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4-hydroxybenzoic acid (pHBA) is an important industrial precursor of muconic acid and

liquid crystal polymers whose production is based on the petrochemical industry. In

order to decrease our dependency on fossil fuels and improve sustainability, microbial

engineering is a particularly appealing approach for replacing traditional chemical

techniques. The optimization of microbial strains, however, is still highly constrained by

the screening stage. Biosensors have helped to alleviate this problem by decreasing the

screening time as well as enabling higher throughput. In this paper, we constructed a

synthetic biosensor, named sBAD, consisting of a fusion of the pHBA-binding domain

of HbaR from R. palustris, the LexA DNA binding domain at the N-terminus and the

transactivation domain B112 at the C-terminus. The response of sBAD was tested

in the presence of different benzoic acid derivatives, with cell fluorescence output

measured by flow cytometry. The biosensor was found to be activated by the external

addition of pHBA in the culture medium, in addition to other carboxylic acids including

p-aminobenzoic acid (pABA), salicylic acid, anthranilic acid, aspirin, and benzoic acid.

Furthermore, we were able to show that this biosensor could detect the in vivo production

of pHBA in a genetically modified yeast strain. A good linearity was observed between

the biosensor fluorescence and pHBA concentration. Thus, this biosensor would be

well-suited as a high throughput screening tool to produce, via metabolic engineering,

benzoic acid derivatives.

Keywords: p-hydroxybenzoic acid, p-aminobenzoic acid, biosensor, synthetic biology, yeast

INTRODUCTION

Synthetic biology proposes cutting-edge methodologies for using natural resources (Jullesson et al.,
2015; Smanski et al., 2016; Le Feuvre and Scrutton, 2018; Schindler et al., 2018), understanding
basic cellular functions (Metzger et al., 2018; Toda et al., 2018) or reprogramming cell fate (Black
and Gersbach, 2018). Biosynthesis of small organic molecules by microorganisms, instead of
manufacturing them from petroleum-sourced synthesized chemicals, is one of the main objectives
of metabolic engineering (Khalil and Collins, 2010; Markham and Alper, 2015; Li et al., 2018).
While the demand for green (sustainable) chemistry is growing steadily, there are still few examples
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of successful industrial production of molecules from
microorganisms. The clear bottleneck in metabolic engineering
lays in the low throughput of analytical techniques used
to determine products yields compared to the rate of the
construction of new engineered microorganisms (Rogers
and Church, 2016). To overcome this limitation, natural or
synthetic biosensors are potential tools capable of correlating the
concentration of a target chemical within the cell to an easily
monitored output signal, such as fluorescence (Farmer and Liao,
2000; Schulman and Heyman, 2004; Dietrich et al., 2010; Liu
et al., 2017; Mannan et al., 2017).

The yeast Saccharomyces cerevisiae is a widely used model
organism and production host, due to a comprehensive collection
of metabolic engineering tools and deep knowledge of its genetics
accumulated over half a century. However, the development
of synthetic biosensors in yeast somewhat lags behind those
available for E. coli (Leavitt and Alper, 2015). One of the first
transcription factor-based biosensors was exemplified with the
NhaR system from Pseudomonas putida. This system could drive
the transcription of β-galactosidase as a function of benzoic acid
and 2-hydroxybenzoic acid concentrations in E. coli. The system
was applied to screen active enzymes capable of converting
benzaldehyde and 2-hydroxybenzoaldehyde to their carboxylic
acid derivatives (van Sint Fiet et al., 2006). Since then, several
successful applications of biosensors have been described in E.
coli (Selvamani et al., 2017; Ganesh et al., 2019) andmore recently
in cell-free systems (Eggeling et al., 2015; Voyvodic et al., 2019).
However, transferring genetic sensors between various organisms
remains highly challenging. For example, the simple transfer of
a tetracycline resistance gene circuit from yeast to mammalian
cells required extensive optimizations such as the translation of
the reporter, the DNA sequences of the heterologous proteins,
the nuclear localization signal of the transcription factor and the
design of the promoter (Nevozhay et al., 2013).

