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Abstract: This review proposes an overview of hybrid electric and full electric powertrains dedicated
to greener aircraft in the “sky decarbonization” context. After having situated the state of the art and
context of energy hybridization in the aviation sector, we propose the visit of several architectures for
powertrain electrification, situating the potential benefits but also the main challenges to be faced
to takeoff these new solutions. Then, as a first example, we consider the EU project “HASTECS”
(Hybrid Aircraft: reSearch on Thermal and Electric Components and Systems) in the framework of
Clean Sky 2. It relates to a series hybrid chain integrated into a regional aircraft. This energy system
integrates especially power electronics and electric machines with a high degree of integration, which
raises the “thermal challenge” and the need to integrate cooling devices. Through the snowball effects
typical of the aviation sector, this example emphasizes how important it is to “hunt for kilos”, an
alternative solution consisting of eliminating the power electronics within the powertrain. This is
why we propose a second example, which concerns an AC power channel without power electronics
that only integrates synchronous magnet machines (generator and motor) directly coupled on an AC
bus. This last architecture nevertheless raises questions in terms of stability, with one solution being
to insert an auxiliary hybridization branch via battery storage. Theoretical analyses and experiments
at a reduced power scale show the viability of this concept. Finally, some recommendations for future
research with potential technological breakthroughs complete that review.

Keywords: integrated design; multidisciplinary design optimization; more electric aircraft; hybrid
propulsion; hybridization; energy management; powertrain; stability; power electronics; electric machines

1. Introduction

The transportation sector is strongly contributing to gas emissions. It is then essential
to find sustainable solutions to reduce environmental degradation. This is particularly
important for the aviation sector, which is responsible for around 2–3% of CO2 emissions.

The COVID-19 crisis has provoked a huge slowdown of the air traffic progression, but
the huge trend towards growing traffic is resilient to successive crises: if the International
Air Transport Association (IATA) 2022 forecast is realized, traffic would still be 6% below
the pre-pandemic forecast [1], as illustrated in Figure 1. This trend is confirmed according
to Eurocontrol analysis and forecast [2], showing that the air traffic has reached 86% of
pre-pandemic (2019) traffic by August 2022, with the pre-pandemic recovery probably
reached between 2023 and 2025 according to low or high scenarios.

This growth in air traffic is likely to provoke an increase in greenhouse gas emissions
(in particular CO2) from this sector if no drastic measures are envisaged. Current measures
only slightly increase the efficiency of conventional systems and will not be sufficient
to achieve the ambitious decarbonization targets announced by the IATA: “to reduce
greenhouse gas emissions by 50% in 2050 with reference to 2005”. To achieve this goal,
several scenarios, one of which is illustrated in Figure 2, are based on a set of measures,
among which the development of new-generation technologies for aviation is prominent [3].
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recently [5]. While well-known industrial companies (Airbus, Boeing, Rolls Royce, Safran, 
etc.) support some of these projects, many others are driven by start-ups or “young com-
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1.1. Literature Review on Electrically Propelled Aircraft

In that context, the aviation sector actually progresses towards more electric air-
craft [4–10]. As illustrated in Figure 3, numerous projects for electrified aircraft have taken
off recently [5]. While well-known industrial companies (Airbus, Boeing, Rolls Royce,
Safran, etc.) support some of these projects, many others are driven by start-ups or “young
companies” in the aeronautical sector, as illustrated in Figure 4.

United Technologies Advanced Projects (UTAP) linked with UTC Aerospace has
embarked on the electrification of aircraft with a parallel hybrid powertrain including a
downsized (50%) gas turbine associated with a 1 MW auxiliary electric source. NASA was
also active with the “X-57 LEAPTECH” project, investigating an aircraft with distributed
propulsion [11]; however, it has very recently (i.e., Paris Air Show, June 2023) announced
the project abandonment due to the low maturity and availability of electric devices in the
powertrain. However, the project has demonstrated major advances in distributed electric
propulsion. In France, ONERA [12,13] also studies the same kinds of distributed propulsion
concepts with aerodynamic optimization, for example, “Dragon”, a partial turboelectric
with BLI (boundary layer ingestion) and distributed propulsion concepts, or “Ampere”. So
far, most hybrid-electric aircraft are powered by batteries. However, hydrogen solutions for
fuel cells ICEs (internal combustion engines) should also be considered to progress towards
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greener aircraft, as announced by Airbus with its three zero-emission-aircraft concepts
(Turboprop @100 pax–1000 nm, Turbofan @ 100 pax–2000 nm, and Blended wing body @
200 pax–2000 nm). The reader can find a more detailed report on the state of the art in
hybrid-electric and full-electric aircraft concepts in [14].
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Based on these recent studies and feedback, the potential gains of electrification,
whether it be a more electric (hybrid) or all-electric, battery or fuel cell architecture, affect
the aerodynamics and energy efficiency of aircraft (engine and powertrain). This dual
gain objective, summarized in Section 2, suggests a reduction in polluting emissions,
particularly CO2.
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Hybrid-electric- and full-electric-propulsion concepts both require new technologies
and management strategies. These progress have to be integrated into hybrid-electric and
full-electric powertrains in order to enhance aircraft performance, especially efficiency.
Electric solutions reduce fossil source demand and lower aircraft greenhouse gas emissions
and the environmental footprint of future aircraft [10–26]. A review of the technological
challenges hampering the road toward more electric aircraft powertrains is proposed in [27].
However, compared with thermal-source solutions, electric power generally involves
a weight increase on board, making power integration a critical issue [10]. A heavier
embedded weight needs more wing surface and even more power to fly the aircraft; this
is the “snowball effect” typically addressed in aviation. In [10], an aircraft fully equipped
with thermal engines was considered as a “reference aircraft” to assess weight increase
due to snowball effects and its consequences on the fuel consumption. Figure 5 shows a
comparison between three conventional aircraft (with thermal engines only) with three
different payloads (6500/8500/10,500 kg). It shows that adding 1 embedded ton would
lead to +6.5% max take-off weight (MTOW) and 6% additional fuel burn.
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Consequently, new integrated technological solutions for enhancing both efficiencies
and the specific power and energy of aircraft devices are needed. This firstly requires
optimizing the aircraft at a component (technology) level. However, a “system-level opti-
mization” is also essential. The left part of Figure 6 illustrates major couplings that make the
integrated optimization at the aircraft level very complex, while the right part of this figure
illustrates an “extreme situation” obtained through local optimizations. To tackle these
issues, multidisciplinary design optimization (MDO) approaches that investigate aircraft
architecture optimization with new technologies of components are relevant. As illustrated
in Figure 6, such ideas have been promoted for complex system optimization involving
multiple fields of disciplines and various design levels, from elementary components to the
whole system [28–40].

