

From Rewrite Rules to Axioms in the $\lambda\Pi$ -Calculus Modulo Theory

Valentin Blot, Gilles Dowek, Thomas Traversié, Théo Winterhalter

▶ To cite this version:

Valentin Blot, Gilles Dowek, Thomas Traversié, Théo Winterhalter. From Rewrite Rules to Axioms in the $\lambda\Pi$ -Calculus Modulo Theory. 2023. hal-04275229v1

HAL Id: hal-04275229 https://hal.science/hal-04275229v1

Preprint submitted on 8 Nov 2023 (v1), last revised 13 Feb 2024 (v2)

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

From Rewrite Rules to Axioms in the $\lambda \Pi$ -Calculus Modulo Theory

Valentin Blot, Gilles Dowek, Thomas Traversié, and Théo Winterhalter

Université Paris-Saclay, Inria, CentraleSupélec, ENS Paris-Saclay, CNRS, Laboratoire Méthodes Formelles, France

{valentin.blot,gilles.dowek,thomas.traversie,theo.winterhalter}@inria.fr

Abstract. The $\lambda \Pi$ -calculus modulo theory is an extension of simply typed λ -calculus with dependent types and user-defined rewrite rules. We show that it is possible to replace the rewrite rules of a theory of the $\lambda \Pi$ -calculus modulo theory by axioms of equality, when this theory features the notions of proposition and proof, while maintaining the same expressiveness. To do so, we introduce in the target theory a heterogeneous equality. We construct a translation that replaces each use of the conversion rule by the insertion of a transport. To facilitate the proofs, we consider a type system in which conversions are explicitly typed.

Keywords: Rewrite rules · Equality · Logical Framework · Dependent types.

1 Introduction

For Poincaré, the reasoning by which we deduce that 2+2=4 is not a meaningful proof, but a simple verification. He concludes that the goal of exact sciences is to "dispense with these direct verifications" [17]. Far from being solely a philosophical issue, this principle impacts the foundations of logical systems and in particular the choice between axioms and $rewrite\ rules$. For instance, in systems with axioms $x+succ\ y=succ\ (x+y)$ and x+0=x, we can $prove\ that\ 2+2=4$. On the other hand, in systems with rewrite rules $x+succ\ y\hookrightarrow succ\ (x+y)$ and $x+0\hookrightarrow x$, we just need to prove 4=4 as we can $compute\ that\ (2+2=4)\equiv (4=4)$. In that respect, logical systems with computation rules are convenient tools for making proofs. That is why rewrite rules have been added to systems such as AGDA [5] or Coq [12] and why Dowek [9,10] developed Deduction modulo theory, an extension of first-order logic that mixes computation and proof. Since logical systems with rewrite rules are more user-friendly, one may ask whether or not the results are the same than in axiomatic logical systems.

Rewrite rules are at the core of the $\lambda\Pi$ -calculus modulo theory, an extension of simply typed λ -calculus with dependent types and user-definable rewrite rules [6]. The combination of β -reduction and rewrite rules forms the conversion $\equiv_{\beta\mathcal{R}}$. If we know that t:A with conversion $A \equiv_{\beta\mathcal{R}} B$, then we can derive that t:B. In this system, a theory is a set of rewrite rules, together with a set of axioms (that are typed constants). The $\lambda\Pi$ -calculus modulo theory is a powerful

logical framework in which many theories can be expressed, such as predicate logic, simple type theory or the Calculus of constructions [3]. It is the theory behind the Dedukti language [2,14] and the Lambdapi proof assistant. The $\lambda\Pi$ -calculus modulo theory is thus a relevant framework to prove the existence of a translation from a theory with rewrite rules to a theory with axioms only.

However trivial this seems, we face several challenges when trying to demonstrate it fully. One method is to mimic the behavior of the conversion rule using transports: if we have t:A and $A \equiv_{\beta\mathcal{R}} B$ with p an equality between A and B, then we can deduce that transp p t:B, but we do not directly have t:B. The insertion of transports in terms and types is difficult due to the presence of dependent types. Moreover, we cannot have inside the $\lambda\Pi$ -calculus modulo theory an equality between types, which is essential to build transports.

A similar problem is the elimination of equality reflection from extensional systems. Equality reflection states that $\ell=r$ implies $\ell\equiv r$, just like $\ell\hookrightarrow r$ implies $\ell\equiv r$ in systems with rewrite rules. In extensional systems, typing is eased by a more powerful conversion. Oury [16] developed a translation of proofs from an extensional version of the Calculus of Constructions to the Calculus of Inductive Constructions with equality axioms. Winterhalter, Sozeau and Tabareau [20,21] built upon this result to reduce the number of axioms needed.

The replacement of rewrite rules by axioms paves the way for the interpretation of a theory into another inside the $\lambda \Pi$ -calculus modulo theory. Indeed, when interpreting a theory into another, we represent each constant of the source theory by a term in the target theory, but we cannot generally do the same for rewrite rules. We can however pre-process the source theory to replace its rewrite rules by axioms, and then interpret it. The interpretation of theories allows to prove relative consistency and relative normalization theorems [8].

Contribution. The main contribution of this paper is the translation of a theory with rewrite rules to a theory with axioms. To do so, we restrict the theories considered to theories with an encoding of the notions of proposition and proof inside the $\lambda \Pi$ -calculus modulo theory. So as to compare objects that possibly do not have the same type, we define a heterogeneous equality—following the one defined by McBride [15]. The restriction considered allows us to build an equality between particular types—called small types. We define a type system with typed conversion for the $\lambda \Pi$ -calculus modulo theory, so that the proofs are done by induction on the derivation trees more easily.

Outline of the paper. In Section 2, we present the $\lambda \Pi$ -calculus modulo theory, we detail a prelude encoding of the notions of proposition and proof in it, and we identify the assumptions made on the considered theories. The heterogeneous equality and the equality between small types are presented in Section 3. The replacement of rewrite rules by axioms and the translation of terms, judgments and theories are presented in Section 4.

2 Theories in the $\lambda \Pi$ -Calculus Modulo Theory

In this section, we give a more detailed overview of the $\lambda \Pi$ -calculus modulo theory [6] and its type system. In particular, we present an encoding of the notions of proposition and proof in the $\lambda \Pi$ -calculus modulo theory [3]. We characterize small types—a subclass of types for which we can define an equality.

2.1 The $\lambda \Pi$ -Calculus Modulo Theory

The $\lambda \Pi$ -calculus, also known as the Edinburgh Logical Framework [13], is an extension of simply typed λ -calculus with dependent types. The $\lambda \Pi$ -calculus modulo theory $(\lambda \Pi/\equiv)$ [6] is an extension of the $\lambda \Pi$ -calculus, in which user-definable rewrite rules have been added [7]. Its syntax is given by:

 $\begin{array}{lll} Sorts & s ::= \texttt{TYPE} \mid \texttt{KIND} \\ Terms & t, u, A, B ::= c \mid x \mid s \mid \varPi x : A. \ B \mid \lambda x : A. \ t \mid t \ u \\ Contexts & \varGamma ::= \langle \rangle \mid \varGamma, x : C \\ Signatures & \varSigma ::= \langle \rangle \mid \varSigma, c : D \\ Rewrite \ systems & \mathcal{R} ::= \langle \rangle \mid \mathcal{R}, \ell \hookrightarrow r \end{array}$

where c is a constant and x is a variable (ranging over disjoint sets), C and r are terms, D is a closed term (i.e. a term with no free variables) and ℓ is a term such that $\ell = c \ t_1 \dots t_k$ with c a constant. TYPE and KIND are two sorts: terms of type TYPE are called types, and terms of type KIND are called kinds. $\Pi x:A$. B is a dependent product, $\lambda x:A$. t is an abstraction and t u is an application. $\Pi x:A$. B is simply written $A \to B$ if x does not appear in B. Signatures, contexts, and rewrite systems are finite sequences, and are written $\langle \rangle$ when empty. $\lambda \Pi/\equiv$ is a logical framework, in which Σ and $\mathcal R$ are fixed by the user depending on the logic they are working in. $\ell \hookrightarrow r$ is a rewrite rule.

If \mathcal{R} is a rewrite system, the relation $\hookrightarrow_{\beta\mathcal{R}}$ is generated by β -reduction and \mathcal{R} . More explicitly, $\hookrightarrow_{\beta\mathcal{R}}$ is the smallest relation, closed by context, such that if t rewrites to u for some rule in \mathcal{R} or by β -reduction then $t \hookrightarrow_{\beta\mathcal{R}} u$. Conversion $\equiv_{\beta\mathcal{R}}$ is the reflexive, symmetric, and transitive closure of $\hookrightarrow_{\beta\mathcal{R}}$.

2.2 The Type System of the $\lambda \Pi$ -Calculus Modulo Theory

We introduce in Figs. 1 and 2 typing rules for $\lambda \Pi/\equiv$. Fig. 1 presents the usual typing rules while Fig. 2 focuses on the conversion rules. We write $\vdash \Gamma$ when the context Γ is well formed and $\Gamma \vdash t:A$ when t is of type A in the context $\Gamma : A$ is simply written $\vdash t:A$. The notation $(\vdash \Gamma_1) \equiv (\vdash \Gamma_2)$ means that Γ_1 and Γ_2 are both well formed, have the same length and have the same variables with convertible types. We write $(\Gamma_1 \vdash t_1:A_1) \equiv (\Gamma_2 \vdash t_2:A_2)$ when t_1 and t_2 are convertible with $\Gamma_1 \vdash t_1:A_1$ and $\Gamma_2 \vdash t_2:A_2$. In particular, convertible terms $t_1 \equiv t_2$ are authorized to have different types—provided that both types are convertible—and to be typed in different contexts—provided that

$$\begin{array}{ll} & \frac{\vdash \Gamma \qquad \Gamma \vdash A : s}{\vdash \Gamma, x : A} \text{ [Decl] } x \notin \Gamma \qquad \frac{\vdash \Gamma}{\Gamma \vdash \text{Type} : \text{KIND}} \text{ [Sort]} \\ & \frac{\vdash \Gamma \qquad \vdash A : s}{\Gamma \vdash c : A} \text{ [Const] } c : A \in \Sigma \qquad \frac{\vdash \Gamma}{\Gamma \vdash x : A} \text{ [VAR] } x : A \in \Gamma \\ & \frac{\Gamma \vdash A : \text{Type} \qquad \Gamma, x : A \vdash B : s}{\Gamma \vdash \Pi x : A . B : s} \text{ [Prod]} \\ & \frac{\Gamma \vdash A : \text{Type} \qquad \Gamma, x : A \vdash B : s}{\Gamma \vdash \lambda x : A . t : \Pi x : A . B} \text{ [Abs]} \\ & \frac{\Gamma \vdash t : \Pi x : A . B \qquad \Gamma \vdash u : A}{\Gamma \vdash t : u : B[x \mapsto u]} \text{ [App]} \\ & \frac{\Gamma \vdash t : A \qquad (\Gamma \vdash A : s) \equiv (\Gamma \vdash B : s)}{\Gamma \vdash t : B} \text{ [Conv]} \\ & \frac{\Gamma \vdash t : A \qquad (\Gamma \vdash A : s) \equiv (\Gamma \vdash B : s)}{\Gamma \vdash t : B} \text{ [Conv]} \\ \hline \end{array}$$

Fig. 1. Typing rules of the $\lambda \Pi$ -calculus modulo theory.

both contexts are convertible. In CONVRULE, x is a vector representing the free variables of ℓ . The standard weakening rule can be derived from this type system.

Lemma 1 (Substitution). *If we have* $\Gamma, x : A, \Delta \vdash t : B$ *and* $\Gamma \vdash u : A$, *then* $\Gamma, \Delta[x \mapsto u] \vdash t[x \mapsto u] : B[x \mapsto u]$.

We chose to present a type system with typed conversions—so as to easily do proofs on the derivations—while they are untyped in the usual type system for $\lambda \Pi/\equiv$. The equivalence between type systems with typed conversion and type systems with untyped conversion has been a longstanding question: Geuvers and Werner [11] investigated the case of Pure Type Systems with $\beta\eta$ -convertibility, Adams [1] proved the equivalence in the case of functional Pure Type Systems, and Siles [18,19] later proved the equivalence in the general case of the Pure Type Systems. The case of $\lambda \Pi/\equiv$, in which we have β -convertibility but also user-defined rewrite rules, remains to be investigated.

We write $|\Sigma|$ for the set of constants of Σ , and $\Lambda(\Sigma)$ for the set of terms t whose constants belong to $|\Sigma|$. The pair (Σ, \mathcal{R}) is a system when for each rule $\ell \hookrightarrow r \in \mathcal{R}$, we have ℓ and r in $\Lambda(\Sigma)$. It is a theory when $\hookrightarrow_{\beta\mathcal{R}}$ is confluent on $\Lambda(\Sigma)$ and when every rule of \mathcal{R} preserves typing in (Σ, \mathcal{R}) (that is when for all context Γ and for all term $A \in \Lambda(\Sigma)$, if $\Gamma \vdash \ell : A$ then $\Gamma \vdash r : A$).

Example 1 (Lists and natural numbers). We can define in $\lambda \Pi/\equiv$ a partial theory of indexed lists and natural numbers. nat represents the type of natural numbers and list represents the dependent type of indexed lists. concat concatenates two

$$\frac{\Gamma \vdash u : A}{(\Gamma \vdash u : A) \equiv (\Gamma \vdash u : A)} [\text{ConvRefl}] \qquad \frac{(\Gamma \vdash u : A) \equiv (\Gamma \vdash v : B)}{(\Gamma \vdash v : B) \equiv (\Gamma \vdash u : A)} [\text{ConvSym}]$$

$$\frac{(\Gamma \vdash u : A) \equiv (\Gamma \vdash v : B) \qquad (\Gamma \vdash v : B) \equiv (\Gamma \vdash w : C)}{(\Gamma \vdash u : A) \equiv (\Gamma \vdash u : A) \equiv (\Gamma \vdash w : C)} [\text{ConvTrans}]$$

$$\frac{(\vdash \Gamma_1) \equiv (\vdash \Gamma_2) \qquad (\Gamma_1 \vdash A_1 : s) \equiv (\Gamma_2 \vdash A_2 : s)}{(\vdash \Gamma_1) \equiv (\vdash \Gamma_2) \qquad (\vdash \Gamma_2) \qquad (\vdash \Gamma_2) \qquad (\vdash \Gamma_2) \qquad (\vdash \Gamma_2)} [\text{ConvConst}] \ c : A \in \Sigma$$

$$\frac{(\vdash \Gamma_1) \equiv (\vdash \Gamma_2) \qquad (\vdash \Gamma_$$

Fig. 2. Convertibility rules of the $\lambda \Pi$ -calculus modulo theory.

lists while is Rev checks if the first given list is the reverse of the second.

```
\begin{array}{lll} \operatorname{nat}: \operatorname{TYPE} & 0: \operatorname{nat} & \operatorname{succ}: \operatorname{nat} \to \operatorname{nat} & +: \operatorname{nat} \to \operatorname{nat} \to \operatorname{nat} \\ x + 0 \hookrightarrow x & x + \operatorname{succ} y \hookrightarrow \operatorname{succ} (x + y) & \operatorname{list}: \operatorname{nat} \to \operatorname{TYPE} & \operatorname{nil}: \operatorname{list} 0 \\ & \operatorname{isRev}: \Pi x: \operatorname{nat}. \ \operatorname{list} x \to \operatorname{list} x \to \operatorname{TYPE} \\ & \operatorname{concat}: \Pi x, y: \operatorname{nat}. \ \operatorname{list} x \to \operatorname{list} y \to \operatorname{list} (x + y) \end{array}
```

In the context ℓ : list (succ 0), we have concat (succ 0) 0 ℓ nil of type list (succ 0+0). If we want to compare ℓ and this new list with isRev, we cannot directly do it because they do not have the same type. However, we can use the conversion rule with list (succ 0+0) $\equiv_{\beta\mathcal{R}}$ list (succ 0). This conversion derives from the rewrite rule $x+0\hookrightarrow x$ instantiated with x:= succ 0.

