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We consider the problem of learning a graph modeling the statistical relations of the d variables from
a dataset with n samples X ∈ Rn×d . Standard approaches amount to searching for a precision matrix Θ

representative of a Gaussian graphical model that adequately explains the data. However, most maximum
likelihood-based estimators usually require storing the d2 values of the empirical covariance matrix,
which can become prohibitive in a high-dimensional setting. In this work, we adopt a “compressive”
viewpoint and aim to estimate a sparse Θ from a sketch of the data, i.e. a low-dimensional vector of size
m≪ d2 carefully designed from X using non-linear random features. Under certain assumptions on the
spectrum of Θ (or its condition number), we show that it is possible to estimate it from a sketch of size m=
Ω((d +2k) log(d)) where k is the maximal number of edges of the underlying graph. These information-
theoretic guarantees are inspired by compressed sensing theory and involve restricted isometry properties
and instance optimal decoders. We investigate the possibility of achieving practical recovery with an
iterative algorithm based on the graphical lasso, viewed as a specific denoiser. We compare our approach
and graphical lasso on synthetic datasets, demonstrating its favorable performance even when the dataset
is compressed.

Keywords: inverse problem; graph inference; compressive learning; graphical lasso.

1. Introduction

Inferring a complex network from data is used in many applications, such as in neuroscience for the
treatment of epilepsy [32], for biological networks [82] or in genomics to identify gene interactions
[56, 88]. We consider in this paper the problem of estimating a certain graph representing the stati-
stical relations between d variables from n observed signals x1, · · · ,xn where xi ∈ Rd follow a certain
distribution µ , assumed to be centered for simplicity and with covariance matrix Σ. This graph is often
associated with the so-called precision matrix Θ = Σ

−1 which is sparse in many practical situations due
to limited conditional dependencies [31]. However, simply inverting the empirical covariance matrix Σ̂

usually does not yield a sparse estimation of the precision matrix estimation. The challenge is thus to
infer a sparse precision matrix from Σ̂. One of the most popular methods to do this graph estimation is
probably the graphical lasso [2, 31]. Given the empirical covariance matrix

Σ̂
∆
=

1
n

n

∑
i=1

xix⊤i , (1.1)

the graphical lasso estimator searches for a certain matrix Θ̂GL ∈ Rd×d , representative of the graph
edges, that solves the optimization problem

Θ̂GL
∆
= argmin

Θ≻0
− logdet(Θ)+ ⟨Σ̂,Θ⟩+λ∥Θ∥1,off , (1.2)
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FIG. 1. Summary of our approach. The objective is to estimate a graph Θ ∈ Rd×d between the d2 variables (i, j) of the data

set from a sketch of the data, s ∆
= 1

n ∑
n
i=1 Φ(xi) ∈ Rm . We will show in the following sections that, under certain graph sparsity

assumptions, it is theoretically possible to estimate Θ using a sketch of size m ≈ (d + 2k) log(d)≪ d2 where k is the maximal
number of edges of the underlying graph.

where the argmin is taken over the set of symmetric positive definite matrices and ∥Θ∥1,off
∆
= ∑i< j |Θi j|

promotes sparsity. An interpretation is as follows: for a Gaussian model µ = N (0,Σ = Θ
−1), equation

(1.2) corresponds to an ℓ1-penalized maximum likehood estimator [86]. In other words, the graphical
lasso estimates a sparse graph that best fits the data. More precisely, in the Gaussian model, the pattern
of zeros of the precision matrix Θ corresponds to conditional independencies among the variables,
hence Θ encodes the statistical relations between them [25, 53]. Despite its many good properties, the
graphical lasso suffers from a scaling problem with respect to the dimension. Indeed computing (1.2)
requires to store in memory the entire empirical covariance matrix Σ̂ and thus has a space complexity of
O(d2); this is problematic for applications where d is very large, such as high-resolution fMRI datasets
or gene-microarray data where the number of genes d is typically around tens of thousands.

Graphical models estimation is a very active field of research and many alternatives to graphical
lasso have been proposed in the literature. Numerous strategies aim to address the computational scala-
bility of the optimization problem (1.2) through the use of approximation techniques, e.g. QUIC [41],
BIG & QUIC [42], SQUIC [7]. Others are looking for estimators that have either better statistical
guarantees or better algorithmic properties. We can mention some estimators that rely on non-convex
penalties [28, 69, 71, 80], ℓ2 penalties [50] or other estimators like CLIME (and Dantzig-like estima-
tors) [13, 85], RobustCLIME [77], D-trace [87] or Elem-GGM [81]. Finally, some approaches make
assumptions on the underlying graph (e.g. that it is chordal) in order to find fast algorithms or try to
constrain the structure of the graph sought in the estimation [26, 51, 83].

1.1. Compressive learning of graphical models

In this work we take another path: that of compression. Inspired by the theories of compressed sensing
[30] and sketching [35], we try to estimate a sparse precision matrix Θ associated to a covariance matrix
Σ=Θ

−1, not from the whole dataset, nor from the empirical covariance matrix Σ̂, but from a compressed
version of the data called sketch. More precisely, and given a well-chosen function Φ : Rd → Rm, we
seek to estimate Θ from the vector s ∈ Rm defined by (see Figure 1)

s ∆
=

1
n

n

∑
i=1

Φ(xi) ∈ Rm. (1.3)

In sketching theory the Φ function is typically an adequately chosen random function and the recon-
struction guarantees are usually based on ideas from compressed sensing [33]. The advantages of this
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type of approach are multiple: 1) when m≪ nd the dataset is massively compressed, with benefits for
storage and transfer 2) as averages, the sketches can be computed online, in one pass on the data, or in
a distributed manner 3) as the data get aggregated, sketches have also good properties regarding diffe-
rential privacy [17]. The main objective of this paper is to use the sketching approach and to answer the
following question:

Objective Can we find Φ and a sketch dimension m≪ d2 such that the sparse precision matrix Θ can
be well estimated from a sketch of the data s = 1

n ∑
n
i=1 Φ(xi) ∈ Rm ?

In other words, can we obtain an estimate of the graph structure using a small-sized vector compared
to the size of the empirical covariance matrix? We will shortly furnish a precise definition of what we
consider to be “well estimated”. However, the underlying intuition guiding this inquiry is that, similar to
the graphical lasso model, graphs estimated from data typically demonstrate sparsity. Therefore, there
is hope that good approximations of these graphs can be obtained by accessing only a limited number
of measurements compared to O(d2), the total number of elements in the covariance matrix.

1.2. Contributions

The article presents the following key contributions:

1. We investigate, from an information-theoretic perspective, a sketching mechanism where we project
against i.i.d. rank-one matrices. We show that when m ≳ ∥Θ∥0 log(d), where ∥Θ∥0 denotes the
number of non-zero coefficients of Θ, the relevant information is preserved during the sketching
phase. More precisely, we prove that the corresponding sketching operator satisfies a Restricted
Isometry Property (RIP), ensuring that the precision matrix can be reconstructed accurately using a
so-called robust decoder.

2. This robust decoder being a priori intractable, we propose a practical decoding scheme to estimate
the sparse precision matrix from the sketch of the data. The algorithm relies on an iterative procedure
that alternates between a gradient descent step associated to a sketch fidelity term and a “denoising
step” performed by the graphical lasso.

3. For practical applications, we propose to deviate from the theoretical framework of 1) and leverage
structured matrices (e.g., Walsh-Hadamard matrices) to define a similar sketching mechanism but
with boosted algorithmic efficiency. We demonstrate in the experiments that the combination of this
sketching mechanism and our practical decoding scheme is able to significantly compress the data
(i.e., m≪ d2) while still retaining the ability to recover the covariance and precision matrices.

1.3. Organization

The paper is organized as follows. Section 2 outlines the main information-theoretic results. The main
theorem (Theorem 3) proves that the sketching operator satisfies a certain RIP with high probability.
For an easier read, the technical part required to prove this theorem is deferred to the end of the paper,
Section 5, where we obtain the control of covering numbers and a concentration inequality for the ske-
tching operator. In Section 3, we present a random structured matrix approach for the sketching phase
(i.e., encoding phase) with better memory and computational efficiency. We also provide a practical
algorithm to retrieve the precision matrix (i.e., decoding phase) from the sketch. Section 4 presents the
experiments on the encoding and decoding phases.
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1.4. Notations and definitions.

For any integer m, [[m]]
∆
= {1, . . . ,m}. Sd(R) is the linear space of symmetric matrices of size d×d, while

S++
d (R) (resp. S+d (R)) is the set of symmetric positive definite matrices (resp. positive semi-definite).

We often write A∈ S++
d (R) as A≻ 0 (resp A⪰ 0 for S+d (R)). We denote by ∥·∥2→2 the 2-operator norm

or spectral norm for matrices i.e. ∥A∥2→2
∆
= sup∥x∥2≤1 ∥Ax∥2 = σmax(A) where σmax(A) denotes the

largest singular value of A. The spectrum of A ∈ Sd(R) is denoted by spec(A). The standard euclidean
scalar product on matrices is denoted by ⟨·, ·⟩ and its associated norm (the Frobenius norm) is denoted
by ∥ · ∥Fro. We denote by ∥A∥0 the number of non-zeros components of A, that is to say the ℓ0 “norm”

of A. We also introduce the function inv(A)
∆
= A−1.

2. Recovery guarantees

The sketching procedure proposed in this article is based on rank-one projections and (well-chosen)
randomness. Recall that we are given a sample of d-dimensional vectors (x1, . . . ,xn), and we want to
define a function Φ : Rd → Rm such that the sketch is the average of the m-dimensional vectors Φ(xi)
as in (1.3). Given a collection of d-dimensional random vectors (a1, . . .am) we consider in this work1

Φ(x) ∆
=

1
m

(
|a⊤1 x|2, |a⊤2 x|2, · · · , |a⊤mx|2

)⊤
. (2.1)

Before proceeding, it is important to note that Φ can also be computed as Φ(x) = 1
m{a⊤j x x⊤a j} j∈[[m]] =

1
m{⟨a ja⊤j ,xx⊤⟩} j∈[[m]]. Therefore, by linearity of the inner product and equations (1.1) and (1.3), the
induced sketch s is the vector whose coordinates are the projections of the empirical covariance matrix
Σ̂ against the rank-one matrices a ja⊤j : s = 1

m{⟨a ja⊤j , Σ̂⟩} j∈[[m]].
Consequently, the entry point of our theoretical analysis is to notice that the random function Φ

defined in (2.1) involves a linear operator on symmetric matrices [24]. Indeed, our objective can be
reformulated as finding Θ = Σ

−1 from s = A (Σ̂) where A : Sd(R)→ Rm is defined by

A (M)
∆
=

1
m

{
⟨a ja⊤j ,M⟩

}
j∈[[m]]

. (2.2)

We can therefore reformulate our problem as a compressed sensing problem: given a noisy linear mea-
surement of the true covariance matrix s = A (Σ)+ e ∈ Rm, where e = A (Σ̂−Σ) is the noise, we want
to recover the precision matrix Θ = Σ

−1 that underlies certain sparsity assumptions. There are two dif-
ficulties here. First m < d2, thus the problem is a priori ill-posed. Second, the sparsity assumption does
not involve the “signal” Σ itself but a non-linear transformation of it, given by its inverse Θ = Σ

−1.

Remark 1 (Related works) This sketching mechanism appears in various works on compressed sen-
sing, in particular for low-rank matrix completion [12, 14, 19, 47, 49], estimation of low-rank & positive
semi-definite (PSD) matrices [55, 70], low-rank & sparse matrices [1] or in statistical learning for
PCA [33] and in phase retrieval [46]. Here we propose to study it for the recovery of sparse precision
matrices.

1 Readers familiar with sketching methods might be puzzled by the factor 1/m rather than the usual 1/
√

m. In our case, as we
will consider the ℓ1-norm on Rm, it is in fact the right scaling to obtain averages.
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Remark 2 (Dense Gaussian projections) We want to mention that another compressive scheme, maybe
more natural for theoretical analysis, could have been considered. Instead of projecting against rank-
one matrices, one could project against symmetric matrices with independent Gaussian entries via
Φ(x) = {x⊤A jx} j∈[[m]] where A j ∈ Rd×d are dense Gaussian matrices. The theoretical analysis of
this approach would be quite straightforward following classical compressed sensing works [30, 62].
However, this sketching mechanism would be far from efficient as the computation of Φ(x) would have
an O(md2) time and space complexity, which is even greater than directly storing Σ̂. Nevertheless, it
is worth noting that optical computing, which relies on optical processing units, could be leveraged
to compute these random features in constant time in any dimension [68], albeit constrained by the
current hardware capabilities.

2.1. Recipe for recovery guarantees

The general idea to obtain guarantees is the following: we will assume that Θ lies in a “low dimensional”
set so that it is possible to estimate it from a very small number of measurements compared to the
ambient dimension d2 [9]. This hypothesis is formalized here by assuming that the true covariance
matrix Σ belongs to a certain subset of S++

d (R), called model set. More precisely, and given k ∈ N,0 <
a≤ b, we will study here the model set

Sk,a,b
∆
=
{

Σ ∈ S++
d (R) : Θ = Σ

−1 ≻ 0,∥Θ∥0 ≤ d +2k and spec(Θ)⊆ [a,b]
}
. (2.3)

This set corresponds to covariance matrices associated to the d + 2k-sparse precision matrices whose
spectra are well localized in [a,b]. This constraint on the spectrum of the precision matrix can be relaxed
to a constraint on its condition number as we will see later. Similar spectral conditions are usually
assumed in the case of graphical lasso to derive sample complexities of the estimators [13, 57, 78]. The
number k represents the maximal number of non-zero components of Θ on its upper triangular part,
i.e., the maximal number of edges of the graph corresponding to Θ, without counting self-loops. The
sparsity of the graph is also quite natural in many applications where one wants to have a simple graph
thus with few connections.

We will see later that Sk,a,b is the image by inv of a “low dimensional” set and, by using a certain
notion of stability of the inverse, we will be able to recover Θ from s. We emphasize that while we
have presented this specific model set, the majority of the results in this paper are general and can
be extended to accommodate other model sets. Consequently, these results can apply to alternative
assumptions concerning the underlying graph structure.

The central property for our guarantees is the Restricted Isometric Property (RIP) [15, 62], adapted
to our context. In the following, we consider two general norms ∥ · ∥Sd and ∥ · ∥Rm on Sd and Rm,
respectively.

Definition 1 (RIP) A linear operator A : (Sd(R),∥ · ∥Sd )→ (Rm,∥ · ∥Rm) satisfies the RIPδ for some
δ ∈ [0,1[ on a set S⊂ S++

d (R) if for every (Σ1,Σ2) ∈S2, it satisfies

(1−δ )∥Σ1−Σ2∥Sd ≤ ∥A (Σ1−Σ2)∥Rm ≤ (1+δ )∥Σ1−Σ2∥Sd . (2.4)

We can show that, when the linear operator A satisfies the RIPδ , we can find a decoder that is
robust to noise and that will allow us to recover Σ from s. More precisely, following standard results
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in compressed sensing [30, 48], we have the following result (the proof is given in Appendix A.1.1 for
completeness):

Theorem 1 Let A : (Sd(R),∥ · ∥Sd )→ (Rm,∥ · ∥Rm) be a linear operator. Suppose that A satisfies
RIPδ on a model set S⊂ Sd(R) and consider the decoder ∆ : Rm→S defined by

∆[s] ∈ argmin
Σ∈S

∥A (Σ)− s∥Rm . (2.5)

Suppose that x1, · · · ,xn
i.i.d∼ µ where µ is a centered probability distribution with covariance Σ =

Ex∼µ

[
xx⊤

]
≻ 0. Consider Σ̂ = 1

n ∑
n
i=1 xix⊤i the empirical covariance matrix and s = A (Σ̂). If Σ ∈S,

then Σ
⋆ ∆
= ∆[s] satisfies

∥Σ⋆−Σ∥Sd ≤
2

1−δ
∥A (Σ̂)−A (Σ)∥Rm . (2.6)

When Σ ̸∈ S, the bound (2.6) still holds up to an additional “modeling error” term d◦(Σ,S) which
quantifies the distance from Σ to S (see Appendix A.1.1).

We always assume that the minimization problem (2.5) has at least one solution. The decoder can
be adjusted as in [9], to handle the case where the argmin is only approximated to a certain accuracy.
The estimator given by (2.5) has many desirable properties: 1) it is robust to noise as shown in [33, 48]
2) it allows a recovery of Σ from s as the number of samples n grows. Indeed ∥A (Σ̂)−A (Σ)∥Rm ≤
(sup∥U∥Sd =1 ∥A (U)∥Rm)∥Σ̂−Σ∥Sd and ∥Σ̂−Σ∥Sd typically behaves as O(n−1/2) under standard sub-
Gaussian assumptions [76, Section 6]. Thus, solutions of the optimization problem (2.5) theoretically
yield good approximations of Σ. As an additional outcome, by leveraging the regularity of the inverse
mapping for matrices with bounded spectra, this estimation of Σ also results in a reliable estimate of Θ.
We refer to the discussion below Theorem 3 for a more precise statement.

With these remarks in mind, the strategy is now to obtain this RIP assumption, which enables the
information-theoretic decoder and recovery guarantees. By the linearity of A , we can observe that
obtaining RIPδ is equivalent to showing that, for 0≤ δ < 1,

sup
U∈S[S]

∣∣∥A (U)∥Rm −1
∣∣< δ , (2.7)

where we set

S[S]
∆
=

{
Σ1−Σ2

∥Σ1−Σ2∥Sd

: (Σ1,Σ2) ∈S2,∥Σ1−Σ2∥Sd > 0
}
. (2.8)

This set is called the normalized secant set of S [62]. We will provide a more detailed description of
the space S[S] later on. For now, we present the classical framework that will enable us to prove the
RIPδ property of A .

The operator A being random we will show that, given a sufficient (but reasonable) dimension m,
we can have a control of type (2.7) with high probability. In the following we denote by N (S[S],∥ ·
∥Sd ,ε) the covering number of S[S] which, informally, quantifies the effective “dimension” of this set
(see Section 5.1 for more details). The following theorem (whose proof is deferred to Appendix A.1.2)
describes the main ingredients for establishing RIPδ .
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Theorem 2 Consider a random sketching operator A : Sd(R)→Rm and denote its operator norm by

|||A ||| ∆
= sup
∥U∥Sd =1

∥A (U)∥Rm . Suppose that we are given two functions C1,C2 : R+→ R+ such that

∀t > 0, P(|||A |||> t)≤C1(t) , (2.9)

∀U ∈ S[S], ∀t > 0, P
(∣∣∥A (U)∥Rm −1

∣∣> t
)
≤C2(t) . (2.10)

Then, for any ε > 0 and δ ∈ [0,1[,

sup
U∈S[S]

∣∣∥A (U)∥Rm −1
∣∣< δ , (2.11)

with probability at least 1−N (S[S],∥·∥Sd ,ε)C2(
δ

2 )−C1(
δ

2ε
). Consequently with the same probability

the operator A satisfies RIPδ on S.