In yeast, one of the first designed sensing systems was used to
monitor the intracellular S-adenosylmethionine concentrations
(Umeyama et al., 2013). Transcriptional-based biosensors were
also constructed to screen for muconic acid-producing yeast
strains (Leavitt et al., 2017; Snoek et al., 2018). Other types
are now implemented, using optogenetic regulation such as
the blue light-activated EL222 from Erythrobacter litoralis that
was recently reported to control, in yeast, the mitochondrial
isobutanol-producing pathway (Zhao et al., 2018).

4-hydroxybenzoic acid (pHBA), a molecule produced from
chorismate by chorismate lyase, is present in low amounts in
bacterial cultures (Winter et al., 2014). pHBA is essential in all
organisms for coenzyme Q synthesis (Tran and Clarke, 2007)
but was found to inhibit yeast growth when added to the culture
medium (Ando et al., 1986; Palmqvist et al., 1999; Larsson et al.,
2000). pHBA-derived natural products form a large group of

Abbreviations: bp, base pair; pHBA, 4-hydroxybenzoic acid; pABA, 4-

aminobenzoic acid; 2HBA, 2-hydroxybenzoic acid (salicylic acid); 3HBA, 3-

hydroxybenzoic acid; 2NBA, 2-aminobenzoic acid (anthranilic acid); 3NBA,

3-aminobenzoic acid; 2,5DHBA, 2,5 dihydroxybenzoic acid (gentisic acid);

3,4DHBA, 3,4 dihydroxybenzoic or protocatechuic acid; CSM, Complete

Supplement Mixture; SD, Synthetic Defined medium; sTF, Synthetic transcription

factor; sBAD, sensor of benzoic acid derivatives; YNB, Yeast Nitrogen Base.

secondary metabolites that exhibit a wide variety of biological
activities (Wang et al., 2018). Industrial uses of pHBA include
manufacturing of liquid crystal polymers and thermoplastics
used for space technologies (Rothschild, 2016). The alkyl esters
of pHBA, namely parabens, are also widely used as preservatives
in drugs, cosmetic products and food products. However, their
toxicity is a major human health concern (Giulivo et al., 2016).
Currently, pHBA is chemically synthesized from petroleum-
derived building blocks. Biotechnology offers an alternative for
pHBA production, based on the shikimate pathway (Lee and
Wendisch, 2017). Recently, researchers have engineered yeast
to overproduce pHBA, increasing the flux to chorismate and
expressing, in the modified strain, the chorismate lyase gene
(UbiC) from E. coli (Averesch et al., 2017).

Therefore, pHBA is a molecule for which in vivo biological
detection is critical, and a performant pHBA biosensor could
be used either to build detection kits capable of operating
in various biological environments or to screen the capacity
of modified strains to overproduce pHBA. In this study, we
report the construction of a synthetic transcription factor
(sTF) capable of sensing pHBA, in vivo, in Saccharomyces
cerevisiae. We tested the transcriptional activity against the
native effector of R. palustris HbaR and a battery of metabolites
with similar structure and determine the promiscuity and
binding characteristics of each of them. Last, we exemplified
the activity of our newly constructed biosensor in a pHBA-
producing strain.

MATERIALS AND METHODS

Culture Conditions
The vectors described in this work were constructed in the
E. coli DH5α strain using standard molecular biology protocols
(Sambrook and Russell, 2001). The CEN.PK 2C-1 S. cerevisiae
strain (MATa; ura3-52; trp1-289; leu2-3, 112; his3:1; MAL2-8C;
SUC2) was used throughout the entire study.

For the screening experiments, yeast strains were grown
in synthetic medium containing 20 g/L of glucose, 6.9 g/L
of yeast nitrogen base with or without pABA and Complete
Supplement Mixture (CSM) drop-out minus uracil and histidine
(Formedium). The different inducers were dissolved in the
medium and pH was then adjusted to 5.5. All culture media
were sterilized by filtration. For pHBA production, the synthetic
medium without pABA and with CSM drop-out minus His, Ura,
and Leu was supplemented with 76 mg/L tyrosine, phenylalanine
and tryptophan.