2.3 A Prelude Encoding for the $\lambda \Pi$ -Calculus Modulo Theory

It is possible to introduce in $\lambda \Pi/\equiv$ the notions of proposition and proof [3]. In particular, this encoding—called prelude encoding—gives the possibility to quantify on certain propositions through codes, which is not possible inside the standard $\lambda \Pi/\equiv$. This encoding is defined by following signature and rewrite system.

Definition 1. The signature Σ_{pre} and the rewrite system \mathcal{R}_{pre} contain the following constants and rewrite rules:

```
\begin{array}{lll} \textit{Set}: \texttt{TYPE} & \textit{o}: \textit{Set} \\ \textit{El}: \textit{Set} \rightarrow \texttt{TYPE} & \textit{Prf}: \textit{El} \; \textit{o} \rightarrow \texttt{TYPE} \\ \leadsto_{\textit{d}}: \Pi x: \textit{Set}. \; (\textit{El} \; x \rightarrow \textit{Set}) \rightarrow \textit{Set} & \Rightarrow_{\textit{d}}: \Pi x: \textit{El} \; \textit{o}. \; (\textit{Prf} \; x \rightarrow \textit{El} \; \textit{o}) \rightarrow \textit{El} \; \textit{o} \\ \pi: \Pi x: \textit{El} \; \textit{o}. \; (\textit{Prf} \; x \rightarrow \textit{Set}) \rightarrow \textit{Set} & \forall : \Pi x: \textit{El} \; \textit{o}. \; (\textit{Prf} \; x \rightarrow \textit{El} \; \textit{o}) \rightarrow \textit{El} \; \textit{o} \\ \forall : \Pi x: \textit{Set}. \; (\textit{El} \; x \rightarrow \textit{El} \; \textit{o}) \rightarrow \textit{El} \; \textit{o} \\ \textit{El} \; (x \leadsto_{\textit{d}} y) \hookrightarrow \Pi z: \textit{El} \; x. \; \textit{El} \; (y \; z) & \textit{Prf} \; (x \bowtie_{\textit{d}} y) \hookrightarrow \Pi z: \textit{Prf} \; x. \; \textit{Prf} \; (y \; z) \\ \textit{El} \; (\pi \; x \; y) \hookrightarrow \Pi z: \textit{Prf} \; x. \; \textit{El} \; (y \; z) & \textit{Prf} \; (\forall x \; y) \hookrightarrow \Pi z: \textit{El} \; x. \; \textit{Prf} \; (y \; z) \end{array}
```

We declare the constant Set, which represents the universe of types, along with the injection El that maps terms of type Set into TYPE. o is a term of type Set such that El o defines the universe of propositions. The injection Prf maps propositions into TYPE. \leadsto_d (respectively \Rightarrow_d) is written infix and is used to represent dependent function types between terms of type Set (respectively El o). The symbol π (respectively \forall) is used to represent dependent function types between elements of type El o and El o).

The main advantage of this encoding is that it allows us to quantify on propositions. Indeed, in $\lambda \Pi/\equiv$, we cannot quantify on TYPE. Instead, we can quantify on objects of type $El\ o$, and then inject them into TYPE using Prf.

2.4 Small Types and Small Derivations

The prelude encoding features a universe of types Set and a universe of propositions El o. Types are therefore built using dependent types with three base cases: Set, Prf a with a: El o, and El b with b: Set. We define the partial function ν that puts types into a special form. The idea is to use the reverse of the rewrite rules of \mathcal{R}_{pre} to represent dependent types with the symbols \leadsto_d , \Rightarrow_d , π and \forall whenever it is possible. We define ν by

$$\nu(Set) = Set \qquad \nu(Prf\ a) = Prf\ a \qquad \nu(El\ a) = El\ a$$

$$\nu(\Pi x:A.\ B) = Prf\ (a \Rightarrow_d (\lambda x: Prf\ a.\ b)) \quad \text{if } \nu(A) = Prf\ a \ \text{and } \nu(B) = Prf\ b$$

$$El\ (a \leadsto_d (\lambda x: El\ a.\ b)) \qquad \text{if } \nu(A) = El\ a \ \text{and } \nu(B) = El\ b$$

$$Prf\ (\forall\ a\ (\lambda x: El\ a.\ b)) \qquad \text{if } \nu(A) = El\ a \ \text{and } \nu(B) = Prf\ b$$

$$El\ (\pi\ a\ (\lambda x: Prf\ a.\ b)) \qquad \text{if } \nu(A) = Prf\ a \ \text{and } \nu(B) = El\ b$$

$$\Pi x: \nu(A).\ \nu(B) \qquad \text{otherwise}$$

Therefore, when $\nu(A)$ is defined, we have $A \equiv_{\beta \mathcal{R}_{pre}} \nu(A)$. To continue to characterize a particular form of types, we define the three following grammars:

$$\mathcal{S} ::= Set \mid \mathcal{S} \to \mathcal{S} \qquad \qquad \mathcal{P} ::= Prf \ a \mid \mathcal{P} \to \mathcal{S} \mid \Pi z : \mathcal{S}. \ \mathcal{P}$$
$$\mathcal{E} ::= El \ b \mid \mathcal{E} \to \mathcal{S} \mid \Pi z : \mathcal{S}. \ \mathcal{E}$$

with $a: El\ o$ and b: Set. The notation $A \in \mathcal{S}$ means that A is generated by the grammar \mathcal{S} . The grammar \mathcal{S} generates types that only contain Set. Therefore, if $\nu(A) \in \mathcal{S}$ then $\nu(A) = A$. The grammars \mathcal{P} and \mathcal{E} generate types that contain at most one symbol Prf or El.

Definition 2 (Small type, Small context). A type A is small when $\nu(A)$ is defined and $\nu(A) \in \mathcal{S} \cup \mathcal{P} \cup \mathcal{E}$. In that case, $\nu(A)$ is called the small form of A. A context Γ is small when for every $x : A \in \Gamma$ we have that A is a small type.

Example 2. Prf $a \to Prf$ b, with a, b : El o, is a small type since its small form Prf $(a \Rightarrow_d (\lambda z. b))$ is generated by the grammar \mathcal{P} . The type $\Pi x : Prf$ b. El c, with c : Set depending on x, is a small type since its small form El $(\pi b (\lambda x : Prf b. c))$ is generated by the grammar \mathcal{E} . The type Prf $a \to Set \to Prf$ b is not small, since $\nu(Prf \ a \to Set \to Prf \ b) = Prf \ a \to Set \to Prf \ b \notin \mathcal{S} \cup \mathcal{P} \cup \mathcal{E}$.

If $\Gamma \vdash t: A$, we would ideally like to have that either A a small type, or t a small type and A = TYPE. However, small types are built using the constants of Σ_{pre} . In particular, the type of the constants $o, \leadsto_d, \Rightarrow_d$ and \forall are small, but the types of π , Prf and El are not. Note that the type of an application of π , Prf or El is small. We thus come up with the following notion.

Definition 3 (Small judgment). $\vdash \Gamma$ *is a small judgment when* Γ *is a small context.* $\Gamma \vdash t : A$ *is a small judgment when* Γ *is a small context and when*

$$-t:A\in\Sigma_{pre},$$

- or t is the type of a constant of Σ_{pre} ,
- or A is a small type,
- or t is a small type.

 $(\Gamma_1 \vdash t_1 : A_1) \equiv (\Gamma_2 \vdash t_2 : A_2)$ is a small judgment when $\Gamma_1 \vdash t_1 : A_1$ and $\Gamma_2 \vdash t_2 : A_2$ are small.

Definition 4 (Small derivation). A small derivation is a derivation in which all the judgments are small.

2.5 Theories with Prelude Encoding

We define the theories we will consider in the rest of the paper: theories that features the prelude encoding inside $\lambda \Pi/\equiv$.

Definition 5 (Theory with prelude encoding). We say that a theory $\mathcal{T} = (\Sigma, \mathcal{R})$ in the $\lambda \Pi / \equiv$ is a theory with prelude encoding when:

- there exists $\Sigma_{\mathcal{T}}$ such that $\Sigma = \Sigma_{pre} \cup \Sigma_{\mathcal{T}}$ and $\Sigma_{pre} \cap \Sigma_{\mathcal{T}} = \emptyset$,
- there exists $\mathcal{R}_{\mathcal{T}}$ such that $\mathcal{R} = \mathcal{R}_{pre} \cup \mathcal{R}_{\mathcal{T}}$ and $\mathcal{R}_{pre} \cap \mathcal{R}_{\mathcal{T}} = \emptyset$,
- for every $c: A \in \Sigma_T$, A is small and admits a small derivation $\vdash A$: TYPE,
- for every $\ell \hookrightarrow r \in \mathcal{R}_{\mathcal{T}}$, we have small derivations $\boldsymbol{x} : \boldsymbol{B} \vdash \ell : A$ and $\boldsymbol{x} : \boldsymbol{B} \vdash r : A$ with A a small type, where \boldsymbol{x} represents the free variables of ℓ .

A theory with prelude encoding is a theory with the constants Σ_{pre} and rewrite rules \mathcal{R}_{pre} , and additional user-defined constants and rewrite rules. To ensure that $\Sigma_{\mathcal{T}}$ and $\mathcal{R}_{\mathcal{T}}$ are encoded *inside* the prelude encoding, we can only define new constants whose types are small. We do not allow the use of rewrite rules $\ell \hookrightarrow r$ when ℓ has TYPE in its type. In particular, we cannot define new rewrite rules on Prf or El and change the behavior of these constants. It follows that the three grammars \mathcal{S} , \mathcal{P} and \mathcal{E} generate disjoint types.

In the following examples, we present three theories with prelude encoding in $\lambda \Pi/\equiv$. The examples of predicate logic and set theory illustrate that the restrictions considered are generally respected, even for expressive theories.

Example 3 (Predicate logic). Predicate logic can be encoded in a theory with prelude encoding. We declare constants for tautology and contradiction \top , \bot : $El\ o$, for negation \neg : $El\ o \to El\ o$, for conjunction and disjunction \land , \lor : $El\ o \to El\ o$, and for existential quantification \exists : Πz : $Set.\ (El\ z \to El\ o) \to El\ o$. The semantics of tautology is defined by the rewrite rule $\top \hookrightarrow \forall\ o\ (\lambda x: El\ o.\ x \Rightarrow x)$, which is equivalent to the more common form $Prf\ \top \hookrightarrow \Pi z: El\ o.\ Prf\ z \to Prf\ z$. The rewrite rule $Prf\ (A \land B) \hookrightarrow \Pi P: El\ o.\ (Prf\ A \to Prf\ B \to Prf\ P) \to Prf\ P$ can be encoded by $A \land B \hookrightarrow \forall\ o\ (\lambda P.\ (A \to B \to P) \to P)$. The rule $Prf\ (\neg A) \hookrightarrow Prf\ A \to Prf\ \bot$ is forbidden, but $\neg A \hookrightarrow A \Rightarrow \bot$ is allowed. We proceed similarly the other rewrite rules.

Example 4 (Lists and natural numbers). We can define our small theory of lists and natural numbers in the prelude encoding, by replacing TYPE by Set (in the universe of types) or El o (in the universe of propositions), and by adding El and Prf at the necessary positions.

```
\begin{array}{lll} \operatorname{nat}:Set & 0:El \ \operatorname{nat} & \operatorname{succ}:El \ \operatorname{nat} \to El \ \operatorname{nat} & +:El \ \operatorname{nat} \to El \ \operatorname{nat} \to El \ \operatorname{nat} \\ & \operatorname{list}:El \ \operatorname{nat} \to Set & x+0 \hookrightarrow x & x+\operatorname{succ} y \hookrightarrow \operatorname{succ} (x+y) \\ & \operatorname{nil}:El \ (\operatorname{list} 0) & \operatorname{isRev}:\Pi x:El \ \operatorname{nat}. \ El \ (\operatorname{list} x) \to El \ (\operatorname{list} x) \to El \ o \\ & \operatorname{concat}:\Pi x,y:El \ \operatorname{nat}. \ El \ (\operatorname{list} x) \to El \ (\operatorname{list} y) \to El \ (\operatorname{list} (x+y)) \end{array}
```

Example 5 (Set theory). The implementation in DEDUKTI of set theory [4] is a theory with prelude encoding. In this implementation, sets are represented by a more primitive notion of pointed graphs: we have graph and node of type Set. The predicate $\eta: El$ graph $\to El$ node $\to El$ node $\to El$ o is such that η a x y is the proposition asserting that there is an edge in a from y to x. The operator root: El graph $\to El$ node returns the root of a, which is a node.

In practice, the derivations of small judgments are small derivations. As we consider theories with prelude encoding, the only way of introducing a judgment that is not small is through λ -abstractions. For instance in Example 4 the judgment $\vdash El$ (list $((\lambda x : El \text{ nat. } \lambda y : Set. \ x) \ 0 \text{ nat}))$: TYPE is small, but in its derivation we have $\vdash \lambda x : El \text{ nat. } \lambda y : Set. \ x : El \text{ nat. } \rightarrow Set \rightarrow El \text{ nat which is not a small judgment. However, } \vdash El \text{ (list 0)}$: TYPE admits a small derivation. If the derivation is not small, we can in practice apply β -reduction on the fragments of the derivation that are not small to obtain a small derivation.

3 Equalities

Since we want to replace rewrite rules $\ell \hookrightarrow r$ by axioms $\ell = r$, our target theory requires axioms that define an equality inside the prelude encoding. In this section, we present a heterogeneous equality and a method to compare small types. The heterogeneous equality is necessary to compare objects that do not have the same type. Although we cannot define an equality between types in $\lambda \Pi/\equiv$ —since an object cannot take arguments of type TYPE—it is possible to develop an equality between small types, taking advantage of their structure.