However, MDOs are generally based on rough models often centred around specific
power and energies (i.e., kW/kg, kWh/kg) to simultaneously integrate the aircraft architec-
ture with the powertrain and the aerodynamic structure design inside the MDO process.
MDO approaches based on technological assessments are seldom used. Some studies
focus on specific aspects of the electrified powertrain, for example, filtering stages [15] or
electric machines [16]. Certain authors analyse sizing and flight mission interactions [20]
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or the influence of the EMS (energy management strategy) on the hybrid-electric-aircraft
performance [28,29]. An MDO example of a regional aircraft with a series hybrid-electric
powertrain is detailed in Section 3. Models integrated into the MDO are based on techno-
logical assessments. The system optimization also integrates the EMS assessed over typical
flight missions.
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1.2. Main Issues in the Review

In Section 2, this review sets the context of aircraft electrification, synthesizing its
potential gains in terms of aerodynamics, engine optimization, and energy efficiency
of the powertrain. By defining indicators that determine the hybridization difficulty, a
comparison of aviation with other transport modes (railway, boats, and electric cars) is
proposed, emphasizing the specificities of aircraft hybridization. Then, a classification of
the main hybrid-electric and electric architectures is reviewed. Finally, a review of the
state of the art in hybrid-electric and full-electric powertrains for recent and future aircraft
is proposed.

In Section 3, the first example is explored dealing with the optimal design of the
propulsion chain of a series of hybrid regional aircraft coupling thermal engines (gas tur-
bines) and fuel cells. Technological models are “embedded” in an MDO process. Two target
technologies with different levels of assessments are considered in the MDO for electrical
and thermal components which progressively forecast the technological progress. The work
was performed in the EU project “HASTECS” for “Hybrid Aircraft: Academic Research
on Thermal and Electric Components and Systems”. In HASTECS, several technological
innovations were proposed [41–52] for power electronics with high-performance cooling.
Optimization tends to enhance the voltage bus involving insulation challenges with partial
discharge occurrences. These innovative concepts are applied to a series of hybrid archi-
tectures beyond the “MW” and beyond the “kV” for the “ultra-HVDC” (high-voltage DC)
bus, which interfaces powertrain devices through power electronics.

However, while the previous example emphasizes how important it is to “hunt for
kilos”, a clear solution consists in eliminating power electronics within the powertrain; this
is what we propose in the second example of Section 4, which concerns an AC power chan-
nel without power electronics, only integrating permanent magnet synchronous machines
(generator and motor) directly coupled on an AC bus. This last architecture, nevertheless,
raises questions in terms of stability, one solution being to insert an auxiliary hybridization
branch via battery storage to stabilize the transient operation. Theoretical analyses and
an experiment at a reduced power scale show the viability of this concept. This kind of
hybrid structure was also proposed in [53], but for a non-propulsive electric network. In
that study, a generator associated with a diode rectifier was coupled through an HVDC bus
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with a hybridization branch composed of a DC-DC bidirectional converter powered by a
battery. An integrated control was synthesized to ensure channel stability.

2. Context of Electrically Propelled Aircraft
2.1. Potential Benefits in Terms of Engine Optimization, Aerodynamics, and Energy Efficiency

Various benefits are potentially brought by propelling electrification:

- The first benefit is related to the thermal engine design, as illustrated in Figure 7a,
due to the degrees of freedom offered by the hybrid architectures. Indeed, the electric
power boost capability can be useful in particular operation zones; it allows for
optimizing the engine design with respect to conventional propulsion, where the gas
turbine alone propels the aircraft.

- Secondly, Figure 7 illustrates the aerodynamic benefits, which are studied in many
projects but are not detailed in the examples of Sections 3 and 4. However, distributed
propulsion introduces, in the first place, potential gains allowing a reduction in wing
surface (thus decreasing drag in flight) via the concept of “blown wing”, as proposed,
for example, by NASA [11] and ONERA [12,13]. This concept consists, during the
landing phase, of increasing the lift thanks to the blast effect caused by the distributed
electric propellers. The high dynamics of electrically powered propellers also suggest
the possibility of eliminating or reducing the rear vertical plane (reduction in weight
and drag) via the concept of “differential thrust” [10]. Finally, some studies suggest
that vortex effects can be reduced by adding propellers at the wingtips, for example,
in the X57 concept [11]. Overall, coupling all aerodynamic benefits, Thauvin [10]
estimates a net reduction of 15–20% in fuel consumption for a regional aircraft.

- Finally, energy benefits due to hybrid-electric-powertrain optimization will be es-
pecially detailed in the example of Section 3. The example of Section 4 presents a
typical hybrid architecture that mainly suppresses power electronics, thus obtaining
energy gains by reducing the powertrain weight. These “energy gains” are the result
of the trade-off between weight reduction and powertrain efficiency including the
gas turbine operation over the flight mission. Indeed, increasing the efficiency of
each conversion stage implies a reduced energy demand of the upstream stages in
the propulsion chain, offering subsequent weight gains. Moreover, in the case of
hybrid systems combining a main thermal source, typically a gas turbine, and aux-
iliary electrical sources (batteries or fuel cells), it is possible to reduce the fuel burn
through a power management optimization of both sources to avoid operating the
thermal engines in very-high-consuming regimes obtained at low power operation, as
displayed in Figure 7c. Specific flight sequences such as taxiing or descent can thus be
advantageously “electrified”.

The advantages of energy hybridization between a main thermal source and an auxil-
iary electric source are well known in terrestrial transports, especially in electrified cars,
but also in railway and marine transportation. However, this depends heavily on the
characteristics of the driving mission; “an aircraft does not recover energy during brak-
ing or descent”, unlike electric vehicles. Moreover, the intermittence of mission cycles is
favourable for hybridization. However, aircraft missions are mainly continuous and energy-
consuming. Figure 8 illustrates two indicators of “hybridability” which were introduced
in [54]: the PHP (“Power Hybridization Potential”) indicates the difficulty of hybridizing a
mission in terms of power, while the EHP (“Energy Hybridization Potential”) indicates the
difficulty in terms of energy needs. The latter can be seen as a frequency for hybridization:

PHP = 1 −
Paverage

Pmax
; EHP =

Pmax

Eu (stored energy)
(1)

where Paverage and Pmax are, respectively, the average and maximum powers over the whole
driving mission, Eu being the “useful energy” that must be stored to be provided by the
secondary electrical source (storage device).
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In the lower part of Figure 8, two different missions in terms of power intermittence
but with the same PHP are compared. “Mission 1” is clearly more difficult to face (with
an increased storage size) than “Mission 2”, which is emphasized by a higher EHP in the
second mission.

Table 1 draws a comparison in terms of the “difficulty of hybridizing the driving
mission” (PHP, EHP) of the driving missions detailed in [10]. The comparison is between
the automotive, railway, maritime, and aeronautical domains; for the latter, the case of a
regional aircraft on a 200-nautical-mile (nm) route is considered.

Table 1. Comparison of the “difficulty of hybridizing the driving mission” for different trans-
port modes.