Remark 3 The above theorem is presented in its most usual form, with both controls (2.9) and (2.10).
However, (2.10) is sometimes easier to obtain (by leveraging classical concentration inequalities).
Fortunately, we can obtain (2.9) from (2.10), as for ε ′ > 0, defining C1 by

C1(t) = N (BSd ,∥ · ∥Sd ,ε
′) C2((1− ε

′)t−1) ∀t > 1/(1− ε
′) , (2.12)

where N (BSd ,∥ ·∥Sd ,ε
′) is the covering number of the unit sphere BSd = {U ∈ Sd : ∥U∥Sd = 1}, yields

a valid upper-bound of P(|||A |||> t). See Appendix A.1.3 for the proof.

2.2. Main theoretical result

Guided by Theorem 2 we need to control the covering number of S[Sk,a,b] as well as the concentration
of the random operator A to obtain the desired RIPδ with high probability. To do so, the randomness
related to the vectors a1, · · · ,am needs to be specified. We consider in this section two probability distri-
butions for the vectors a j

i.i.d.∼ Λ, one being Λ = ΛG
∆
= N (0, 1

d Id) the multivariate Gaussian distribution

with covariance matrix d−1Id and the other Λ = ΛU
∆
= U (Sd−1) the uniform distribution on the hyper-

sphere. The scaling of the random vectors a j is such that they have unit expected square Euclidean norm
under both distributions. These distributions are classic choices when it comes to random projections.
We envision that our results remain valid for any choice of sub-Gaussian rotational-invariant distribu-
tion. Both norms ∥ · ∥Sd and ∥ · ∥Rm in Theorem 2 must also be defined. For the former, we choose
a norm that is specific to how our random operator A is drawn. Indeed, the probability distribution
Λ ∈ {ΛG,ΛU} induces a norm on Sd(R) defined by

∀M ∈ Sd(R), ∥M∥Λ

∆
= Ea∼Λ

[∣∣∣⟨aa⊤,M⟩
∣∣∣
]
= Ea∼Λ

[∣∣∣a⊤Ma
∣∣∣
]
. (2.13)

This choice is adapted to our problem when ∥·∥Rm = ∥·∥1 since Ea j∼Λ [∥A (M)∥1] = ∥M∥Λ. Therefore,
if for every U ∈ S[S], ∥A (U)∥1 well concentrates around its expectation, then it has a high probability
of being close to its expectation ∥U∥Λ = 1, and thus (2.11) will hold.

From these choices, we show that with a reasonable value of m the rank-one operators A satisfy the
RIP on Sk,a,b. It is formalized in the theorem below which is the main theoretical result of the paper.



8 T. VAYER ET AL.

We advise readers that are interested in the proof to refer to Section 5 where the results on the covering
numbers (Section 5.1) and the concentration of A (Section 5.2) are derived.

Theorem 3 Let A : (Sd(R),∥·∥Λ)→ (Rm,∥·∥1) be a rank-one projection operator as defined in (2.2),
with (a j) j either Gaussian or uniform (Λ∈{ΛG,ΛU}). For all δ ,ρ ∈]0,1[, there exists C =C(δ ,ρ,b/a),
independent of m,k and d, such that, whenever

m≥C(d +2k) logd , (2.14)

the operator A satisfies RIPδ on Sk,a,b with probability at least 1−ρ . In particular the following holds
uniformly on Σ ∈Sk,a,b with probability at least 1−ρ: Let x1, · · · ,xn ∼ µ with µ a centered probability
distribution with covariance Σ, Σ̂ the empirical covariance matrix and s = A (Σ̂) a sketch of the data.
The estimator Σ

⋆ = ∆[s] defined in (2.5) satisfies

∥Σ⋆−Σ∥Λ ≤
2

1−δ
∥A (Σ̂)−A (Σ)∥1 . (2.15)

A more precise condition on m can be found in the proof of this theorem in Appendix A.3.3 (in
particular see (A.46)). This theorem shows that our sketching operators satisfies the RIP with high
probability with a sketching dimension m ≳ (d +2k) logd, which is much smaller than the d2 required
to recover a matrix of size d×d. Let us mention that although in (2.15) the error between the estimator
Σ
⋆ and the true covariance matrix Σ is measured with the unusual Λ-norm, we can have the same

type of control for ∥Σ⋆−Σ∥Fro, at the expense of a multiplicative constant 1/cFro =
9
√

15
2 d ≤ 18d (see

Proposition 4). In addition, (2.15) also provides guarantees for the recovery of the precision matrix Θ.
By making use of the bounded spectra of (Σ⋆)−1 and Θ, we can exploit the regularity of the inverse map
to obtain ∥(Σ⋆)−1−Θ∥Fro ≤ b2∥Σ⋆−Σ∥Fro . Hence, whenever (2.15) is verified, we also have

∥(Σ⋆)−1−Θ∥Fro ≤
9
√

15 b2d
(1−δ )

∥A (Σ̂)−A (Σ)∥1 . (2.16)

Remark 4 (A similar result with an unbounded model set.) We want to point out that in (A.46), the
condition on m depends on a and b only through the ratio b/a. This might suggest that the fundamental
quantity to consider is the ratio between the largest and smallest eigenvalues, i.e., the condition number
of the matrix, instead of the eigenvalues themselves. In Appendix A.6, we introduce a model set Sk,κ0 ,
where precision matrices have a condition number bounded by some κ0 ≥ 1. Even though Sk,κ0 is much
“bigger” than Sk,a,b, as the latter is bounded and the former is not, we obtain an upper-bound on the
covering number of its normalized secant S[Sk,κ0 ] (see Theorem 5 in Appendix A.6). This is sufficient
to derive a result similar to Theorem 3 with the same m ≳ (d+2k) logd condition, yielding guarantees
on the recovery of Σ with only bounded condition numbers rather than bounded spectra.

2.3. Connection to prior works

Theorem 3 indicates that it is theoretically possible to recover Θ, with a O(n−1/2) error, by keeping in
memory only a single sketch of size m ≳ (d +2k) log(d). To the best of our knowledge this is the first
result for compressive recovery of sparse precision matrices from empirical covariance measurements.
It can however be put in perspective with [58] which tries to find the support of Θ by observing, in an
adaptive manner, only a small fraction of the entries of the true covariance Σ. The authors show that it
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is possible to find Θ from O(d polylog(d)) elements of Σ with some assumptions on the graph (small
treewidth). Interestingly enough, we are able to obtain the same type of guarantees but with the big
difference that, in our case, we observe a non-adaptive compressed version of the empirical covariance
that takes the whole matrix into account, which is more in line with concrete applications.

2.4. Practical limitations of Theorem 3

Theorem 3 indicates that the sketch contains the necessary information to recover the true covariance
matrix using the decoder

∆[s] ∈ argmin
Σ∈Sk,a,b

∥A (Σ)− s∥Rm . (2.17)

However, even though this theorem holds theoretical significance, its practical application encoun-
ters two significant challenges when employing the decoder (2.17) and the sketching operator with
independent rank-one projections.

• To retrieve Θ from the sketch, one needs to use A and thus to store the m d-dimensional vectors
(a j) j∈[[m]]. Hence, the overall memory cost comprises a reasonable O(m) expense to store the sketch
s but also an additional O(md) cost to store the (a j) j∈[[m]]. Unfortunately, according to Theorem 3,
the sketch size must be m ≳ d log(d), yielding a total memory cost larger than O(d2), similar to the
cost of storing the empirical covariance matrix.

• Directly solving the optimization problem (2.17) is probably intractable as the constraint Σ ∈Sk,a,b
implies to search among the matrices Σ such that ∥Σ−1∥0 ≤ (d +2k) which is a highly non-convex
constraint.

3. Towards practical recovery

As a remedy to the above-mentioned issues, we propose in this section to use structured matrices for
efficient sketching and a tractable approximate decoder as a more practical alternative to (2.17).

3.1. Structured matrices for efficient sketching

Using structured random matrices is a recurrent idea in compressive learning [18, 54, 84]. It reduces
the degrees of freedom while mimicking the behavior of random matrices with i.i.d. columns. In the
following, we assume that d = 2K is a power of 2 and that m = B× d is a multiple of d. Padding
strategies can be implemented when these requirements are not met, but we leave this technicality out
of the scope of this paper for the sake of simplicity and refer the interested reader to [17]. Here, we
adopt the same approach as [18, 84]. Instead of independent random vectors, we define (a1, . . .am) as
the columns of the random matrix A = (B1| . . . |BB) ∈ Rd×m made of B independent structured blocks
Bl ∈ Rd×d defined as triple-Rademacher matrices:

Bl
∆
=

1
d3/2 HD(1)

l HD(2)
l HD(3)

l . (3.1)

The matrix H denotes the Walsh-Hadamard matrix with entries in {±1} and D(k)
l are independent

random diagonal “sign-flipping” matrices, i.e., random diagonal matrices with independent Rademacher
entries. The scaling factors d3/2 yields ∥a j∥2 = 1. We emphasize that this strategy results in the use of
dependent random vectors a1, · · · ,am.
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Algorithm 1 Algorithm for solving the decoding problem

1: Input: Sketching operator A and sketch of the data s = 1
n ∑

n
i=1 Φ(xi) = A (Σ̂) ∈ Rm.

2: Initial guess Σ0 ≻ 0, regularization parameter λ > 0, step size γ > 0, and maximum number of
iterations tmax.

3: for t ∈ 0,1 · · · , tmax−1 do
4: Σt+ 1

2
← Σt − γA ⋆(A (Σt)− s)

5: Σt+1← GLASSOλγ [Σt+ 1
2
] // with standard graphical lasso solver

6: end for
7: return estimated covariance Σtmax and precision Σ

−1
tmax .

This approach has a dual advantage: it improves both memory and computational efficiency. Indeed,
notice that Φ(x) can be expressed as Φ(x) = {(A⊤x)2

j} j∈[[m]] = (A⊤x)⊙ (A⊤x) where ⊙ denotes the
Hadamard product. Thus the memory and computational bottleneck a priori lies in the storage of Bl
and the computations of B⊤l x for l ∈ [[B]]. Fortunately, we benefit from the properties of the fast Walsh-
Hadamard transform: 1) it computes H⊤y for any vector y without storing H as it is hard-coded into the
algorithm, 2) the matrix-vector multiplication H⊤y requires only O(d logd) operations. As a conseque-
nce for our sketching mechanism, only the diagonal matrices D(k)

l must be stored. This reduces the space
complexity of storing the dense matrix A ∈ Rd×m from O(md) to O(m) [29, 84]. Moreover, point 2)
implies that Φ(x) can be computed with a time complexity of O(m logd) as each of the B matrix-vector
multiplications B⊤l x requires O(d logd) operations with the fast Walsh-Hadamard transform.

Theoretical examination of recovery guarantees for these structured sketching operators is deferred
to future research. To achieve the same reconstruction guarantees as in the independent case, the key lies
in verifying the concentration of A in the structured case, which amounts to proving a result similar to
Proposition 3. We expect that guarantees comparable to those in the independent case can be obtained.

3.2. Algorithmic solution to decoding

Finally, we present a heuristic algorithmic approach to obtain the precision matrix from a sketch of the
data. We will demonstrate that a computationally simpler alternative decoder to (2.17) works effectively
in practice.

The graphical lasso as a denoiser Our algorithmic solution is inspired by the connections between
proximal operators and denoisers in the context of inverse problems. Numerous studies have indeed
demonstrated that proximal operators can be regarded as efficient denoisers [21, 22, 44, 45]. The core
concept behind our approach thus revolves around utilizing a decoder that relies on the graphical lasso
(1.2), which not only benefits from efficient algorithms but also carries the interpretation of a proximal
operator [6]. Subsequently, we introduce

GLASSOλ [Z]
∆
= argmin

Σ≻0
− logdetΣ

−1 + ⟨Z,Σ−1⟩+λ∥Σ−1∥1,off , (3.2)

where we recall that ∥M∥1,off = ∑i< j |Mi j|. This operator is equivalent to the one introduced in (1.2),
which computes the precision matrix instead of the covariance matrix. Indeed, although (3.2) is non-
convex, a solution can be computed by solving the convex graphical lasso problem (1.2) with the change
of variable Θ = Σ

−1. We also emphasize that most graphical lasso solvers such as [2, 31, 59] compute



COMPRESSIVE RECOVERY OF SPARSE PRECISION MATRICES 11

both the covariance Σ and the precision Θ = Σ
−1, without calculating the inverse, by relying instead on

duality theory. We argue that the operator (3.2), when applied to the empirical covariance of the data
Σ̂, can be interpreted as a “denoiser” of Σ̂ in the sense that it returns a covariance matrix whose inverse
is sparse. This interpretation is motivated by the fact that the graphical lasso can be seen as a specific
proximal operator in the framework of Bregman divergences [11, 16] which we now briefly describe
(we refer to [72] for a more precise discussion). Let H be a Hilbert space and h : H → R∪{+∞} be
proper, convex and differentiable on its open domain dom(h). The Bregman divergence associated to h
is given by

∀x,y ∈H ×H ,Dh(x|y) =
{

h(x)−h(y)−⟨∇h(y),x−y⟩ if y ∈ dom(h) ,
+∞ otherwise.

(3.3)

The function Dh measures a similarity or “distance” between the points in H . For instance if H =Rd

and h = 1
2∥ · ∥2

2 then Dh is simply Dh(x|y) = 1
2∥x−y∥2

2. For a function ϕ : H → R, the so-called (left)

Bregman proximal operator of ϕ is defined as proxh
ϕ(z)

∆
= argminx ϕ(x) +Dh(x|z) [72, Definition

2.3]. It generalizes the standard Euclidean proximal operator that can be computed with h = 1
2∥ · ∥2

2. To
relate with the context of the graphical lasso, we introduce the function h(X) =− logdetX if X≻ 0 and
h(X) = +∞ otherwise. It is strictly convex, continuously differentiable over its domain, and ∇h(X) =
−X−1 [10, Appendix A.4.1]. The associated Bregman divergence writes (see e.g. [61, 64])

∀X,Y ∈ S++
d (R), Dh(X|Y)

∆
=− logdet(X)+ logdetY+ ⟨Y−1,X⟩−d . (3.4)

Based on the definition of Dh we can rewrite the operator (3.2) as GLASSOλ [Z] = argmin
Σ≻0

λ∥Σ−1∥1,off+

Dh(Z|Σ). The graphical lasso can thus be interpreted as a proximal Bregman operator of the function
ϕ : Σ 7→ λ∥Σ−1∥1,off but by operating on the right variable of the Bregman divergence. Although not
previously studied with the graphical lasso, this type of operators, known as right proximity operator
[4, 5, 52], has nevertheless been considered in the context of Poisson inverse problems [3], for image
restoration problems [79, Section 4] or in [36] where it was shown to admit a characterization in terms
of gradient of a convex function. This discussion highlights that GLASSOλ [Σ̂] computes a covariance
matrix candidate which is both close to Σ̂ in the sense of Dh and whose inverse tends to be sparse.

Algorithm Inspired by this interpretation of the graphical lasso as a denoiser, we present an iterative
algorithm for estimating the true covariance from the sketch. In the following, we consider the data
fidelity term f (Σ) ∆

= 1
2∥A (Σ)− s∥2

2 whose gradient is ∇ f (Σ) = A ⋆(A (Σ)− s) where

A ⋆ : y ∈ Rm 7→ 1
m

m

∑
j=1

yia ja⊤j ∈ Sd (3.5)

is the adjoint operator of A . Given a initial estimate Σ0 ≻ 0 and a step-size γ > 0, our proposed
algorithmic solution computes

∀t ∈ {0, · · · , tmax}, Σt+1 = GLASSOγλ [Σt − γ∇ f (Σt)] . (3.6)

In other words, we alternate between a gradient step Σt+ 1
2
=Σt−γ∇ f (Σt) in the direction of minimizing

f and a denoising/proximal Bregman step Σt+1 = GLASSOγλ [Σt+ 1
2
] (with parameter γλ ) in the vein
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of standard forward-backward algorithms. The overall procedure is summarized in Algorithm 1. The
computational bottleneck of this algorithm is the graphical lasso step that has a computational O(d3)
complexity with standard graphical lasso solvers such as [2, 31, 59], which rely on the dual formulation
of the graphical lasso, or [66] which rely on an iterative thresholding procedure. Although more efficient
solvers exist [7, 41, 42] we choose to solve graphical lasso with the scikit-learn implementation
[60]. It relies on the block coordinate procedure described in [59] and finds the solution of the graphical
lasso with cubic complexity. It is noteworthy that the iterations of our algorithm, as described in (3.6),
can be linked to Bregman Proximal Gradient (BPG) descent [3] with the Bregman divergence Dh. In
Appendix A.4, we demonstrate that the iterations in (3.6) correspond to those of a BPG algorithm, albeit
with a Riemannian gradient instead of the usual Euclidean gradient in (3.6). In practice, we observe that
this algorithm always converges when γ > 0 is sufficiently small to ensure that the iterates (Σt+ 1

2
)t

remain positive definite (we give a safe step-size strategy ensuring this condition in Appendix A.5). The
intriguing questions regarding the convergence rate of this algorithm and the minimizers associated with
it are left for future research. We envision the use of guarantees inspired by Plug-and-Play literature, as
described e.g. in [67]. However, we experimentally demonstrate in the next section that the associated
estimator effectively recovers a precision matrix from a sketch of the data.

4. Experiments

In this section we provide experiments for assessing the efficiency of Algorithm 1. The following expe-
riments are conducted using structured sketching as described in Section 3.1. The objectives of these
experiments is to answer the following questions:

1. Does the decoder described in Algorithm 1 give qualitatively coherent results?
2. What is the impact of the sketch size m on the final estimation? More precisely, can we obtain a

good estimate of the true precision matrix with a number of measurements m close to the theoretical
m0 =C(d +2k) log(d) obtained in Theorem 3?

3. How does the sketching approach combined with the decoder described in Algorithm 1 compare to
classical methods such as the graphical lasso in terms of performance?