3.1 Heterogeneous Equality

In our development, we need to have an equality between two translations of the same term. However, the two translations do not necessarily have the same type, as we may have introduced transports over the course of the translation. To that end, we define a heterogeneous equality inspired by the one of McBride [15]. Our heterogeneous equality is defined by the constant schemas $heq_{A,B}:A\to B\to$

El o where A and B are of type TYPE. We write $u \ _A \approx_B v$ for Prf (heq_{A,B} $u \ v$). Heterogeneous equality is reflexive, symmetric, and transitive.

```
\begin{split} \operatorname{refl}_A : & \varPi u : A. \ u \ _A \approx_A u \\ \operatorname{sym}_{A,B} : & \varPi u : A. \ \varPi v : B. \ u \ _A \approx_B v \rightarrow v \ _B \approx_A u \\ \operatorname{trans}_{A,B,C} : & \varPi u : A. \ \varPi v : B. \ \varPi w : C. \ u \ _A \approx_B v \rightarrow v \ _B \approx_C w \rightarrow u \ _A \approx_C w \end{split}
```

When two objects have the same type, heterogeneous equality acts as Leibniz equality. In particular, we can replace u by v in the universes of propositions and types. The result of a Leibniz substitution on t remains equal to t.

```
\begin{array}{l} \mathsf{leib}_A^\mathsf{Prf} &: \varPi u, v : A. \ \varPi p : u \ {}_A \! \approx_A v. \ \varPi P : A \to El \ o. \ Prf \ (P \ u) \to Prf \ (P \ v) \\ \mathsf{eqLeib}_A^\mathsf{Prf} &: \varPi u, v : A. \ \varPi p : u \ {}_A \! \approx_A v. \ \varPi P : A \to El \ o. \ \varPi t : Prf \ (P \ u). \\ & \mathsf{leib}_A^\mathsf{Prf} \ u \ v \ p \ P \ t \ {}_{Prf \ (P \ v)} \! \approx_{Prf \ (P \ u)} t \end{array}
```

The same axiom schemas exist for the universe of types, with superscript El instead of Prf , El instead of Prf , and Set instead of El o.

Finally, we add axioms for the congruence of each constructor of $\lambda \Pi / \equiv$.

Application constructor. For the application, we take:

$$\begin{aligned} \mathsf{app}_{A_1,A_2,B_1,B_2} : & \Pi t_1 : (\Pi x : A_1.\ B_1).\ \Pi t_2 : (\Pi x : A_2.\ B_2). \\ & \Pi u_1 : A_1.\ \Pi u_2 : A_2.\ t_1 \approx t_2 \to u_1 \approx u_2 \\ & \to t_1\ u_1\ _{B_1[x\mapsto u_1]} \!\!\approx_{B_2[x\mapsto u_2]} t_2\ u_2 \end{aligned}$$

For the λ -abstraction and Π -type constructors, we cannot directly build equality axioms, as the compared objects are types. Indeed, we would like to have

$$\begin{array}{l} \mathsf{fun}_{A_1,A_2,B_1,B_2}: \Pi t_1: (\Pi x:A_1.\ B_1).\ \Pi t_2: (\Pi y:A_2.\ B_2).\ A_1\approx A_2 \\ \qquad \to (\Pi x:A_1.\ \Pi y:A_2.\ \Pi p: (x\approx y).\ t_1\ x\approx t_2\ y) \\ \qquad \to t_1\approx t_2 \end{array}$$

but we cannot take such an axiom, since the heterogeneous equality is not defined to compare objects that have type TYPE, and $A_1 \approx A_2$ is therefore ill typed. This shortcoming is addressed by developing an equality between small types.

3.2 Equality between Small Types

We cannot build an equality between types, since such an equality would have type TYPE \to TYPE, which is impossible in $\lambda \Pi/\equiv$. An option would be to take axiom schemas $A \approx B$ for every equality between types A and B. Such an equality would be too far from standard and would require additional axioms to build transports. An alternative is to define an equality between small types. By construction, if $\nu(A) \in \mathcal{P}$, then $\nu(A)$ is generated from $Prf\ a$ for some $a: El\ o$, and if $\nu(A) \in \mathcal{E}$, then $\nu(A)$ is generated from $El\ a$ for some a: Set. If the small

form of A contains $Prf\ a$ and the small form of B contains $Prf\ b$, then we want an equality between a and b. We define the partial function κ on small forms by

$$\kappa(Prf\ a_1, Prf\ a_2) = a_1 \approx a_2 \qquad \qquad \kappa(El\ a_1, El\ a_2) = a_1 \approx a_2$$

$$\kappa(S, S) = \top \text{ if } S \in \mathcal{S} \qquad \qquad \kappa(T_1 \to S, T_2 \to S) = \kappa(T_1, T_2) \text{ if } S \in \mathcal{S}$$

$$\kappa(\Pi z : S.\ T_1, \Pi z : S.\ T_2) = \Pi z : S.\ \kappa(T_1, T_2) \text{ if } S \in \mathcal{S}$$

where $\top := \Pi P : El \ o. \ Prf \ P \to Prf \ P$, so we can always give a witness of $\kappa(S,S)$ if $S \in \mathcal{S}$. By convention, we simply write $\kappa(A,B)$ for the result of $\kappa(\nu(A),\nu(B))$.

Example 6. $\kappa(\Pi x : Set. \ Prf \ P \to Prf \ Q, \Pi x : Set. \ Prf \ R) = \Pi x : Set. \ (P \Rightarrow_d \lambda z : P. \ Q) \approx R \text{ since } \nu(\Pi x : Set. \ Prf \ P \to Prf \ Q) = \Pi x : Set. \ Prf \ (P \Rightarrow_d (\lambda z : P. \ Q)).$

We can now go back to the definition of equality axioms for the constructors of $\lambda \Pi /\equiv$.

Function constructor. Suppose that we want to define an equality between functional terms t_1 of type $\Pi x: A_1$. B_1 and t_2 of type $\Pi x: A_2$. B_2 . We have seen that we cannot take an equality between types A_1 and A_2 . If A_1 and A_2 are small types, we can take $\kappa(A_1, A_2)$ instead. We do not compare objects of type TYPE anymore, but objects that have either type El o or type Set.

$$\begin{array}{l} \mathsf{fun}_{A_1,A_2,B_1,B_2}: \Pi t_1: (\Pi x:A_1.\ B_1).\ \Pi t_2: (\Pi y:A_2.\ B_2).\ \kappa(A_1,A_2) \\ \quad \to (\Pi x:A_1.\ \Pi y:A_2.\ \Pi p: (x\approx y).\ t_1\ x\approx t_2\ y) \\ \quad \to t_1\approx t_2 \end{array}$$

This axiom schema is a generalization of the functional extensionality principle with distinct domains A_1 and A_2 . Functional extensionality states that two pointwise-equal functions are equal. If the domains A_1 and A_2 are generated by S, then they are syntactically equal and we can derive a simpler axiom schema:

$$\begin{array}{l} \mathsf{fun}_{A,B_1,B_2}: \Pi t_1: (\Pi x:A.\ B_1).\ \Pi t_2: (\Pi x:A.\ B_2).\ (\Pi x:A.\ t_1\ x\approx t_2\ x) \\ \to t_1\approx t_2 \end{array}$$

 Π -type constructor. We want to obtain $\kappa(\Pi x:A_1,B_1,\Pi x:A_2,B_2)$. There are different cases depending on the grammars generating $\nu(A_1),\nu(A_2),\nu(B_1)$ and $\nu(B_2)$. If $\nu(A_1),\nu(A_2),\nu(B_1),\nu(B_2)\in\mathcal{S}$, then $\Pi x:A_1$. B_1 and $\Pi x:A_2$. B_2 are syntactically equal and we can build an object of type \top . If $\nu(A_1),\nu(A_2)\in\mathcal{S}$ and $\nu(B_1),\nu(B_2)\in\mathcal{P}\cup\mathcal{E}$, then $A_1=A_2$ and $\kappa(\Pi x:A_1,B_1,\Pi x:A_2,B_2)=\Pi x:A_1$. $\kappa(B_1,B_2)$. If $\nu(A_1),\nu(A_2)\in\mathcal{P}\cup\mathcal{E}$ and $\nu(B_1),\nu(B_2)\in\mathcal{S}$, then $B_1=B_2$ and $\kappa(\Pi x:A_1,B_1,\Pi x:A_2,B_2)=\kappa(A_1,A_2)$. If $\nu(A_1),\nu(A_2),\nu(B_1),\nu(B_2)\in\mathcal{P}\cup\mathcal{E}$, then there are four cases, corresponding to $\leadsto_d, \Rightarrow_d, \pi$ and \forall . For instance, if $\nu(A_1),\nu(A_2),\nu(B_1)$ and $\nu(B_2)$ are all generated by \mathcal{E} , then necessarily we have $\nu(A_1)=El$ $a_1,\nu(A_2)=El$ $a_2,\nu(B_1)=El$ b_1 and $\nu(B_2)=El$ b_2 . Therefore

 $\kappa(\Pi x: A_1. B_1, \Pi x: A_2. B_2) := (a_1 \leadsto_d (\lambda x: El\ a_1. b_1)) \approx (a_2 \leadsto_d (\lambda y: El\ a_2. b_2)).$ The axiom is:

```
 \begin{array}{l} \mathsf{prod}_{\leadsto_d} : \Pi a_1, a_2 : Set. \ \Pi b_1 : (El \ a_1 \to Set). \ \Pi b_2 : (El \ a_2 \to Set). \ a_1 \approx a_2 \\ \to (\Pi x : El \ a_1. \ \Pi y : El \ a_2. \ \Pi p : (x \approx y). \ b_1 \ x \approx b_2 \ y) \\ \to (a_1 \leadsto_d b_1) \approx (a_2 \leadsto_d b_2) \end{array}
```

Note that this axiom is derivable from the previous axioms. We proceed similarly for the cases \Rightarrow_d , π and \forall . We write Σ_{eq} for the signature formed by the axiom schemas defining the heterogeneous equality. Reflexivity, symmetry, and transitivity are standard axioms of equality. We have also added axioms stating that a heterogeneous equality comparing two objects of the same type acts like Leibniz equality. Finally, we have an axiom for the application constructor and one axiom for the abstraction constructor—that is functional extensionality.

4 Replacing Rewrite Rules

When working in theories with prelude encoding, rewriting originates from the rewrite rules \mathcal{R}_{pre} (which are generic rewrite rules), from the rewrite rules $\mathcal{R}_{\mathcal{T}}$ (which are defined by the user) and from β -reduction. The goal of this work is to replace the user-defined rewrite rules $\mathcal{R}_{\mathcal{T}}$ by axioms. In the rest of the paper, we write $\vdash_{\mathcal{R}}$ for a derivation inside the source theory—the theory with user-defined rewrite rules—and \vdash for a derivation inside the target theory—the theory with axioms instead of user-defined rewrite rules.

We now have all the tools to replace rewrite rules by equality axioms. To do so, for each rewrite rule $\ell \hookrightarrow r$, we take $\ell \approx r$ as an axiom. Then we build suitable transports, such that if $\Gamma \vdash t : A$ and $\Gamma \vdash p : \kappa(A,B)$, then $\Gamma \vdash \text{transp } p \ t : B$. The goal is to insert such transports into the terms instead of using conversion rules with $\mathcal{R}_{\mathcal{T}}$.

4.1 Axiomatic Counterparts of the Rewrite Rules

Instead of the user-defined rewrite rules $\ell \hookrightarrow r$, we take axioms $\ell \approx r$.

Definition 6. Let a theory $\mathcal{T} = (\Sigma, \mathcal{R})$ in $\lambda \Pi / \equiv$ such that \mathcal{T} is a theory with prelude encoding. For every rewrite rule $\ell \hookrightarrow r \in \mathcal{R}_{\mathcal{T}}$, where \boldsymbol{x} represents the free variables of ℓ and where $\boldsymbol{x} : \boldsymbol{B} \vdash_{\mathcal{R}} \ell : A$, we define the constants $eq_{\ell r} : \Pi \boldsymbol{x} : \boldsymbol{B} \cdot \ell$. We write \mathcal{L}_{T}^{ax} for the signature formed by $\{eq_{\ell r} \mid \ell \hookrightarrow r \in \mathcal{R}_{\mathcal{T}}\}$.

Since the type of a term is not unique in $\lambda \Pi/\equiv$, we have made a choice of **B** and A in this definition. This arbitrary choice is not a problem, as we will see in the proof of Theorem 1.

4.2 Transports

Now that we have axiomatic counterparts for the rewrite rules $\mathcal{R}_{\mathcal{T}}$, we can build well-defined transports. If we have $\Gamma \vdash t : A$ and $\Gamma \vdash p : \kappa(A, B)$, we want to build a term transp p t such that $\Gamma \vdash$ transp p t : B. A paramount result is that t and transp p t are heterogeneously equal.

Lemma 2 (Transport). Given $\Gamma \vdash t : A$ and $\Gamma \vdash p : \kappa(A, B)$ with A and B small types, there exists transp p t, called transport of t along p, such that:

- $-\Gamma \vdash \mathsf{transp}\ p\ t:B,$
- there exists eqTransp such that $\Gamma \vdash$ eqTransp $p\ t$: transp $p\ t \approx t$.

Proof. A and B are small types and we have an equality $\kappa(A,B)$. If $A,B \in \mathcal{S}$ then $\nu(A) = \nu(B) = A = B$ and we take transp $p \ t \coloneqq t$ and eqTransp $p \ t \coloneqq \text{refl}_A \ t$. Otherwise, by construction of κ , we know that $\nu(A), \nu(B) \in \mathcal{P}$, or $\nu(A), \nu(B) \in \mathcal{E}$, and that $\nu(A)$ and $\nu(B)$ have the same structure. Moreover, using $A \equiv_{\beta \mathcal{R}_{pre}} \nu(A)$, we have $\Gamma \vdash t : \nu(A)$. We proceed by induction on the grammar \mathcal{P} (we proceed similarly for the grammar \mathcal{E}).