Car Train Ship Aircraft

Urban Rural
Road

Motorway
150 km/h

Local
Service Switching Urban

Transport Container Passenger
Ferry

Regional
200 nm

PHP (%) 94 85 74 65 83 91 43 63 33

EHP
(mHz) 66 30 12 3 29 20 n/a n/a 0.22

This comparative analysis confirms that “the aircraft hybridization is not in a straight
line”, the flight mission being too “heavy” to be hybridized and a priori costly in terms of
the energy stored inside the electric auxiliary source (battery or hydrogen fuel cell); the
EHP indicator is clearly the lowest with respect to other transport modes. It is even more
necessary to combine several hybridization benefits for gathering energy gains, but also for
both engine optimization and aerodynamics, in order to supplant conventional all-thermal
aircraft whose efficiency has been optimized (e.g., the Airbus NEO propulsion systems
consume less than 3 L per passenger per 100 km) and for which SAFs (sustainable aviation
fuels) open up advantageous paths from an environmental point of view, even if their
capacities remain limited.

2.2. Hybrid-Electric and Full-Electric Architectures

As with electric and hybrid vehicles on the ground, there is a fairly wide variety
of architectures for aircraft electrification, from “all-electric” to “series”, “parallel”, or
“series/parallel” hybrid, as illustrated in Figure 9. The current projects can be classified
among these architectures according to their hybridization ratio (HP, HE), as defined in
Figure 10. The series architecture presented in the following section was chosen by Airbus in
the context of the European Clean Sky 2/HASTECS project. Indeed, as the propelling power
is fully electrified (HP = 100%), this architecture involves the most ambitious technological
breakthrough. In contrast, the parallel hybrid architecture appears to be a “more prudent
intermediate path”, as shown in the study carried out in [10].

- Parallel hybrid architecture: In this structure, the conventional thermal engine is
assisted by the eMotor during high-fuel-consumption-demand phases (low propulsive
power demand), exactly as in an electric car. The weight addition due to the powertrain
electrification is minimized compared to that of other hybrid architectures, and it was
found in [10] to be the most promising in terms of fuel burn reduction rate. For
example, the AMPAIRE start-up [55] built a prototype of a hybrid-electric parallel
aircraft, which ran until its fly tests in California in 2019.

- Series hybrid architecture: With 100% electric propulsion, like “Turboelectric” and
“All Electric” solutions, this structure is highly compelling and involves the most
ambitious technological breakthroughs, involving high-power devices (cables, electric
machines, power electronics) and “ultra HVDC bus voltage standards” with sub-
sequent issues in terms of insulation (partial discharges) in aircraft environments,
especially at low pressures. This is a reason why Airbus, as the topic leader in the
EU Clean Sky 2 “HASTECS” project, has chosen to retain this architecture for a re-
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gional aircraft case study; this example is detailed in Section 3. Many other projects
have made the same choice, starting with the American start-up Zunum Aero [56],
supported by Boeing, that develops a family of series hybrid-electric small regional
aircraft, the first being the ZA10 which is able to transport 10 Pax flying over a range of
600 nm. The aircraft concept uses either all-electric or hybrid-electric modes to extend
the flight range. In cooperation with SAFRAN, which has provided a 500 kW gas
turbine collected from an existing helicopter, the powertrain concept can switch either
to an all-electric or a hybrid-electric powertrain to extend the aircraft mission. The
series hybrid-electric propulsion can also be applied to VTOL and STOL (vertical and
short take-off and landing aircraft) as for the Bell NEXUS [57]. Here, hybridization is
necessary to extend the fight range.

- The “SPPH” (series-parallel partial-hybrid) powertrain is an intermediate concept
between series and parallel hybrid architectures. A turboshaft engine partly powers
a generator that feeds electric motors driving propellers, which distribute thrust
along the wings. The latter is associated with storage batteries. The aircraft thrust is
generated both by electric and thermal engines; the French start-up “Cassio”, with
Voltaero, and the “Ecopulse” project, comprising Daher, Safran, and Airbus, are among
this family of concepts.

- All-electric and zero-emission architecture: Flying all-electric powertrain is far from
easy. Several concepts and prototypes have been proposed, starting with Siemens
and its “Extra 330” concept, with an aircraft speed beyond 340 km/h. It especially
embeds a very high specific power electric motor [58]. Such a specific power of 5
kW/kg has never been reached for an aircraft electric motor. Beyond that, Eviation is
a young company in Israel that is also studying a full-electric concept. Their aircraft,
able to transport nine pax by means of its 800 kW electric propulsion and powered by
lithium-ion batteries, was presented at the Paris Air Show in 2019. Alongside these
new generations of aircraft, VTOL and STOL aircraft are also in the “all-electric race”.
Airbus has also proposed its “City Airbus”, a four-seat multi-copter concept. The
market for VTOL and STOL aircraft is rapidly growing; aircraft manufacturers want
to relieve road traffic congestion and make it more fluid. However, considering the
limitations of battery-specific energy for current and medium-term solutions, the range
of all-electric aircraft is still very limited. Thauvin [10] studied technology targets by
assessing the required battery-specific energy to get an aircraft off the ground and
have it fly over a certain range depending on its maximum take-off weight (MTOW)
and its performance-level assessment. The technological assessment related to these
entry-into-service (EIS) targets is summarized in Table 2. In Figure 11, based on the
example of a 30-ton (t) MTOW (blue curves), a 100 nm (nautical miles) full-electric
flight appears to be achievable with the battery technology prediction of “EIS2025”
(EIS in 2025 with 280 Wh/kg for battery-specific energy target), while, in the longer
term, the battery technology of “EIS2030+” (EIS beyond 2030 with 380 Wh/kg for
battery-specific energy target) would enable the all-electric aircraft to fly nearly 200 nm,
which is still strongly limited.

In this context, solutions with fuel cells or hydrogen ICEs become relevant options for
sustainable aircraft: Airbus actually promotes the “ZeroE” concept with the ambition of
releasing hydrogen demonstrators by 2026. In the next section, we propose a synthesis of a
trade-off assessed in the framework of HASTECS comparing the best-performing batteries
and fuel cells with liquid hydrogen storage. Whereas the aim is to maximize the specific
energy (kWh/kg), it appears that a range extension (energy demand increase) is consistent
when switching towards hydrogen solutions. ZeroAvia is an American start-up that has
planned to fly a hydrogen-powered 6–20 pax plane with a range of up to 500 miles. Several
regional flight tests are currently being operated. The French start-up “Beyond Aero” is
also heading in the same direction. In 2020, the European Union (EU) announced its Clean
Hydrogen Plan [59]: in the context of the post-COVID-19 situation, the European Union is
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first and foremost investing in hydrogen technologies. We will come back to that promising
topic in the conclusion and prospects of this review.
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Table 2. Electrical component assessments according to EIS (entry into service).

EIS 2025 EIS 2030+

Electric machine Specific power
Efficiency

7 kW/kg
96%

11 kW/kg
98.5%

Power Electronics Specific power 15 kW/kg
99%

20 kW/kg
99.5%

Battery
Specific energy
Max charge/discharge (C rate)
Efficiency

280 Wh/kg
2/5
90%

380 Wh/kg
2/5
95%

Cables DC bus voltage 540 V 1500 V
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Figure 11. Technology target setting for battery-powered full-electric aircraft.