In all experiments, the setting is as follows: we generate a true sparse precision matrix Θ ∈ S++
d (R) and

we consider x1, · · · ,xn ∼ N (0,Θ−1) i.e. n i.i.d. samples of a multivariate Gaussian with covariance
Σ = Θ

−1. In the experiments, we explore two methods for generating sparse precision matrices Θ. For
each method, the matrix Θ first consists of L blocks, each having a size of M×M with L×M = d.
The generation of each block follows the distribution of a random graph. In the first method, referred
to as Erdos, each block follows the distribution of an Erdös-Rényi graph [27] where the probability of
connection is set to p= 0.2. In the second method, referred to as PowerLaw, the random graph is a tree
with a power-law degree distribution. Both methods utilize the Networkx library [37] for generating
these distributions. After fixing the support with the above strategy, the value of each coefficient is
arbitrarily set to εu where u∼Unif[1,4] and ε = 1 with probability 0.5 and−1 with probability 0.5. The
matrix Θ is then symmetrized and made positive definite by adding a sufficiently large diagonal (0.1+
λmin)I. Finally a random permutation permutes the rows and columns of the matrix. Two examples of
matrices Θ generated according to these procedures are shown on the left side of Figure 2 (for d = 64).
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Empirical cov. Σ̂. n = 8000 True precision Θ. nnz = 386 Θsketch. m = 1536, RE = 0.282

−0.5

0.0

1.5

Erdos

Empirical cov. Σ̂. n = 8000 True precision Θ. nnz = 512 Θsketch. m = 1536, RE = 0.364

−0.5

0.0

1.5

PowerLaw

FIG. 2. Illustrative example of estimation using the decoding procedure described in Algorithm 1. The dimension is d = 64 and
the sketch size m = 1536. We set λ = 0.008 for the ℓ1 penalty parameter for all solvers. RE stands for the relative error between
the true precision matrix and the estimated one (4.1). (First row) With a precision matrix Θ generated from the Erdos process.
(Second row) With a matrix Θ generated from the Powerlaw process. The columns are (from left to right): the empirical
covariance Σ̂ for n = 8000, the true precision matrix Θ and the decoder Algorithm 1 based on a sketch of the data with structured
rank-one projections.

In the experiments, we consider two performance measures. The first one is the relative error
computed as

RE ∆
=
∥Θtrue−Θesti∥Fro

∥Θtrue∥Fro
(4.1)

and the second one is the F1 ∈ [0,1] score between the true matrix and the estimated one. It is calculated
as F1 = 2tp

2tp+ fp+ fn where true positive tp stands for the case when there is an actual edge and the
algorithm detects it; false positive fp stands for the case when there is no actual edge but the algorithm
detects one, and false negative fn stands for the case when the algorithm failed to detect an actual edge.

4.1. First illustration

First, we qualitatively illustrate the behavior of our Algorithm 1. In this experiment, we set d = 64
and generate n = 8000 samples from Θ using the Erdos and Powerlaw procedures. The number
of non-zero elements are respectively 512 for PowerLaw and 386 for Erdos. We consider one draw
of structured sketching operator as described in Section 3.1. We compute a sketch of the dataset s =
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FIG. 3. Impact the of number of measurements on the final estimation for the datasets Erdos and PowerLaw. (Left) the best
average relative relative error on the three draws of the true precision matrix for the PowerLaw and Erdos settings. (Right) the
best average F1 score. The 10-th percentile for these scores are reported in shaded line. Vertical colored dashed lines are located
at k̂ log(d) where k̂ is the average number of non-zero elements ∥Θ∥0 of the precision matrices for each setting.

1
n ∑

n
i=1 Φ(xi) = A (Σ̂) ∈ Rm and set the number of measurements for the sketch to m = 1536. In other

words, the final sketch has a number of measurements that is approximately 75% the degrees of freedom
of d× d symmetric matrices, which is d(d + 1)/2 = 2080. We fix the number of iterations to tmax =
3500, the step size to γ = 0.005 and λ = 0.008. The results are depicted in Figure 2. We can observe
that in both cases, our method provides a visually consistent estimation of the precision matrix.

4.2. Impact of the number of measurements on the estimation - asymptotic regime

In order to quantitatively evaluate the impact of the number of measurements m on the final estimation
we consider the asymptotic regime where n =+∞ or equivalently we sketch the true covariance matrix
as s = A (Σ) instead of the empirical covariance matrix. We take d = 256 and we draw three precision
matrices from the settings PowerLaw and Erdos. For each setting PowerLaw and Erdos, each
m ∈ {256,512,1024,2048,4096,8192,16384,32768 = d2/2}, and each score function (RE and F1-
score) we choose the parameter λ ∈ {1e− 4,5e− 4,1e− 3, · · · ,5e− 1} that gives the best average
score. We report the results in Figure 3.

We observe that for Erdos the estimator based on the sketching procedure and Algorithm 1 gives
a recovery with a relative error that is below 10% starting from m≈ 4096 that is m

d2/2 ≈ 12%. This cor-
responds to a compression rate of approximately 88%. This result is also consistent with the theoretical
bound m≈ ∥Θ∥0 log(d) (represented by the vertical dashed lines) found in Theorem 3: we can see that
the best average relative error is below 10% starting from this limit. From m

d2/2 = 50%, the recovery is
also nearly perfect. The F1 score is in agreement with the relative error: starting from m ≈ 4096, the
F1 score is above 0.8, indicating that our estimator captures the correct statistical relationships between
the variables.

For the PowerLaw setting, the results are slightly less favorable, and a relative error below 10%
is only achieved for m

d2/2 ≈ 50%, resulting in a compression rate of approximately 50%. This can be
explained by the fact that the precision matrices in this case are less sparse (vertical dashed orange
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FIG. 4. Comparison between our estimator and graphical lasso type estimators with the Erdos (top row) and PowerLaw
settings (bottom row). The 10-th percentile for these scores are reported in shaded line.

line), and the theory also involves constants (e.g., the constant C(δ ,ρ,b/a) in Theorem 3) that can have
a significant impact on the actual number of measurements required for reconstruction.

In all cases, this experiment indicates that the proposed sketching method preserves information,
and the decoding method allows for a good estimation in an optimistic scenario with a large number of
samples and a optimally-chosen regularization parameter.

4.3. Comparison with graphical lasso type estimators - finite sample regime

In a last experiment we compare quantitatively our approach with the graphical lasso estimator (com-
puted with the Scikit-learn implementation [60]) and we investigate the influence of the sample
size on the final estimation. We consider d = 256 and n samples x1, · · · ,xn ∼N (0,Θ−1) with three
draws of precision matrices for each Erdos and Powerlaw settings. We use a sketch of the data for
a number of samples n varying from 50 (in order to have the small sample regime) to 500000. We
compute the sketch of the data for sketch size m ∈ {1024,2048,4096,8192,16384,32768 = d2/2}. As
in the previous experiment, for each method, each n and each score function we pick the regularization
parameter λ ∈ {1e−4,5e−4,1e−3, · · · ,5e−1)} that leads to the best average score.



16 T. VAYER ET AL.

We also consider a simple baseline, namely the pseudo-inverse of the empirical covariance matrix
(Σ̂)† as an estimate for Θtrue. Note that when n > d the matrix Σ̂ is almost surely invertible to that this
baseline corresponds to the maximum likelihood estimator of Θtrue without ℓ1 regularization (same as
graphical lasso with λ = 0 in this case). We report these results in Figure 4.

In both settings, the results show that our estimator improves as m and n increase, as expected. More-
over, for m = 32768 = d2/2, the results of the graphical lasso and our estimator are nearly identical,
demonstrating that our estimator is consistent with the graphical lasso when the number of measure-
ments reaches the number of degrees of freedom of the empirical covariance matrix. Furthermore, we
notice that for the Erdos setting, the performances are very similar to those of the graphical lasso even
for m ≈ 8192. This result indicates that even in the case of a finite number of samples, we are able to
accurately estimate the precision matrices with a limited number of measurements (8192 corresponds
to a compression rate of ≈ 75%). For the PowerLaw setting, the results in terms of relative error are
more mixed. However, the F1 score remains comparable to that of the graphical lasso, indicating that
our approach captures the correct statistical dependencies, but may struggle to accurately estimate the
intensity of these dependencies. In a rather reassuring way, in the small sample regime, our estimator
outperforms the MLE estimator (Σ̂)† in terms of relative error and consistently outperforms it in terms
of the F1 score (this is reasonable because (Σ̂)† unlike Θtrue).

5. Covering numbers bounds and concentration inequalities for Theorem 3

In this section, we provide the necessary ingredients to prove Theorem 3. Guided by Theorem 2, we
start by giving general results to control covering numbers before applying them to the one considered
in this article. Then, we provide the concentration inequality needed on the sketching operator A .

5.1. Controlling covering numbers

We take the general point of view of normed vector spaces E,F with norms ∥ · ∥E ,∥ · ∥F and a function
f : Ω⊆ E→ F defined on some domain Ω = dom( f ) of E. For a subset X⊆ E the covering number of
X w.r.t. ∥ · ∥E with radius ε > 0, denoted by N (X,∥ · ∥E ,ε), is the minimal number of closed balls of
radius ε (w.r.t. ∥ · ∥E ) required to entirely cover X and whose centers are in X (see Appendix A.2.1 for
a formal definition).

Remark 5 (Link with the precision matrix estimation problem) This section is presented in a general
case, but its results will ultimately be applied to control the covering number of the normalized secant
of our model set Sk,a,b defined in (2.3). Therefore, one should keep in mind that our final application
framework will consider E = F = Sd , f = inv with Ω the set of symmetric and invertible matrices and
X=S−1

k,a,b = {Θ = Σ
−1 : Σ ∈Sk,a,b}.

The core of our reasoning is based on the following sets, which generalize definition (2.8).

Definition 2 (Normalized secant sets) We define the normalized secant set of some X⊆ E as

S[X] ∆
= { x− y
∥x− y∥E

: (x,y) ∈ X2,∥x− y∥E > 0} . (5.1)
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We introduce also the normalized secant set of X⊆Ω = dom( f ) embedded by f as

S[ f (X)] ∆
= { f (x)− f (y)
∥ f (x)− f (y)∥F

: (x,y) ∈ X2,∥ f (x)− f (y)∥F > 0} . (5.2)

The main contribution of this section is the control of the covering number of a normalized secant
S[ f (X)] ⊆ F by the covering number of X and S[X], for a sufficiently smooth f . The intuition is the
following: if we consider a signal x ∈ X in a “low-dimensional” space, then its image by f is also
“low-dimensional” if f is sufficiently regular on X.

To carry out the analysis of S[ f (X)] we introduce the notions of long and short chords. These
objects are inspired by results in compressive independent component analysis and the theory of random
projections on manifolds [20].

Long and short chords The set S[ f (X)] can be divided in two subsets that are more analytically
tractable. First, we introduce, for η > 0, the following sets

C+
η (X, f ) ∆

= {(x,y) ∈ X2 : ∥ f (x)− f (y)∥F > η} ,

C−η (X, f ) ∆
= {(x,y) ∈ X2 : 0 < ∥ f (x)− f (y)∥F ≤ η} .

(5.3)

With these notations, S[ f (X)] can be decomposed into long and short chords S[ f (X)] = S+η [ f (X)]∪
S−η [ f (X)], where the long and short chords are respectively defined by

S+η [ f (X)]
∆
= { f (x)− f (y)
∥ f (x)− f (y)∥F

: (x,y) ∈ C+
η (X, f )} ,

S−η [ f (X)]
∆
= { f (x)− f (y)
∥ f (x)− f (y)∥F

: (x,y) ∈ C−η (X, f )} .
(5.4)

In order to control the covering number of S[ f (X)] we will exploit its decomposition via the spaces
S±η [ f (X)] whose covering numbers are easier to obtain, assuming some regularity of the function f on
X.

Definition 3 (Bi-Lipschitz assumption) Given positive constants α and β , we say that a function f is
(α,β )-bi-Lipschitz if for all (x,y) ∈ X2 it verifies

α∥x− y∥E ≤∥ f (x)− f (y)∥F (5.5)

∥ f (x)− f (y)∥F ≤ β∥x− y∥E . (5.6)

In order to define the notion of differential we assume that the model set is contained in
the interior of Ω = dom( f ), i.e., X ⊆ int(Ω). In particular when f is differentiable on X, (5.6)

implies that supx∈X∥D fx∥op ≤ β < +∞, where ∥ · ∥op is the operator norm defined as ∥D fx∥op
∆
=

sup∥h∥E≤1 ∥D fx(h)∥F .
We further consider the following regularity assumptions:

Assumption A-1 (Second order approximation) f is differentiable on int(Ω) and there exists L > 0
such that

∀(x,y) ∈ X2, ∥ f (x)− f (y)−D fy(x− y)∥F ≤ L∥x− y∥2
E . (5.7)
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Assumption A-2 (Bounded curvature) f is differentiable on int(Ω) and ζ -smooth on X, where ζ > 0,
i.e.

∀(x,y) ∈ X2, ∥D fx−D fy∥op ≤ ζ∥x− y∥E . (5.8)

As described in Lemma 4 (see Appendix A.2.2) the condition A-2 implies A-1 when X is a convex
model set.

Covering numbers of S+η [ f (X)] controlling the covering with long chords is relatively easy under some
assumptions on f as proven in the following proposition (proof in Appendix A.2.3).

Proposition 1 Assume that f is β -Lipschitz as in (5.6). Then for any η > 0 and ε > 0,

N (S+η [ f (X)],∥ · ∥F ,ε)≤N (X,∥ · ∥E ,
η

16β
ε)2 . (5.9)

In other words, the “dimension” of the long chords can be controlled by that of the model set itself,
assuming only that f is Lipschitz-continuous.

Covering numbers of S−η [ f (X)] controlling the covering number of short chords is a little more delicate
and generally requires a fine analysis of X [34]. However, by adding the hypothesis A-1 and A-2 we are
able to prove the following result (proof in Appendix A.2.4).

Proposition 2 Assume that f is (α,β )-bi-Lipschitz and satisfies assumptions A-1 and A-2. Then for
any ε > 0 and η > 0,

N (S−η [ f (X)],∥ · ∥F ,2(ε +
L

α2 η))≤ ζ +βα

α2ε
N (X,∥ · ∥E ,

αε

ζ +βα
)×N (S[X],∥ · ∥E ,

α2ε

2(ζ +βα)
) .

(5.10)

Intuition of the proof The idea is to show that each element of S−η [ f (X)] can be described by a “tangent”
vector to S[X] and that the set of tangent vectors has a covering number which can be controlled by those
of X and S[X]. □

By combining the two propositions we are now ready to state the main theorem of this section:

Theorem 4 Assume that f is (α,β )-bi-Lipschitz and satisfies assumptions A-1 and A-2 Then for all
η > 0,ε > 0, we have

N (S[ f (X)],∥ · ∥F ,2
[

ε +
L

α2 η

]
)≤N (X,∥ · ∥E ,

η

8β

[
ε +

L
α2 η

]
)2

+
ζ +βα

α2ε
N (X,∥ · ∥E ,

αε

ζ +βα
)×N (S[X],∥ · ∥E ,

α2ε

2(ζ +βα)
) .

(5.11)
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Proof We use that for any η > 0 S[X] = S+η [ f (X)]∪S−η [ f (X)] thus the covering number of S[ f (X)] is less
than the sum of the coverings of S+η [ f (X)] and S−η [ f (X)]. Then we apply Proposition 1 and Proposition
2. □

Putting everything together in the case of sparse precision matrix we apply the previous results to our
framework, that is E = F = Sd , f = inv and X =S−1

k,a,b = {Θ = Σ
−1 : Σ ∈Sk,a,b}. We set the norms

as follow : ∥ · ∥E = ∥ · ∥Fro the Frobenius norm and ∥ · ∥F = ∥ · ∥Λ as defined in (2.13). We have the
following lemma which shows that f = inv satisfies all the necessary regularity assumptions (the proof
can be found in Appendix A.2.5).

Lemma 1 Assume that there exist constants cFro and CFro such that cFro∥M∥Fro ≤ ∥M∥Λ ≤
CFro∥M∥Fro. Then the function f = inv is (α,β )-bi-Lipschitz and satisfies assumptions A-1 and A-2
on S−1

k,a,b with α = cFro
b2 , β = CFro

a2 , L = CFro
a3 , ζ = 2L .

Note that expressions for the constants cFro and CFro will be provided in Proposition 4. In order to
control the covering number of S[Sk,a,b] = S[inv(S−1

k,a,b)] we only have to check those of S−1
k,a,b and

S[S−1
k,a,b]. It is done in the following lemma (the proof can be found in Appendix A.2.6).

Lemma 2 For any ε > 0 we have

N (S−1
k,a,b,∥ · ∥Fro,ε)≤ (

ed2

2k
)k(

18
√

d×b
ε

)d+k and N (S[S−1
k,a,b],∥ · ∥Fro,ε)≤ (

ed2

4k
)2k(

18
ε
)d+2k .

(5.12)

This result show that the box counting dimensions [65] (also called entropy dimensions) of S−1
k,a,b

and S[S−1
k,a,b] are smaller than (d + k) log(d) and (d +2k) log(d) and thus much smaller than d2, which

will allow us to have the guarantees presented in the introduction.

Corollary 1 Assuming the existence of the constant CFro,cFro as in Lemma 1, there exist absolute
constants c0,c1 ≥ 1, such that, for any ε > 0, the covering number of S[Sk,a,b] verifies

N
(
S[Sk,a,b],∥ · ∥Λ,ε

)
≤
(

ed2

2k

)4k


(

c0

√
dC2

Fro

ε2c2
Fro

b5

a5

)2(d+k)

+

(
c1

√
dC2

Fro
ε2cFro

(
2

cFro
+1)

b5

a5

)d+2k+1

 .

(5.13)

This is a direct consequence of Theorem 4, combined with Lemma 1 and 2. See Appendix A.2.7 for
the proof. This corollary allows for a control of the covering number that is required to prove a RIP for
rank-one projections.

5.2. Application to rank-one projections

The results of the previous section allowed us to control one of the three quantities of interest for
establishing the RIPδ : the covering number. We are left with studying the concentration properties of
the operator A (Theorem 2).
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A natural choice for the norm ∥·∥Rm would be the standard Euclidean norm ∥·∥2. However, in order

for the RIP to hold, one would have to choose ∥M∥Sd =
(
EA∼Λ

[∣∣⟨M j,M⟩
∣∣2
])1/2

. Unfortunately, with
these choices, we were unable to find sufficiently tight concentration functions C1,C2 that lead to better
guaranties than m ≳ d2. This phenomenom had already been observed, as written in [12] the rank-one
projections lead to loose RIP constants for low-rank matrix completion problems (unless m ≳ d2), and
we envision that similar results hold in our case. The remedy found in [12] is to consider instead an ℓ1
RIP (i.e. taking the ℓ1 norm for ∥ · ∥Rm in Definition 1 instead of the ℓ2 norm), leading to the choice
of ∥ · ∥Λ defined in (2.13) for ∥ · ∥Sd . This next part shows that this remedy helps for the recovery of
covariance matrices and thus of precision matrices.

