniprot). For YgbJ, DeepEC predicted an oxidoreductase activity on D-glycerate (1.1.1.60). A 

follow up enzymatic assay revelated that YgbJ was indeed able to metabolize both D-glycerate 

and L-threonate. 
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3. Active Learning and Reinforcement Learning  

Active learning (AL) is a special case of supervised machine learning, where a learner (any learning 

algorithm mentioned in the previous section) can interactively query an oracle (a human, a robot, 

a computer simulation) to ask new data points to be labeled [21]. The process is iterative and the 

training set is acquired and growing on the fly. Since the learner chooses the examples to be 

labeled, the number of examples can be made lower than the number required in normal 

supervised learning while maintaining performances. For instance, searching novel substrates for 

a small set of four promiscuous enzymes, it was shown that SVMs trained on a set of substrates 

selected by AL performed with 80% accuracies using 33% fewer compounds than when trained 

on the whole set of substrates [22]. AL is particularly appealing in the context of bioengineering 

since it reduces the number of experiments to be performed. Additionally, AL perfectly fits the 

Design-Build-Test and Learn (DBTL) cyclic process developed in synthetic biology as it proposes a 

solution to the Learning step of the cycle [23].  

AL is illustrated in Figure 2 to search alternative substrates metabolized by promiscuous enzymes. 

The process starts by asking to label (i.e. perform measurements) an initial set of data points 

(enzyme x substrate pairs).  Each data point is described by features, one can use for instance 

chemical fingerprints for substrates and string spectrum or one-hot encoding for sequences. The 

initial set can be generated by choosing enzyme x substrate pairs at random, or better using 

fractional factorial design [24] to evenly sample the space of possibilities. Measurements are then 

acquired, eventually using robotic screening equipment, and the pairs with activity 

measurements are added to the labeled dataset. Next, a machine learning algorithm is trained 

on the labeled dataset and used to predict labels from features for all the pairs in the unlabeled 

set (or a sample of pairs if the whole unlabeled set is too large). Methods mentioned in section 2 

like the tensor product can be utilized to perform the predictions. Based on predictions carried 

out on the unlabeled dataset, a new set of enzyme x substrate pairs is selected for the next round 

of measurement. The selected pairs are screened, the new measurements are added to the 

growing training set and the trained model is retained. The process is iterated until the 

performances of the learner cannot be improved. 

The AL process illustrated in Figure 2 is generic, it can and has been applied to other biosynthesis 

and metabolic engineering relevant problems like finding the expression level of enzymes in a 

pathway producing a target molecule [25][26][27][28] or finding buffer composition maximizing 

cell-free productivity [29].  As an example, coupling robotic equipment with AL, HamediRad et al. 

[27] optimized lycopene biosynthetic pathway evaluating less than 1% of possible variants while 

outperforming random screening by 77%. One critical step in AL is the selection of new data 

points to be labeled. AL makes use of two selection modes, exploitation and exploration. In 

exploitation mode and when maximizing an objective, AL is seeking predicted label values (µ) 

higher than those already in the training set, while in exploration mode AL is searching for 

predictions having high variances (σ), these corresponding to data points that are far away from 

those being in the training set. As shown in Borkowski et al. [29], the combination of exploitation 

and exploration via an Upper Confidence Bound (UCB) formula like µ + k σ (where k is a constant) 
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is efficient in large combinatorial spaces. Indeed, that paper demonstrated that less than 10 AL 

iterations were sufficient for a 34-fold cell-free productivity increase, while optimizing buffer 

composition in a combinatorial space > 4 106. 