2.3. Electrified Powertrain Is Heavier Than Conventional Thermal Ones But
“Technology Sensitive”

As introduced in Section 1.1 in Figure 5, weight is crucial in aeronautics due to the
“snowball effect”. However, generally, replacing conventional thermal propulsion with an
electrified powertrain leads to enhancing the embedded weight. Indeed, as illustrated in
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Figure 12, a hybrid-electric powertrain involves not only thermal engines with gas turbines
and a propelling device but also energy-conversion devices with power electronics, gener-
ators, electric motors, cables, bus bars, etc., and the hybridization branch with electrical
auxiliary sources (batteries or fuel cells). In the end, due to the snowball effect, weight
added onto individual devices increases the aircraft’s MTOW, thus reducing the potential
benefits of electrification.
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Figure 12. Simplified synopsis of a single-channel hybrid-electric powertrain illustrating snowball
effects on weights (each added “kg” at device level involves an increase in the global embedded
weight (MTOW) which also involves a subsequent increase in structure and, consequently, of the fuel
weight necessary for the flight).

In [41], we analysed the sensitivity of technological performance on the global weight
(MTOW) and on the fuel burn in a case study of a hybrid-electric regional aircraft whose
characteristics are identical to the ones detailed in the next section. In Table 3, several levels
of technological targets on efficiency and specific power–energy are assessed for power
electronics, electric machines (eMotor and eGenerator), and an auxiliary electric source
(here, a fuel cell with liquid hydrogen). The “2025” and “2035 Targets” corresponding
to the “HASTECS project” requirements and another “more aggressive” target (“20xx
Target”) have been added to forecast the longer term. The upper part of Figure 13 illustrates
the weight reduction at the aircraft level (MTOW) in % with respect to the “2025 target”
assessments set in Table 3. The weight reduction effect is firstly shown device by device
due to the electric machine performance (left part of Figure 13) and the power electronics
performance (middle part of Figure 13). Then, the weight reduction sensitivity is displayed
at the powertrain level by coupling all-electric components (as illustrated in the right part
of Figure 13). The same analysis is proposed for the fuel burn sensitivity in the lower part
of Figure 13.

This sensitivity analysis in Figure 13 emphasizes a key issue: “even if the electric
powertrain is a priori heavier than thermal one, the performance of electric technologies
(efficiency and specific power and energy) strongly influences both MTOW and fuel burn”.
Regarding the reference “2025 Target” and crossing towards the “20XX Target” would
reduce the MTOW of a regional hybrid-electric aircraft by more than 12% (emphasized by
the grey bar in the upper part of Figure 13) and reduce its fuel burn by 17% (illustrated by
the grey bar in the lower part of Figure 13), which is more than significant. This device-by-
device sensitivity analysis also shows that the electric machine (motor and generator) is the
most influential element in the whole powertrain system.
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Table 3. Electric component assessments (SP: specific power; SE: specific energy).

2025 Target 2035 Target 20XX Target

eMotor/eGenerator

SP + cooling
Efficiency

5 kW/kg
96%

10 kW/kg
98.5%

15 kW/kg
99%

Power Electronics

SP + cooling
Efficiency

15 kW/kg
98%

25 kW/kg
99.5%

35 kW/kg
99.8%

Fuel Cell—Liquid H2

H2 + tank SE
Auxiliary SP
Stack SP

3.3 kWh/kg
1.3 kW/kg
4 kW/kg

DC Bus

Ultra HVDC 2000 V

2.4. Literature Review on “Power Electronic-Less”-Electric and Hybrid-Electric Architectures

As introduced in Section 1.2, power electronics offer degrees of freedom that allow
for controlling power sources and propulsion devices coupled through a DC bus. These
solutions are integrated into most of the “more electric aircraft” architectures.

However, as illustrated in Figure 12, power electronics are responsible for a consequent
share of weight embedded in electric powertrains. One alternative solution may be to
suppress power electronic stages directly coupling electric machines (generator and motors)
through an AC bus in order to lower the weight cost. Several electric machines may be used
inside such “power electronic-less” architectures. For example, NASA studied [60,61] an AC
electric power chain with a distributed propulsion where the electrical machines are doubly
fed induction machines with power electronics placed on the rotor side. Collins Aerospace
has patented [62] another solution applied to the BLI (boundary layer ingestion, introduced
in Section 1.1) application concept consisting of a turbofan driving a synchronous or
asynchronous generator connected via an AC bus to an asynchronous motor driving a
propeller. This AC bus is also associated with a DC source connected in parallel to the AC
bus, which can have hybridization and/or start-up assistance functions for the gas turbine.

However, coupling electric machines (generators and motors) with power electronics
allows us to control the transient operation of the propulsive system. Contrarily, stability
is at stake in “power electronic-less” architectures, as detailed in Section 4. Currently,
this aspect constitutes an emerging topic in the state of the art, mainly composed of
several patents proposed by actors in the industrial sector (Collins Aerospace [62], Rolls-
Royce [63–65], Siemens [66], and Safran [67]). However, these patent propositions are
mainly concentrated on architecture issues. Indeed, both the static and dynamic operation
of AC powertrains are rarely studied. In Section 4, this issue is clearly addressed in the case
of the direct association of PMSMs (permanent-magnet synchronous machines) through
an AC bus. These electric machines are often used in embedded applications due to their
maximum capacity in terms of specific torque and power. Section 4 thus proposes, firstly,
a stability analysis of a power channel with direct AC bus coupling of PM synchronous
generators and motors showing that oscillations may appear in certain circumstances.
In order to ensure a stable operation of such powertrain architectures, regardless of the
operating point, a solution consists of adding a battery-based hybridization branch with
its control.

3. “HASTECS”, a Series Hybrid-Electric Powertrain for Regional Aircraft: From
Technological Optimization to the MDO of the Whole Powertrain

While the models used in the previous sensitivity analysis (presented in Section 2.3)
and those usually used for the MDO of electrified aircraft are very macroscopic, mainly
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based on assumptions regarding specific power (SP in kW/kg) and energy (SE in kWh/kg)
or efficiencies (η%), this section approaches the “technological design and optimization”
of the power conversion chain elements of a hybrid-electric powertrain. Furthermore,
regarding the potential benefits in terms of engine optimization, aerodynamics, and energy
efficiency introduced in Section 2.1, here, we only address the “energy” point of view.

3.1. The HASTECS Project

In the framework of the EU program Clean Sky 2, targeting greener aircraft, the
HASTECS project (Hybrid Aircraft: reSearch on Thermal and Electric Components and
Systems) [52] headed by Airbus aimed to design powertrain devices for a series of hybrid-
electric regional aircraft (70 pax, 600 nm, with a global propulsive power beyond 5 MW).
The vision of that project was both methodological (modelling/simulation/optimization,
MDO, etc.) and technological, especially coupling electrical and thermal issues involved in
the technological design at a device level and in the integrated optimal design (MDO) of
the whole powertrain. Six work packages involving six PhD theses and two post-doctoral
studies have led to the results summarized in that section, relating to:

- Highly integrated power electronics [48,49] and their high-performance cooling [50,51];
- Highly integrated electric motor [44,45] and its high-performance cooling [42,43];
- Facing environment constraints due to high power/voltage: partial discharges [46,47];
- Prospects towards high-energy-density batteries and fuel cells [52];
- Integrated optimal design of the powertrain [14,68].