Proposition 3 Consider the operator A (Σ) = 1
m

(
a⊤1 Σa1, . . . ,a⊤mΣam

)⊤, where the vectors a1, · · · ,am

are i.i.d. and either follow Λ = ΛG = N (0, 1
d Id) or Λ = ΛG = U (Sd−1) with the associated norm

∥Σ∥Λ = Ea∼Λ[|a⊤Σa|]. Then, for any U ∈ Sd(R) satisfying ∥U∥Λ = 1 and for any t > 0, we have

P
(∣∣∥A (U)∥1−1

∣∣> t
)
≤ 2exp

(
− m

8e2 min
(

t2

K2
Λ

,
t

KΛ

))
, (5.14)

where KΛ is an absolute constant given by KΛG = 76e2√15
log2 and KΛU = 304e3√15

log2 .

Intuition of the proof The proof is based on a Bernstein-type concentration inequality for sums of sub-
exponential variables. The essential ingredient of the proof is thus to show that the centered random
variable |a⊤Ua|− 1 involved in ∥A (U)∥1− 1 is subexponential with a subexponential norm bounded
by an absolute constant KΛ. The full proof can be found in Appendix A.3.1. □

This result provides the function C2 required to obtain a RIP with Theorem 2.

Remark 6 This is essentially the only result that would need to be adapted if one wants to provide
information-theoretic guarantees to the sketching operator defined from random structured matrices.
Indeed, we emphasize that all previous results on covering numbers are still valid in the structured
case.

Finally to be able to control the covering number, the norm ∥ · ∥Λ needs to verify the hypothesis of
Corollary 1. This is done in the following proposition (see Appendix A.3.2 for the proof).

Proposition 4 Let Λ ∈ {ΛG,ΛU} be either the Gaussian or uniform distribution on Rd and consider
the associated Λ-norm defined in (2.13). Then,

∀M ∈ Sd(R),
2

9
√

15d
∥M∥Fro ≤ ∥M∥Λ ≤

1√
d
∥M∥Fro . (5.15)

This gives cFro = 2/(9
√

15d) and CFro = 1/
√

d in Lemma 1.

In this section, we have established control over the covering numbers via Corollary 1 and introdu-
ced the concentration inequality for the sketching operator through Proposition 3. These components
provide the necessary foundation for proving Theorem 3. The comprehensive proof of this theorem can
be found in Appendix A.3.3.



COMPRESSIVE RECOVERY OF SPARSE PRECISION MATRICES 21

6. Conclusion & perspectives

In this work, we have presented a compressive approach based on sketching to estimate sparse precision
matrices. We have shown that it is possible to estimate a (d + 2k)-sparse precision matrix from a data
sketch of the order (d+2k) log(d), which is significantly smaller than the typical memory complexity of
d2 associated with the graphical lasso. Our analysis is supported by information-theoretic guarantees,
where we have established restricted isometries and instance optimality properties. Finally, we have
proposed a practical algorithmic solution for computing an estimation of the precision matrix from the
sketch.

Our work opens several new lines of research. Given the generality of the tools presented in this
paper, it would be interesting to explore whether similar guarantees can be established for other model
sets based on specific graph structures [51]. Also, as practitioners are not always interested in the graph
associated with the precision matrix per se but rather in some of its properties (e.g., a group structure
among the nodes), it would be interesting to see how these properties can directly be inferred using a
compressive learning approach and whether it can help further reduce the sketch’s dimension.

From an algorithmic point of view, our work also raises several questions. The proposed estimator
is costly as it requires to solve several graphical lasso. An interesting further work would be to design
a more efficient decoder that is sufficiently close to the optimal decoder given by the theory. In this
context, the choice proposed in this paper is a first step toward practical recovery, but other algorithms
could be used based on different precision matrix estimators like [81]. Finally, from an application point
of view, an interesting perspective would be to use the sketching approach to learn, in an online way, a
dynamic graph, in the way of the time varying graphical lasso [38].

A. Proofs

A.1. Proofs of Section 2.1

A.1.1. Proof of Theorem 1
Proof With the notations of the theorem Σ

∗ = ∆[A (Σ̂)] ∈ argminΣ∈S ∥A (Σ)−A (Σ̂)∥Rm . Then for any
ΣS ∈S:

∥Σ∗−Σ∥Sd ≤ ∥Σ−ΣS∥Sd +∥ΣS−Σ
∗∥Sd

≤ ∥Σ−ΣS∥Sd +
1

1−δ
∥A (Σ∗)−A (ΣS)∥Rm

≤ ∥Σ−ΣS∥Sd +
1

1−δ

(
∥A (Σ∗)−A (Σ̂)∥Rm +∥A (Σ̂)−A (ΣS)∥Rd

)

≤ ∥Σ−ΣS∥Sd +
2

1−δ
∥A (Σ̂)−A (ΣS)∥Rm

≤ ∥Σ−ΣS∥Sd +
2

1−δ
∥A (Σ̂)−A (Σ)∥Rd +

2
1−δ

∥A (Σ)−A (ΣS)∥Rm .

(A.1)

We introduce the following “distance” to the model set S:

d◦(Σ,S) = inf
M∈S

∥Σ−M∥Sd +
2

1−δ
∥A (Σ)−A (M)∥Rm . (A.2)
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Then we have d◦(Σ,S) = 0 if Σ ∈S and

∥Σ∗−Σ∥Sd ≤ d◦(Σ,S)+
2

1−δ
∥A (Σ)−A (M)∥Rm . (A.3)

□

A.1.2. Proof of Theorem 2
Proof Let us start by considering Sε , an ε-net of S[S] with respect to ∥ · ∥Sd , for some ε > 0. Then, for
every U ∈ S[S], there exists U ∈ Sε such that ∥U−U∥Sd ≤ ε . From the triangular inequality we have

∣∣∥A (U)∥Rm −1
∣∣≤
∣∣∥A (U)∥Rm −∥A (U)∥Rm

∣∣+
∣∣∥A (U)∥Rm −1

∣∣.

Focusing on the first term of the right-hand side, we obtain

∣∣∥A (U)∥Rm −∥A (U)∥Rm
∣∣≤ ∥A (U−U)∥Rm ≤ |||A ||| · ∥U−U∥Sd ≤ ε|||A ||| . (A.4)

Hence for U ∈ S[inv(S)]:

∣∣∥A (U)∥Rm −1
∣∣≤ max

U∈Sε

∣∣∥A (U)∥Rm −1
∣∣+ ε|||A |||. (A.5)

So we have for any 0 < δ < 1:

P

(
sup

U∈S[S]

∣∣∥A (U)∥Rm −1
∣∣≤ δ

)
≥ 1−P(ε|||A |||> δ

2
)−P(max

U∈Sε

∣∣∥A (U)∥Rm −1
∣∣> δ

2
) . (A.6)

We will control these two terms. For the first one we have the concentration with C1. For the second
one, using the union bound yields

P(max
U∈Sε

∣∣∥A (U)∥Rm −1
∣∣> δ

2
)≤ ∑

U∈Sε

P(
∣∣∥A (U)∥Rm −1

∣∣> δ

2
) (A.7)

Using the concentration given by C2, for U ∈ Sε and t ∈]0,1[, we have P(
∣∣∥A U∥Rm −1

∣∣> t)≤C2(t).
Applying this with t = δ/2 and using (A.7) gives

P(max
U∈Sε

∣∣∥A (U)∥2−1
∣∣> δ

2
)≤ |Sε |C2(δ/2) . (A.8)

As a result, we obtain for δ ∈]0,1[ and ε > 0

P

(
sup

U∈S[S]

∣∣∥A (U)∥2−1
∣∣≤ δ

)
≥ 1−C1(

δ

2ε
)−|Sε |C2(δ/2) . (A.9)

□
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A.1.3. Proof of Remark 3
Proof For some ε ′ > 0, consider Tε ′ an ε ′-net of the sphere BSd . Then, for all U ∈ BSd , there exists
U ∈ Tε ′ such that

∥A (U)∥Rm ≤ ε
′|||A |||+∥A (U)∥Rm .

Thus, taking the supremum over U yields

sup
U∈BSd

∥A (U)∥Rm ≤ ε
′|||A |||+ max

U∈T
ε ′
∥A (U)∥Rm ,

therefore |||A ||| ≤ (1− ε ′)−1 maxU∈T
ε ′
∥A (U)∥Rm . As a consequence, for t > 1/(1− ε ′),

P (|||A |||> t)≤ P

(
max
U∈T

ε ′
∥A (U)∥Rm > (1− ε

′)t

)
≤ ∑

U∈T
ε ′

P
(
|∥A (U)∥Rm −1|> (1− ε

′)t−1
)

≤N (BSd ,∥ · ∥Sd ,ε
′)C2((1− ε

′)t−1) .

□

A.2. Proofs of Section 5.1

A.2.1. General results on covering numbers
Let (E,d) be a semi-metric space. The covering number of S ⊆ E with radius ε with respect to d is
defined as:

N (S,d,ε) ∆
= min

{
N ∈ N : ∃x1, · · · ,xN ∈S,S⊆

N⋃

i=1

Bd(xi,ε)

}
. (A.10)

If N =N (S,d,ε), then for any x∈S there exists i∈ [[N]] such that d(x,xi)≤ ε . We recall the following
Lemma regarding covering numbers that can be found in [34, Lemma A.3.].

Lemma 3 Let Y,Z we two subset of a pseudo metric space (X ,d) such that the following holds:

∀z ∈ Z,∃y ∈ Y,d(z,y)≤ δ , (A.11)

where δ ≥ 0. Then for all ε > 0

N (Z,d,2(δ + ε))≤N (Y,d,ε) . (A.12)

A.2.2. Descent Lemma
Lemma 4 (Descent Lemma) Let E,F be two normed vector spaces and Ω a subset of E and X ⊆
int(Ω). Consider f : Ω→ F a L-smooth function on X i.e.

∀(x,y) ∈ X2, ∥D fx−D fy∥op ≤ L∥x− y∥E . (A.13)

Let (x,y) ∈ X2 such that the segment [[x,y]] lies in X. Then,

∥ f (x)− f (y)−D fy(x− y)∥F ≤ L∥x− y∥2
E . (A.14)

In particular if X is convex then A-2 implies A-1.
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Proof From [23, Corollary 3.3] f verifies

∥ f (x)− f (y)−D fy(x− y)∥F ≤ sup
z∈[[x,y]]

∥D fz−D fx∥op∥x− y∥E .

Now take z ∈ [[x,y]] and write it as z = (1− t)x+ ty ∈ X for some t ∈ [0,1]. Since f is L-smooth on X
we have:

∥D fz−D fx∥op = ∥D f(1−t)x+ty−D fx∥op ≤ L∥(1− t)x+ ty− x∥E = Lt∥x− y∥E ≤ L∥x− y∥E

Hence supz∈[[x,y]] ∥D fz−D fx∥op ≤ L∥x− y∥E and thus ∥ f (x)− f (y)−D fy(x− y)∥F ≤ L∥x− y∥2
E □

A.2.3. Proof of Proposition 1
Proof In the following we note ∥(x1,y1)− (x2,y2)∥⊗2 = ∥x1− x2∥E + ∥y1− y2∥E . We introduce, for
η ≥ 0, the set

X2
η = {(x,y) ∈ X2 : ∥ f (x)− f (y)∥F > η} . (A.15)

First note that X2
η ⊂ X2, and consequently

N (X2
η ,∥ · ∥⊗2,ε)≤N (X2,∥ · ∥⊗2,

ε

2
)≤N (X,∥ · ∥E ,

ε

4
)2 . (A.16)

We consider η > 0 and define g :X2
η→ S+η ( f (X)) by g(x,y)= f (x)− f (y)

∥ f (x)− f (y)∥F for (x,y)∈X2
η . By definition,

g is surjective. We will show that it is also Lipschitz. With (x1,y1),(x2,y2) ∈ X2
η ×X2

η we obtain

∥ f (x1)− f (y1)

∥ f (x1)− f (y1)∥F
− f (x2)− f (y2)

∥ f (x2)− f (y2)∥F
∥F

≤∥ f (x1)− f (y1)

∥ f (x1)− f (y1)∥F
− f (x1)− f (y1)

∥ f (x2)− f (y2)∥F
∥F +∥ f (x1)− f (y1)

∥ f (x2)− f (y2)∥F
− f (x2)− f (y2)

∥ f (x2)− f (y2)∥F
∥F

≤ 1
∥ f (x2)− f (y2)∥F

(∥ f (x1)− f (x2)∥F +∥ f (y1)− f (y2)∥F)

+

∣∣∣∣
1

∥ f (x1)− f (y1)∥F
− 1
∥ f (x2)− f (y2)∥F

∣∣∣∣∥ f (x1)− f (y1)∥F

≤ 2β

∥ f (x2)− f (y2)∥F
∥(x1,y1)− (x2,y2)∥⊗2

+ |∥ f (x2)− f (y2)∥F −∥ f (x1)− f (y1)∥F |×
∥ f (x1)− f (y1)∥F

∥ f (x1)− f (y1)∥F∥ f (x2)− f (y2)∥F

≤2β

η
∥(x1,y1)− (x2,y2)∥⊗2 +∥ f (x2)− f (x1)− f (y2)+ f (y1)∥F ×

1
∥ f (x2)− f (y2)∥F

≤2β

η
∥(x1,y1)− (x2,y2)∥⊗2 +2β∥(x1,y1)− (x2,y2)∥⊗2×

1
∥ f (x2)− f (y2)∥F

≤4β

η
∥(x1,y1)− (x2,y2)∥⊗2 .
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Consequently,

∥g(x1,y1)−g(x2,y2)∥F ≤
4β

η
∥(x1,y1)− (x2,y2)∥⊗2 . (A.17)

So g is a surjective 4β

η
-Lipschitz function from (X2

η ,∥ · ∥⊗2) to (S+η ( f (X)),∥ · ∥F). Hence using [34,
Lemma A.2.] we obtain

N (S+η ( f (X)),∥ · ∥F ,ε)≤N (X2
η ,∥ · ∥⊗2,

η

4β
ε)≤N (X,∥ · ∥E ,

η

16β
ε)2 . (A.18)

□

A.2.4. Proof of Proposition 2
In order to prove the result, the reasoning will be the following: 1) we will show that any element
of S−η [ f (X)] is close to an element of a certain “tangent space” D x−y

∥ f (x)− f (y)∥F 2) we will control the
covering number of this space. We begin with the following result.

Lemma 5 Assume that f is (α,β )-bi-Lipschitz and satisfies assumptions A-1. For ε0 > 0, consider
the following subset of X2:

Iε0
∆
= {(x,y) ∈ X2 : 0 < ∥x− y∥E ≤ ε0} . (A.19)

Then, for any ε0 > 0 and (x,y) ∈ Iε0 ,

∥ f (x)− f (y)
∥ f (x)− f (y)∥F

−D fy
x− y

∥ f (x)− f (y)∥F
∥F ≤

L
α

ε0 .

In particular, for any ε0 > 0,

∀(x,y) ∈ Iε0 , ∃h ∈ X, ∥ f (x)− f (y)
∥ f (x)− f (y)∥F

−D fh
x− y

∥ f (x)− f (y)∥F
∥F ≤

L
α

ε0 .

Proof First, assumption A-1 gives

∥ f (x)− f (y)−D fy(x− y)∥F
A-1
≤ L∥x− y∥2

E ≤ Lε0∥x− y∥E . (A.20)

Now since ∥x−y∥E > 0, we have ∥ f (x)− f (y)∥F > 0 using (5.5) (from the inverse Lipschitz property).
Thus by dividing by ∥ f (x)− f (y)∥F in (A.20) we obtain

∥ f (x)− f (y)
∥ f (x)− f (y)∥F

−D fy
x− y

∥ f (x)− f (y)∥F
∥F ≤ Lε0

∥x− y∥E

∥ f (x)− f (y)∥F

(5.5)
≤ L

α
ε0 .

□

The above result induces the following corollary.
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Corollary 2 Assume that f is (α,β )-bi-Lipschitz and satisfies assumptions A-1. For η > 0 consider
S−η [ f (X)] as defined in (5.4) and the normalized secant set S[X] (see Definition 2). Let

C ∆
= {λv : λ ∈]0, 1

α
],v ∈ S[X]} , (A.21)

and

TC
∆
= {D fh(c) : (h,c) ∈ X×C} . (A.22)

Then

∀u ∈ S−η [ f (X)],∃t ∈ TC, ∥u− t∥F ≤
L

α2 η . (A.23)

Proof Take u = f (x)− f (y)
∥ f (x)− f (y)∥F ∈ S−η [ f (X)] (thus with 0 < ∥ f (x)− f (y)∥F ≤ η). By using that f is (α,β )-

bi-Lipschitz, we have 0 < ∥x−y∥E ≤ η/α . So we can apply the Lemma 5 with ε0 = η/α to prove that
there exists h ∈ X such that

∥ f (x)− f (y)
∥ f (x)− f (y)∥F

−D fh
x− y

∥ f (x)− f (y)∥F
∥F ≤

L
α2 η .

Rewrite x−y
∥ f (x)− f (y)∥F = x−y

∥x−y∥F
∥x−y∥E

∥ f (x)− f (y)∥F and define λ = ∥x−y∥E
∥ f (x)− f (y)∥F . Therefore, we have λ > 0 and

|λ | ≤ 1
α

. It proves that there exists λ ∈]0,1/α] and h ∈ X, such that

∥ f (x)− f (y)
∥ f (x)− f (y)∥F

−D fhλ
x− y
∥x− y∥E

∥F ≤
L

α2 η .

Considering v = x−y
∥x−y∥E ∈ S[X] concludes the proof.

□

The last thing to do is to control the covering number of TC in the previous result. This will be done
using the following lemma.

Lemma 6 Let C ⊆ E be any set such that ∀c ∈C,∥c∥E ≤ δ for some δ > 0. Assume that f is (α,β )-

bi-Lipschitz and satisfies A-2. Consider TC
∆
= {D fh(c) : (h,c) ∈ X×C}. Then for any ε > 0,

N (TC,∥ · ∥F ,ε)≤N (X,∥ · ∥E ,
ε

ζ δ +β
)×N (C,∥ · ∥E ,

ε

ζ δ +β
) .
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Proof Take X a ε-net of X and C a ε-net of C. Then take t = D fh(u) ∈ TC and consider u,h ∈ X×C
such that ∥c− c∥E ≤ ε and ∥h−h∥E ≤ ε . Then with t = D fh(c) ∈ TC

∥t− t∥F = ∥D fh(c)−D fh(c)∥F ≤ ∥D fh(c)−D fh(c)∥F +∥D fh(c)−D fh(c)∥F

≤ ∥D fh−D fh∥op∥c∥E +∥D fh∥op∥c− c∥E

A-2
≤ ζ∥h−h∥Eδ + sup

h∈X
∥D fh∥opε

≤ ε(ζ δ + sup
h∈X
∥D fh∥op)

(5.6)
≤ ε(ζ δ +β ) .