Reinforcement Learning (RL) is another technique that can be coupled with simulations or 

experimental measurements.  RL was popularized by the Google DeepMind AlphaGO program 

[30]. It has since been used for retro-biosynthesis [31], synthesis planning of synthetic pathways 

with green process [32], and bioprocess optimization [33][34]. The Monte Carlo Tree Search 

(MCTS) RL method, developed for the AlphaGO program [30], is outlined in Figure 3.A in the 

context of retro-biosynthesis. Retro-biosynthesis consists of finding heterologous enzymatic 

reactions transforming the native metabolites of a host strain into a target molecule. Traditional 

breadth-first search retrosynthesis algorithms [35] proceed from the target (source) to the strain 

(sink) applying retro reaction rules (rules for reactions that have been reversed). The process is 

iterated layer by layer until a pathway is found ending in the sink. MCTS does not proceed 

breadth-first but instead makes use of 4 phases (selection, expansion, rollout and 

backpropagation), repeated until a number of iterations is reached. During expansion and rollout 

policy networks can be used to return the most appropriate transformations for the set of 

molecules of the selected node. Supervised or semi-supervised methods described in section 2 

can be used to train these policy networks. Figure 3.B shows that number of targets successfully 

retrieved by RL (reported in [31]) is larger than the number obtained with a classical breadth-first 

algorithm [35]. 

 

4. In vitro and in vivo Learning 

In all the applications we have seen so far, learning is performed in silico. In this section we are 

interested in performing learning in vitro or in vivo, the main challenge is therefore to be able to 

construct molecular devices processing information the same way as the basic blocks of machine 

learning programs. Two main goals motivate this innovative learning approach. The first, rather 

theoretical, is to probe to which extent cellular networks can be engineered to learn. The second 

more pragmatic is to develop diagnostics tools for pollutants or diseases [45] making use of in 

vitro or in vivo molecular circuits performing learning tasks like classification. Constructing 

electronic-like devices in vivo has been a long-standing endeavor of synthetic biology and many 

logic gates [36], switches [37], amplifiers [38], latches [39]  and memory devices [40] can be found 

in the literature. Quite complex logic circuits can now be constructed [39] but building a circuit 

that would mimic the behavior of a machine learning code is still out of reach. Timing 

consideration is also a major issue as it takes generally half an hour (the time taken to transcribe 

and translate genes) to pass information from one circuit layer to another when implemented in 

vivo. Considering the time already taken to train an in silico machine learning model, trying to do 

this in vivo appears unreasonable. One strategy to overcome the complexity and timing issues is 

to train the circuits in silico and to construct in vitro or in vivo devices that reproduce the behavior 

of the trained circuits. That strategy has actually been followed to engineer molecular 

perceptrons, which are the basic units found in artificial neural networks. In a pioneer work, 

Quian et al. [41], built a 4 inputs Hopfield network (a recurrent neural network) using DNA strand 

displacement. This Hopfield network was trained in silico to remember four input patterns: 0110, 
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1111, 0011 and 1000. Weight were implemented changing the concentrations of the DNA strands 

used in the circuits.  

In a more recent work, presented in Figure 4, Pandi et al. [42] trained a 4 inputs perceptron to 

classify 16 input patterns. Figure 4 shows a 16 input patterns perceptron implemented through 

a metabolic network expressed in cell-free systems. The input patterns are based on the presence 

or absence of four input metabolites (hippurate, cocaine, benzamide, and biphenyl-2,3-diol). In 

Figure 4.A, a targeted behavior is chosen arbitrary for a classification into positives and negatives. 

An in silico perceptron is trained via simple logistic regression to determine the weights best 

matching the targeted behavior. Figure 4.B shows enzymes metabolizing the input metabolites 

into benzoate, which is an activator of the transcription factor BenR. BenR is then used to express 

a Green Fluorescent Protein (GFP). In Figure 4.C a kinetics model (cf. Pandi et al. [42] for details) 

is used to determine the enzyme DNA concentrations corresponding to the weights calculated in 

panel (A).  Finally, the perceptron is constructed in Figure 4.D using the enzyme determined in 

panel (B) and the concentrations of the enzyme DNA calculated in panel (C). The observed 

behavior (relative fluorescent unit, RFU) matches well the targeted behavior and the kinetics 

model predictions (red circles). Other classifiers can be constructed using the same setup simply 

changing the weights and the corresponding concentrations of enzyme DNA (cf. Pandi et al. 