Yeast strains were cultured as follows. A fresh yeast colony
from a SD minus Ura and His agar plate containing pABA was
resuspended in water to an OD600nm of 0.2 and 5 µL of this
solution was used to inoculate 200µL of media. Cells were grown
at 30◦C in a MixMate (Eppendorf) with 900 rpm agitation for
20 h. For the pHBA production experiments, a fresh colony was
resuspended in water to an OD600nm of 0.2 and 50mL of culture
medium was inoculated with 400 µL of this solution. Cells were
grown at 30◦C with an agitation of 200 rpm in an INFORS
incubator (25mm orbital) for 65 h.
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Vectors and Strains Constructions
All plasmids and strains used in this study are listed in
Supplementary Tables 1, 2. Yeast transformation was performed
using the high efficiency protocol from Gietz (2014). The hbaR
gene from Rhodopseudomonas palustris, the native ubiC gene
from E. coli and the modifiedARO4K226L gene from S. cerevisiae
were codon-optimized for S. cerevisiae (Twist Bioscience). All
DNA sequences can be found in Supplementary Table 3.

The pHBA sTF was constructed using the vector FRP880
as a backbone. FRP880 was digested with EcoRV to remove
the estradiol-sensing domain and the HbaR-sensing domain
was inserted by blunt-end cloning leading to the plasmid
pSCC185. To create the ySCC185-F strain, we first integrated
a DNA fragment expressing mKATE2 under the control
of the TDH3 promoter into the locus 2 of chromosome
X (Mikkelsen et al., 2012) and carrying the auxotrophic
marker TRP1, yielding ySCC001. pSCC185 was then
linearized with the restriction enzyme PacI, integrated in
the HIS3 locus in ySCC001, yielding ySCC185. Finally,
the linearized plasmid FRP795, containing a promoter
with 8 LexA DNA binding domains and a CYC1 minimal
promoter controlling the expression of the mCitrine
fluorescent protein was integrated in ySCC185, yielding
ySCC185-F. Integrations were verified by colony PCR and by
functional analysis.

To build the pHBA-overproducing strain, we used the vector
pENZ030 containing two homologous arms for the integration
in the HO locus, a LEU2 auxotrophic marker and a bidirectional
promoter formed by TDH3 and PGK and flanked by ADH1
and ADH2 terminators. The ubiC ORF was cloned downstream
of the TDH3 promoter by cutting pENZ030 with XhoI. The
ubiC gene was inserted in pENZ030 by isothermal assembly.
The pHBA-producing strains were derived from ySCC185-
F. First, the TRP3 gene was deleted using a hygromycin
resistance cassette from the vector pUG75 flanked by a 38
bp homologous region of TRP3 yielding ySCC185-F-T. The
ARO7 gene was then deleted and its promoter used to express
the ARO4K229L mutant (Williams et al., 2015). To construct
this, the previous strain was transformed with two cassettes.
The first one contained the gene encoding the ARO4K229L
mutant with two homologous regions of 40 bp, upstream for
ARO7 and downstream for the second integration cassette.
The second cassette contained the CYC1 terminator and G418
resistance. This DNA was amplified from the vector pMRI34
and the PCR containing homologous regions for the first
cassette and the end of ARO7 gene yielding ySCC185-F-A.
This last strain was used to express the E. coli ubiC gene,
using a PCR amplified DNA fragment and the vector pENZ030-
UbiC as a template, yielding ySCC185-UbiC. The control
strain for the pHBA production experiments was derived from
ySCC185-F-A with an integrated copy of the empty vector
pENZ30 (ySCC185-30).