(A.24)

This gives N (TC,∥ · ∥F ,ε(ζ δ +β ))≤ |X|× |C| ≤N (X,∥ · ∥E ,ε)×N (C,∥ · ∥E ,ε).
□

We can now prove Proposition 2 which we recall first.

Proposition 2 Assume that f is (α,β )-bi-Lipschitz and satisfies assumptions A-1 and A-2. Then for
any ε > 0 and η > 0,

N (S−η [ f (X)],∥ · ∥F ,2(ε +
L

α2 η))≤ ζ +βα

α2ε
N (X,∥ · ∥E ,

αε

ζ +βα
)×N (S[X],∥ · ∥E ,

α2ε

2(ζ +βα)
) .

(5.10)

Proof Consider C and TC as defined in Corollary 2. We have for any c ∈ C,∥c∥E ≤ 1
α

since ∀u ∈
S[X],∥u∥E = 1. So by applying Lemma 6 with δ = 1

α
we obtain

N (TC,∥ · ∥F ,ε)≤N (X,∥ · ∥E ,
ε

ζ

α
+β

)×N (C,∥ · ∥E ,
ε

ζ

α
+β

) .

Also, by Corollary 2,

∀u ∈ S−η [ f (X)],∃t ∈ TC, ∥u− t∥F ≤
L

α2 η . (A.25)

We then apply Lemma 3 (with δ = L
α2 η) to prove that, for any ε > 0,

N (S−η [ f (X)],∥ · ∥F ,2(ε +
L

α2 η))≤N (TC,∥ · ∥F ,ε) . (A.26)

Consequently,

N (S−η [ f (X)],∥ · ∥F ,2(ε +
L

α2 η))≤N (X,∥ · ∥E ,
ε

ζ

α
+β

)×N (C,∥ · ∥E ,
ε

ζ

α
+β

) . (A.27)

All we need now is to control N (C,∥ · ∥F ,
ε

ζ

α
+β

). Take S[X] a ε-net of S[X] with respect to ∥ · ∥E and

(0, 1
α
] a (ε/α)-net of (0, 1

α
] with respect to | · |. Consider c = λu∈C with λ ∈ (0, 1

α
] and u∈ S[X]. Then
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there exists u ∈ S[X] such that ∥u− u∥E ≤ ε and there exists λ ∈ (0, 1
α
] such that |λ −λ | ≤ ε/α . We

consider c = λu which belongs to C. Then ∥c− c∥E = ∥λu−λu∥E ≤ |λ −λ |∥u∥E + |λ |∥u− u∥E ≤
2ε/α . Thus for any ε > 0 we have

N (C,∥·∥E ,2ε/α)≤N (S[X],∥·∥E ,ε)×N ((0,
1
α
], | · |,ε/α) =N (S[X],∥·∥E ,ε)×N ((0,1], | · |,ε) .

(A.28)
Equivalently with a change of variable ε ← 2ε/α we have ∀ε > 0,N (C,∥ · ∥E ,ε) ≤ N (S[X],∥ ·
∥E ,

εα

2 )×N ((0,1], | · |, εα

2 ). Overall, as for all ε > 0,N ((0,1], | · |,ε)≤ 1
2ε

,

N (S−η [ f (X)],∥ · ∥F ,2(ε +
L

α2 η))

≤
(

ζ +βα

α2ε

)
×N (X,∥ · ∥E ,

ε

ζ

α
+β

)×N (S[X],∥ · ∥E ,
αε

2( ζ

α
+β )

) ,
(A.29)

which concludes the proof. □

A.2.5. Proof of Lemma 1
Proof The proof is based on various computations and the identity

Θ
−1
1 +Θ

−1
2 = Θ

−1
1 (Θ1 +Θ2)Θ

−1
2 , ∀(Θ1,Θ2) ∈ (S−1

k,a,b)
2. (A.30)

We will also use

∥AB∥Fro ≤ ∥A∥2→2∥B∥Fro and ∥AB∥Fro ≤ ∥A∥Fro∥B∥2→2 , ∀A,B ∈ Sd(R) .

For the rest of the proof, we take Θ1,Θ2 ∈S−1
k,a,b. Hence we have ∥Θ1∥2→2 ≤ b and ∥Θ−1

1 ∥2→2 ≤ 1
a (the

same inequalities hold for Θ2).
Now we can prove that

∥Θ−1
1 −Θ

−1
2 ∥Λ ≤CFro∥Θ−1

1 (Θ1−Θ2)(−Θ2)
−1∥Fro ≤CFro∥Θ−1

1 ∥2→2∥Θ−1
2 ∥2→2∥Θ1−Θ2∥Fro

≤CFro
1
a2 ∥Θ1−Θ2∥Fro .

This proves (5.6) with β = CFro
a2 . The reverse inequality for (5.5) can be proven by using this time

∥Θ1−Θ2∥Fro = ∥Θ1(Θ
−1
1 −Θ

−1
2 )Θ2∥Fro ≤ ∥Θ1∥2→2∥Θ2∥2→2∥Θ−1

1 −Θ
−1
2 ∥Fro

≤ b2 1
cFro
∥Θ−1

1 −Θ
−1
2 ∥Λ .

Thus we have (5.5) with α = cFro
b2 .
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For assumption A-1, we use the formula of the differential of the inverse of a matrix DinvΘ[H] =
−Θ

−1HΘ
−1. We have:

∥Θ−1
1 −Θ

−1
2 −DinvΘ2(Θ1−Θ2)∥Λ = ∥Θ−1

1 −Θ
−1
2 − [−Θ

−1
2 (Θ1−Θ2)Θ

−1
2 ]∥Λ

= ∥Θ−1
1 (Θ2−Θ1)Θ

−1
2 −Θ

−1
2 (Θ2−Θ1)Θ

−1
2 ∥Λ

= ∥
(
Θ
−1
1 (Θ2−Θ1)−Θ

−1
2 (Θ2−Θ1)

)
Θ
−1
2 ∥Λ

= ∥
(
Θ
−1
1 −Θ

−1
2
)
(Θ2−Θ1)Θ

−1
2 ∥Λ

≤CFro∥Θ−1
2 ∥2→2∥Θ−1

1 −Θ
−1
2 ∥Fro∥Θ1−Θ2∥Fro

≤CFro∥Θ−1
2 ∥2→2∥Θ−1

1 ∥2→2∥Θ−1
2 ∥2→2∥Θ1−Θ2∥2

Fro

≤CFro
1
a3 ∥Θ1−Θ2∥2

Fro.

This gives A-1 with L = CFro
a3 .

Now take M, such that ∥M∥Fro ≤ 1. We have

∥DinvΘ1(M)−DinvΘ2(M)∥Λ = ∥Θ−1
1 MΘ

−1
1 −Θ

−1
2 MΘ

−1
2 ∥Λ

≤ ∥Θ−1
1 MΘ

−1
1 −Θ

−1
1 MΘ

−1
2 ∥Λ +∥Θ−1

1 MΘ
−1
2 −Θ

−1
2 MΘ

−1
2 ∥Λ

= ∥Θ−1
1 M(Θ−1

1 −Θ
−1
2 )∥Λ +∥(Θ−1

1 −Θ
−1
2 )MΘ

−1
2 ∥Λ

≤CFro∥Θ−1
1 M∥Fro∥Θ−1

1 −Θ
−1
2 ∥Fro +CFro∥MΘ

−1
2 ∥Fro∥Θ−1

1 −Θ
−1
2 ∥Fro

≤CFro
(
∥Θ−1

1 ∥2→2 +∥Θ−1
2 ∥2→2

)
∥Θ−1

1 −Θ
−1
2 ∥Fro

≤ 2CFro
1
a
∥Θ−1

1 −Θ
−1
2 ∥Fro

≤ 2CFro
1
a3 ∥Θ1−Θ2∥Fro .

This gives A-2 with ζ = 2CFro
a3 = 2L. □

A.2.6. Proof of Lemma 2
In order to prove the result we will use the following lemma.

Lemma 7 Consider

Wk = {Θ ∈ Sd(R) : ∥Θ∥0 ≤ d +2k,∥Θ∥Fro ≤ 1} . (A.31)

Then

N (Wk,∥ · ∥Fro,ε)≤ (
ed2

2k
)k(

9
ε
)d+k . (A.32)

Proof Take Θ ∈Wk, it can be written as Θ = D+T+T⊤ where D is diagonal with d positive elements,
T is a striclty upper triangular matrix with at most k non zero elements. We have also that ∥D∥Fro ≤
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∥Θ∥Fro ≤ 1 and same for T,T⊤. Consider D a ε/3-net for the diagonal and T a ε/3-net for the upper
triangle, both with respect to the ∥ · ∥Fro norm. Then with standard covering arguments |D| ≤ (9/ε)d

and |T | ≤
( d(d−1)

2
k

)
( 9

ε
)k because it is included in the unit ball of k-sparse vector in dimension d(d−1)

2

(see e.g. [30]). Consider Wk = {D∗+T∗+T⊤∗ ,(D∗,T∗) ∈ D×T}. Then |Wk| ≤
( d(d−1)

2
k

)
( 9

ε
)k( 9

ε
)d =

( d(d−1)
2
k

)
( 9

ε
)d+k. Also, for any Θ = D+T+T⊤ there exists (D∗,T∗) ∈ D×T such that ∥D−D∗∥Fro ≤

ε/3,∥T−T∗∥Fro ≤ ε/3. Hence:

∥D+T+T⊤− (D∗+T∗+T⊤∗ )∥Fro ≤ ∥D−D∗∥Fro +2∥T−T∗∥Fro ≤ ε . (A.33)

Hence,

N (Wk,∥ · ∥Fro,ε)≤
( d(d−1)

2
k

)
(

9
ε
)d+k ≤ (

ed(d−1)
2k

)k(
9
ε
)d+k ≤ (

ed2

2k
)k(

9
ε
)d+k , (A.34)

where in the last inequality we used the bound [30, Lemma C.5]. Note that we only considered the fact
that W is the space of symmetric an d + 2k sparse matrices. Restricting to positive definite matrices
could be an avenue for further improvements. □

As a consequence we can prove Lemma 2 as follows.

Proof of Lemma 2 Recall that

S−1
k,a,b = {Θ ∈ S++

d (R) : ∥Θ∥0 ≤ d +2k,spec(Θ)⊆ [a,b]} .

Consider Θ ∈S−1
k,a,b. We have ∥Θ∥2→2 ≤ b which implies ∥Θ∥Fro ≤

√
d∥Θ∥2→2 ≤

√
db. Thus S−1

k,a,b ⊂
{Θ ∈ S++

d (R) : ∥Θ∥0 ≤ d +2k,∥Θ∥Fro ≤
√

db}=
√

dbW. Consequently,

N (S−1
k,a,b,∥ · ∥Fro,ε)≤N (W,∥ · ∥Fro,ε/2

√
db)

Lemma 7
≤ (

ed2

2k
)k(

18
√

db
ε

)d+k , (A.35)

which concludes the first part. For the second part we recall the definition of the normalized secant set

S[S−1
k,a,b] = {

Θ1−Θ2

∥Θ1−Θ2∥Fro
: (Θ1,Θ2) ∈ (S−1

k,a,b)
2,∥Θ1−Θ2∥Fro > 0} .

Moreover, if U = Θ1−Θ2 ∈S−1
k,a,b−S−1

k,a,b then ∥U∥0 ≤ d + 4k. Indeed, Θ1 and Θ2 have d nonzeros
elements on the diagonal (since both are postitive definite) and since these matrices are symmetric then
they have at most k nonzeros elements in the upper-triangular (resp. lower-triangular) part. Thus Θ1−
Θ2 has at most 2k nonzeros elements in the upper-triangular (resp. lower-triangular) part. Consequently,

S[S−1
k,a,b]⊂ {M ∈ Sd(R) : ∥M∥Fro ≤ 1,∥M∥0 ≤ d +4k}=W2k .

This gives

N (S[S−1
k,a,b],∥ · ∥Fro,ε)≤N (W2k,∥ · ∥Fro,ε/2)≤ (

ed2

4k
)2k(

18
ε
)d+2k . (A.36)

□
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A.2.7. Proof of Corollary 1
Proof From Lemma 1, the assumptions of Theorem 4 hold for f = inv, S=S−1

k,a,b, ∥ · ∥E = ∥ · ∥Fro and
∥ · ∥F = ∥ · ∥Λ. Thus, for any η ,ε ′ > 0 we have the inequality

N (S[Sk,a,b],∥ · ∥Λ,2
[

ε
′+

L
α2 η

]
)

≤N (S−1
k,a,b,∥ · ∥Fro,

η

8β

[
ε
′+

L
α2 η

]
)2

+
ζ +βα

α2ε ′
N (S−1

k,a,b,∥ · ∥Fro,
αε ′

ζ +βα
)×N (S[S−1

k,a,b],∥ · ∥Fro,
α2ε ′

2(ζ +βα)
) .

(A.37)

Let ε > 0 be fixed. We define η
∆
= α2

4L ε and ε ′ ∆
= ε/4. Then we have ε = 2

[
ε ′+ L

α2 η

]
. With these ε ′,η

and Lemma 2 we obtain

N (S−1
k,a,b,∥ · ∥Fro,

η

8β

[
ε
′+

L
α2 η

]
)2 ≤

(
ed2

2k

)2k
(

288β
√

db
ηε

)2(d+k)

N (S−1
k,a,b,∥ · ∥Fro,

αε

4(ζ +βα)
)≤

(
ed2

2k

)k

(
72
√

db(ζ +βα)

αε
)d+k

N (S[S−1
k,a,b],∥ · ∥Fro,

α2ε

8(ζ +βα)
)≤ (

ed2

4k
)2k(

144(ζ +βα)

α2ε
)d+2k .

(A.38)

Thus, inequality (A.37) yields

N
(
S[Sk,a,b],∥ · ∥Λ,ε

)

(A.38)
≤
(

ed2

2k

)2k
(

288β
√

db
ηε

)2(d+k)

+
4(ζ +βα)

α2ε

(
ed2

2k

)k
(

72b
√

d(ζ +βα)

αε

)d+k

×
(

ed2

4k

)2k(144(ζ +βα)

α2ε

)d+2k

≤
(

ed2

2k

)4k


(

288β
√

db
ηε

)2(d+k)

+
4(ζ +βα)

α2ε

(
72b
√

d(ζ +βα)

αε

)d+k(
144(ζ +βα)

α2ε

)d+2k



Using the definition η = α2

4L ε we obtain

N
(
S[Sk,a,b],∥ · ∥Λ,ε

)

≤
(

ed2

2k

)4k


(

1152
√

dbβL
α2ε2

)2(d+k)

+
4(ζ +βα)

α2ε

(
72b
√

d(ζ +βα)

αε

)d+k(
144(ζ +βα)

α2ε

)d+2k

 .
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Now, from Lemma 1, we have β = CFro
a2 , L = CFro

a3 , α = cFro
b2 , ζ = 2L = 2CFro

a3 . So,

N
(
S[Sk,a,b],∥ · ∥Λ,ε

)
≤
(

ed2

2k

)4k




1152b

√
d CFro

a2
CFro
a3

c2
Fro
b4 ε2




2(d+k)

+
4(2CFro

a3 + CFro
a2

cFro
b2 )

c2
Fro
b4 ε

(
72b
√

d(2CFro
a3 + CFro

a2
cFro
b2 )

cFro
b2 ε

)d+k

144(2CFro

a3 + CFro
a2

cFro
b2 )

c2
Fro
b4 ε




d+2k



=

(
ed2

2k

)4k


(

1152
√

d
ε2

C2
Fro

c2
Fro

b5

a5

)2(d+k)

+
4
ε

CFro

cFro
(

2
cFro

b4

a3 +
b2

a2 )

(
72
ε

CFro

cFro
(2

b3

a3 +
b
a2 cFro)

√
d
)d+k(144

ε

CFro

cFro
(

2
cFro

b4

a3 +
b2

a2 )

)d+2k
]
.

(A.39)

We will simplify this expression using the homogeneity of the normalized secant set. More precisley
if Σ1−Σ2
∥Σ1−Σ2∥Λ ∈ S[Sk,a,b] then for any t > 0, tΣ1−tΣ2

∥tΣ1−tΣ2∥Λ ∈ S[Sk,a,b]. This implies that ∀t > 0, S[Sk,a,b] =

S[Sk,t·a,t·b]. In particular for t ∆
= a

b2 the previous expression (A.39) gives

N
(
S[Sk,a,b],∥ · ∥Λ,ε

)

=N
(
S[Sk,t·a,t·b],∥ · ∥Λ,ε

)

≤
(

ed2

2k

)4k


(

1152
√

d
ε2

C2
Fro

c2
Fro

b5

a5

)2(d+k)

+
4
ε

CFro

cFro
(

2
cFro

t
b4

a3 +
b2

a2 )

(
72
ε

CFro

cFro
(2

b3

a3 +
b

ta2 cFro)
√

d
)d+k(144

ε

CFro

cFro
(

2
cFro

t
b4

a3 +
b2

a2 )

)d+2k
]

=

(
ed2

2k

)4k


(

1152
√

d
ε2

C2
Fro

c2
Fro

b5

a5

)2(d+k)

+
4
ε

CFro

cFro
(

2
cFro

+1)
b2

a2

(
72
ε

CFro

cFro
(2+ cFro)

b3

a3

√
d
)d+k(144

ε

CFro

cFro
(

2
cFro

+1)
b2

a2

)d+2k
]

≤
(

ed2

2k

)4k


(

1152
√

d
ε2

C2
Fro

c2
Fro

b5

a5

)2(d+k)

+

(
72
ε

CFro

cFro
(2+ cFro)

b3

a3

√
d
)d+k(144

ε

CFro

cFro
(

2
cFro

+1)
b2

a2

)d+2k+1
]
.
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Now, to simplify the expression, remark that 72
ε

CFro
cFro

(2+ cFro)
b3

a3

√
d ≥ 1 as CFro/cFro ≥ 1. Therefore we

can increase its power from d + k to d +2k+1 to match with the other multiplicative term. This yields

N
(
S[Sk,a,b],∥ · ∥Λ,ε

)

≤
(

ed2

2k

)4k


(

1152C2
Fro

√
d

ε2c2
Fro

b5

a5

)2(d+k)

+

(
72×144C2

Fro

√
d

ε2cFro
(

2
cFro

+1)
b5

a5

)d+2k+1



=

(
ed2

2k

)4k


(

c0

√
dC2

Fro

ε2c2
Fro

b5

a5

)2(d+k)

+

(
c1

√
dC2

Fro
ε2cFro

(
2

cFro
+1)

b5

a5

)d+2k+1

 ,

where c0,c1 are absolute constants greater than 1. This concludes the proof. □

A.3. Proofs of Section 5.2

A.3.1. Proofs of the rank-one projection operator properties
The goal of this section is to prove Proposition 3 and 4. Before that, we prove several results that will
become handy afterwards. Firstly, we state a result that will be usefull to leverage results from the
Gaussian case to the uniform case.