Coordinated by Toulouse INP University, the HASTECS project has gathered the
expertise of several French labs, the LAPLACE for energy conversion, the Pprime institute
for thermal aspects, and the Cirimat for Lithium Ion batteries. The research involvement in
the HASTECS project is illustrated in Figure 14.
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3.2. Local Optimization of Power Electronics

Several technological and structural choices have been made to increase the specific
power of power electronics, as illustrated in Figure 15a, keeping efficiency at the highest
standards. Readers can find more details on that topic in [48,49]. Based on the HASTECS
requirements, the seventh generation of silicon IGBTs (insulated-gate bipolar transistors)
are preferred over new wide-gap devices thanks to their low conduction losses leading to
power inverter efficiencies of approximately 99%. Multilevel inverter structures have been
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selected, with a 3-level NPC (neutral point clamped) structure for an HVDC bus below 2 kV
and a 5-level ANPC (active NPC) structure for those beyond 2 kV. Inside the MDO process,
presented later in this section, 1200 V and 1700 V IGBTs have been rated depending on
the bus voltage level. Specific PWM (pulse width modulation) strategies (“DPWMmin”
strategy) with loss minimization plus bus bar optimization (taking into account partial
discharge constraints) have completed the electrical design of this MW range converter.
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The local optimization of this power converter has converged towards a 2 kV DC bus.
This DC bus standard also deals with the system optimum (i.e., powertrain MDO), taking
into account (among other system couplings) electric machine association fulfilling partial
discharge constraints and cabling sizing.

However, the high integration of such a power converter with low volume and weight
also involves critical thermal problems. The study detailed in [50,51] proposed a very
high-performance two-phase cooling device, whose structure is depicted in Figure 15b. The
capillary pumped loop for integrated power (CPLIP) cooling system allows suppressing the
electric pump that is usually added to that device. The heat sources, due to power module
losses, are placed face to face around the “evaporator”. The diphasic system (gaseous at the
output of the evaporator and liquid at the output of the condenser) offers huge capabilities
in terms of heat extraction: the power module is able to evacuate 4.5 kW of thermal losses
for each kg of the whole cooling system. Coupling the power electronic design with this
high-performance cooling device, the MW range power converter offers specific powers
beyond 30 kW/kg.

3.3. Local Optimization of the Electromechanical Actuator with Partial Discharge Tolerance

In the same way, the actuation sub-system (i.e., the eMotor for aircraft propelling) has
been optimally designed [44,45] following several drivers to increase both specific power
and efficiency, as illustrated in Figure 16a. The main drivers are related to this high-speed
actuator (here, an SMPMSM: surface-mounted permanent-magnet synchronous machine)
with limited but increased peripheral speeds and temperature-tolerant high-flux-density
permanent magnets (SmCo). Specific stator windings with twisted Litz wires have been
designed to limit AC joule losses at high frequencies. Ultra-thin magnetic sheets are also
used to lower iron losses. Furthermore, a detailed study on partial discharge tolerance in
the insulation system of the electric motor stator was achieved [46,47].
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The actuation system optimization is driven by numerous design constraints, the most
sensitive being the temperature limits inside the electric motor. As for power electronics, a
high-performance water cooling system was studied in [42,43]. A glycol water jacket was
used for the external cooling of the stator and the rotor shaft cooling. However, in order to
overshoot the specific power target (10 kW/kg) set considering the HASTECS requirements
for the eMotor design, an additional cooling channel directly inside the stator slots were
required to face the joule losses, as illustrated in Figure 16b.

Coupling the electromechanical design with that cooling device, it has been analysed
that transient states due to thermal inertia in the actuator were predominant and should
be exploited during the flight mission. As illustrated in the stator temperature profile in
Figure 16b, thermal limits are reached at the top of a climb, especially inside the stator-
end windings. Thus, exploiting thermal inertia with a transient-state thermal model (see
Figure 16c, right), the actuator power density is far beyond that obtained with optimization
based on a quasi-static thermal model (see Figure 16c, left).

The synopsis in Figure 17a depicts local optimization based on the clearing meta-
heuristic [69] only minimizing the eMotor weight, also detailed in [68]. In that process, a
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large set of multiphysical constraints are integrated by coupling thermal limits with partial
discharge tolerance and other geometrical and electromagnetic constraints. Note also that
this optimization and all the ones that follow are achieved over the flight mission, fulfilling
constraints for all flight sequences. In particular, the thermal limits are derived all over the
flight mission.
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Figure 17. Local optimization of the high-speed SMPMSM actuator weight: (a) the process and
(b) results without and with internal cooling inside slots.

As illustrated in Figure 17b, the left part displays the motor structure with only
external cooling for both the stator and rotor, while the right part of that same figure
displays the influence of water cooling directly inside stator slots, which strongly increases
the specific power of this high-speed SMPMSM actuator beyond 15 kW/kg, with high
efficiencies (>98%).

3.4. Prospective State of the Art and Modelling of High-Energy-Density Batteries vs. Fuel Cells

To complete both the design and modelling task in HASTECS and to progress towards
the system integration of the whole powertrain, a state of the art and modelling study on
auxiliary electric sources was conducted in [52], assessing the trade-off between future
high-density batteries and fuel cells. This prospective study clearly showed that the energy
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density of fuel cells is significantly higher than that of the best lithium-ion batteries, such as
NMC solid-state technologies. It is important to notice that this comment is only related to
the mission typically involved in regional flights: this trade-off was based on the particular
power–energy requirement defined in Figure 18: Pmax = 280 kW and Etot = 160 kWh are
required for the auxiliary electric source to be controlled with a “simple EMS” (energy
management system), which a priori sets the hybrid ratio (HR) defining the electric vs. full
(electric + thermal) power ratio, i.e.,
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Figure 18. Flight mission definition to set the trade-off for a regional flight (400 nm) with a “simple
EMS” (full-electric taxing and descent and full-thermal climb and cruise); comparison table between
best power or energy-oriented batteries and fuel cell with liquid cryogenic H2.

* HR = 1 for full-electric operation during taxi and descent;
* HR = 0 for full-thermal operation during climb and cruise sequences.
The Wh/kg ratio of the fuel cell system was derived, considering both the fuel cell stack

with its balance of plant and the H2 storage device. For the latter, cryogenic (20 ◦K) liquid
storage was selected for the hydrogen, assessing 20% of the H2 tank weight. A specific
power of 1.5 kW/kg was assessed for the fuel cell stack with its balance of plant (including
the thermal management device). Based on these assessments and the mission profile in
Figure 18, Table 4 shows that the specific energy of a fuel cell system, including its balance
of plant and liquid cryogenic H2, offers a global specific energy which is multiplied by 1.8
the one obtained with the best-performing batteries according to prospective assessments
for the next 5–10 years.

Table 4. Comparison between best power- or energy-oriented batteries and fuel cells with liquid
cryogenic H2.