Flow Cytometry
Cells were incubated for 30min with 70µg/mL cycloheximide
(prepared in DMSO), further diluted to reach a cell count
between 0.5 × 106 and 1.5 × 106 cells/mL and then

immediately injected into a flow cytometer MACSQuant VYB
(Miltenyi Biotec, Germany). Regions were determined as a
function of the mCitrine and mKate2 fluorescence. Optimal
laser and filter setups for the two dyes were as follows:
488 nm laser and 525/25 Band Pass B1-filter for mCitrine,
and 561 nm laser and 615/10 Band Pass Y2-filter for mKate2.
The expression profile of mKate2 was measured for each
sample by the MACSQuant VYB flow cytometer with the
MACSQuantify TM Software (Miltenyi Biotec, Germany). A
filter was applied on FSC-A/SSC-A to select homogeneous
cells regarding size, shape, and cellular complexity. The mean
fluorescence value of mKate2 and mCitrine was calculated
and exported.

Western Blot
Protein extracts were prepared following the protocol described
by Zhang et al. (2011). Briefly, 1 OD600nm of pelleted cells were
pre-treated with 100 µL of 2M lithium acetate solution, left
standing on ice for 5min, followed by 5min centrifugation at
5,000 g, 4◦C. The supernatant was discarded and 100 µL of
a 0.4M solution of NaOH added. After gentle resuspension
and 5min standing on ice, samples were centrifuged 5min at
4◦C. Cell pellets were vigorously vortexed with 60 µL of a
dye solution containing bromophenol-blue and supplemented
with 5% β-mercaptoethanol. After denaturation at 99◦C for
10min, 10 µL of each sample was deposited on a 10% SDS page
gel. Semi-dry transfer was performed on a PVDF membrane
(Merck Millipore, Darmstadt, Germany) using a Trans-Blot R©

SD Cell BioRad apparatus (15V at 600mA during 30min). Five
percent powdered milk in TBS was used as a blocking agent.
Mouse primary antibody anti-EGFP (Thermoscientific), and
secondary anti-mouse IgG coupled with alkaline phosphatase
(Thermoscientific) were diluted following instructions from the
provider. Antibody incubations were performed in 5% powdered
milk in TBS during 1 h. Proteins were detected by the incubation
of BCIP/NBT AP substrate buffer (Sigma-Aldrich, St. Louis,
MO, USA).

pHBA HPLC Analysis
Supernatants of pHBA-producing strains were collected during
3 days of batch growth. Analysis of the pHBA production was
carried out on a Waters Alliance HPLC system coupled with
a 996 Waters PDA detector. Twenty microliter of the culture
supernatant was injected on a Xterra column (100× 2.0mm and
3µm particle size) maintained at 45◦C during the analysis. The
mobile phases consisted in a mixture of A (H2Owith 0.1% formic
acid) and B (acetonitrile with 0.1% formic acid). The flow was
set at 1 mL/min with the following gradient: 0–0.1min 100% A,
0.1–11min 40% A and 60% B, 11–12.5min 100% B, 12.5–13min
100% A. Absorbance spectra from 210 to 400 nm were recorded.
pHBA was quantified by its absorbance at 254 nm.

Statistical Analysis
Statistical analyses were performed using the GRAPHPAD
PRISM 8.2 software.
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FIGURE 1 | Schematic representation the sHbaR sTF detecting pHBA in vivo in S. cerevisiae.

RESULTS AND DISCUSSION

Design and Validation of the Synthetic
Transcription-Based Biosensor
The architecture chosen for the pHBA sTF was inspired by the
work performed by Stelling and co-workers, in which a collection
of modular tripartite sTFs, activated by estradiol, were developed
(Ottoz et al., 2014). We thus designed our sTF using LexA and
B112 proteins as DNA binding and transactivation domains,
respectively (Figure 1). We cloned the ORF of the HbaR ligand
binding domain from R. palustris, known to be specifically
activated by pHBA (Egland and Harwood, 2000), between
the transactivation and DNA binding domains (pSCC185, see
Supplementary Table 2). To report the transcriptional activation
of our synthetic pHBA biosensor, designated as sHbaR, we
used the previously constructed vector FRP795 containing the
gene encoding for the mCitrine yellow fluorescent protein
downstream of the minimal CYC1 promoter with 8 LexA DNA
binding sites (Ottoz et al., 2014). The resulting strain, ySCC185-F,
bears both the reporter gene and the sHbaR sTF.