Lemma 8 Let u and ρ be independent variables with the following distributions : u∼U (Sd−1) is a
uniform vector on the hyper-sphere and ρ2 ∼ χ2(d) is a chi-square variable with d degrees of freedom.
Then, ρ

u√
d
∼N (0, 1

d Id) is a standard normal vector.

Now, a lower bound is derived for the Λ-norm.

Proposition 5 For any M ∈ Sd(R) and Λ ∈ {ΛG,ΛU}, we have

∥M∥Λ ≥
2

9
√

15d
(∥M∥Fro + |tr(M)|) . (A.40)

Proof We use the fact that for any real random variable X , whenever its fourth moment exists, we have2

E [|X |]≥
√

E [X2]3

E [X4]
.

First, we focus on the Gaussian case. Using3 X = a⊤Ma
(d)
= ∑λkb2

k , where a∼N (0, 1
d Id), the (λk) are

the eigenvalues of M and the (bk) are i.i.d Gaussian random variables of variance 1/d, we can obtain

2 It comes from applying the Hölder inequality to E
[
|X |2/3|X |4/3

]
with 1/p = 2/3 and 1/q = 1/3.

3 The last equality is obtained from the rotation invariance of the multivariate normal distribution.
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the following bounds:

E
[
X2]= 2

d2 ∥M∥
2
Fro +

1
d2 tr(M)2 ≥ 2

3d
(∥M∥Fro + |tr(M)|)2 ,

E
[
X4]= ∑

i
λ

4
i E
[
b8

i
]
+∑

i̸= j
λiλ

3
j E
[
b2

i
]
E
[
b6

j

]
+∑

i̸= j
λ

2
i λ

2
j E
[
b4

i
]
E
[
b4

j
]

+ ∑
i̸= j ̸=k

λiλ jλ
2
k E
[
b2

i
]
E
[
b2

j
]
E
[
b4

k
]
+ ∑

i̸= j ̸=k ̸=l
λiλ jλkλlE

[
b2

i
]
E
[
b2

j
]
E
[
b2

k
]
E
[
b2

l
]

=
105
d4 ∑

i
λ

4
i +

15
d4 ∑

i̸= j
λiλ

3
j +

9
d4 ∑

i̸= j
λ

2
i λ

2
j +

3
d4 ∑

i̸= j ̸=k
λiλ jλ

2
k +

1
d4 ∑

i̸= j ̸=k ̸=l
λiλ jλkλl

=
1
d4

[
90∥λ∥4

4 +12tr(M)∑
i

λ
3
i +6∥M∥4

Fro +2tr(M)2∥M∥2
Fro + tr(M)4

]

≤ 90
d4 (∥M∥Fro + |tr(M)|)4 .

This yields equation (A.40) for the Gaussian case.
For the uniform case, considering the independent random variables u ∼ U (Sd−1), ρ2 ∼ χ2(d),

from Lemma 8 we have that

E
[∣∣∣a⊤Ma

∣∣∣
]
= E

[∣∣∣∣(ρ
1√
d

u)⊤M(ρ
1√
d

u)
∣∣∣∣
]
=

1
d
E
[
ρ

2]E
[∣∣∣u⊤Mu

∣∣∣
]
= E

[∣∣∣u⊤Mu
∣∣∣
]
.

So (A.40) also holds in the uniform case. □

The proof of Proposition 3 is based on a concentration inequality for subexponential variables.
Here, we prove that the variables at play are indeed subexponential by providing an upper-bound on
their subexponenital norm. Recall that for a random variable X , its subexponential norm is defined by
∥X∥ψ1 = inf{s > 0, E

[
e|X |/s

]
≤ 2}.

Proposition 6 For any M ∈ Sd(R) and for a ∼N (0, 1
d Id) and u ∼U (Sd−1), the following controls

hold :
∥|a⊤Ma|−E

[
|a⊤Ma|

]
∥ψ1 ≤

2
d log2

(
76
9

e2 · ∥M∥Fro + |tr(M)|) , (A.41)

∥|u⊤Mu|−E
[
|u⊤Mu|

]
∥ψ1 ≤

8e
d log2

(
76
9

e2 · ∥M∥Fro + |tr(M)|) . (A.42)

Proof of Equation (A.41) This proof revolves around the different characterizations of subexponentia-
lity (indexed from (a) to (e)) presented in Proposition 2.7.1 of [74]. First from the centering Lemma
(see Exercise 2.7.10 in [74]), we have the existence of a constant C1 > 0 such that ∥|a⊤Ma| −
E
[
|a⊤Ma|

]
∥ψ1 ≤C1∥ |a⊤Ma| ∥ψ1 =C1∥a⊤Ma∥ψ1 . Let us denote by X our random variable of interest

X = a⊤Ma, and Y its centered version Y =X−E [X ]. Working with Y , we now characterize the constant
K5(Y ) appearing in statement (e) of Proposition 2.7.1 in [74]. First, we can write Y = ∑k λkd−1(z2

k−1)
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where λk are the eigenvalues of M and zk is a standard normal variable. Remark that the centered χ2(1)
variables z2

k−1 verify (e) with a certain constant Kχ2 . For |t| ≤ d/(Kχ2 · ∥M∥Fro) we have that

E
[
etY ]=

d

∏
k=1

E
[

et
λk
d (z2

k−1)
]
≤

d

∏
k=1

E
[

e
1

d2 K2
χ2 λ 2

k t2
]
= e

1
d2 K2

χ2 ∥M∥2Frot2

.

This yield K5(Y ) ≤ 1
d Kχ2 ∥M∥Fro. Now, by considering statement (c), we have that K3(X) ≤ K3(Y )+

|E [X ] | ≤C3,5Kχ2 · 1
d ∥M∥Fro +

1
d |tr(M)| (where C3,5 is the universal constant allowing to pass from (c)

to (e)). Finally, gathering up the pieces we have

∥|a⊤Ma|−E
[
|a⊤Ma|

]
∥ψ1 ≤

C1C4,3

d
(C3,5Kχ2 · ∥M∥Fro + |tr(M)|) ,

where C4,3 is the constant allowing to pass from (d) (statement defining the ψ1-norm) to (c). To conclude
the proof, it suffices to find the values of the various constants. This is completely general and does not
depend on the rank-one projection considered here. The various constants can be set as follows :

C1 = 2 ,

C4,3 =
1

log2
,

C3,5 = 4e2 ,

Kχ2 =
19
9
.

Let us start by computing C1. Let X be a subexponential random variable. We have, for any s > 0,

E
[
e
||X |−E[|X |]|

s

] (△ ineq.)
≤ E

[
e
|X |
s

]
e
E[|X |]

s
(Jensen)
≤ E

[
e
|X |
s

]2 (Jensen)
≤ E

[
e

2|X |
s

]
.

The last term is smaller than 2 for s/2≥ ∥X∥ψ1 , so we have that ∥|X |−E [|X |]∥ψ1 ≤ 2∥X∥ψ1 , yielding
C1 = 2.

For the constant C3,5 we use that C3.5 ≤C3,2C2,5. In [74], the value of C2,5 is given and equals 2e.
Let us focus on C3,2 and assume that K2(X) = 1. For any λ such that 0 ≤ λ ≤ 1/(2e), we have the
following inequalities

E
[
eλ |X |

]
= 1+ ∑

p≥1

λ pE [|X |p]
p!

K2(X)=1
≤ 1+ ∑

p≥1

λ p pp

p!
≤ 1+ ∑

p≥1

λ p pp

(p/e)p =
1

1−λe
≤ e2eλ .

Thus, K3(X)≤ 2e. So we can take C3,5 = 4e2.
For C4,3 assume that K3(X) = 1. For λ ≤ log2 we have

E
[
eλ |X |

] K3(X)=1
≤ eλ ≤ 2 .

So we can take C4,3 = 1/ log2.
The value of Kχ2 can be obtain from the following computation. Let b ∼N (0,1) be a standard

normal distribution, then for λ < 1/2

E
[
eλ (b2−1)

]
=

e−λ

√
1−2λ

.

We can show that for K = 2
1−x0

where x0 is the smallest solution of ex = e3x, we have for all λ such

that |λ | ≤ 1/K, E
[
eλ (b2−1)

]
≤ eK2λ 2

. A numerical approximation gives K ≃ 2.1107 . . . . So we can take
Kχ2 = 19/9. This finishes the proof. □
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Proof of Equation (A.42). As in the proof of (A.41), we start by decentering : ∥|u⊤Mu| −
E
[
|u⊤Mu|

]
∥ψ1 ≤ C1∥u⊤Mu∥ψ1 . Then, recall (see [74]) that there exists an absolute constant C4,2

such that ∥u⊤Mu∥ψ1 ≤ C4,2K2(u⊤Mu) where K2(u⊤Mu) is the smallest constant K such that for all
p≥ 1, E

[
|u⊤Mu|p

]
≤ K p pp. From Lemma 8, we have that

E
[
|a⊤Ma|p

]
=

1
dpE

[
ρ

2p]E
[
|u⊤Mu|p

]
=

d(d +2) . . .(d +2(p−1))
dp E

[
|u⊤Mu|p

]
≥ E

[
|u⊤Mu|p

]
.

Hence, we have that K2(u⊤Mu)≤ K2(a⊤Ma). Then, using (A.41) and the existence of a constant C2,4
such that K2(a⊤Ma)≤C2,4∥a⊤Ma∥ψ1 . We have

∥u⊤Mu∥ψ1 ≤C4,2C2,4∥a⊤Ma∥ψ1 ≤
C4,2C2,4C4,3

d
(C3,5Kχ2 · ∥M∥Fro + |tr(M)|) .

To finish the proof, we show that C4,2 and C2,4 can be chosen as

C4,2 = 2e , C2,4 = 2.

For C4,2, we need to prove that ∥X∥ψ1 ≤ C4,2K2(X), for any subexponential variable X . Without
loos of generality, we can always assume that K2(X) = 1. Thus, for s > e we have

E
[
e|X |/s

]
= 1+

∞

∑
k=1

E
[
|X |k

]

k! sk

≤ 1+
∞

∑
k=1

kk

k!sk

(⋆)

≤
∞

∑
k=0

(e
s

)k
=

1
1− e/s

,

where the (⋆) inequality comes from the Stirling approximation k!≥ (k/e)k. Thus, for s≥ 2e we have
E
[
e|X |/s

]
≤ 2. So we can take C4,2 = 2e.

For C2,4, assume that ∥X∥ψ1 = 1. Then, for any p≥ 1,

E [|X |p] =
∞∫

0

P (|X |p > u)du =

∞∫

0

P (|X |> t) pt p−1dt

≤
∞∫

0

E
[
e|X |
]

e−t pt p−1dt ≤ 2
∞∫

0

e−t pt p−1dt = 2p!≤ (2p)p .

Thus, we can take C2,4 = 2. □

All this previous results allow now to prove Proposition 3, which is recalled below.

Proposition 3 Consider the operator A (Σ) = 1
m

(
a⊤1 Σa1, . . . ,a⊤mΣam

)⊤, where the vectors a1, · · · ,am

are i.i.d. and either follow Λ = ΛG = N (0, 1
d Id) or Λ = ΛG = U (Sd−1) with the associated norm

∥Σ∥Λ = Ea∼Λ[|a⊤Σa|]. Then, for any U ∈ Sd(R) satisfying ∥U∥Λ = 1 and for any t > 0, we have

P
(∣∣∥A (U)∥1−1

∣∣> t
)
≤ 2exp

(
− m

8e2 min
(

t2

K2
Λ

,
t

KΛ

))
, (5.14)

where KΛ is an absolute constant given by KΛG = 76e2√15
log2 and KΛU = 304e3√15

log2 .
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Proof of Proposition 3 From our previous results, we have :

∥|a⊤Ua|−E
[
|a⊤Ua|

]
∥ψ1

(A.41)
≤ 2×76 e2

9d log2
(∥U∥Fro + |tr(U)|)

(A.40)
≤ 76e2

√
15

log2
∥U∥Λ

∥U∥Λ=1
≤ 76e2

√
15

log2
.

(A.43)
Similarly, in the uniform case, we obtain ∥|u⊤Uu| −E

[
|u⊤Uu|

]
∥ψ1 ≤ 304e3√15

log2 . Therefore, in both
cases, the subexponential norm is bounded by an absolute constant that will be denoted by KΛ in
the following. Now, let us recall a Bernstein-type concentration inequality for sum of subexponential
variables.

Lemma 9 (Proposition 5.16 [73]) Let X1, . . . ,Xm be independent centered sub-exponential random
variables, and K = maxi ∥Xi∥ψ1

. Then for every γ = (γ1, . . . ,γm) ∈ Rm and every t ≥ 0, we have

P

(∣∣∣∣∣
m

∑
i=1

γiXi

∣∣∣∣∣≥ t

)
≤ 2exp

(
−cmin

(
t2

K2∥γ∥2
2
,

t
K∥γ∥∞

))
,

where c = 1
8e2 . (The value of c can be tracked through the proofs of Lemma 5.15 and Proposition 5.16

in [73].)

Taking Xi = |a⊤i Uai| −E
[
|a⊤i Uai|

]
= |a⊤i Uai| − 1 (or Xi = |u⊤i Uui| − 1 in the uniform case), and

γi = 1/m for all i, yields

P(|∥A (U)∥1−1|> t)≤ 2exp
(
− m

8e2 min
(

t2

K2
Λ

,
t

KΛ

))
, ∀t ≥ 0 .

□

A.3.2. Proof of Proposition 4
Proof The lower bound is a direct consequence of Proposition 5. Let us prove the upper bound. In the
Gaussian case, the following inequalities hold

E
[
|a⊤Ma|

]
= E

[∣∣∣∣∣
d

∑
k=1

λkb2
k

∣∣∣∣∣

]
≤

d

∑
k=1
|λk|E

[
b2

k
]
=

1
d

d

∑
k=1
|λk| ≤

√
d

d

√√√√ d

∑
k=1

λ 2
k =

1√
d
∥M∥Fro ,

where a,b∼N (0, 1
d Id). Similarly, in the URO case,

E
[
|u⊤Mu|

]
≤

d

∑
k=1
|λk|E

[
v2

k
]
=

1
d

d

∑
k=1
|λk| ≤

1√
d
∥M∥Fro,

where u,v∼U (Sd−1). □

A.3.3. Proof of Theorem 3
Proof From Theorem 2 and Remark 3, we know that the probability that the operator A does not satisfy
the RIPδ is upper-bounded by



38 T. VAYER ET AL.

N (S[Sk,a,b],∥ · ∥Λ,ε)C2(
δ

2
)+N (BΛ,∥ · ∥Λ,ε

′)C2((1− ε
′)

δ

2ε
−1), ∀ε,ε ′ > 0 , (A.44)

where BΛ = {U∈ Sd(R) : ∥U∥Λ = 1} and C2(t) = 2exp(− m
8e2 min(t/KΛ,(t/KΛ)

2)) (see Proposition 3).
In the following, we choose ε ′ = 1/2. Given ρ , the strategy is to find an ε small enough so that the right
handside term is smaller that ρ/2. Then, a condition on m will be derived to ensure that the left handside
term is also smaller than ρ/2.

First of all, notice that, from standard covering argument, N (BΛ,∥ · ∥Λ,1/2)≤ (3/(1/2))d(d+1)/2.
Therefore, looking at the logarithm of the second term in (A.44), ε should verify

d(d +1)
2

log(6)+ log2− m
8e2 min

[
1

KΛ

(
δ

4ε
−1
)
,

1
K2

Λ

(
δ

4ε
−1
)2
]
≤ log(ρ/2) . (A.45)

Assuming that ε ≤ δ

4(KΛ+1) to ensure that the minimum in the above expression is 1
KΛ

(
δ

4ε
−1
)

, (A.45)
is equivalent to

ε ≤ δ

4

[
8e2KΛ

m

(
d(d +1)

2
log(6)+ log2+ log(2/ρ)

)
+1
]−1

.

In order to remove the dependency in m and to simplify the expression, notice that it is sufficient to take

ε ≤ δ

32e2KΛ

[
d2 log(6)+4log(2/ρ)

]−1 ∆
= ε0 .

In the following, we take ε = ε0. Remark that it satisfies the assumption below (A.45). In particular,
note that ε ≤ 1. We now focus on the first term in (A.44). Notice that from Corollary 1 and Proposition 4
giving cFro = 2/(9

√
15d) and CFro = 1/

√
d, the covering number is controlled as follows:

logN (S[Sk,a,b],∥ · ∥Λ,ε)

≤4k log(
ed2

2k
)+ log



(

c0

√
dC2

Fro

ε2c2
Fro

b5

a5

)2(d+k)

+

(
c1

√
dC2

Fro
ε2cFro

(
2

cFro
+1)

b5

a5

)d+2k+1



≤4k log(
ed2

2k
)+ log



(

c′0d3/2

ε2
b5

a5

)2(d+k)

+

(
c′1d3/2

ε2
b5

a5

)d+2k+1

 .

where c0,c1,c′0,c
′
1 are absolute constants greater than 1. As c′1d3/2

ε2
b5

a5 ≥ 1,
(

c′0d3/2

ε2
b5

a5

)2(d+k)

+

(
c′1d3/2

ε2
b5

a5

)d+2k+1

≤
(

c′0d3/2

ε2
b5

a5

)2(d+k)

+

(
c′1d3/2

ε2
b5

a5

)2(d+k)

≤
(

c′0d3/2

ε2
b5

a5 +
c′1d3/2

ε2
b5

a5

)2(d+k)

. This gives

logN (S[Sk,a,b],∥ · ∥Λ,ε)≤ 4k log(
ed2

2k
)+2(d + k) log

[
(c′0 + c′1)

d3/2

ε2
b5

a5

]

= 4k log(
ed2

2k
)+4(d + k) log

[
c b

a

d
ε

]
,
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where

c b
a

∆
=
√
(c′0 + c′1)

b5/2

a5/2 only depends on b/a .

Therefore, m needs to verify

4k log(
ed2

2k
)+4(d + k) log

(
c b

a

d
ε

)
+ log2− mδ 2

32e2K2
Λ

≤ log(ρ/2) ,

which is equivalent to

mδ 2

32e2K2
Λ

≥ 4k log(
ed2

2k
)+4(d + k) log

(
c b

a

d
ε

)
+ log2+ log(2/ρ) .