- If $\nu(A) = Prf\ a$ and $\nu(B) = Prf\ b$, then we have $\Gamma \vdash p : a \approx b$. We take transp $p \ t \coloneqq \mathsf{leib}^{\mathsf{Prf}}_{El\ o}\ a\ b\ p\ (\lambda w : El\ o.\ w)\ t$. We conclude using $\mathsf{eqLeib}^{\mathsf{Prf}}_{El\ o}$.
 If $\nu(A) = A' \to S$ and $\nu(B) = B' \to S$, with $A', B' \in \mathcal{P}$ and $S \in \mathcal{S}$, then we
- If $\nu(A) = A' \to S$ and $\nu(B) = B' \to S$, with $A', B' \in \mathcal{P}$ and $S \in \mathcal{S}$, then we have $\kappa(A', B') = \kappa(A, B)$. From $\Gamma \vdash p : \kappa(A', B')$ we can build some p' such that $\Gamma \vdash p' : \kappa(B', A')$ (using sym). By weakening, we also have $p' : \kappa(B', A')$ in the context $\Gamma, m_b : B'$. By induction, we have transp $p' m_b : A'$ and eqTransp $p' m_b :$ transp $p' m_b \approx m_b$ in the context $\Gamma, m_b : B'$. We take transp $p' m_b : B'$. $p' m_b : B'$. Using trans and app we obtain an equality $p' m_b : B'$ transp $p' m_b : B'$ transp p
- If $\nu(A) = \Pi z: S.$ A' and $\nu(B) = \Pi z: S.$ B' with $A', B' \in \mathcal{P}$ and $S \in \mathcal{S}$, then we have $\kappa(A,B) = \Pi z: S.$ $\kappa(A',B')$. By weakening and application, we have $\Gamma,z:S \vdash p\ z:\kappa(A',B')$. By induction we have transp $(p\ z)\ (t\ z):B'$ and eqTransp $(p\ z)\ (t\ z):$ transp $(p\ z)\ (t\ z)\approx t\ z$ in the context $\Gamma,z:S.$ We take transp $p\ t\coloneqq \lambda z:S.$ transp $(p\ z)\ (t\ z).$ We obtain $\lambda z:S.$ transp $(p\ z)\ (t\ z)\approx t$ using fun and $\equiv_{\beta\mathcal{R}_{pre}}$.

4.3 Translation of Terms

To translate a theory with rewrite rules into a theory with axioms of equality, we add transports at the proper locations in the terms and types—which we call translation. If we have $\Gamma \vdash_{\mathcal{R}} t : A$ in the source theory, we want to find $\overline{\Gamma}$, \overline{t} and \overline{A} that are translations of Γ , t and t, such that $\overline{\Gamma} \vdash \overline{t} : \overline{A}$ in the target theory.

We add transports in a term by induction on a typing derivation—which is not unique—so we may have different translations for a same term. As such, we define a relation \triangleleft where $\bar{t} \triangleleft t$ states that \bar{t} is a translation of t. The relation is defined by induction on the terms of $\lambda \Pi/\equiv$. Variables, constants, TYPE and KIND are translations of themselves. The translations of λ -abstractions $\lambda x:A$. t, dependent types $\Pi x:A$. B and applications t u rely on the translations of t, u, u and u. The most important part of the definition is that the translation is stable by transports: if u is a translation of u, then transports u is also a translation of u, with u typically an equality. This relation captures all possible translations,

but some are not correct as they may not be well typed. For instance, $\lambda x: \overline{A}$. \overline{t} is not a valid translation of $\lambda x: A$. t when the variable x used in \overline{t} does not expect type \overline{A} but another translation \overline{A}' . We extend the relation to contexts and signatures.

Definition 7. The translation relation \triangleleft is defined by:

where p is an arbitrary term.

Due to the typing rules of $\lambda \Pi/\equiv$, transports for objects that have TYPE in their type do not exist. Therefore, the only well-typed translation of TYPE, KIND, Set, Prf and El are themselves, and the well-typed translations of $\Pi x:A$. B are of the form $\Pi x:\overline{A}$. \overline{B} with $\overline{A} \triangleleft A$ and $\overline{B} \triangleleft B$. It follows that a well-typed translation of a small type is still a small type. In particular, if $A \in \mathcal{S}$ then for any \overline{A} we have $\overline{A} := A$; if $\nu(A) \in \mathcal{P}$ then $\nu(\overline{A}) \in \mathcal{P}$; and if $\nu(A) \in \mathcal{E}$ then $\nu(\overline{A}) \in \mathcal{E}$.

Lemma 3. If $\bar{t} \triangleleft t$ and $\bar{u} \triangleleft u$ then $\bar{t}[x \mapsto \bar{u}] \triangleleft t[x \mapsto u]$.

Proof. By induction on the derivation of $\bar{t} \triangleleft t$. For the case with the transport, we can prove that $(\operatorname{transp} p t)[x \mapsto u] = \operatorname{transp} p[x \mapsto u] \ t[x \mapsto u]$.

Definition 8 (Relation \sim). We say that $t_1 \sim t_2$ when there exists some t such that $t_1 \triangleleft t$ and $t_2 \triangleleft t$.

Lemma 4. \sim is an equivalence relation.

Proof. By induction \sim is reflexive, symmetric and transitive.

An important result we need to prove is that two well-typed translations t_1 and t_2 of the same term t are heterogeneously equal. By construction, both terms do not necessarily have the same type or the same context. We will always consider $\Gamma_1 \vdash t_1 : A_1$ and $\Gamma_2 \vdash t_2 : A_2$, where Γ_1 and Γ_2 have the same length and the same variables (with possibly different but convertible types). The equality between t_1 and t_2 must be typed in some context, but Γ_1 and Γ_2 are not sufficient. That is why we define a common context $\Gamma_1 \star \Gamma_2$ (written Pack $\Gamma_1 \Gamma_2$ in the

work of Winterhalter *et al.* [20]) by duplicating each variable and by assuming a witness of heterogeneous equality between these two duplicates. More precisely, we partially define \star by induction on small contexts:

$$\langle \rangle \star \langle \rangle := \langle \rangle$$

$$(\Gamma_1, x : A_1) \star (\Gamma_2, x : A_2) := \Gamma_1 \star \Gamma_2, x_1 : A_1[\gamma_1], x_2 : A_2[\gamma_2], p_x : x_1 \approx x_2$$

where γ_1 substitutes variables z by z_1 and γ_2 substitutes variables z by z_2 . We write γ_{12} for the substitution that replaces the variables z_1 and z_2 by z and the variable p_z by refl z.

Lemma 5. If $\Gamma \star \Gamma \vdash t : A$, then we can derive $\Gamma \vdash t[\gamma_{12}] : A[\gamma_{12}]$.

Proof. We proceed by induction on the length of Γ . If we have $\langle \rangle \star \langle \rangle \vdash t : A$ then by definition we have $\langle \rangle \vdash t : A$. Suppose that we have $(\Gamma, x : B) \star (\Gamma, x : B) \vdash t : A$. We apply successively Lemma 1 to replace x_2 and x_1 by x and then p_x by refl x.

The following lemma states that two translations of a same term are heterogeneously equal.

Lemma 6 (Equal translations). Let $t_1 \sim t_2$ such that $\Gamma_1 \vdash t_1 : A_1$ and $\Gamma_2 \vdash t_2 : A_2$ with Γ_1 and Γ_2 small contexts.

- 1. If $\Gamma_1 \vdash A_1$: TYPE and $\Gamma_2 \vdash A_2$: TYPE, then there exists some p such that $\Gamma_1 \star \Gamma_2 \vdash p : t_1[\gamma_1] \xrightarrow{A_1[\gamma_1]} \approx_{A_2[\gamma_2]} t_2[\gamma_2]$.
- 2. If t_1 and t_2 are small types, then there exists some p such that $\Gamma_1 \star \Gamma_2 \vdash p$: $\kappa(t_1[\gamma_1], t_2[\gamma_2])$.

Proof. We proceed by induction on \sim . We show two interesting cases. The complete proof is available in Appendix A.

- Transport (transp $p\ t_1$) $\sim t_2$ We have $\Gamma_1 \vdash \text{transp } p\ t_1: A_1$ and $\Gamma_2 \vdash t_2: A_2$. By inversion of typing, we have $\Gamma_1 \vdash t_1: A_1'$ and $\Gamma_1 \vdash p: \kappa(A_1', A_1)$. By induction there exists some p_t such that $\Gamma_1 \star \Gamma_2 \vdash p_t: t_1[\gamma_1] \approx t_2[\gamma_2]$. We also have $\Gamma_1 \vdash \text{eqTransp } p\ t_1: \text{transp } p\ t_1$. We derive that $\Gamma_1 \star \Gamma_2 \vdash (\text{eqTransp } p\ t_1)[\gamma_1]: (\text{transp } p\ t_1)[\gamma_1] \approx t_1[\gamma_1]$. We conclude using transitivity.
- APPLICATION $(t_1 \ u_1) \sim (t_2 \ u_2)$ Suppose that $t_1 \ u_1$ and $t_2 \ u_2$ are small types. Then the only possible cases are $t_1 = t_2 = Prf$ or $t_1 = t_2 = El$. If $t_1 = t_2 = Prf$, then we have $\Gamma_1 \vdash Prf \ u_1$: TYPE and $\Gamma_2 \vdash Prf \ u_2$: TYPE. Since $\kappa(Prf \ u_1, Prf \ u_2) = u_1 \approx u_2$, the result is simply the induction hypothesis $\Gamma_1 \star \Gamma_2 \vdash p : u_1[\gamma_1] \approx u_2[\gamma_2]$. We proceed similarly for $El \ u_1 \sim El \ u_2$.

Suppose that we have $\Gamma_1 \vdash t_1 \ u_1 : T_1 \ \text{and} \ \Gamma_2 \vdash t_2 \ u_2 : T_2 \ \text{with} \ \Gamma \vdash T_1 : \text{TYPE}$ and $\Gamma \vdash T_2 : \text{TYPE}$. Then by inversion of typing we have $\Gamma_1 \vdash u_1 : B_1 \ \text{and} \ \Gamma_2 \vdash u_2 : B_2 \ \text{and} \ \Gamma_1 \vdash t_1 : \Pi x : A_1 . \ B_1 \ \text{and} \ \Gamma_2 \vdash t_2 : \Pi x : A_2 . \ B_2, \ \text{with} \ T_1 \equiv_{\beta \mathcal{R}_{pre}} B_1[x \mapsto u_1] \ \text{and} \ T_2 \equiv_{\beta \mathcal{R}_{pre}} B_2[x \mapsto u_2].$ By induction hypotheses, we have $\Gamma_1 \star \Gamma_2 \vdash p_t : t_1[\gamma_1] \approx t_2[\gamma_2]$ and $\Gamma_1 \star \Gamma_2 \vdash p_u : u_1[\gamma_1] \approx u_2[\gamma_2].$ We conclude using app.

4.4 Translation of Judgments

In Section 4.3 we have seen all the possible translations for terms. However, the only translations that matter are the translations of judgments: context formation judgments and typing judgments.

Definition 9. For any $\vdash_{\mathcal{R}} \Gamma$ we define a set $\llbracket \vdash_{\mathcal{R}} \Gamma \rrbracket$ of valid judgments such that $\vdash \overline{\Gamma} \in \llbracket \vdash_{\mathcal{R}} \Gamma \rrbracket$ if and only if $\overline{\Gamma} \triangleleft \Gamma$. For any $\Gamma \vdash_{\mathcal{R}} t : A$ we define a set $\llbracket \Gamma \vdash_{\mathcal{R}} t : A \rrbracket$ of valid judgments such that $\overline{\Gamma} \vdash \overline{t} : \overline{A} \in \llbracket \Gamma \vdash_{\mathcal{R}} t : A \rrbracket$ if and only $if \vdash \overline{\Gamma} \in \llbracket \vdash_{\mathcal{R}} \Gamma \rrbracket, \ \overline{t} \ \triangleleft \ t \ and \ \overline{A} \ \triangleleft \ A.$

We are now able to prove that it is possible to switch between two equivalent translations of a small type.

Lemma 7 (Switching translations). Suppose that we have A a small type, $\overline{\Gamma} \vdash \overline{t} : \overline{A} \in \llbracket \Gamma \vdash_{\mathcal{R}} t : A \rrbracket \ and \ \overline{\Gamma} \vdash \overline{A}' : \mathtt{TYPE} \in \llbracket \Gamma \vdash_{\mathcal{R}} A : \mathtt{TYPE} \rrbracket \ with \ \overline{\Gamma} \ a \ small \ A : \mathtt{TYPE} \rrbracket$ context. Then there exists \bar{t}' such that $\bar{\Gamma} \vdash \bar{t}' : \bar{A}' \in [\![\Gamma \vdash_{\mathcal{R}} t : A]\!]$.

Proof. If $\nu(A) \in \mathcal{S}$, then $\overline{A} := A$ and $\overline{A}' := A$, and we take $\overline{t}' := \overline{t}$. If $\nu(A) \in \mathcal{P}$, then $\nu(\overline{A}), \nu(\overline{A}') \in \mathcal{P}$ (this is similar for \mathcal{E}). As \overline{A} and \overline{A}' are two translations of A, we have $\overline{A} \sim \overline{A}'$. From Lemma 6, we have $\overline{\Gamma} \star \overline{\Gamma} \vdash p : \kappa(\overline{A}[\gamma_1], \overline{A}'[\gamma_2])$. Using Lemma 5 we obtain $\overline{\Gamma} \vdash p[\gamma_{12}] : \kappa(\overline{A}, \overline{A}')$. Using Lemma 2, there exists some transp $p[\gamma_{12}] \ \bar{t} \ \triangleleft \ t \ (\text{since} \ \bar{t} \ \triangleleft \ t) \ \text{such that} \ \overline{\varGamma} \vdash \text{transp} \ p[\gamma_{12}] \ \bar{t} : \overline{A}'.$

4.5 Translation of Theories

We now have all the ingredients allowing us to prove that we can replace rewrite rules $\mathcal{R}_{\mathcal{T}}$ by axioms of equality inside $\lambda \Pi / \equiv$. The paramount result of this paper is the following theorem. The first item concerns context formation. The second item is about the translation of typing judgments. The third item focuses on convertible contexts. The fourth and fifth items are about the conversion rules. It is worth noting that in the second item we use the universal quantifier on $\overline{\Gamma}$ instead of using the existential quantifier. We have opted for the universal quantifier so we can obtain the induction hypotheses for a common context.