[42] for other examples).   

As the last example, a trained perceptron was constructed in vivo to classify 12 input patterns 

[43]. The trained perceptron was implemented engineering two E. coli strains: a sender and a 

receiver. The sender produced quorum molecules (acyl-homoserine lactone 3OHC14:1-HSL) and 

the receiver was engineered to respond upon detection of these molecules by expressing a 

fluorescent reporter. The perceptron weights were instantiated by varying the promoter 

strength, affecting the production level of the quorum molecules in the sender strains. 

 

5. Conclusion and perspectives 

The use of machine learning in biology will continue to grow. In fact, a search on bioRxiv with the 

key words “deep learning”, returns about 450 manuscripts deposited each month for the last 

year and that number nearly doubled between march 2020 (370) and march 2021 (682). 

However, the number of published papers actually prompting design of experiments and new 

experimental finding is much smaller. That number will undoubtfully increase as machine 

learning techniques are being interfaced with robotized workstations allowing to automate 

engineering as currently being done in chemistry with synthesis planning [44]. One area of 

particular interest to synthetic biology is the development of molecular devices enabling in vitro 

or in vivo learning like the perceptrons presented in section 4. Aside from finding practical 

applications with biomarkers detection and decision making for medical diagnostics [45], such 

devices could also be used to probe to what extent molecular and cellular networks can handle 

problems currently solved in silico and even shed some lights on how cognition could emerge 

from basic molecular circuits, a fundamental and long-standing question [46].  
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The neural networks of our brains inspired the development of artificial neural networks, perhaps 

artificial neural networks can now prompt the discovery and engineering of new learning 

molecular devices in living systems. 
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FIGURES 

 

 

 

 
 

Figure 1. Typical Machine learning process to predict and validate enzyme activity from 

sequence. We assume here we have collected a set of sequences having a given EC number (at 

any level of the EC nomenclature) along with a set of sequences not having that EC number. We 

wish to learn if any given sequence belong to the chosen EC class or not. This is a classification 

problem. See main text for additional details. 
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Figure 2. Active learning process applied to search for alternative substrates of promiscuous 

enzymes.   
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Figure 3. Reinforcement Learning (RL) with Monte-Carlo Tree Search (MCTS) illustrated with 

retro-biosynthesis.  (A) Monte Carlo Tree Search method (MCTS). Circles represent nodes and 

pentagons molecules. Selection. Starting from the root node (here, a chemical state containing 

the target compound), the best child nodes are iteratively chosen until a leaf node is reached. 

Typical selection policies are based on exploitation and exploration. Exploitation is computed 

from a reward  value (∆) received in previous iterations of the algorithm (nodes with high values 

are favored) and exploration is based on the number of times a node has been visited (nodes 

with low number of visits are favored). Expansion. Possible transformations are applied on the 

selected node generating new children. Rollout. If the node is not terminal (the molecules are 

not in the sink or the maximum number of iterations is not reached) a transformation is sampled 

from available transformations and the process is repeated. If the node is terminal, a reward (if 

in sink) or penalty (if not in sink) is returned. Rollout is repeated until a maximum number of 

steps or the maximal depth of the tree is reached. Backpropagation or update. The reward 

obtained after exploring the expanded node is returned to its parents to update their values (∆) 
and visit counts. (B) Performances for a Golden Set of 20 experimental pathways (cf. [31]). With 

supplementation (purple) means a supplement has to be provided in the media to identify the 

correct experimental pathway. One step different (dark blue) means only one step differs from 

the described pathway, for example, by using a different co-substrate. One step missing (light 

blue) means the search algorithm found a pathway identical to the experimental one, except one 

step which was short-cut. Fully found (green) means the experimental pathway was found 

without restriction. Not found (orange) means the experimental pathway was not found.  
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Figure 4. Building a metabolic perceptron. See main text for description. 