To simplify the expression, we derive a sufficient condition on m given by

m≥ 32e2K2
Λ

δ 2

[
4k log(

ed2

2k
)+4(d + k) log

(
32e2c b

a
KΛ

δ
d
[
d2 log(6)+4log(2/ρ)

]
)
+2log(2/ρ)

]
.

(A.46)
This finishes the proof as we can find a constant C =C(δ ,ρ,b/a) such that m≥C(d+2k) logd implies
(A.46). □

A.4. Connection with Bregman proximal gradient

The iterations of our algorithm (3.6) can be related to the iterations of Bregman Proximal Gradient
(BPG). Originally introduced in [3], BPG is a generalization of the classical proximal gradient method
in which the proximal operator is replaced with a Bregman proximal operator. It aims at solving pro-
blems of the form min f + g where f ,g are proper, convex and lower semi-continuous. For λ > 0, we
consider the optimization problem

min
Θ≻0

F(Θ)+λ∥Θ∥1,off where F(Θ)
∆
=

1
2
∥A (Θ−1)− s∥2

2 = f (Θ−1) . (A.47)

Interestingly the function F is convex on the convex set S := {Θ ≻ 0 : λmax(Θ) ≤ 1/λmax(Σ̂)} ⊂ S++
d .

Indeed as shown in [10, Example 3.4] the function (a,Θ)→ a⊤Θ
−1a is jointly convex on Rd×S++

d (R).
Consequently Θ→ (a⊤j Θ

−1a j−s j)
2 = (a⊤j (Θ

−1− Σ̂)a j)
2 is convex on S as the composition of a convex

function and t → t2 on R+ since a⊤j (Θ
−1− Σ̂)a j ≥ 0 on S. Hence F(Θ) = 1

2 ∑
m
j=1(a⊤j Θ

−1a j− s j)
2 is

also convex on S as the sum of convex functions. For a fixed step-size γ > 0 the BPG iterations with the
Bregman divergence (3.4) are given by

Θt+1 = argmin
Θ≻0

⟨γ∇F(Θt),Θ⟩+Dh(Θ|Θt)+λγ∥Θ∥1,off . (A.48)

By expressing the divergence Dh and using that ∇F(Θt) = −Θ
−1
t ∇ f (Θ−1

t )Θ−1
t these iterations are

equivalent to

Θt+1 = argmin
Θ≻0

⟨Θ−1
t − γΘ

−1
t ∇ f (Θ−1

t )Θ−1
t ,Θ⟩− logdetΘ+λγ∥Θ∥1,off . (A.49)

These iterations also correspond to a graphical lasso since (A.49) rewrites as Θ
−1
t+1 =GLASSOλγ [Θ

−1
t −

γΘ
−1
t ∇ f (Θ−1

t )Θ−1
t ]. With the change of variable Σt = Θ

−1
t , the BPG iterations for solving (A.47)
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equivalently write
Σt+1 = GLASSOλγ [Σt − γΣt∇ f (Σt)Σt ] . (A.50)

We can notice that these iterations are very similar to the one in (3.6) but with Σt∇ f (Σt)Σt instead of
∇ f (Σt). In fact, the iterations (3.6) are equivalent to the BPG iterations (A.50) when using a Riemannian
gradient instead of a Euclidean one. More precisely, when considering for X ≻ 0, the inner product
⟨U,V⟩X ∆

= tr(UX−1VX−1) and computing the gradient w.r.t. ⟨·, ·⟩X at X we get the formula grad f (X) =
X∇ f (X)X [39]. This corresponds to endowing the space S++

d (R) with the affine-invariant geometry [8,
Section 11.7]. In conclusion, if we consider our iterations (3.6) with the Riemannian gradient grad f
instead of the Euclidean gradient we get the BPG iterations (A.50). However, we observe in practice
that the algorithm with the BPG has degraded performance compared to the one proposed in (3.6).

A.5. Safe step-size strategy

The goal of this section is to provide a step-size γ > 0 ensuring that the matrix Σt+ 1
2

:= Σk− γ∇ f (Σk)

remains positive definite during the iterations. Recall that ∇ f (Σt) = A ⋆(A (Σt)− s) where s =
1
n ∑

n
i=1 Φ(xi) =

1
m

(
a⊤1 Σ̂a1, · · · ,a⊤m Σ̂am

)
is the sketch of the data and Σ̂ is the empirical covariance

matrix. The adjoint operator A ⋆ is given by y→A ⋆(y) = 1
m ∑

m
j=1 y ja ja⊤j .

The matrix Σt+ 1
2

is positive definite when λmin(Σt − γ∇ f (Σt))> 0 that is when

λmin

(
Σt − γ

1
m

m

∑
j=1

(
1
m

a⊤j Σta j− s j)a ja⊤j

)
> 0 . (A.51)

Moreover we have,

λmin

(
Σt − γ

1
m

m

∑
j=1

(
1
m

a⊤j Σta j− s j)a ja⊤j

)
≥ λmin(Σt)− γ

1
m

λmax

(
m

∑
j=1

(
1
m

a⊤j Σta j− s j)a ja⊤j

)

= λmin(Σt)− γ
1

m2 λmax

(
m

∑
j=1

[a⊤j (Σt − Σ̂)a j]a ja⊤j

)
.

(A.52)

Using ∀ j ∈ [[m]],a j(Σt − Σ̂)a j ≤ λmax(Σt − Σ̂)∥a j∥2
2 we have, for any z ∈ Rd ,∥z∥2 = 1,

z⊤(
m

∑
j=1

[a⊤j (Σt − Σ̂)a j]a ja⊤j )z =
m

∑
j=1

[a⊤j (Σt − Σ̂)a j]|z⊤a j|2 ≤ λmax(Σt − Σ̂)
m

∑
j=1
∥a j∥2

2|z⊤a j|2 . (A.53)

By introducing the matrix A = (a1, · · · ,am) ∈ Rd×m the previous inequality leads to

z⊤(
m

∑
j=1

[a⊤j (Σt − Σ̂)a j]a ja⊤j )z≤ λmax(Σk− Σ̂) max
j∈[[m]]

∥a j∥2
2

m

∑
j=1
|z⊤a j|2

= λmax(Σt − Σ̂)(max
j∈[[m]]

∥a j∥2
2) z⊤AA⊤z

≤ λmax(Σt − Σ̂)(max
j∈[[m]]

∥a j∥2
2)λmax(AA⊤)

≤ [λmax(Σt)−λmin(Σ̂)](max
j∈[[m]]

∥a j∥2
2)λmax(AA⊤) .

(A.54)
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Consequently,

λmax

(
m

∑
j=1

[a⊤j (Σt − Σ̂)a j]a ja⊤j

)
≤ [λmax(Σt)−λmin(Σ̂)](max

j∈[[m]]
∥a j∥2

2)λmax(AA⊤) . (A.55)

This shows that if λmax(Σt)< λmin(Σ̂) then the condition (A.51) is valid for any γ > 0 since in this
case λmax

(
∑

m
j=1[a⊤j (Σt − Σ̂)a j]a ja⊤j

)
< 0. On the other hand if λmax(Σk) > λmin(Σ̂) then, by (A.52)

and (A.55), a step-size

γ <
m2

max j∈[[m]] ∥a j∥2
2 σ2

max(A)
× λmin(Σt)

λmax(Σt)−λmin(Σ̂)
, (A.56)

where σmax(A) is the largest singular value of A, ensures that Σk+ 1
2

is positive definite. Overall a safe
step-size strategy is given by

γ ∈
{
(0,+∞[ if λmax(Σt)< λmin(Σ̂) ,

(0, m2

max j∈[[m]] ∥a j∥22 σ2
max(A)

λmin(Σt )

λmax(Σt )−λmin(Σ̂)
) if λmax(Σt)> λmin(Σ̂) .

(A.57)

We emphasize that this strategy is quite conservative, and requires the computation of both the maxi-
mum and minimum eigenvalues of Σt at every iteration. In practical scenarios, we find that searching
for γ in {1e−3,1e−2,1e−1} is adequate for achieving convergence in our experimental setups.

A.6. Covering number of a model set with a condition number constraint.

We would like to consider a model set of covariance matrices that does not restrict their spectra but
rather their condition numbers. For a square matrix M, the condition number is defined as κ(M)

∆
=

∥M∥2→2∥M−1∥2→2. In the special case of positive-definite matrices, it is the ratio between the largest
and smallest eigenvalues. For some κ0 ≥ 1, we consider the following model set

Sk,κ0
∆
=
{

Σ ∈ S++
d (R) : Θ = Σ

−1 ≻ 0,∥Θ∥0 ≤ d +2k,κ(Θ)≤ κ0
}
.

Remark that the above definition implies that Sk,a,b ⊂ Sk,κ0 , for all a,b > 0 such that b/a ≤ κ0. In
particular, Sk,1/κ0,1 ⊂Sk,κ0 . However, Sk,κ0 is a much “bigger” set than sets like Sk,a,b, as the latter
are bounded sets while the former is not. Interestingly enough, we are able to upper-bound the covering
number of the normalized secant of Sk,κ0 that is

S[Sk,κ0 ] =

{
Θ
−1
1 −Θ

−1
2

∥Θ−1
1 −Θ

−1
2 ∥Λ

: (Θ−1
1 ,Θ−1

2 ) ∈S2
k,κ0

, ∥Θ−1
1 −Θ

−1
2 ∥Λ > 0

}
.

The key element to obtain this bound is that we are able to rewrite S[Sk,κ0 ] in term of matrices that are
in

S0
∆
=
{

Σ ∈ S++
d (R) : Θ = Σ

−1 ≻ 0,∥Θ∥0 ≤ d +2k, spec(Θ)⊂ [1/κ0,1], ∥Θ∥2→2 = 1
}
.

Indeed, for an element Θ̃
−1
1 −Θ̃

−1

∥Θ̃−1−Θ̃
−1∥Λ
∈ S[Sk,κ0 ], notice that for any λ > 0 the matrix λ Θ̃

−1
1 −λ Θ̃

−1

∥λ Θ̃
−1−λ Θ̃

−1∥Λ
still

is on S[Sk,κ0 ]. This implies that we can normalize the matrices involved in the secant. More precisely,
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by choosing λ = ∥Θ̃1∥2→2, setting Θ1 = λ−1Θ̃1, Θ2 = Θ̃2/∥Θ̃2∥2→2 and τ = ∥Θ̃1∥2→2/∥Θ̃2∥2→2, we

have Θ1,Θ2 ∈S0, τ > 0 and Θ
−1
1 −τΘ

−1
2

∥Θ−1
1 −τΘ

−1
2 ∥Λ
∈ S[Sk,κ0 ]. This shows that

S[Sk,κ0 ] =

{
Θ
−1
1 − τΘ

−1
2

∥Θ−1
1 − τΘ

−1
2 ∥Λ

: τ > 0, (Θ−1
1 ,Θ−1

2 ) ∈S2
0, ∥Θ−1

1 − τΘ
−1
2 ∥Λ > 0

}
.

Now, up to exchanging the role of Θ̃1 and Θ̃2, which result in changing the sign of Θ
−1
1 −τΘ

−1
2

∥Θ−1
1 −τΘ

−1
2 ∥Λ

, we

can always assume that ∥Θ̃1∥2→2 ≤ ∥Θ̃2∥2→2, meaning that 0 < τ ≤ 1, which yields

S[Sk,κ0 ] =

{
± Θ

−1
1 − τΘ

−1
2

∥Θ−1
1 − τΘ

−1
2 ∥Λ

: τ ∈ (0,1], (Θ−1
1 ,Θ−1

2 ) ∈S2
0 : ∥Θ−1

1 − τΘ
−1
2 ∥Λ > 0

}

= S[Sk,κ0 ] ∪ (−S[Sk,κ0 ]) ,

where

S[Sk,κ0 ]
∆
=

{
Θ
−1
1 − τΘ

−1
2

∥Θ−1
1 − τΘ

−1
2 ∥Λ

: τ ∈ (0,1], (Θ−1
1 ,Θ−1

2 ) ∈S2
0, ∥Θ−1

1 − τΘ
−1
2 ∥Λ > 0

}
.

Remark that for any ε > 0, N (S[Sk,κ0 ],∥ ·∥Λ,ε)≤ 2N (S[Sk,κ0 ],∥ ·∥Λ,ε), therefore we only have
to control the covering number of S[Sk,κ0 ]. To do so, we follow the same line of proof as in the control
of S[Sk,a,b] by splitting our set of interests into long and short chords. The analysis of these chords is
similar, although more technical and more computation-heavy. A slight complication in this new setting
is the need to ensure that τ is bounded away from zero in the case of short chords. In the following, we
briefly detail the analysis of the long and short chords given for some η > 0 by

S+η [Sk,κ0 ]
∆
=

{
Θ
−1
1 − τΘ

−1
2

∥Θ−1
1 − τΘ

−1
2 ∥Λ

: τ ∈ (0,1], (Θ−1
1 ,Θ−1

2 ) ∈S2
0, ∥Θ−1

1 − τΘ
−1
2 ∥Λ > η

}
,

S−η [Sk,κ0 ]
∆
=

{
Θ
−1
1 − τΘ

−1
2

∥Θ−1
1 − τΘ

−1
2 ∥Λ

: τ ∈ (0,1], (Θ−1
1 ,Θ−1

2 ) ∈S2
0, 0 < ∥Θ−1

1 − τΘ
−1
2 ∥Λ ≤ η

}
.

A.6.1. Control of the long chords
The strategy to control the covering number of long chords is to express S+η [Sk,κ0 ] as the image of
a Lipschitz-continuous function and control the covering number of the original set. Let us consi-
der the set Xη

∆
= {(τ,Θ1,Θ2) ∈ (0,1]×S−1

0 ×S−1
0 , ∥Θ−1

1 − τΘ
−1
2 ∥Λ > η} equipped with the norm

∥(τ,M1,M2)∥⊗ = |τ|+∥M1∥Fro+∥M2∥Fro. Then we have the following lemma. For the sake of conci-
seness, its proof is not provided, but it is based on the one of Proposition 1 presented in Appendix
A.2.3.

Lemma 10 Let g : (Xη ,∥ · ∥⊗)→ (S+η [Sk,κ0 ],∥ · ∥Λ) be the function defined by

g(τ,Θ1,Θ2)
∆
=

Θ
−1
1 − τΘ

−1
2

∥Θ−1
1 − τΘ

−1
2 ∥Λ

.

Then, g is surjective and L0/η-lipschitz continuous with L0 = 2CFroκ2
0

√
d.
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As a consequence, we can control the covering number of S+η [Sk,κ0 ] using the one of Xη which
is easier to handle. This yields the following proposition which proof is also based on the one of
Proposition 1.

Proposition 7 For all ε > 0 and η > 0, we have

N (S+η [Sk,κ0 ],∥ · ∥Λ,ε)≤N ((0,1], | · |, ηε

6L0
)×N (S−1

0 ,∥ · ∥Fro,
ηε

6L0
)2 .

Note that N ((0,1], | · |,ε) is bounded by ε−1 and the control of the covering of S−1
0 will be provided

later by Lemma 13.

A.6.2. Control of the short chords
In order to control the covering number of the short chords we follow these two steps: 1) we show
that any element of S−η [Sk,κ0 ] is close to an element of a certain “tangent space” 2) we will control the
covering number of this space.

Assumption: In all of this section we will assume that 0 < η ≤ cFro/2. This requirement will be
useful for various simplification and will be met when we calibrate η for a good balance between the
covering numbers of both long and short chords.

Point 1) is done through the following lemma which proof can be found in Appendix A.7.1.

Lemma 11 For η > 0, consider the set of short chords S−η [Sk,κ0 ] and the normalized secant set

S[S−1
k,κ0

]. Define C ∆
= {λV : λ ∈]0,λ0],V ∈ S[S−1

k,κ0
]} and

TC
∆
=

{
Dinv

Θ̃
(C) : (Θ̃,C) ∈S−1

k, 1
κ0

,2
×C
}
,

with λ0
∆
= 2

cFro
. Defining Z0

∆
=

CFroκ3
0

c2
Fro

, we have

∀U ∈ S−η [Sk,κ0 ],∃T ∈T , ∥U−T∥Λ ≤ Z0η .

As TC is a good approximation of S−η [Sk,κ0 ], we can bound the covering number of the latter by the
covering of the former (with a differnt scale), see Lemma 3. Hence, we need to control the covering
number of TC.

Lemma 12 For all ε > 0, we have

N (TC,∥ · ∥Λ,ε)≤N (S−1
k, 1

κ0
,2
,∥ · ∥Fro,

ε

C0
)×N (C,∥ · ∥Fro,

ε

C0
) , (A.58)

with C0 =CFro(2κ3
0 λ0 +κ2

0 ).

Now, combining the above results, we are able to provide a control of the covering number of the
short chords. See Appendix A.7.1 for the proof.
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Proposition 8 (Similar to Proposition 2) For any ε > 0 and η > 0, we have

N (S−η [Sk,κ0 ],∥ · ∥Λ,2(ε +Z0η))≤ 2λ0C0ε
−1N (S−1

k, 1
κ0

,2
,∥ · ∥Fro,

ε

C0
)×N (S[S−1

k,κ0
],∥ · ∥Fro,

ε

2λ0C0
) ,

where Z0 =
CFroκ3

0
c2

Fro
, λ0 =

2
cFro

, C0 =CFro(2κ3
0 λ0 +κ2

0 ).

A.6.3. Combining the results
To finish this section and obtain the covering of Sη [Sk,κ0 ], we need the control of the covering of S−1

0 ,
S−1

k, 1
κ0

,2
and S[S−1

k,κ0
] as they appear in the control of the covering number of the long and short chords.

This is done in the following lemma which proof can be found in Appendix A.7.2.

Lemma 13 For any ε > 0, and 0 < a≤ b, we have

N (S−1
0 ,∥ · ∥Fro,ε)≤

(
ed2

2k

)k
(

18
√

d
ε

)d+k

,

N (S−1
k, 1

κ0
,2
,∥ · ∥Fro,ε)≤

(
ed2

2k

)k
(

2×18
√

d
ε

)d+k

,

N (S[S−1
k,κ0

],∥ · ∥Fro,ε)≤
(

ed2

4k

)2k(18
ε

)d+2k

.

Gathering up all the pieces, we obtain the following theorem.

Theorem 5 There exist absolute constants c̃1 and c̃2 such that for any ε such that 0 < ε ≤ 2κ3
0

cFro

√
d, we

have

N (Sη [Sk,κ0 ],∥ · ∥Λ,ε)≤ 2
(

ed2

2k

)3k
[(

c̃1κ5
0 d2

ε2

)2(d+k)+1

+

(
c̃2κ3

0 d2

ε

)2d+3k+1]
.

See Appendix A.7.3 for the proof.