Theorem 1 (Elimination of the rewrite rules). Let a theory $\mathcal{T} = (\Sigma, \mathcal{R})$ in $\lambda \Pi/\equiv$ such that \mathcal{T} is a theory with prelude encoding and such that all the derivations considered are small derivations. There exists a signature $\overline{\Sigma}_{\mathcal{T}} \triangleleft (\Sigma_{\mathcal{T}} \cup \Sigma_{\mathcal{T}}^{ax})$ such that the theory $\mathcal{T}^{ax} = (\Sigma_{pre} \cup \Sigma_{eq} \cup \overline{\Sigma}_{\mathcal{T}}, \mathcal{R}_{pre})$ satisfies:

- 1. If $\vdash_{\mathcal{R}} \Gamma$, then there exists $\vdash \overline{\Gamma} \in \llbracket \vdash_{\mathcal{R}} \Gamma \rrbracket$. 2. If $\Gamma \vdash_{\mathcal{R}} t : A$, then for every $\vdash \overline{\Gamma} \in \llbracket \vdash_{\mathcal{R}} \Gamma \rrbracket$ there exist \overline{t} and \overline{A} such that $\overline{\Gamma} \vdash \overline{t} : \overline{A} \in \llbracket \Gamma \vdash_{\mathcal{R}} t : A \rrbracket.$
- 3. If $(\vdash_{\mathcal{R}} \Gamma_1) \stackrel{\text{"}}{=} (\vdash_{\underline{\mathcal{R}}} \Gamma_2)$, then for every $\vdash \overline{\Gamma}_1 \in \llbracket \vdash_{\mathcal{R}} \Gamma_1 \rrbracket$ and $\vdash \overline{\Gamma}_2 \in \llbracket \vdash_{\mathcal{R}} \Gamma_2 \rrbracket$, we have $\vdash \overline{\Gamma}_1 \star \overline{\Gamma}_2$.
- 4. If $(\Gamma_1 \vdash_{\mathcal{R}} u_1 : A_1) \equiv (\Gamma_2 \vdash_{\mathcal{R}} u_2 : A_2)$ with $\Gamma_1 \vdash_{\mathcal{R}} A_1 : \text{TYPE}$ and $\Gamma_2 \vdash_{\mathcal{R}} A_1 : \text{TYPE}$ \underline{A}_2 : TYPE, then for every $\vdash \overline{\Gamma}_1 \in \llbracket \vdash_{\mathcal{R}} \Gamma_1 \rrbracket$ and $\vdash \overline{\Gamma}_2 \in \llbracket \vdash_{\mathcal{R}} \Gamma_2 \rrbracket$, we have $\overline{\Gamma}_1 \vdash \overline{u}_1 : \overline{A}_1 \in \llbracket \Gamma_1 \vdash_{\mathcal{R}} u_1 : A_1 \rrbracket \text{ and } \overline{\Gamma}_2 \vdash \overline{u}_2 : \overline{A}_2 \in \llbracket \Gamma_2 \vdash_{\mathcal{R}} u_2 : A_2 \rrbracket \text{ and } there \text{ exists some } p \text{ such that } \overline{\Gamma}_1 \star \overline{\Gamma}_2 \vdash p : \overline{u}_1[\gamma_1] \xrightarrow{A_1[\gamma_1]} \approx \overline{A}_2[\gamma_2]} \overline{u}_2[\gamma_2].$

5. If $(\Gamma_1 \vdash_{\mathcal{R}} u_1 : \mathsf{TYPE}) \equiv (\Gamma_2 \vdash_{\mathcal{R}} u_2 : \mathsf{TYPE})$, then for every $\vdash \overline{\Gamma}_1 \in \llbracket \vdash_{\mathcal{R}} \Gamma_1 \rrbracket$ and $\vdash \overline{\Gamma}_2 \in \llbracket \vdash_{\mathcal{R}} \Gamma_2 \rrbracket$, we have $\overline{\Gamma}_1 \vdash \overline{u}_1 : \mathsf{TYPE} \in \llbracket \Gamma_1 \vdash_{\mathcal{R}} u_1 : \mathsf{TYPE} \rrbracket$ and $\overline{\Gamma}_2 \vdash \overline{u}_2 : \mathsf{TYPE} \in \llbracket \Gamma_2 \vdash_{\mathcal{R}} u_2 : \mathsf{TYPE} \rrbracket$ and there exists some p such that $\overline{\Gamma}_1 \star \overline{\Gamma}_2 \vdash p : \kappa(\overline{u}_1 \lceil \gamma_1 \rceil, \overline{u}_2 \lceil \gamma_2 \rceil)$.

Proof. The proof of the five items is done by induction on the typing derivations. We show three relevant cases. The complete proof can be found in Appendix B.

- Prod:

$$\frac{\varGamma \vdash_{\mathcal{R}} A : \mathtt{TYPE} \qquad \varGamma, x : A \vdash_{\mathcal{R}} B : s}{\varGamma \vdash_{\mathcal{R}} \varPi x : A . \ B : s}$$

Take $\vdash \overline{\varGamma} \in \llbracket \vdash_{\mathcal{R}} \varGamma \rrbracket$. By induction hypothesis, we have $\overline{\varGamma} \vdash \overline{A}$: TYPE $\in \llbracket \varGamma \vdash_{\mathcal{R}} A : \mathtt{TYPE} \rrbracket$. We have $(\overline{\varGamma}, x : \overline{A}) \lhd (\varGamma, x : A)$ and we know that the only translation of sort s is itself, therefore by induction hypothesis we have $\overline{\varGamma}, x : \overline{A} \vdash \overline{B} : s \in \llbracket \varGamma, x : A \vdash_{\mathcal{R}} B : s \rrbracket$. We conclude that $\overline{\varGamma} \vdash \varPi x : \overline{A} . \ \overline{B} : s$ using the Prod rule.

- Conv:

$$\frac{\Gamma \vdash_{\mathcal{R}} t : A \qquad (\Gamma \vdash_{\mathcal{R}} A : s) \equiv (\Gamma \vdash_{\mathcal{R}} B : s)}{\Gamma \vdash_{\mathcal{R}} t : B}$$

Take $\vdash \overline{\Gamma} \in \llbracket \vdash_{\mathcal{R}} \Gamma \rrbracket$. As we consider small derivations, either A is a small type or A and B are the same type.

If A is a small type, then by induction hypothesis we have $\overline{\Gamma}\star\overline{\Gamma}\vdash p:$ $\kappa(\overline{A}[\gamma_1],\overline{B}[\gamma_2]).$ By Lemma 5 we obtain $\overline{\Gamma}\vdash p[\gamma_{12}]:\kappa(\overline{A},\overline{B}).$ By Lemma 7 and induction hypothesis we have $\overline{\Gamma}\vdash \overline{t}:\overline{A}\in \llbracket\Gamma\vdash_{\mathcal{R}}t:A\rrbracket.$ Thanks to Lemma 2, there exists some \overline{t}' such that $\overline{\Gamma}\vdash \overline{t}':\overline{B}\in \llbracket\Gamma\vdash_{\mathcal{R}}t:B\rrbracket.$

If A and B are the same type, then no conversion is needed and the result is simply given the induction hypothesis $\overline{\Gamma} \vdash \overline{t} : \overline{A}$.

- Convresl:

$$\frac{\Gamma \vdash_{\mathcal{R}} u : A}{(\Gamma \vdash_{\mathcal{R}} u : A) \equiv (\Gamma \vdash_{\mathcal{R}} u : A)}$$

Take $\vdash \overline{\Gamma} \in \llbracket \vdash_{\mathcal{R}} \Gamma \rrbracket$. By induction hypothesis, we have $\overline{\Gamma} \vdash \overline{u} : \overline{A} \in \llbracket \Gamma \vdash_{\mathcal{R}} u : A \rrbracket$.

If $\Gamma \vdash_{\mathcal{R}} A$: TYPE, then we build $\overline{\Gamma} \star \overline{\Gamma} \vdash p : \overline{u}[\gamma_1] \approx \overline{u}[\gamma_2]$ using all the congruence rules of \approx .

We proceed similarly for the case A = TYPE.

Corollary 1 (Preservation). If $\vdash_{\mathcal{R}} t : A \text{ and } \vdash A : s \in \llbracket \vdash_{\mathcal{R}} A : s \rrbracket$, then there exists \bar{t} such that $\vdash \bar{t} : A$.

Proof. By Theorem 1 we have $\vdash \bar{t}' : \bar{A}' \in \llbracket \vdash_{\mathcal{R}} t : A \rrbracket$. Using Lemma 7 with $\bar{A} := A$, we have some \bar{t} such that $\vdash \bar{t} : A \in \llbracket \vdash_{\mathcal{R}} t : A \rrbracket$.

We directly derive the two following conservativity and consistency results.

Corollary 2 (Conservativity). \mathcal{T} is a conservative extension of \mathcal{T}^{ax} .

Corollary 3 (Relative consistency). If \mathcal{T}^{ax} is consistent then \mathcal{T} is also consistent.

5 Conclusion

Discussion. In this paper, we showed that it is possible to replace user-defined rewrite rules by axioms of equality, in the case of the $\lambda \Pi$ -calculus modulo theory. This result works for theories with prelude encoding—which is satisfied by expressive theories such as predicate logic and set theory—and for small derivations—which is in practice the case. So as to replace rewrite rules by equalities, we have defined a heterogeneous equality with standard axioms—reflexivity, symmetry, transitivity, Leibniz principle—and congruences for each constructor. At the end, the theory with rewrite rules is a conservative extension of the theory with axioms.

Related work. The similar problem of the translation from an extensional system to an intensional system has been investigated by Oury [16]. He proposed a translation from the Extensional Calculus of Constructions to the Calculus of Inductive Constructions with additional axioms that define a heterogeneous equality. Winterhalter, Sozeau and Tabareau provided a translation from extensional type theory to intensional type theory [20,21]. They took advantage of the presence of dependent pairs to encode a heterogeneous equality, unlike Oury who defined it with axioms.

In this paper, we have shown the existence of a translation from a theory with rewrite rules to a theory with axioms of equality. Technical challenges appear as we are not in an extensional type system. In particular, Oury and Winterhalter *et al.* had a homogeneous equality in their source theory and introduce a heterogeneous equality in the target theory. In this work, the source theory does not contain a homogeneous equality, and the target theory only contains a heterogeneous equality.

The major difference with previous works is that we are in a logical framework without an infinite hierarchy of sorts $s_i:s_{i+1}$ for $i\in\mathbb{N}$. In $\lambda\Pi/\equiv$, we only have TYPE: KIND, which is the reason why we cannot define an equality between types. As such an equality is of paramount importance in the transports, we have considered a subclass of types—called small types—for which we can define an equality. However, it is worth noting that the sorts of $\lambda\Pi/\equiv$ allowed a simplification: by construction, there is no transports on types, so the translation of a dependent function type is directly a dependent function type.

References

- Adams, R.: Pure type systems with judgemental equality. Journal of Functional Programming 16(2), 219–246 (2006). https://doi.org/10.1017/S0956796805005770
- 2. Assaf, A., Burel, G., Cauderlier, R., Delahaye, D., Dowek, G., Dubois, C., Gilbert, F., Halmagrand, P., Hermant, O., Saillard, R.: Dedukti: a Logical Framework based on the $\lambda \Pi$ -Calculus Modulo Theory (2016), manuscript
- 3. Blanqui, F., Dowek, G., Grienenberger, E., Hondet, G., Thiré, F.: A modular construction of type theories. Logical Methods in Computer Science Volume 19, Issue 1 (Feb 2023). https://doi.org/10.46298/lmcs-19(1:12)2023, https://lmcs.episciences.org/10959
- Blot, V., Dowek, G., Traversié, T.: An Implementation of Set Theory with Pointed Graphs in Dedukti. In: LFMTP 2022 - International Workshop on Logical Frameworks and Meta-Languages: Theory and Practice. Haïfa, Israel (Aug 2022), https://inria.hal.science/hal-03740004
- 5. Cockx, J., Abel, A.: Sprinkles of extensionality for your vanilla type theory (2016)
- Cousineau, D., Dowek, G.: Embedding Pure Type Systems in the Lambda-Pi-Calculus Modulo. In: Della Rocca, S.R. (ed.) Typed Lambda Calculi and Applications. pp. 102–117. Springer Berlin Heidelberg, Berlin, Heidelberg (2007)
- 7. Dershowitz, N., Jouannaud, J.P.: Rewrite Systems. In: Handbook of Theoretical Computer Science, Volume B: Formal Models and Sematics (1991)
- 8. Dowek, G., Miguel, A.: Relative normalization (2007), manuscript
- 9. Dowek, G.: La part du calcul. Habilitation à diriger des recherches, Université de Paris 7 (Jun 1999), https://inria.hal.science/tel-04114581
- Dowek, G., Werner, B.: Proof Normalization Modulo. Research Report RR-3542, INRIA (1998), https://inria.hal.science/inria-00073143, projet COQ
- 11. Geuvers, H., Werner, B.: On the Church-Rosser property for expressive type systems and its consequences for their metatheoretic study. In: Proceedings Ninth Annual IEEE Symposium on Logic in Computer Science. pp. 320–329 (1994). https://doi.org/10.1109/LICS.1994.316057
- 12. Gilbert, G., Leray, Y., Tabareau, N., Winterhalter, T.: The Rewster: The Coq Proof Assistant with Rewrite Rules (2023)
- Harper, R., Honsell, F., Plotkin, G.: A Framework for Defining Logics. Journal of the ACM 40(1), 143–184 (January 1993). https://doi.org/10.1145/138027.138060, https://doi.org/10.1145/138027.138060
- Hondet, G., Blanqui, F.: The New Rewriting Engine of Dedukti. In: FSCD 2020
 5th International Conference on Formal Structures for Computation and Deduction. p. 16. No. 167, Paris, France (Jun 2020). https://doi.org/10.4230/LIPIcs. FSCD.2020.35, https://inria.hal.science/hal-02981561
- 15. McBride, C.: Dependently Typed Functional Programs and their Proofs. Ph.D. thesis, University of Edinburgh (1999)
- Oury, N.: Extensionality in the Calculus of Constructions. In: Hurd, J., Melham, T. (eds.) Theorem Proving in Higher Order Logics. pp. 278–293. Springer Berlin Heidelberg, Berlin, Heidelberg (2005)
- 17. Poincaré, H.: La Science et l'Hypothèse. Flammarion (1902)
- 18. Siles, V.: Investigation on the typing of equality in type systems. Ph.D. thesis, Ecole Polytechnique (Nov 2010), https://pastel.archives-ouvertes.fr/pastel-00556578
- Siles, V., Herbelin, H.: Pure Type System conversion is always typable. Journal of Functional Programming 22(2), 153 – 180 (May 2012). https://doi.org/10.1017/ S0956796812000044, https://inria.hal.science/inria-00497177

V. Blot et al.

20

- 20. Winterhalter, T., Sozeau, M., Tabareau, N.: Eliminating Reflection from Type Theory. In: CPP 2019 8th ACM SIGPLAN International Conference on Certified Programs and Proofs. pp. 91–103. ACM, Lisbonne, Portugal (Jan 2019). https://doi.org/10.1145/3293880.3294095, https://hal.science/hal-01849166
- 21. Winterhalter, T.: Formalisation and meta-theory of type theory. Ph.D. thesis, Université de Nantes $(2020)\,$

A Proof of Lemma 6

Lemma 6 (Equal translations). Let $t_1 \sim t_2$ such that $\Gamma_1 \vdash t_1 : A_1$ and $\Gamma_2 \vdash t_2 : A_2$ with Γ_1 and Γ_2 small contexts.

- 1. If $\Gamma_1 \vdash A_1$: TYPE and $\Gamma_2 \vdash A_2$: TYPE, then there exists some p such that $\Gamma_1 \star \Gamma_2 \vdash p$: $t_1[\gamma_1] \xrightarrow{A_1[\gamma_2]} t_2[\gamma_2]$.
- $\begin{array}{l} \varGamma_1\star \varGamma_2 \vdash p: t_1[\gamma_1] \ _{A_1[\gamma_1]} \approx_{A_2[\gamma_2]} \ t_2[\gamma_2]. \\ \emph{2. If } t_1 \ and \ t_2 \ are \ small \ types, \ then \ there \ exists \ some \ p \ such \ that \ \varGamma_1\star \varGamma_2 \vdash p: \\ \kappa(t_1[\gamma_1],t_2[\gamma_2]). \end{array}$

Proof. We proceed by induction on \sim .