To validate transcriptional activation by pHBA, the strain
ySCC185-F was cultured in 96-well plates at 30◦C with or
without pHBA (2mM). mCitrine fluorescence was measured at
late exponential phase (OD600nm = 4) to get the best sensitivity
possible with a rather small volume of culture. As shown in
Figure 2, the mCitrine fluorescence is 3-fold higher with pHBA
compared with the control medium that did not contain the
inducer. We also verified that the measured fluorescent signal is
proportional to the quantity of mCitrine measured by Western
Blot (Supplementary Figure 1). Notwithstanding the fact that a
previous in vitro study described a sTF activated by pHBA (Yao
et al., 2018), to our knowledge, sHbaR is the first biosensor that
can be activated by pHBA in vivo, in S. cerevisiae.

pABA Also Activates the sHbaR Sensing
System
Analysis of the first experiments demonstrated that the
fluorescent signal measured with the strain ySCC185-F in the

FIGURE 2 | pHBA activation of sHbaR in S. cerevisiae. mCitrine fluorescence

was measured by flow cytometry at late exponential phase. Values are

calculated as the mean of three biological replicates.

absence of pHBA is greater than the signal measured without the
reporter (Supplementary Figure 2A). This could be due either
to some leakage of the synthetic promoter in the absence of the
sTF or promiscuous activation of sHbaR by molecule(s) present
in the medium or in the cells. In fact, promiscuity of benzoic
acid-responsive natural transcription factors has been reported
before, evidencing that they can respond, to different degrees, to
a variety of substituted benzoic acids (but not pHBA) (Xue et al.,
2014). Therefore, we hypothesized that a compound present in
the synthetic medium could be also an effector of sHbaR.

The most similar metabolite to pHBA found in our synthetic
media is p-aminobenzoic acid (pABA), which, according to
the supplier’s medium composition, is present at a final
concentration of 1.46µM. We thus analyzed if the low levels
of pABA in this medium could activate sHbaR. As expected,
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FIGURE 3 | pABA activates sHbaR. ySCC185-F was grown with YNB

containing or not pABA and with the addition, in the medium, of 2mM of

pHBA or pABA. Cells were harvested in late exponential phase. Values are

calculated as the mean of three biological replicates.

the fluorescence signal produced by the strain ySCC185-F is
reduced by almost 30% in a synthetic medium devoid of pABA
compared to the same one containing pABA (p-value 0.0014,
Figure 3). This indicates that a rather small concentration of
this metabolite in the growth medium indeed activates sHbaR
in vivo. We also tested if tyrosine and phenylalanine that possess
rather similar chemical structures to pHBA and that are present
in the CSM at a concentration of 300µM each could also
activate sHbaR. We grew ySCC185-F with and without these
amino acids and observed no difference between both conditions
(Supplementary Figure 2B). We also supplemented each of the
two amino acids to a final concentration of 2mM and could
not observe any difference in the level of fluorescence compared
with the control medium (Supplementary Figure 2B). Since
the promoter-reporter construction that we have used showed
absolutely no leakage of transcription in the absence of inducers
in a previous study (Ottoz et al., 2014), we thus attributed the
remaining fluorescence signal to the presence of other molecules
capable of activating sHbaR.

To further understand the possible competition or synergy
between pABA and pHBA, we grew the strain ySCC185-F in YNB
(containing or not pABA) in the presence of externally added
pABA or pHBA (2mM) (Figure 3). When pABA is present in
the medium, the addition of 2mM of pHBA or pABA induced,
respectively, a 3- or 4-fold fluorescence increase. The same trend
is observed on a synthetic medium devoid of endogenous pABA,
i.e., a 4-fold augmentation of fluorescence with 2mM pHBA
and 6-fold with 2mM pABA. We thus hypothesize that there is
no competition or synergy between these two metabolites and

sHbaR and that pABA is simply a better effector for sHbaR
than pHBA.