A.7. Proof for the coverings with a condition number hypothesis

Before diving into the control of the covering numbers of the long and short chords, let us claim various
inequalities related to the inverse function on matrices that will be useful in the following.

Lemma 14 (Inverse function properties) Assume that there exist constants cFro and CFro such that
cFro∥M∥Fro ≤ ∥M∥Λ ≤CFro∥M∥Fro, for all M ∈ Sd . Let M1 and M2 be two matrices in S++

d . Then we
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have the following inequalities:

∥M−1
1 −M−1

2 ∥Λ ≤CFro ∥M−1
1 ∥2→2 ∥M−1

2 ∥2→2 ∥M1−M2∥Fro , (A.59)

∥M1−M2∥Fro ≤
1

cFro
∥M1∥2→2 ∥M2∥2→2 ∥M−1

1 −M−1
2 ∥Λ , (A.60)

∥M−1
1 −M−1

2 −DinvM2(M1−M2)∥Λ ≤CFro ∥M−1
1 ∥2→2 ∥M−1

2 ∥2
2→2 ∥M1−M2∥2

Fro , (A.61)

∥DinvM1(M)−DinvM2(M)∥op ≤CFro
(
∥M−1

1 ∥2→2 +∥M−1
2 ∥2→2

)
(A.62)

×∥M−1
1 ∥2→2∥M−1

2 ∥2→2∥M1−M2∥Fro .

Idea of the proof It follows the ideas of the proof of Lemma 1. □

A.7.1. Control of the short chords
We begin with the following preliminary result that ensures that τ can not be too close to 0.

Lemma 15 Assume that (τ,Θ1,Θ2) ∈ (0,1]×S−1
0 ×S−1

0 verifies 0 < ∥Θ−1
1 − τΘ

−1
2 ∥Λ ≤ η and

η/leqcFro/2. Then τ is bounded away from 0 i.e.

τ ≥ 1− η

cFro
≥ 1

2
.

Proof From the inverse-lipschitz property of the inverse function in (A.60), we have :

∥Θ1− τ
−1

Θ2∥Fro ≤
1

cFro
∥Θ1∥2→2∥τ−1

Θ2∥2→2∥Θ−1
1 − τΘ

−1
2 ∥Λ ≤

η

cFroτ
.

Moreover,

∥Θ1− τ
−1

Θ2∥Fro ≥ ∥Θ1− τ
−1

Θ2∥2→2 ≥ τ
−1∥Θ2∥2→2−∥Θ1∥2→2 =

1
τ
−1 .

Combining the two inequalities yields τ ≥ 1− η

cFro
. □

Let us now prove Lemma 11.

Proof of Lemma 11 Take U =
Θ
−1
1 −τΘ

−1
2

∥Θ−1
1 −τΘ

−1
2 ∥Λ
∈ S−η [Sk,κ0 ] so we have 0 < ∥Θ−1

1 −τΘ
−1
2 ∥Λ ≤ η . Note that

by using (A.59) and (A.60), we have

0
(A.59)
< ∥Θ1− τ

−1
Θ2∥Fro

(A.60)
≤ η

cFroτ
∥Θ1∥2→2∥Θ2∥2→2 ≤

η

cFroτ
. (A.63)

Now, from (A.61) with M1 = Θ1 and M2 = τ−1Θ2, we have

∥Θ−1
1 − τΘ

−1
2 −Dinvτ−1Θ2

(Θ1− τ
−1

Θ2)∥Λ

(A.61)
≤ CFro∥Θ−1

1 ∥Fro∥τΘ
−1
2 ∥2

Fro∥Θ1− τ
−1

Θ2∥2
Fro

≤CFroκ
3
0 τ

2∥Θ1− τ
−1

Θ2∥2
Fro .



46 T. VAYER ET AL.

Dividing by ∥Θ−1
1 − τΘ

−1
2 ∥Λ > 0 in the above inequality yields:

∥ Θ
−1
1 − τΘ

−1
2

∥Θ−1
1 − τΘ

−1
2 ∥Λ

−Dinvτ−1Θ2

Θ1− τ−1Θ2

∥Θ−1
1 − τΘ

−1
2 ∥Λ

∥Λ ≤CFroκ
3
0 τ

2∥Θ1− τ
−1

Θ2∥Fro
∥Θ1− τ−1Θ2∥Fro

∥Θ−1
1 − τΘ

−1
2 ∥Λ

(applying (A.63) and (A.60)) ≤CFroκ
3
0 τ

2 η

cFroτ

1
cFro
∥Θ1∥2→2∥τ−1

Θ2∥2→2

=
CFroκ3

0

c2
Fro

η = Z0η .

Moreover, as Θ2 ∈S−1
0 ⊂S−1

k, 1
κ0

,1
, setting Θ̃ = τ−1Θ2, we have Θ̃ ∈S−1

k, 1
τκ0

, 1
τ

⊂S−1
k, 1

κ0
,2

(the inclusion

comes from Lemma 15). Remark that the element in the differential can be expressed as

Θ1− τ−1Θ2

∥Θ−1
1 − τΘ

−1
2 ∥Λ

=
∥Θ1− τ−1Θ2∥Fro

∥Θ−1
1 − τΘ

−1
2 ∥Λ

Θ1− τ−1Θ2

∥Θ1− τ−1Θ2∥Fro
.

So, if we define λ = ∥Θ1−τ−1Θ2∥Fro
∥Θ−1

1 −τΘ
−1
2 ∥Λ

, by (A.60) and Lemma 15 it satisfies 0 < λ ≤ 1
cFroτ
≤ 2

cFro

∆
= λ0.

Thus, there exists λ ∈]0,λ0] and Θ̃ ∈S−1
k, 1

κ0
,2

such that:

∥ Θ
−1
1 − τΘ

−1
2

∥Θ−1
1 − τΘ

−1
2 ∥Λ

−Dinv
Θ̃

λ
Θ1− τ−1Θ2

∥Θ1− τ−1Θ2∥Fro
∥Λ ≤ Z0η .

Now we set V = Θ1−τ−1Θ2
∥Θ1−τ−1Θ2∥Fro

and we have V ∈ S[S−1
k,κ0

], which finishes the proof. □

Proof of Lemma 12 First observe that for all C∈C, we have ∥C∥Fro ≤ λ0 since ∀V∈ S[S−1
k,κ0

],∥V∥Fro =

1. Then, take S
−1
k, 1

κ0
,2 an ε-net of S−1

k, 1
κ0

,2
and C an ε-net of C. Take T = Dinv

Θ̃
(C) ∈ TC and consider

(Θ,C) ∈S
−1
k, 1

κ0
,2×C such that ∥C−C∥Fro ≤ ε and ∥Θ− Θ̃∥Fro ≤ ε . Then with T = Dinv

Θ
(C) ∈ TC,

∥T−T∥Λ = ∥Dinv
Θ̃
(C)−Dinv

Θ
(C)∥Λ

≤ ∥Dinv
Θ̃
(C)−Dinv

Θ
(C)∥Λ +∥Dinv

Θ
(C)−Dinv

Θ
(C)∥Λ

≤ ∥Dinv
Θ̃
−Dinv

Θ
∥op∥C∥Fro +∥Dinv

Θ
∥op∥C−C∥Fro .

According to (A.62),

∥Dinv
Θ̃
−Dinv

Θ
∥op

≤CFro

(
∥Θ̃−1∥2→2 +∥Θ−1∥2→2

)
∥Θ̃−1∥2→2∥Θ−1∥2→2∥Θ̃−Θ∥Fro

≤2CFroκ
3
0∥Θ̃−Θ∥Fro.
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We can also show that ∥Dinv
Θ
∥op ≤CFroκ2

0 . Therefore,

∥T−T∥Λ ≤ 2CFroκ
3
0∥Θ̃−Θ∥Froδ +∥Dinv

Θ
∥opε

≤ 2CFroκ
3
0 εδ +CFroκ

2
0 ε

=CFro(2κ
3
0 λ0 +κ

2
0 )ε .

This gives N (TC,∥ ·∥Λ,CFro(2κ3
0 λη +κ2

0 )ε)≤N (S−1
k, 1

κ0
,2
,∥ ·∥Fro,ε)×N (C,∥ ·∥E ,ε). Therefore, by

setting C0 =CFro(2κ3
0 λ0 +κ2

0 ), we have

N (TC,∥ · ∥Λ,ε)≤N (S−1
k, 1

κ0
,2
,∥ · ∥Fro,

ε

C0
)×N (C,∥ · ∥Fro,

ε

C0
) .

□

Proof of Proposition 8 Recall that from Lemma 12 we have

N (TC,∥ · ∥Λ,ε)≤N (S−1
k, 1

κ0
,2
,∥ · ∥Fro,

ε

C0
)×N (C,∥ · ∥Fro,

ε

C0
) ,

with C0 =CFro(2κ3
0 λ0 +κ2

0 ). Using Lemma 11, we also have the approximation of S−η [Sk,κ0 ] by the set
TC:

∀U ∈ S−η [Sk,κ0 ],∃T ∈ TC, ∥U−T∥Λ ≤ Z0η .

Therefore, we can apply Lemma 3 (with δ = Z0η) to prove that for any ε > 0:

N (S−η [Sk,κ0 ],∥ · ∥Λ,2(ε +Z0η))≤N (TC,∥ · ∥Λ,ε) . (A.64)

Thus, combining (A.58) and (A.64) yields

N (S−η [Sk,κ0 ],∥ · ∥Λ,2(ε +Z0η))≤N (S−1
k, 1

κ0
,2
,∥ · ∥Fro,

ε

C0
)×N (C,∥ · ∥Fro,

ε

C0
) .

All we need now is to control N (C,∥ · ∥Fro,
ε

C0
). Take S[S−1

k,κ0
] a ε-net of S[S−1

k,κ0
] and (0,λ0] an (λ0ε)-

net of (0,λ0]. Take C = λV ∈C with λ ∈ (0,λ0] and V ∈ S[S−1
k,κ0

]. Then there exists V ∈ S[S−1
k,κ0

] such

that ∥V−V∥Fro ≤ ε and λ ∈ (0,λ0] such that |λ − λ | ≤ λ0ε . Define C = λV. We clearly have that
C ∈C and

∥C−C∥Fro = ∥λV−λV∥Fro

≤ ∥λV−λV∥Fro +∥λV−λV∥Fro

≤ ∥V∥Fro|λ −λ |+λ∥V−V∥Fro ≤ 2λ0ε .

Thus, for any ε > 0 we have N (C,∥ · ∥Fro,2λ0ε) ≤ N ((0,λ0], | · |,λ0ε)N (S[S−1
k,κ0

],∥ ·
∥Fro,ε) ≤ ε−1N (S[S−1

k,κ0
],∥ · ∥Fro,ε) or equivalently for any ε > 0 we have N (C,∥ · ∥Fro,ε) ≤

2λ0ε−1N (S[S−1
k,κ0

],∥ · ∥Fro,ε/(2λ0)). In conclusion we have

N (S−η [Sk,κ0 ],∥ · ∥Λ,2(ε +Z0η))≤ 2ληC0ε
−1N (S−1

k, 1
κ0

,2
,∥ · ∥Fro,

ε

C0
)×N (S[S−1

k,κ0
],∥ · ∥Fro,

ε

2λ0C0
) ,

which concludes the proof. □
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A.7.2. Covering number for bounded sparse symmetric matrices and their secant
We now prove Lemma 13.

Proof of Lemma 13 Recall that Lemma 7 provides the following control of the covering
number of the set of symmetric sparse matrices with bounded Frobenius norm Wk =
{Θ ∈ Sd(R) ;∥Θ∥0 ≤ d +2k,∥Θ∥Fro ≤ 1}:

N (Wk,∥ · ∥Fro,ε)≤ (
ed2

2k
)k(

9
ε
)d+k ,

Noticing that S−1
0 ⊂Wk, S−1

k, 1
κ0

,2
⊂ 2 Wk and that S[S−1

k,κ0
]⊂W2k yields the result. □

A.7.3. Proof of Theorem 5
Proof First recall that for any ε ′ > 0 and η > 0, by Proposition 8 we have

N (S−η [Sk,κ0 ],∥·∥Λ,2(ε ′+Z0η))≤ 2λ0C0ε
−1N (S−1

k, 1
κ0

,2
,∥·∥Fro,

ε ′

C0
)×N (S[S−1

k,κ0
],∥·∥Fro,

ε ′

2λ0C0
) , ,

Let us fix ε such that 0 < ε ≤ 2κ3
0

cFro

√
d = cFroZ0, as in the hypothesis of Theorem 5. We now set ε ′ = ε/4

and η = ε/(4Z0) such that 2(ε ′+Z0η) = ε . Remark that these choices satisfy η ≤ cFro/2 as desired in
the previous section. Hence,

N (Sη [Sk,κ0 ],∥ · ∥Λ,ε)

≤N (S+η [Sk,κ0 ],∥ · ∥Λ,ε)+N (S−η [Sk,κ0 ],∥ · ∥Λ,ε)

≤N ((0,1], | · |, ηε

6L0
)×N (S−1

0 ,∥ · ∥Fro,
ηε

6L0
)2

+2λ0C0ε
′−1N (S−1

k, 1
κ0

,2
,∥ · ∥Fro,

ε ′

C0
)×N (S[S−1

k,κ0
],∥ · ∥Fro,

ε ′

2λ0C0
) .

Straightforward computations show that ηε

6L0
= c0ε2 with c0 = 1

24Z0L0
, ε ′

C0,η
= c1ε where c1 =

cFro
4CFro(4κ3

0+cFroκ2
0 )

and ε ′
2λ0C0

= c2ε with c2 =
c2

Fro
16CFro(4κ3

0+cFroκ2
0 )

(= cFroc1/4). This allows us to continue
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the computation as follows:

N (Sη [Sk,κ0 ],∥ · ∥Λ,ε)

≤N ((0,1], | · |,c0ε
2)×N(S−1

0 ,∥ · ∥Fro,c0ε
2)2

+
1
c2

ε
−1N (S−1

k, 1
κ0

,2
,∥ · ∥Fro,c1ε)×N (S[S−1

k,κ0
],∥ · ∥Fro,c2ε).

≤ 1
c0

ε
−2×

(
ed2

2k

)2k
(

18
√

d
c0ε2

)2(d+k)

+
1
c2

ε
−1
(

ed2

2k

)k
(

2×18
√

d
c1ε

)d+k

×
(

ed(d−1)
4k

)2k
(

18
√

d
c2ε

)d+2k

≤ 1
c0

(
ed2

2k

)2k
(

18
√

d
c0

)2(d+k)

ε
−(4d+4k+2)

+
1
c2

(
ed2

2k

)k
(

2×18
√

d
c1

)d+k

×
(

ed2

4k

)2k
(

18
√

d
c2

)d+2k

ε
−(2d+3k+1)

≤
(

ed2

2k

)3k
[
(18
√

d)2(d+k)

c2(d+k)+1
0

ε
−(4d+4k+2)+

2d+k (18
√

d)2d+3k

cd+k
1 cd+2k+1

2

ε
−(2d+3k+1)

]
.

Recall that c0, c1 and c2 depends on d (directly or from cFro = 2/(9
√

15d) and CFro = 1/
√

d) and
κ0. Here are the explicit dependencies (≳ meaning here ≥ up to an absolute multiplicative constant):
c0 ∝ κ

−5
0 d−3/2, c1 ≳ κ

−3
0 d−1/2 c2 ≳ κ

−3
0 d−3/2. So we get, that there exists absolute constants c̃1 and c̃2

such that

N (Sη [Sk,κ0 ],∥ · ∥Λ,ε)

≤
(

ed2

2k

)3k
[

c̃1
d+k dd+k (κ5

0 d3/2)2(d+k)+1

ε4d+4k+2 + c̃2
d+k

√
d

2d+3k
(κ3

0 d3/2)2d+3k+1

ε2d+3k+1

]

≤
(

ed2

2k

)3k
[(

c̃1κ5
0 d2

ε2

)2(d+k)+1

+

(
c̃2κ3

0 d2

ε

)2d+3k+1]
,

where we change the value of the absolute constant c̃1 and c̃2 at the last inequality. To finish the proof,
recall that N (Sη [Sk,κ0 ],∥ · ∥Λ,ε)≤ 2N (Sη [Sk,κ0 ],∥ · ∥Λ,ε). □
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nce limits for ideal decoders in high-dimensional linear inverse problems. IEEE Transactions on Information
Theory, pages 7928–7946, December 2014.

10. Stephen Boyd and Lieven Vandenberghe. Convex Optimization. Cambridge University Press, March 2004.
11. Lev M Bregman. The relaxation method of finding the common point of convex sets and its application to the

solution of problems in convex programming. USSR computational mathematics and mathematical physics,
7(3):200–217, 1967.

12. T. Tony Cai and Anru Zhang. Rop: Matrix recovery via rank-one projections. The Annals of Statistics, 43(1),
Feb 2015.

13. Tony Cai, Weidong Liu, and Xi Luo. A constrained l1 minimization approach to sparse precision matrix
estimation. Journal of the American Statistical Association, 106(494):594–607, 2011.

14. Emmanuel Candès and Benjamin Recht. Exact matrix completion via convex optimization. Commun. ACM,
55(6):111–119, jun 2012.

15. Emmanuel J Candes and Terence Tao. Decoding by linear programming. IEEE transactions on information
theory, 51(12):4203–4215, 2005.

16. Yair Censor and Stavros Andrea Zenios. Proximal minimization algorithm with d-functions. Journal of
Optimization Theory and Applications, 73(3):451–464, 1992.

17. Antoine Chatalic. Efficient and privacy-preserving compressive learning. Theses, Université Rennes 1,
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34. Rémi Gribonval, Gilles Blanchard, Nicolas Keriven, and Yann Traonmilin. Statistical Learning Guarantees

for Compressive Clustering and Compressive Mixture Modeling. Mathematical Statistics and Learning, 3,
2021.
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36. Rémi Gribonval and Mila Nikolova. A characterization of proximity operators. Journal of Mathematical
Imaging and Vision, 62(6-7):773–789, 2020.

37. Aric Hagberg, Pieter Swart, and Daniel S Chult. Exploring network structure, dynamics, and function using
networkx. Technical report, Los Alamos National Lab.(LANL), Los Alamos, NM (United States), 2008.

38. David Hallac, Youngsuk Park, Stephen Boyd, and Jure Leskovec. Network inference via the time-varying
graphical lasso. In Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Disco-
very and Data Mining, KDD ’17, page 205–213, New York, NY, USA, 2017. Association for Computing
Machinery.

39. Andi Han, Bamdev Mishra, Pratik Kumar Jawanpuria, and Junbin Gao. On riemannian optimization over
positive definite matrices with the bures-wasserstein geometry. Advances in Neural Information Processing
Systems (NeurIPS), 34:8940–8953, 2021.
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