- Variable $x \sim x$ p is given by the variable p_x that belongs to $\Gamma_1 \star \Gamma_2$.
- Constant $c \sim c$ If c: A and A: TYPE, then we take $p:= refl\ c$. The only constant c: TYPE is $Set \in \mathcal{S}$. Therefore, we have nothing to prove.
- Transport (transp $p\ t_1$) $\sim t_2$ We have $\Gamma_1 \vdash \text{transp } p\ t_1: A_1$ and $\Gamma_2 \vdash t_2: A_2$. By inversion of typing, we have $\Gamma_1 \vdash t_1: A_1'$ and $\Gamma_1 \vdash p: \kappa(A_1', A_1)$. By induction there exists some p_t such that $\Gamma_1 \star \Gamma_2 \vdash p_t: t_1[\gamma_1] \approx t_2[\gamma_2]$. We also have $\Gamma_1 \vdash \text{eqTransp } p\ t_1: \text{transp } p\ t_1$. We derive that $\Gamma_1 \star \Gamma_2 \vdash (\text{eqTransp } p\ t_1)[\gamma_1]: (\text{transp } p\ t_1)[\gamma_1] \approx t_1[\gamma_1]$. We conclude using transitivity.
- APPLICATION $(t_1 \ u_1) \sim (t_2 \ u_2)$ Suppose that $t_1 \ u_1$ and $t_2 \ u_2$ are small types. Then the only possible cases are $t_1 = t_2 = Prf$ or $t_1 = t_2 = El$. If $t_1 = t_2 = Prf$, then we have $\Gamma_1 \vdash Prf \ u_1$: TYPE and $\Gamma_2 \vdash Prf \ u_2$: TYPE. Since $\kappa(Prf \ u_1, Prf \ u_2) = u_1 \approx u_2$, the result is simply the induction hypothesis $\Gamma_1 \star \Gamma_2 \vdash p : u_1[\gamma_1] \approx u_2[\gamma_2]$. We proceed similarly for $El \ u_1 \sim El \ u_2$. Suppose that we have $\Gamma_1 \vdash t_1 \ u_1 : T_1 \ \text{and} \ \Gamma_2 \vdash t_2 \ u_2 : T_2 \ \text{with} \ \Gamma \vdash T_1 : \text{TYPE}$ and $\Gamma \vdash T_2 : \text{TYPE}$. Then by inversion of typing we have $\Gamma_1 \vdash u_1 : B_1 \ \text{and} \ \Gamma_2 \vdash u_2 : B_2 \ \text{and} \ \Gamma_1 \vdash t_1 : \Pi x : A_1 . B_1 \ \text{and} \ \Gamma_2 \vdash t_2 : \Pi x : A_2 . B_2$, with $T_1 \equiv_{\beta \mathcal{R}_{pre}} B_1[x \mapsto u_1] \ \text{and} \ T_2 \equiv_{\beta \mathcal{R}_{pre}} B_2[x \mapsto u_2]$. By induction hypotheses, we have $\Gamma_1 \star \Gamma_2 \vdash p_t : t_1[\gamma_1] \approx t_2[\gamma_2] \ \text{and} \ \Gamma_1 \star \Gamma_2 \vdash p_u : u_1[\gamma_1] \approx u_2[\gamma_2]$. We conclude using app.
- Abstraction $(\lambda x:A_1.\ t_1) \sim (\lambda x:A_2.\ t_2)$ Suppose that we have $\Gamma_1 \vdash \lambda x:A_1.\ t_1:T_1$ and $\Gamma_2 \vdash \lambda x:A_2.\ t_2:T_2.$ Then by inversion of typing we have $\Gamma_1 \vdash A_1:$ TYPE and $\Gamma_2 \vdash A_2:$ TYPE and $\Gamma_1, x:A_1 \vdash t_1:B_1$ and $\Gamma_2, x:A_2 \vdash t_2:B_2$, with $T_1 \equiv_{\beta \mathcal{R}_{pre}} \Pi x:A_1.\ B_1$ and $T_2 \equiv_{\beta \mathcal{R}_{pre}} \Pi x:A_2.\ B_2$. By induction hypothesis, we have $\Gamma_1 \star \Gamma_2 \vdash p_A: \kappa(A_1[\gamma_1],A_2[\gamma_2])$. By induction hypothesis, we have $p_t: t_1[\gamma_1, x\mapsto x_1] \xrightarrow{B_1[\gamma_1, x\mapsto x_1]} \approx_{B_2[\gamma_2, x\mapsto x_2]} t_2[\gamma_2, x\mapsto x_2]$ in the context $\Gamma_1 \star \Gamma_2, x_1:A_1[\gamma_1], x_2:A_2[\gamma_2], p_x:x_1 \approx x_2.$ We conclude using fun.

- PRODUCT $(\Pi x: A_1. B_1) \sim (\Pi x: A_2. B_2)$ If $\nu(\Pi x: A_1. B_1), \nu(\Pi x: A_2. B_2) \in \mathcal{S}$, then we take $\Gamma_1 \star \Gamma_2 \vdash \lambda P: El\ o.\ \lambda h: Prf\ P.\ h: \top$.

If $\nu(\Pi x: A_1. B_1), \nu(\Pi x: A_2. B_2) \in \mathcal{P}$ with $\nu(A_1), \nu(A_2) \in \mathcal{S}$ and $\nu(B_1), \nu(B_2) \in \mathcal{P}$, then the result can be derived from the induction hypothesis $\Gamma, x: Set \vdash p_B : \kappa(B_1, B_2)$ using fun.

If $\nu(\Pi x: A_1. B_1), \nu(\Pi x: A_2. B_2) \in \mathcal{P}$ with $\nu(A_1), \nu(A_2) \in \mathcal{P}$ and $\nu(B_1), \nu(B_2) \in \mathcal{S}$, then the result is given by the induction hypothesis $\Gamma_1 \star \Gamma_2 \vdash p_A : \kappa(A_1, A_2)$.

If $\nu(\Pi x:A_1.B_1), \nu(\Pi x:A_2.B_2)\in \mathcal{P}$ with $\nu(A_1), \nu(A_2), \nu(B_1), \nu(B_2)\in \mathcal{P}$, then we necessarily have $\nu(A_1)=Prf\ a_1,\ \nu(A_2)=Prf\ a_2,\ \nu(B_1)=Prf\ b_1$ and $\nu(B_2)=Prf\ b_2$. We have $\Gamma_1\vdash A_1$: TYPE and $\Gamma_2\vdash A_2$: TYPE and $\Gamma_1,x:A_1\vdash B_1$: TYPE and $\Gamma_2,x:A_2\vdash B_2$: TYPE and $\Gamma_1\vdash \Pi x:A_1.B_1$: TYPE and $\Gamma_2\vdash \Pi x:A_2.B_2$: TYPE. By induction hypotheses, we have $\Gamma_1\star \Gamma_2\vdash p_A:a_1[\gamma_1]\approx a_2[\gamma_2]$ and $\Gamma_1\star \Gamma_2,x_1:A_1[\gamma_1],x_2:A_2[\gamma_2],p_x:x_1\approx x_2\vdash p_B:b_1[\gamma_1,x\mapsto x_1]\approx b_2[\gamma_2,x\mapsto x_2]$. Using the appropriate prod, we are able to build equality $\kappa(\Pi x:A_1.B_1,\Pi x:A_2.B_2)\coloneqq (a_1[\gamma_1]\Rightarrow_d(\lambda x_1:Prf\ a_1[\gamma_1].b_1[\gamma_1,x\mapsto x_1]))\approx (a_2[\gamma_2]\Rightarrow_d(\lambda x_2:Prf\ a_2[\gamma_2].b_2[\gamma_2,x\mapsto x_2]))$. The other cases are treated similarly.

B Proof of Theorem 1

Theorem 1 (Elimination of the rewrite rules). Let a theory $\mathcal{T} = (\Sigma, \mathcal{R})$ in $\lambda \Pi/\equiv$ such that \mathcal{T} is a theory with prelude encoding and such that all the derivations considered are small derivations. There exists a signature $\overline{\Sigma}_{\mathcal{T}} \triangleleft (\Sigma_{\mathcal{T}} \cup \Sigma_{\mathcal{T}}^{ax})$ such that the theory $\mathcal{T}^{ax} = (\Sigma_{pre} \cup \Sigma_{eq} \cup \overline{\Sigma}_{\mathcal{T}}, \mathcal{R}_{pre})$ satisfies:

- 1. If $\vdash_{\mathcal{R}} \Gamma$, then there exists $\vdash \overline{\Gamma} \in \llbracket \vdash_{\mathcal{R}} \Gamma \rrbracket$.
- 2. If $\Gamma \vdash_{\mathcal{R}} t : A$, then for every $\vdash \overline{\Gamma} \in \llbracket \vdash_{\mathcal{R}} \Gamma \rrbracket$ there exist \overline{t} and \overline{A} such that $\overline{\Gamma} \vdash \overline{t} : \overline{A} \in \llbracket \Gamma \vdash_{\mathcal{R}} t : A \rrbracket$.
- 3. If $(\vdash_{\mathcal{R}} \Gamma_1) \stackrel{\cdot}{\equiv} (\vdash_{\mathcal{R}} \Gamma_2)$, then for every $\vdash \overline{\Gamma}_1 \in \llbracket \vdash_{\mathcal{R}} \Gamma_1 \rrbracket$ and $\vdash \overline{\Gamma}_2 \in \llbracket \vdash_{\mathcal{R}} \Gamma_2 \rrbracket$, we have $\vdash \overline{\Gamma}_1 \star \overline{\Gamma}_2$.
- 4. If $(\Gamma_1 \vdash_{\mathcal{R}} u_1 : A_1) \equiv (\Gamma_2 \vdash_{\mathcal{R}} u_2 : A_2)$ with $\Gamma_1 \vdash_{\mathcal{R}} A_1 : \text{TYPE}$ and $\Gamma_2 \vdash_{\mathcal{R}} A_2 : \text{TYPE}$, then for every $\vdash \overline{\Gamma}_1 \in \llbracket \vdash_{\mathcal{R}} \Gamma_1 \rrbracket$ and $\vdash \overline{\Gamma}_2 \in \llbracket \vdash_{\mathcal{R}} \Gamma_2 \rrbracket$, we have $\overline{\Gamma}_1 \vdash \overline{u}_1 : \overline{A}_1 \in \llbracket \Gamma_1 \vdash_{\mathcal{R}} u_1 : A_1 \rrbracket$ and $\overline{\Gamma}_2 \vdash \overline{u}_2 : \overline{A}_2 \in \llbracket \Gamma_2 \vdash_{\mathcal{R}} u_2 : A_2 \rrbracket$ and there exists some p such that $\overline{\Gamma}_1 \star \overline{\Gamma}_2 \vdash p : \overline{u}_1[\gamma_1] \xrightarrow{\overline{A}_1[\gamma_1]} \approx \overline{A}_2[\gamma_2]} \overline{u}_2[\gamma_2]$.
- 5. If $(\Gamma_1 \vdash_{\mathcal{R}} u_1 : \mathtt{TYPE}) \equiv (\Gamma_2 \vdash_{\mathcal{R}} u_2 : \mathtt{TYPE})$, then for every $\vdash \overline{\Gamma}_1 \in \llbracket \vdash_{\mathcal{R}} \Gamma_1 \rrbracket$ and $\vdash \overline{\Gamma}_2 \in \llbracket \vdash_{\mathcal{R}} \Gamma_2 \rrbracket$, we have $\overline{\Gamma}_1 \vdash \overline{u}_1 : \mathtt{TYPE} \in \llbracket \Gamma_1 \vdash_{\mathcal{R}} u_1 : \mathtt{TYPE} \rrbracket$ and $\overline{\Gamma}_2 \vdash \overline{u}_2 : \mathtt{TYPE} \in \llbracket \Gamma_2 \vdash_{\mathcal{R}} u_2 : \mathtt{TYPE} \rrbracket$ and there exists p such that $\overline{\Gamma}_1 \star \overline{\Gamma}_2 \vdash p : \kappa(\overline{u}_1[\gamma_1], \overline{u}_2[\gamma_2])$.

Proof. From the theory $\mathcal{T} = (\Sigma_{pre} \cup \Sigma_{\mathcal{T}}, \mathcal{R}_{\mathcal{T}} \cup \mathcal{R}_{pre})$ we add the new axioms to create the theory $\mathcal{T}' = (\Sigma_{pre} \cup \Sigma_{eq} \cup \Sigma_{\mathcal{T}} \cup \Sigma_{\mathcal{T}}^{ax}, \mathcal{R}_{\mathcal{T}} \cup \mathcal{R}_{pre})$. It still contains the rewrite rules of $\mathcal{R}_{\mathcal{T}}$ so all the derivations inside \mathcal{T} remain valid inside \mathcal{T}' .

We prove the theorem in two steps: in a first step we admit the existence of $\overline{\Sigma}_{\mathcal{T}}$ and we prove the five items; in a second step we prove the existence of $\overline{\Sigma}_{\mathcal{T}}$.

Suppose that we have a translation $\overline{\Sigma}_{\mathcal{T}}$. The five items of the theorem are proved by induction on the derivations inside \mathcal{T}' . In the end, $\overline{\Sigma}_{\mathcal{T}}$ and the translations of the derivations are built over the course of the induction without using $\mathcal{R}_{\mathcal{T}}$. We therefore obtain a theory $\mathcal{T}^{ax} = (\Sigma_{pre} \cup \Sigma_{eq} \cup \overline{\Sigma}_{\mathcal{T}}, \mathcal{R}_{pre})$.

We modify the derivations so that for each rewrite rule $\ell \hookrightarrow r \in \mathcal{R}_{\mathcal{T}}$, every instance of ConvRule is used with the same types \boldsymbol{B} and \boldsymbol{A} than the one used in the axiomatic counterpart eq_{ab} . This can be done using Conv and ConvConv rules. This pre-processing of the derivations simplify the induction case ConvRule.

- Empty:

$$\overline{\vdash_{\mathcal{R}_{\cdot}}\langle\rangle}$$

We have $\vdash \langle \rangle \in \llbracket \vdash_{\mathcal{R}} \langle \rangle \rrbracket$.

- Decl:

$$\frac{\vdash_{\mathcal{R}} \Gamma \qquad \Gamma \vdash_{\mathcal{R}} A:s}{\vdash_{\mathcal{R}} \Gamma, x:A} \ x \not \in \Gamma$$

By the first induction hypothesis, there exists $\vdash \overline{\varGamma} \in \llbracket \vdash_{\mathcal{R}} \varGamma \rrbracket$. Therefore, using the second induction hypothesis, there exists $\overline{\varGamma} \vdash \overline{A} : s \in \llbracket \varGamma \vdash_{\mathcal{R}} A : s \rrbracket$. By definition, as $x \notin \varGamma$, we have $x \notin \overline{\varGamma}$. Using the DECL rule, we can derive $\vdash \overline{\varGamma}, x : \overline{A} \in \llbracket \vdash_{\mathcal{R}} \varGamma, x : A \rrbracket$.