Promiscuity of the Synthetic sHbaR
Sensing System
Since sHbaR seems to not completely distinguish between two
different substituents at the para position of benzoic acid,
we decided to change the name of our biosensor to sBAD
(previously known as sHbaR), standing for “sensor of benzoic
acid derivatives.” We further investigated the promiscuity of
sBAD with different benzoic acid-derived chemicals at 2mM
each, in the absence of pABA in the growth medium (Figure 4).
Interestingly, benzoic acid itself leads to a 5-fold activation of
sBAD, a value comparable to the one obtained with pHBA (∼4
fold) and pABA (∼6 fold). The other three molecules substituted
in the ortho position (2HBA (salicylic acid), 2NBA (anthranilic
acid), and aspirin) were able to produce a low, but significant
(2-fold) response of sBAD. A general trend for the specificity is
remarkably conserved between hydroxy- or amino-substituted
benzoic acid derivatives: the para position is the preferred one,
followed by the ortho position and the meta position, which is
the least potent for sBAD activation. For the rest of the tested
metabolites, only those mono-substituted with a hydroxyl or
amino group at the ortho or para position of the benzoic ring
provided a significant increase of fluorescence compared to the
control. Surprisingly, a larger substituent at the ortho position
(aspirin, Figure 4H) can also activate sBAD. On the contrary,
all other di-substituted benzoic acid derivatives were incapable
of activating sBAD. This result indicates that sBAD has a rather
tight control of the number of substituents on the aromatic ring.

It is known that the positions and the chemical properties
of benzoic acid substituents influence the pKa of the carboxylic
group of the corresponding chemicals (Supplementary Table 4).
A difference of 1.5 pH units indeed exists between the ortho-
hydroxybenzoic acid (pKa = 3) and pHBA (pKa = 4.6). Thus, all
testedmetabolites have different pKas and their diffusion through
the plasma membrane of yeast might be slightly different.
Moreover, it is known that the rates of import of benzoic
acid derivatives (p-coumaric acid and pHBA) in S. cerevisiae
are different (Barnhart-Dailey et al., 2019). However, as pHBA,
2HBA, pABA, 2NBA, benzoic acid, and aspirin all activate sBAD
in vivo under the conditions tested, we assume that they are
transported in the cell in order to activate the intracellular sBAD
and trigger the corresponding fluorescence signal. Alternatively,
the diverse responses obtained could also originate from different
binding affinities of the different compounds to the sTF. As no
crystal structure of the native transcription factor HbaR from R.
palustris with its cognate binder (pHBA) is available, we can only
hypothesize that the delocalization ofπ-electrons of the aromatic
benzene ring may partly control the recognition of the inducer by
the binding domain of the sBAD biosensor.

Dynamic Properties of the sBAD Sensing
System
To obtain amore accurate resolution of the cellular responses and
the operational dynamic range of the most active inducers, we
quantified the binding affinity using dose-response curves with
the yeast-expressed sBAD (Figures 5A–D). For the metabolites
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FIGURE 4 | sBAD activity with different benzoic acid derivatives. mCitrine fluorescence was measured by flow cytometry. Values are calculated as the mean of three

biological replicates. The different metabolites are grouped by similarity. (1) mono hydroxybenzoic acids (A pHBA, B 2HBA, C 3HBA), (2) mono aminobenzoic acids (D

pABA, E 2NBA, F 3NBA), (3) (G) benzoic acid, (4) (H) aspirin, (5) dihydroxybenzoic acids (I 2,5DHBA, J 3,4DHBA), and (6) longer radical in position 1 of the benzoic

ring (K Ferulic acid, L Homovanillic acid, M Vanillic acid). Represented values are the average of the mean fluorescence measured (n = 10). Error bars indicate the

standard deviation of the measurements (n = 10). Statistical tests (Dunnett’s multiple comparisons test) were performed to calculate differential significance between

inducers and the control condition (***p < 0.0001 or **p < 0.001 or *p < 0.01).