LTO NMC Solid State FC System with
Liquid H2

Perspectives
(5–10 years)

Cell level ~180–200 Wh/kg ~650 Wh/kg ~1000 Wh/kg

System level ~100 Wh/kg ~325 Wh/kg ~560 Wh/kg
LTO: lithium titanium oxide; NMC: nickel manganese cobalt; FC: fuel cell.

3.5. MDO of the Whole Hybrid-Electric Powertrain
3.5.1. On the MDO Process Formulation

Beyond the design of each powertrain device studied separately, a multidisciplinary
design by optimization (MDO), introduced in Section 1.1 and illustrated in Figure 6, was
conducted in [14]. The MDO process integrates a large set of surrogated models, as illus-
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trated in Figure 19, some of them directly obtained from HASTECS studies. Complementary
models for gas turbines, propellers, cables, and gearboxes have been derived from the state
of the art and with the help of Airbus studies [10].
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3.5.2. Optimization of the Whole Powertrain

The MDO of the whole hybrid-electric powertrain was the last objective of the
HASTECS project. Readers may find much detail on device models, especially on surrogate
models for optimization, in [68] for the electromechanical actuator and in [14,70] for the
whole powertrain system and the MDO problem formulation. Once the powertrain models
are integrated into the MDO, an implicit loop estimates the required thrust to take off the
aircraft. Indeed, as illustrated in Figure 20, weight variations during the MDO convergence
induce a snowball effect as the aircraft’s maximum take-off weight (MTOW) is derived
from unit weights involving its subsequent thrust needs. This sizing loop may be complex
when involving couplings with both structure and aerodynamics (drag penalties). In our
case, as illustrated in Figure 20, the problem was linearized, simplifying the equation and
assessing variations in the MTOW versus the thrust required to fly the mission:

Thrustnew = Thrustref × (MTOWnew)/(MTOWref).

This approach was validated (for a limited weight range) by comparing this linear
model with more accurate models (aerodynamic models) as detailed in [10].

Three different MDO formulations are illustrated in Figure 21a. They are compared in
the results below:

(1) A “local optimization” focusing on the eMotor weight minimization: in this case,
other powertrain devices are considered with fixed ratings and the snowball effect
is involved;

(2) A first global optimization minimizing the whole electric powertrain weight;
(3) A second global optimization minimizing the fuel burn of the overall hybrid-electric aircraft.
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Figure 20. System integration with environment couplings and snowball effect. Linearization
between thrust and global embedded weight (MTOW).

When the “simple EMS” is coupled in the optimization process with an “a priori” set
hybrid ratio (HR) as defined in Figure 18, the third formulation (i.e., fuel burn minimization
with global MDO) involves the 14 decision variables displayed in Figure 21b with a large (15)
and heterogeneous set of design constraints coupling electrical, electromechanical, and
thermal constraints and involving the partial discharge tolerance (filling factor verification
for stator windings). A supplementary constraint was integrated at the aircraft level to
integrate the snowball effect.
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The clearing procedure [69] was selected for optimizing the propulsion system of the
hybrid aircraft. Clearing is a niching elitist genetic algorithm that usually offers better
results than standard genetic algorithms, especially on multiple nonlinear constraints and
multimodal problems. About 7 days of CPU time was required to solve each optimization
on a standard computer.

As displayed in Figure 21c, left, the best solution in terms of kerosene consumption
was logically found with the “fuel burn optimization”, which consumes 3% less than the
fuel burn assessed from the “local optimization”. However, it should be noted that the
“fuel burn optimization” formulation slightly increases the powertrain weight (7361 kg is
obtained with reference to the 7063 kg obtained with the powertrain weight minimization).
In fact, as shown in Figure 21c, the propeller diameter is increased in order to enhance the
efficiency of the propeller and, consequently, the whole powertrain efficiency. Indeed, the
latter is increased by 1.5% to 6% depending on the flight sequences with reference to the
“fuel burn optimization”. The propeller efficiency increase (downstream in the powertrain)
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lowers the maximum values of the power demanded by the upstream components, conse-
quently lowering the kerosene consumption. This clearly emerges from a “typical systemic
coupling”, which emphasizes the relevance of the MDO process being able to involve the
main system interactions.

In contrast, the local formulation induces, without surprise, the biggest motor-specific
power. We notice that all results presented in that section were obtained without internal
stator cooling inside slots. As illustrated in Figure 17b, adding internal cooling allows for
quasi-doubling motor-specific power.

Finally, an optimal HVDC bus voltage range close to 2 kV was reached through the
MDO process. This system trade-off was obtained thanks to coupling a wide set of domains
(power electronics, eMachine, thermal cooling, and partial discharges).

3.6. Final Trade-Off on Fuel Burn vs. Embedded Weight with Hybrid-Electric Architecture

In this section, the main results of the HASTECS Clean Sky 2 project are presented,
synthesizing a set of technological optimizations at the device (power electronics, eMotor,
auxiliary electric sources) level. The study has also assessed environment constraints
related to the flight mission involving partial discharge tolerance, impacting especially at
high altitudes and with high voltage operation.

Finally, a global trade-off was completed; results are displayed in Figure 22. This
figure compares different assessments displayed in the fuel-burn-versus-MTOW plan.
Two levels of targets (i.e., “2025 and 2035 targets”) were assessed. Relative variations are
displayed with reference to a full-thermal aircraft optimized with the same level of model
granularity. The main difference between those two targets is the cooling performance of
the power electronics and electric motors: for the latter, direct cooling inside stator slots is
added (“2035”) or not (“2025”). In that figure, the “simple EMS” previously presented in
Figure 21a with an “a priori set” hybrid ratio (full-electric taxi and descent and full-thermal
climb and cruise sequences) is compared to an “Optimized EMS” integrated inside the
MDO. In that case, EMS parameters (i.e., the hybrid ratio becomes decision variables) are
among the optimization variables.
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Figure 22. Trade-off assessing hybrid-electric aircraft with respect to a conventional aircraft as a
reference point.

This latter analysis clearly shows a major result: “despite the technological progress,
electrified powertrains are heavier than thermal ones”. The “optimized EMS” which
significantly increases the fuel cell nominal power leads to a significant decrease in the
fuel burn, but it leads to a huge MTOW, increased by 4–7%, with respect to the previous
(“simple EMS”) case.

Finally, with an “optimized EMS”, an aircraft optimized only by means of thermal
technologies consumes roughly the same amount of kerosene as a hybrid-electric aircraft
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under the “2025 target” assumptions. Technological improvements with higher specific
powers in the “2035 target” lead to a fuel burn reduction of around 6% with reference to a
full-thermal optimized aircraft.

Finally, only the consequences on the fuel burn of energy efficiency and weight
variations embedded in the powertrain were assessed in that subsection. As introduced
in Section 2.1 and illustrated in Figure 7, going towards distributed electric propulsion
architectures involves supplementary gains in terms of aerodynamics, including several
innovative concepts becoming accessible such as blown wing, boundary layer ingestion,
and wing tip propellers. Furthermore, hybridization with a power boost from an auxiliary
electric source would allow for optimizing the thermal engine’s (primary source) design
and operation.