- Sort:

$$\frac{\vdash_{\mathcal{R}} \Gamma}{\Gamma \vdash_{\mathcal{R}} \mathtt{TYPE} : \mathtt{KIND}}$$

Suppose that there exists $\vdash \overline{\Gamma} \in \llbracket \vdash_{\mathcal{R}} \Gamma \rrbracket$. We conclude that $\overline{\Gamma} \vdash \mathtt{TYPE} : \mathtt{KIND}$ using the SORT rule.

- Const:

$$\frac{\vdash_{\mathcal{R}} \Gamma \qquad \vdash_{\mathcal{R}} A:s}{\Gamma \vdash_{\mathcal{R}} c:A} \ c:A \in \Sigma$$

Suppose that there exists $\vdash \overline{\Gamma} \in \llbracket \vdash_{\mathcal{R}} \Gamma \rrbracket$.

If $c: A \in \Sigma_{pre} \cup \Sigma_{eq}$, then $\overline{A} := A$. Using the Const rule we derive that $\overline{\Gamma} \vdash c \cdot \overline{A}$

If $c: A \in \Sigma_{\mathcal{T}} \cup \Sigma_{\mathcal{T}}^{ax}$, then we have $c: \overline{A} \in \overline{\Sigma}_{\mathcal{T}}$ for some $\overline{A} \triangleleft A$. Using the CONST rule we derive $\overline{\Gamma} \vdash c: \overline{A}$, since $\vdash \overline{A}: s$.

- Var:

$$\frac{\vdash_{\mathcal{R}} \Gamma}{\Gamma \vdash_{\mathcal{R}} x : A} \ x : A \in \Gamma$$

Suppose that there exists $\vdash \overline{\varGamma} \in \llbracket \vdash_{\mathcal{R}} \varGamma \rrbracket$. As $x : A \in \varGamma$, we have $x : \overline{A} \in \overline{\varGamma}$ for some $\overline{A} \triangleleft A$. Then we derive that $\overline{\varGamma} \vdash x : \overline{A}$ using the VAR rule.

- Prod:

$$\frac{\varGamma \vdash_{\mathcal{R}} A : \mathtt{TYPE} \qquad \varGamma, x : A \vdash_{\mathcal{R}} B : s}{\varGamma \vdash_{\mathcal{R}} \varPi x : A . \ B : s}$$

Suppose that there exists $\vdash \overline{\varGamma} \in \llbracket \vdash_{\mathcal{R}} \varGamma \rrbracket$. By induction hypothesis, we have $\overline{\varGamma} \vdash \overline{A} : \mathtt{TYPE} \in \llbracket \varGamma \vdash_{\mathcal{R}} A : \mathtt{TYPE} \rrbracket$. We have $(\overline{\varGamma}, x : \overline{A}) \triangleleft (\varGamma, x : A)$ and we know that the only translation of sort s is itself, therefore by induction hypothesis we have $\overline{\varGamma}, x : \overline{A} \vdash \overline{B} : s \in \llbracket \varGamma, x : A \vdash_{\mathcal{R}} B : s \rrbracket$. We conclude that $\overline{\varGamma} \vdash \varPi x : \overline{A} . \overline{B} : s$ using the Prod rule.

- Abs:

$$\frac{\varGamma \vdash_{\mathcal{R}} A : \mathtt{TYPE} \qquad \varGamma, x : A \vdash_{\mathcal{R}} B : s \qquad \varGamma, x : A \vdash_{\mathcal{R}} t : B}{\varGamma \vdash_{\mathcal{R}} \lambda x : A : \iota : \varPi x : A \cdot B}$$

Suppose that there exists $\vdash \overline{\varGamma} \in \llbracket \vdash_{\mathcal{R}} \varGamma \rrbracket$. By induction hypothesis, there exists $\overline{\varGamma} \vdash \overline{A} : \mathtt{TYPE} \in \llbracket \varGamma \vdash_{\mathcal{R}} A : \mathtt{TYPE} \rrbracket$. As $(\overline{\varGamma}, x : \overline{A}) \lhd (\varGamma, x : A)$ and by induction hypotheses, we have $\overline{\varGamma}, x : \overline{A} \vdash \overline{B} : s \in \llbracket \varGamma, x : A \vdash_{\mathcal{R}} B : s \rrbracket$ and $\overline{\varGamma}, x : \overline{A} \vdash \overline{t}' : \overline{B}' \in \llbracket \varGamma, x : A \vdash_{\mathcal{R}} t : B \rrbracket$.

We know that the derivation is a small derivation. If B is a small type, then we apply Lemma 7 to obtain \bar{t} such that $\overline{\Gamma}, x: \overline{A} \vdash \bar{t}: \overline{B} \in \llbracket \Gamma, x: A \vdash_{\mathcal{R}} t: B \rrbracket$. We conclude that $\overline{\Gamma} \vdash \lambda x: \overline{A}$. $\overline{t}: \Pi x: \overline{A}$. \overline{B} using the ABS rule.

If B is not a small type, then the only other possibility is $t: B \in \Sigma_{pre}$. In that case we have $\overline{B} = \overline{B}' = B$. We conclude using the ABS rule.

- App:

$$\frac{\varGamma \vdash_{\mathcal{R}} t : \varPi x : A. \ B \qquad \varGamma \vdash_{\mathcal{R}} u : A}{\varGamma \vdash_{\mathcal{R}} t \ u : B[x \mapsto u]}$$

Suppose that there exists $\vdash \overline{\Gamma} \in \llbracket \vdash_{\mathcal{R}} \Gamma \rrbracket$. By the first induction hypothesis we have $\overline{\Gamma} \vdash \overline{t} : \Pi x : \overline{A}$. $\overline{B} \in \llbracket \Gamma \vdash_{\mathcal{R}} t : \Pi x : A$. $B \rrbracket$. By the second induction hypothesis (and by Lemma 7 if A is a small type, we have $\overline{\Gamma} \vdash \overline{u} : \overline{A} \in \llbracket \Gamma \vdash_{\mathcal{R}} u : A \rrbracket$. We conclude that $\overline{\Gamma} \vdash (\overline{t} \ \overline{u}) : \overline{B}[x \mapsto \overline{u}]$ with $\overline{B}[x \mapsto \overline{u}] \triangleleft B[x \mapsto u]$ (since \triangleleft preserves substitution).

- Conv:

$$\frac{\varGamma \vdash_{\mathcal{R}} t : A \qquad (\varGamma \vdash_{\mathcal{R}} A : s) \equiv (\varGamma \vdash_{\mathcal{R}} B : s)}{\varGamma \vdash_{\mathcal{R}} t : B}$$

Suppose that there exists $\vdash \overline{\Gamma} \in \llbracket \vdash_{\mathcal{R}} \Gamma \rrbracket$.

As we consider small derivations, either A is a small type or A and B are the same type.

If A is a small type, then by induction hypothesis we have $\overline{\Gamma} \star \overline{\Gamma} \vdash p$: $\kappa(\overline{A}[\gamma_1], \overline{B}[\gamma_2])$. By Lemma 5 we obtain $\overline{\Gamma} \vdash p[\gamma_{12}] : \kappa(\overline{A}, \overline{B})$. By Lemma 7 and induction hypothesis we have $\overline{\Gamma} \vdash \overline{t} : \overline{A} \in \llbracket \Gamma \vdash_{\mathcal{R}} t : A \rrbracket$. Thanks to Lemma 2, there exists some \overline{t}' such that $\overline{\Gamma} \vdash \overline{t}' : \overline{B} \in \llbracket \Gamma \vdash_{\mathcal{R}} t : B \rrbracket$.

If A and B are the same type, then no conversion is needed and the result is simply given the induction hypothesis $\overline{\Gamma} \vdash \overline{t} : \overline{A}$.

- Convrest:

$$\frac{\Gamma \vdash_{\mathcal{R}} u : A}{(\Gamma \vdash_{\mathcal{R}} u : A) \equiv (\Gamma \vdash_{\mathcal{R}} u : A)}$$

Suppose that there exists $\vdash \overline{\Gamma} \in \llbracket \vdash_{\mathcal{R}} \Gamma \rrbracket$. By induction hypothesis, we have $\overline{\Gamma} \vdash \overline{u} : \overline{A} \in \llbracket \Gamma \vdash_{\mathcal{R}} u : A \rrbracket$.

If $\Gamma \vdash_{\mathcal{R}} A$: TYPE, then we build $\overline{\Gamma} \star \overline{\Gamma} \vdash p : \overline{u}[\gamma_1] \approx \overline{u}[\gamma_2]$ using all the congruence rules of \approx .

We proceed similarly for the case A = TYPE.

- ConvSymm:

$$\frac{(\Gamma \vdash_{\mathcal{R}} u : A) \equiv (\Gamma \vdash_{\mathcal{R}} v : B)}{(\Gamma \vdash_{\mathcal{R}} v : B) \equiv (\Gamma \vdash_{\mathcal{R}} u : A)}$$

We use the induction hypothesis and the axiom sym.

- ConvTrans:

$$\frac{(\varGamma \vdash_{\mathcal{R}} u : A) \equiv (\varGamma \vdash_{\mathcal{R}} v : B) \qquad (\varGamma \vdash_{\mathcal{R}} v : B) \equiv (\varGamma \vdash_{\mathcal{R}} w : C)}{(\varGamma \vdash_{\mathcal{R}} u : A) \equiv (\varGamma \vdash_{\mathcal{R}} w : C)}$$

Suppose that there exists $\vdash \overline{\Gamma} \in \llbracket \vdash_{\mathcal{R}} \Gamma \rrbracket$.

We are going to use an intermediary lemma, stating that if $(\Gamma \vdash_{\mathcal{R}} u : A) \equiv (\Gamma \vdash_{\mathcal{R}} v : B)$, then $\Gamma \vdash_{\mathcal{R}} A$: TYPE if and only if $\Gamma \vdash_{\mathcal{R}} B$: TYPE, and A = TYPE if and only if B = TYPE. This lemma can be proved by induction. If $\Gamma \vdash_{\mathcal{R}} A$: TYPE and $\Gamma \vdash_{\mathcal{R}} C$: TYPE, then $\Gamma \vdash_{\mathcal{R}} B$: TYPE. By induction hypotheses, there exist p_{AB} and p_{BC} such that $\overline{\Gamma} \star \overline{\Gamma} \vdash p_{AB}$: $\overline{u}[\gamma_1] \xrightarrow[B[\gamma_2]]{\overline{u}[\gamma_2]} \overline{v}[\gamma_2]$ and $\overline{\Gamma} \star \overline{\Gamma} \vdash p_{BC}$: $\overline{v}'[\gamma_1] \xrightarrow[B'[\gamma_1]]{\overline{c}[\gamma_2]} \overline{w}[\gamma_2]$. Using Lemma 6, there exists some p such that $\overline{\Gamma} \star \overline{\Gamma} \vdash p : \overline{v}[\gamma_2] \xrightarrow[B[\gamma_2]]{\overline{c}[\gamma_1]} \overline{v}'[\gamma_1]$. We conclude using transitivity.

The case A = C = TYPE is treated similarly.

- ConvDecl:

$$\frac{(\vdash_{\mathcal{R}} \varGamma_1) \equiv (\vdash_{\mathcal{R}} \varGamma_2) \qquad (\varGamma_1 \vdash_{\mathcal{R}} A_1 : s) \equiv (\varGamma_2 \vdash_{\mathcal{R}} A_2 : s)}{(\vdash_{\mathcal{R}} \varGamma_1, x : A_1) \equiv (\vdash_{\mathcal{R}} \varGamma_2, x : A_2)} \ x \not\in \varGamma_1, \varGamma_2$$

Suppose that there exist $\vdash \overline{\Gamma}_1, x : \overline{A}_1 \in \llbracket \vdash_{\mathcal{R}} \Gamma_1, x : A_1 \rrbracket$ and $\vdash \overline{\Gamma}_2, x : \overline{A}_2 \in \llbracket \vdash_{\mathcal{R}} \Gamma_2, x : A_2 \rrbracket$. Then we have $\vdash \overline{\Gamma}_1 \in \llbracket \vdash_{\mathcal{R}} \Gamma_1 \rrbracket$ and $\vdash \overline{\Gamma}_2 \in \llbracket \vdash_{\mathcal{R}} \Gamma_2 \rrbracket$, and by induction hypothesis $\overline{\Gamma}_1 \star \overline{\Gamma}_2$ is well formed. We conclude using DECL with $\overline{\Gamma}_1 \star \overline{\Gamma}_2 \vdash x_1 : \overline{A}_1[\gamma_1]$, with $\overline{\Gamma}_1 \star \overline{\Gamma}_2 \vdash x_2 : \overline{A}_2[\gamma_2]$, and with $\overline{\Gamma}_1 \star \overline{\Gamma}_2 \vdash p_x : x_1 \xrightarrow[\overline{A}_1[\gamma_1]]{\approx} \overline{A}_2[\gamma_2]} x_2$.

- ConvConst:

$$\frac{(\vdash_{\mathcal{R}} \Gamma_1) \equiv (\vdash_{\mathcal{R}} \Gamma_2) \qquad \vdash_{\mathcal{R}} A : s}{(\Gamma_1 \vdash_{\mathcal{R}} c : A) \equiv (\Gamma_2 \vdash_{\mathcal{R}} c : A)} \ c : A \in \Sigma$$

Suppose that there exist $\vdash \overline{\Gamma}_1 \in \llbracket \vdash_{\mathcal{R}} \Gamma_1 \rrbracket$ and $\vdash \overline{\Gamma}_2 \in \llbracket \vdash_{\mathcal{R}} \Gamma_2 \rrbracket$. By induction hypothesis $\overline{\Gamma}_1 \star \overline{\Gamma}_2$ is well-formed.

If $c: A \in \Sigma_{pre} \cup \Sigma_{eq}$, then $\overline{A} := A$. Using the Const rule we derive that $\overline{\Gamma}_1 \star \overline{\Gamma}_2 \vdash c: \overline{A}$.

If $c: A \in \Sigma_{\mathcal{T}} \cup \Sigma_{\mathcal{T}}^{ax}$, then we have $c: \overline{A} \in \overline{\Sigma}_{\mathcal{T}}$ for some $\overline{A} \triangleleft A$. Using the CONST rule we derive $\overline{\Gamma}_1 \star \overline{\Gamma}_2 \vdash c: \overline{A}$, since $\vdash \overline{A}: s$.