FIGURE 5 | Dose-response curves obtained with the strongest benzoic acid derivative effectors of sBAD expressed in S. cerevisiae. mCitrine fluorescence was

measured by flow cytometry. The relative fluorescence of mCitrine was measured with cells grown at different concentration of (A) pHBA, (B) pABA, (C) Benzoic acid,

and (D) Aspirin is compared with the control condition. In (E), the affinity and dynamic parameters calculated from different the curves dose response are presented.

Values are calculated as the mean of three biological replicates.
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2HBA and 2NBA, we could not determine the different
parameters since the signal never reached saturation at the
highest concentrations tested (Supplementary Figure 3). This
was probably due to some growth defect of our strain cultured
with 2HBA at a concentration over 2mM and the difficulty in
dissolving 2NBA at concentrations higher than 3 mM.

In our experimental conditions, pABA and benzoic acid
induced sBAD at much lower concentrations than pHBA which
is supposed to be the natural inducer of HbaR in R. palustris. The
EC50 for pHBA is 4- and 15-fold higher than the ones measured
for pABA and benzoic acid, respectively (Table 1, Figure 5E).
It should be noted that both the EC50 and dynamic range
values were slightly smaller with aspirin than with pHBA. The
biggest dynamic range was found with pABA, which in any case
showed the best performance as an effector compared to the
three others tested activators (Figure 5E). Two hypotheses can
explain our results. The first one relates to the three-dimensional
structure of sBAD. In our design, the effector binding domain

TABLE 1 | Affinity and dynamic range parameters of sBAD with the inducers

HBA, pABA, benzoic acid, and aspirin.

Metabolite EC50 (µM) Dynamic range

HBA 749 ± 399 4.4 ± 0.5

pABA 169 ± 81 5.2 ± 0.6

Benzoic acid 47 ± 20 3.0 ± 0.3

Aspirin 598 ± 283 3.2 ± 0.3

Reported values are calculated as the mean of three biological replicates ± SD.

was inserted between two other proteins, thus possibly changing
the global fold of the HbaR sensing domain and consequently,
the specificity or affinity of sBAD for alternate molecules such as
pABA. The second hypothesis is that the native bacterial HbaR
transcription factor could be promiscuous. For example, ligand
promiscuity has been observed with the transcription factor
XylR of Pseudomonas putida which regulates genes involved in
the metabolism of aromatic compounds and can be activated
by toluene, m-xylene, or benzene (Galvão and de Lorenzo,
2006). Evenmore interesting, the transcription factor BenM from
Acinetobacter baylyi bears not one but two binding pockets in its
structure, one for cis,cis-muconic acid and the second for benzoic
acid (Craven et al., 2009). HbaR from R. palustris belongs to the
CRP-FNR transcription factor family that do not display ligand
promiscuity compared with the XylR-NtrC or LysR families
(Egland and Harwood, 2000). It should be noted, however, that
CRP from P. putida can be activated by cyclic AMP as well as
cyclic GMP, albeit with a lower affinity (Arce-Rodríguez et al.,
2012). All this information suggests that pHBA may not be the
only physiological binder of HbaR in R. palustris.

In vivo Application of sBAD in
pHBA-Overproducing Yeast
We next addressed whether sBAD would support real-time
monitoring of in vivo pHBA metabolite production. To do so,
we engineered the ySCC185-F strain to overproduce pHBA as
previously described (Averesch et al., 2017). We first deleted the
TRP3 gene and then substituted the wild-type version of ARO7
with the ARO4K229L gene. This strain named ySCC185-F-A

FIGURE 6 | sBAD functions in an engineered S. cerevisiae strain producing pHBA. (A) pHBA production during 65 h of growth in a medium devoid of pABA. (B)

mCitrine fluorescence during culture in strains ySCC185-30 and ySCC185-UbiC. (C) Correlation between the mCitrine fluorescence and pHBA production in

ySCC185-F UbiC. (D) Correlation between the ratio of mCitrine over mKATE2 fluorescence with pHBA production. Values are calculated as the mean of three