These prospective results emphasize the key issue of the hybrid-electric concept in
aviation: with reference to a full-thermal aircraft with the same level of optimization, the
embedded weight is increased significantly.

The future full-electric zero-emission aircraft may constitute “the actual technological
breakthrough” and has to be more deeply studied, as recently proposed by Airbus. How-
ever, engineers still have to face huge challenges in terms of technological integration and
safety before talking about the certification of these innovative and greener aircraft concepts.

4. “Power Electronic-Less” AC Architecture Stabilized by Hybridization: Another
Solution for Electric Powertrain Weight Decrease
4.1. A “Power Electronic-Less” AC Architecture for Aircraft Propulsion

The literature review proposed in Section 2.4 emphasized that most of the propulsive
solutions for hybrid- or full-electric aircraft powertrains are based on power electronics with
a couple sources and electric machines through a DC connection, as illustrated in Figure 23a.
In that example, the issue is to lower the embedded weight by suppressing the DC bus
coupling and its power electronics. A “direct power electronicless” connection through
an AC bus is then established between the power sources (generators) and the electric
motors driving the propellers, as illustrated in Figure 23b (for single-motor connection)
and Figure 23c (for multi-motor connection). In [71], only surface-mounted PMSMs were
studied due to their high specific powers.
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As we will describe in Section 4.2, both transient analysis and stability are at stake in
a direct AC-coupled powertrain. Adding a power hybridization branch coupled with an
energy storage is a relevant solution to ensure the stable operation of a typical powertrain
as synthesized in Section 4.3 and illustrated in Figure 23d.

The “power electronic-less” topology of Figure 23b,c directly connects both syn-
chronous generators and motors through an AC bus. For such structures, every electric
machine operates synchronously (same speed in a steady-state situation). This direct con-
nection also forces the voltage equality between the generator and the motor., The stator
current equality is also forced in the single-motor case (Figure 23b). Only two control
actions of mechanical modes exist on each side of the propulsive system:

- At the system input, the gas turbine controls the mechanical speed of the generator,
then the AC bus frequency.

- At the system output (propeller side), pitch control of blades adjusts the propulsive
thrust with respect to the blade rotation speed.

This study, detailed in [71,72], may be applied to a large number of aeronautic applica-
tions. Two examples of topologies with multiple (four or six) propellers in a series-parallel
architecture are presented in Figure 24, depending on whether a “power electronic-less”
AC architecture (Figure 24a) or a hybrid architecture with a battery branch in addition
(Figure 24b) is considered.
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Figure 24. Two examples of architectures without power electronics: with 6 propellers and with
generators and motors directly coupled through an AC bus (a); with battery (BAT) hybridization and
4 propellers (b).

Such electric distributed propulsion potentially offers advantages in terms of aerody-
namics [10–13].

4.2. Stability Analysis of a “Power Electronic-Less” AC-Coupled Power Channel

The stability analysis of the power channel depends on its topology; the structure can
be either single- (as illustrated in Figure 23b) or multi-motor (as illustrated in Figure 23c).
The analytical derivation of the nonlinear model is based on Park’s reference frame. A clas-
sical Park’s (d,q) reference frame allows for modelling electric machines (generator or
motor). Park’s model aligns the q axis along the electromotive force (emf), Ex = Exq, as
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illustrated in Figure 25. That figure represents, respectively, the rotating frame (dg, qg) for
the generator and (dm, qm) for the motor.
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Figure 25. Park’s reference frames: (a) generator voltage and current vectors in the generator
reference frame (dg, qg); (b) motor voltage and current vectors in the motor reference frame (dm, qm);
(c) generator and motor voltage and current vectors with phase shift in the generator reference
frame (dg, qg).

When both machines are directly connected through an AC bus, as in Figure 23b, the
phases of their emfs are shifted by the δ angle. In order to represent this direct association
and to generalize the model derivation for any number of motors, every machine is mod-
elled in the reference frame (dg, qg) related to the generator. In the following section, only a
single-motor topology will be considered; the stability analysis remains complex even with
that simplification. Let us note that the theoretical aspects and main analysis proposed in
this section remain quite similar for multi-motor topology, as shown in [71]. The derivation
of this nonlinear state model is detailed in [72], and results are shown in Figure 26a. The
inputs of that state model are, respectively, the reference (ωgre f ) set in the speed-controlled
gas turbine–generator association and the load torque (Tprop) applied to the propeller. The
state variables of this sixth-order model constitute the stator currents (Id, Iq) common in
the generator’s and motor’s stators directly coupled through the AC bus, the shift angle δ,
the rotation speeds for the motor (ωm) and the generator (ωg), and finally the gas turbine
torque (TTAG). The model nonlinearities are highlighted in red in the state equation. The
time simulation of this state model is illustrated in Figure 26b; it emphasizes its transient
behaviour, especially showing that oscillations (quasi-unstable operation) are provoked by
this direct (rigid) association for certain operating points, especially inside an intermediate
speed range.

A small signal linearization of this state model allowed us to trace the root locus
which determines the stable/unstable zones, as illustrated in Figure 27, derived in the
same operated conditions as for the time simulation in Figure 26b. In the simulation of
Figure 26b, the speed range of “quasi-instability” (from 290 to 580 rpm) is almost the same
as the unstable range obtained with the root locus (from 260 to 620 rpm).

To complete that analysis, an experimental test bench was developed in the LAPLACE
Lab in order to validate the theoretical analysis at a reduced power scale. This test
bench, shown in Figure 28, couples two electromechanical actuators that emulate the
gas turbine–generator association for the first one and the electric motor–propeller set for
the second. This facility physically emulates the main powertrain functions with an AC bus
coupling. Figure 29 displays the experimental results in the same conditions as for the time
simulation in Figure 26. These experimental results also emphasize the “quasi-instability”
phenomenon as previously observed through simulation. An oscillating speed range from
300 to 560 rpm can be observed. The system behaviour is stable outside of this interval. This
speed range is also close to the previous one given by the theoretical means of study. The
various means of the study of the AC electric propulsion architecture are then in accordance
and matched by indicating a domain of “quasi-instability”. This analysis reveals a “heavy
trend”: the system stability is questioned on intermediate speeds.
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Readers can find a detailed analysis of the power channel stability in [71], which
reveals that several physical (stator inductances, inertia, and magnetic flux levels of both
machines) and control (speed control bandwidth) factors influence the transient operation
of this system. The main sizing trends for the stability improvement in the AC electric
propulsion architecture can be summarized:

1. High stator inductances;
2. Low electromotive forces (proportional to magnetic fluxes);
3. High inertia of the motor set.

However, whatever the system sizing, a perfectly reliable operation (essential for
aeronautic application) of that direct AC coupling of PMSMs cannot be proven. In [71],
a prospect of a “scale 1” power channel with an actual design of electric machines and
with refined modelling of both a propeller and a gas turbine with its control confirmed and
even reinforced that issue. In that context, a supplementary power hybridization branch
coupled with a storage device can be added with appropriate control, which ensures a
stable operation of that hybrid power channel all over the operating range.

4.3. Power Hybridization of the Direct AC-Coupled Power Channel for Stable Operation

The hybrid-electric architecture illustrated in Figure 23d and in the example in Figure 24b
consists of inserting a hybridization branch constituting a storage device (for example,
a battery) connected to the AC bus through an inverter into the previous power channel.

The primary objective of this hybridization branch is to ensure the system’s stability
regardless of the operating point. However, this additional structure may also offer supple-
mentary degrees of freedom to optimize the aircraft operation, allowing, for example, an
electric power boost in certain flight sequences or full-electric operation for “green taxiing”
or electric descent. Hybridization may also help the system start the power channel to
make the synchronization of the generators and motors easier [71]. In addition, like for
any hybrid energy system, the auxiliary power source (here, a battery) offers capabilities in
terms of fault tolerance. In that case, the battery branch may contribute to the propelling
effort in the case of a gas turbine failure, for example. Furthermore, let us note that the
storage sizing may be revisited in order to ensure several hybridization functionalities
simultaneously. Indeed, the battery sizing that should be necessary to stabilize the hybrid-
electric power channel is a priori lower than the one necessary for the power boost “without
talking of fault tolerance”. This issue constitutes one of the prospects of this study, and
readers can find more details [71].

4.4. Control of the Hybridization Branch for System Stabilization

The hybridization branch is firstly seen as a controlled-current source connected to
the AC bus, as illustrated in Figure 30, right. The battery storage is coupled to the AC bus
through an inverter with an output (L,C) filter. The battery currents are controlled with
a classical PI controller in both (d = dg, q = qg) the Park’s axes referenced in the generator
frame, displayed in Figure 25a. The capacitors are used to measure the voltages at the
connection point.

In order to ensure the stable operation of the AC-coupled power channel, the battery
current references Ire f

Batd, Ire f
Batq were considered part of the high-pass filtering (HPF) of the AC

bus voltages VCBd, VCBq. The primary objective is to bring these current components back
to zero, thanks to the proportional corrector (“corr” in Figure 30). Indeed, for cases with the
quasi-unstable operation, the AC bus voltage oscillates and its HPF isolates the oscillating
part of the signal as a “witness of the instability”. In fact, most of the state variables of
the power channel (δ, machine currents and speeds) are other “candidate variables” that
show information about the oscillating disturbance, but the bus voltages are seen as the
most sensitive.
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Figure 30. Hybridization branch (left) and its control structure (right).

Let us note that a continuous component may be added in the reference signal (in green
in Figure 30) in order to inject supplementary currents for additional energy hybridization
capabilities, as introduced above.

The objective is to set the battery control parameters that ensure a “sufficient” stability
margin for the hybrid power channel; the sensitivity function on the output Ty(p) is used
as a stability margin criterion. The gas turbine speed is seen as the reference input “r”; the
state variables “x” of the power channel are also the system outputs “y”; and the propeller
torque “Tprop = d” is considered the perturbation input, the problem being to keep the
system stable while the propeller torque is varied. From that vision, the hybrid power
channel with its control as represented in the right part of Figure 31 can be theoretically
assimilated to the control loop in the left part of Figure 31 and studied with the “Gang of
four” theory [73] based on the four transfer functions (Ty, Dy, Sy, Nu).
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In order to evaluate each of the four transfer functions, especially the sensitivity
function on the output Ty(p), a linearization is made around a succession of the operating
point. Practically, these operating points correspond to growing values of the generator
speed until reaching the unstable zone. The succession of the obtained linearized transfer
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function of the sensitivity function Sy(p) is plotted in Figure 32 in two cases, for which
the hybridization branch is connected or not. These graphs are used for the controller
(“Corr”) synthesis. A satisfaction indicator consists of setting a maximum amplitude of each
transfer function that should not exceed 6 dB. This criterion commonly used in industry
corresponds to a multiplication of the input signal by a factor of 2 by the transfer function.
In Figure 32b, one can see how the control of the battery-based hybridization branch limits
the amplitude of the sensitivity function Sy(p) below the limit of 6 dB, even around resonant
frequencies (here, some Hertz), which was not possible without hybridization, as displayed
in Figure 32a.
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Figure 32. Bode diagram of the sensitivity function on the output Ty(p) as the indicator of the
controller action on the system stability.

Finally, Figure 33 compares the system behaviour with or without the action of the
hybridization branch for both the simulation and experimental tests. This picture clearly
emphasizes the stabilizing action of the battery-based hybridization branch.
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Figure 33. System behaviour for growing speeds: (a) simulation without hybridization; (b) simulation
with hybridization; (c) experiments without hybridization; (d) experiments with hybridization.
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Beyond these results obtained on a reduced-scale case study, the author of [71] anal-
ysed the behaviour of a “scale 1 system” with a design of a hybrid-electric power channel
operating at 500 kW and with parameters typical of an actual aircraft application. In that
“scale 1 system”, a more realistic gas turbine model was first considered with slow transient
modes typical of that device. A high-speed PM synchronous generator and electric motor
typical of aeronautic applications were also considered. Finally, a more accurate model
of the propeller was simulated. In the end, this “scale 1” power channel alone (without
hybridization) has confirmed and even strengthened our conclusions related to the exis-
tence of unstable zones for the AC power channel without power electronics. Adding a
hybridization branch yielded the same results, showing a stable behaviour of the hybrid
power channel in its whole operating range.

5. Conclusions and Future Directions

In this review, we tried synthesizing the key issues related to the electrification of
future aircraft powertrains. The state of the art, described in Section 2, has shown the
potential benefits of hybrid-electric powertrains, but it shows a major trend: the electric
powertrain should be heavier than conventional ones, even if technological performance
(integration level of devices) is sensitive to the embedded weight. In that context, it is
crucial to cumulate energy gains, as detailed in the example in Section 3, for a regional
hybrid aircraft, but also aerodynamic and engine optimizations. Several drivers exist to
lower the embedded weight and to improve system efficiency, among them the suppression
of power electronics, as illustrated in Section 4.

Major challenges still exist, primarily on a technological level, but also when coupling
these multidisciplinary and complex issues inside an MDO process on an aircraft level.
However, fuel burn gains remain limited with hybrid-electric powertrain due to its global
weight penalty. All electric-battery-powered aircraft still have a limited range due to the
current and future limitations on specific energies. In that context, hydrogen-powered
aircraft seems to be an “actual breakthrough”, as recently announced by Airbus. Further-
more, if hydrogen is burnt in thermal engines or converted into electricity with fuel cells, it
appears to be a clear research direction in the aviation sector, from short-range (regional) to
long-distance flights. In that context, electric technologies have to be improved in terms of
specific energy and power, without forgetting the system aspects of all-electric chains, of
which efficiency and global weight clearly have to be optimized, including multi-physical
couplings such as thermal management, hydrogen storage, and the installation of new tech-
nologies on board. NASA [74] and Airbus [75] claim innovative prospects in that direction,
for example, by coupling cryogenic liquid hydrogen with superconducting components.
The future zero-emission aircraft has, then, to be more deeply studied. Even if significant
technological and safety (certification) challenges are in front of engineers, this is a major
advancement towards greener aircraft.
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