biological replicates.
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can produce higher yields of chorismate compared to the
ySCC185-F strain (Averesch et al., 2017). ySCC185-F-A was then
further modified to express the ubiC (chorismate lyase) gene
from E. coli under the constitutive promoter TDH3, leading
to the strain ySCC185-UbiC. We then assessed the number
of cells, fluorescence of mCitrine and mKate2 (reporter of the
cell number) for 65 h of cultivation with the newly constructed
strains ySCC185-UbiC and ySCC185-30 (control strain). Both
strains showed similar specific growth rates, indicating that the
achieved level of pHBA production does not alter cell physiology
(Supplementary Table 5). After 65 h of cultivation, the strain
ySCC185-UbiC produced 1.32mM of pHBA while the control
strain ySCC185-30 did not produce any detectable amounts of
it (Figure 6A). The production yield achieved in our strain is half
of that reported by Averesch et al. (2017). This difference might
be attributed to the modifications included in our parental strain
(ySCC185-F) or differences in the media composition/culture
conditions. Nevertheless, the concentrations reached during
the cultures are in the range of detection of our biosensor,
making it useful for the proof of concept of its potential use in
metabolic engineering.

We then analyzed the response of sBAD to the internal
production of pHBA in a medium devoid of pABA. As
previously seen with ySCC185-F, a residual fluorescence signal
is observed in the control strain ySCC185-30 and this signal
increases with time (Figure 6B). However, mCitrine fluorescence
is always higher with ySCC185-UbiC than with ySCC185-30.
The accumulation of mCitrine after 60 h in ySCC185-30 and
ySCC185-UbiC is probably due to a continuous production
of the fluorescent protein, even after cell growth arrest. In
fact, even the pHBA production increases after 60 h of culture
while the cell count does not change anymore after 40 h
(Supplementary Figure 4). Remarkably, there is a good linear
correlation (R2 = 0.83) between the mCitrine fluorescence
signal and pHBA amounts produced by ySCC185-F UbiC cells
(Figure 6C). More importantly, if we plot the ratio of the
mCitrine fluorescence values (representative of sBAD activity)
and the mKate2 fluorescence values (representative of the cell
count) against pHBA concentrations obtained in the production
experiments, the linearity of the response is even greater (R2 =

0.95, Figure 6D, Supplementary Figure 5).
Therefore, our synthetic biosensor sBAD is functional and

accurate enough to detect and measure the in vivo production
of pHBA and, as such, can be used to screen for strains
producing high titers of pHBA (up to 10mM) in batch cultures.
Furthermore, the capacity of sBAD may not be restricted to
screening pHBA overproduction in yeast but can also be applied
to pABA, benzoic acid and, to a lesser extent, other ortho-
monosubstituted benzoic acid derivatives.

CONCLUSIONS

This work has presented the successful design, construction
and characterization of an orthogonal benzoic acid derivative
biosensor (sBAD) in S. cerevisiae using the binding domain
of the bacterial HbaR from R. palustris linked to the LexA
protein as a DNA binding domain and B112 as a transactivation
domain. This biosensor system allowed us to easily monitor, in

real-time, a fluorescence signal linearly correlated to extracellular
concentrations of pHBA. The promiscuity of the biosensor
in yeast was also analyzed and, quite unexpectedly, pABA
and benzoic acid also produce responses that are even more
pronounced than the one measured with pHBA, notably in terms
of sensitivity and dynamic range (for pABA). The relatively
strong effect of the substituent position (para > ortho > meta),
rather than the chemical properties of the substituent itself,
indicate that the physicochemical properties that govern the
promiscuous recognition of benzoic acid derivatives by sBAD
are non-trivial. As our output signal is easily measurable, and
considering the strong linearity obtained between our reporter
signals and pHBA concentrations, our biosensor opens the way
to a more thorough study of its binding properties, for instance
with random mutagenesis approaches. This novel biosensor for
detecting benzoic acid derivatives can be considered a useful
tool to improve the production of production of such derivatives
by screening large populations of yeast mutants. Moreover, the
strong recognition of pABA or benzoic acid by sBAD could also
be used for medical sensing purposes in bodily or chemical fluids,
allowing an easily measurable output signal (fluorescence) to be
monitored over a range of fluid concentrations covering three
orders of magnitude.
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