- ConvVar:

$$\frac{(\vdash_{\mathcal{R}} \Gamma_1) \equiv (\vdash_{\mathcal{R}} \Gamma_2)}{(\Gamma_1 \vdash_{\mathcal{R}} x : A_1) \equiv (\Gamma_2 \vdash_{\mathcal{R}} x : A_2)} \ x : A_1 \in \Gamma_1, x : A_2 \in \Gamma_2$$

Suppose that there exist $\vdash \overline{\Gamma}_1 \in \llbracket \vdash_{\mathcal{R}} \Gamma_1 \rrbracket$ and $\vdash \overline{\Gamma}_2 \in \llbracket \vdash_{\mathcal{R}} \Gamma_2 \rrbracket$. By induction hypothesis $\overline{\Gamma}_1 \star \overline{\Gamma}_2$ is well-formed.

We have $x: A_1 \in \Gamma_1$ and $x: A_2 \in \Gamma_2$. Therefore we have $x_1: \overline{A}_1[\gamma_1] \in \overline{\Gamma}_1 \star \overline{\Gamma}_2$ and $x_2: \overline{A}_2[\gamma_2] \in \overline{\Gamma}_1 \star \overline{\Gamma}_2$. By construction we have the variable $p_x: x_1 \ \overline{A}_1[\gamma_1] \approx \overline{A}_2[\gamma_2]$ x_2 in the context $\overline{\Gamma}_1 \star \overline{\Gamma}_2$. We conclude using VAR.

- ConvProd:

$$\begin{split} &(\varGamma_1 \vdash_{\mathcal{R}} A_1 : \mathtt{TYPE}) \equiv (\varGamma_2 \vdash_{\mathcal{R}} A_2 : \mathtt{TYPE}) \\ &(\varGamma_1, x : A_1 \vdash_{\mathcal{R}} B_1 : s) \equiv (\varGamma_2, x : A_2 \vdash_{\mathcal{R}} B_2 : s) \\ &(\varGamma_1 \vdash_{\mathcal{R}} \varPi x : A_1 . \ B_1 : s) \equiv (\varGamma_2 \vdash_{\mathcal{R}} \varPi x : A_2 . \ B_2 : s) \end{split}$$

Suppose that there exist $\vdash \overline{\Gamma}_1 \in \llbracket \vdash_{\mathcal{R}} \Gamma_1 \rrbracket$ and $\vdash \overline{\Gamma}_2 \in \llbracket \vdash_{\mathcal{R}} \Gamma_2 \rrbracket$.

Since the derivation is a small derivation, either $\Pi x: A_1$. B_1 and $\Pi x: A_2$. B_2 are small types or are types of constants of Σ_{pre} .

If $\Pi x: A_1$. B_1 and $\Pi x: A_2$. B_2 are small types, then A_1 , B_1 , A_2 and B_2 are small types too. By induction hypotheses there exists p_A such that $\overline{\Gamma}_1 \star \overline{\Gamma}_2 \vdash p_A : \kappa(\overline{A}_1[\gamma_1], \overline{A}_2[\gamma_2])$ and there exists p_B such that $\overline{\Gamma}_1 \star \overline{\Gamma}_2, x_1 : \overline{A}_1[\gamma_1], x_2 : \overline{A}_2[\gamma_2], p_x : x_1 \approx x_2 \vdash p_B : \kappa(\overline{B}_1[\gamma_1], \overline{B}_2[\gamma_2])$. If $\nu(A_1), \nu(A_2)$ and

 $\nu(B_1), \nu(B_2) \in \mathcal{P}$, we conclude using the appropriate prod axiom. The three other cases with grammars \mathcal{P} and \mathcal{E} are treated similarly.

If $\nu(A_1), \nu(A_2) \in \mathcal{P}$ or $\nu(A_1), \nu(A_2) \in \mathcal{E}$, but $\nu(B_1), \nu(B_2) \in \mathcal{S}$, or if $\nu(A_1), \nu(A_2) \in \mathcal{S}$ and $\nu(B_1), \nu(B_2) \in \mathcal{P}$ or $\nu(B_1), \nu(B_2) \in \mathcal{E}$, then we simply use the induction hypothesis. If $\nu(\Pi x : A_1. B_1), \nu(\Pi x : A_2. B_2) \in \mathcal{S}$, then we take $\overline{\Gamma}_1 \star \overline{\Gamma}_2 \vdash \lambda P : El \ o. \ \lambda h : Prf \ P. \ h : \top$.

If $\Pi x: A_1$. B_1 and $\Pi x: A_2$. B_2 are types of constants of Σ_{pre} , we necessarily have $\Pi x: A_1$. $B_1 = \Pi x: A_2$. B_2 and no conversion is needed.

– ConvAbs:

$$\begin{split} (\varGamma_1 \vdash_{\mathcal{R}} A_1 : \mathtt{TYPE}) &\equiv (\varGamma_2 \vdash_{\mathcal{R}} A_2 : \mathtt{TYPE}) \\ (\varGamma_1, x : A_1 \vdash_{\mathcal{R}} t_1 : B_1) &\equiv (\varGamma_2, x : A_2 \vdash_{\mathcal{R}} t_2 : B_2) \\ \hline (\varGamma_1 \vdash_{\mathcal{R}} \lambda x : A_1. \ t_1 : \varPi x : A_1. \ B_1) &\equiv (\varGamma_2 \vdash_{\mathcal{R}} \lambda x : A_2. \ t_2 : \varPi x : A_2. \ B_2) \end{split}$$

Suppose that there exist $\vdash \overline{\Gamma}_1 \in \llbracket \vdash_{\mathcal{R}} \Gamma_1 \rrbracket$ and $\vdash \overline{\Gamma}_2 \in \llbracket \vdash_{\mathcal{R}} \Gamma_2 \rrbracket$. Since the derivation is a small derivation, then $\Pi x : A_1$. B_1 and $\Pi x : A_2$. B_2 are necessarily small types. By induction hypotheses there exists p_A such that $\overline{\Gamma}_1 \star \overline{\Gamma}_2 \vdash p_A : \kappa(\overline{A}_1[\gamma_1], \overline{A}_2[\gamma_2])$, and there exists p_t such that $\overline{\Gamma}_1 \star \overline{\Gamma}_2, x_1 : \overline{A}_1[\gamma_1], x_2 : \overline{A}_2[\gamma_2], p_x : x_1 \approx x_2 \vdash p_t : \overline{t}_1[\gamma_1, x \mapsto x_1] \approx \overline{t}_2[\gamma_2, x \mapsto x_2]$. We conclude using the appropriate fun.

- ConvApp:

$$(\Gamma_1 \vdash_{\mathcal{R}} t_1 : \Pi x : A_1. \ B_1) \equiv (\Gamma_2 \vdash_{\mathcal{R}} t_2 : \Pi x : A_2. \ B_2)$$
$$(\Gamma_1 \vdash_{\mathcal{R}} u_1 : A_1) \equiv (\Gamma_2 \vdash_{\mathcal{R}} u_2 : A_2)$$
$$(\Gamma_1 \vdash_{\mathcal{R}} t_1 \ u_1 : B_1[x \mapsto u_1]) \equiv (\Gamma_2 \vdash_{\mathcal{R}} t_2 \ u_2 : B_2[x \mapsto u_2])$$

Suppose that there exist $\vdash \overline{\Gamma}_1 \in \llbracket \vdash_{\mathcal{R}} \Gamma_1 \rrbracket$ and $\vdash \overline{\Gamma}_2 \in \llbracket \vdash_{\mathcal{R}} \Gamma_2 \rrbracket$.

Since the derivation is a small derivation, either $\Pi x: A_1$. B_1 and $\Pi x: A_2$. B_2 are small types or are types of constants of Σ_{pre} .

Suppose that $\Pi x: A_1$. B_1 and $\Pi x: A_2$. B_2 are small types. By induction hypothesis there exists p_t such that $\overline{\Gamma}_1 \star \overline{\Gamma}_2 \vdash p_t : \overline{t}_1[\gamma_1] \approx \overline{t}_2[\gamma_2]$. By induction hypothesis and by Lemma 7, there exists p_u such that $\overline{\Gamma}_1 \star \overline{\Gamma}_2 \vdash p_u : \overline{u}_1[\gamma_1] \xrightarrow{\overline{I}_1} \overline{u}_2[\gamma_2]$. We conclude using app.

 $\bar{u}_1[\gamma_1] \xrightarrow{\bar{A}_1[\gamma_1]} \approx_{\bar{A}_2[\gamma_2]} \bar{u}_2[\gamma_2]$. We conclude using app. Suppose that $t_1 = t_2 = El$ or $t_1 = t_2 = Prf$. The result is directly the induction hypothesis on $(\Gamma_1 \vdash_{\mathcal{R}} u_1 : A_1) \equiv (\Gamma_2 \vdash_{\mathcal{R}} u_2 : A_2)$.

Suppose that $t_1 = t_2 = \pi$. We conclude using the induction hypothesis on $(\Gamma_1 \vdash_{\mathcal{R}} u_1 : A_1) \equiv (\Gamma_2 \vdash_{\mathcal{R}} u_2 : A_2)$, using refl π and using app.

- ConvBeta:

$$\frac{\varGamma \vdash_{\mathcal{R}} A : \mathtt{TYPE} \qquad \varGamma, x : A \vdash_{\mathcal{R}} t : B \qquad \varGamma, x : A \vdash_{\mathcal{R}} B : s \qquad \varGamma \vdash_{\mathcal{R}} u : A}{(\varGamma \vdash_{\mathcal{R}} (\lambda x : A . \ t) \ u : B[x \mapsto u]) \equiv (\varGamma \vdash_{\mathcal{R}} t[x \mapsto u] : B[x \mapsto u])}$$

Suppose that there exists $\vdash \overline{\Gamma} \in \llbracket \vdash_{\mathcal{R}} \Gamma \rrbracket$. By the induction hypotheses (and by Lemma 7 if A and B are small types), we have $\overline{\Gamma} \vdash \overline{A}$: TYPE \in

- Convrule:

$$\frac{\boldsymbol{x}:\boldsymbol{B}\vdash_{\mathcal{R}}\ell:A \qquad \boldsymbol{x}:\boldsymbol{B}\vdash_{\mathcal{R}}r:A \qquad \boldsymbol{\Gamma}\vdash_{\mathcal{R}}\boldsymbol{t}:\boldsymbol{B}}{(\boldsymbol{\Gamma}\vdash_{\mathcal{R}}\ell[\boldsymbol{x}\mapsto\boldsymbol{t}]:A[\boldsymbol{x}\mapsto\boldsymbol{t}])\equiv(\boldsymbol{\Gamma}\vdash_{\mathcal{R}}r[\boldsymbol{x}\mapsto\boldsymbol{t}]:A[\boldsymbol{x}\mapsto\boldsymbol{t}])}\;\ell\hookrightarrow\boldsymbol{r}\in\mathcal{R}$$

Suppose that there exists $\vdash \overline{\Gamma} \in \llbracket \vdash_{\mathcal{R}} \Gamma \rrbracket$.

Suppose that we are in the case $\ell \hookrightarrow r \in \mathcal{R}_{pre}$. For example, consider the rewrite rule $El\ (x \leadsto_d y) \hookrightarrow \Pi z : El\ x.$ $El\ (y\ z)$ instantiated with $x \coloneqq u$ and $y \coloneqq v$. We have $x : Set, y : El\ x \to Set \vdash El\ (x \leadsto_d y) : \texttt{TYPE}$ and $x : Set, y : El\ x \to Set \vdash \Pi z : El\ x.$ $El\ (y\ z) : \texttt{TYPE}$. By induction and Lemma 7 we have $\overline{\Gamma} \vdash \overline{u} : Set \in \llbracket \Gamma \vdash_{\mathcal{R}} u : Set \rrbracket$ and $\overline{\Gamma} \vdash \overline{v} : El\ \overline{u} \to Set \in \llbracket \Gamma \vdash_{\mathcal{R}} v : El\ u \to Set \rrbracket$. Since $\nu(El\ (u \leadsto_d v)) = \nu(\Pi z : El\ u.\ El\ (v\ z)) = u \leadsto_d v$, we need to build $(\overline{u} \leadsto_d \overline{v})[\gamma_1] \approx (\overline{u} \leadsto_d \overline{v})[\gamma_2]$ in the context $\overline{\Gamma} \star \overline{\Gamma}$. We build it using the congruence rules of \approx . The other cases are treated similarly.

Suppose that we are in the case $\ell \hookrightarrow r \in \mathcal{R}_{\mathcal{T}}$ with one free variable x of type B. Then we have some $\operatorname{eq}_{\ell r}: \Pi x: \overline{B}$. $\bar{\ell}_{A} \approx_{\overline{A}} \bar{r}_{A}$ in the signature $\overline{\mathcal{L}}_{\mathcal{T}}$. By the third induction hypothesis and Lemma 7, we have $\overline{\Gamma} \vdash \bar{t} : \overline{B} \in \llbracket \Gamma \vdash_{\mathcal{R}} t : B \rrbracket$. By weakening and substitution, we have $\overline{\Gamma} \star \overline{\Gamma} \vdash \bar{t}[\gamma_{1}] : \overline{B}$. We obtain $\overline{\Gamma} \star \overline{\Gamma} \vdash \operatorname{eq}_{\ell r} \bar{t}[\gamma_{1}] : \bar{\ell}[x \mapsto \bar{t}[\gamma_{1}]] \approx \bar{r}[x \mapsto \bar{t}[\gamma_{1}]]$. From the congruence rules of \approx we build some $\bar{r}[x \mapsto \bar{t}[\gamma_{1}]] \approx \bar{r}[x \mapsto \bar{t}[\gamma_{2}]]$. We conclude by transitivity. The same proof can be done if we have multiple variables.

- ConvConv:

$$\frac{\Gamma \vdash_{\mathcal{R}} u : A \qquad (\Gamma \vdash_{\mathcal{R}} A : s) \equiv (\Gamma \vdash_{\mathcal{R}} B : s)}{(\Gamma \vdash_{\mathcal{R}} u : A) \equiv (\Gamma \vdash_{\mathcal{R}} u : B)}$$

Suppose that there exists $\vdash \overline{\Gamma} \in \llbracket \vdash_{\mathcal{R}} \Gamma \rrbracket$.

Since the derivation is a small derivation, either A and B are small types or are types of constants of Σ_{pre} .

If A and B are small types, then by the induction hypotheses, Lemma 7 and Lemma 5 we have $\overline{\Gamma} \vdash \overline{u} : \overline{A} \in \llbracket \Gamma \vdash_{\mathcal{R}} u : A \rrbracket$ and $\overline{\Gamma} \vdash p_{AB} : \kappa(\overline{A}, \overline{B})$. We conclude using Lemma 2.

If A and B are types of constants of Σ_{pre} , we necessarily have A=B. Therefore we take $\overline{\Gamma} \star \overline{\Gamma} \vdash \mathsf{refl}\ u : u \ _A \approx_A u$. The result works because the variables of $\overline{\Gamma}$ do not appear in u and A so $u[\gamma_i] := u$ and $A[\gamma_i] := A$ for $i \in \{1, 2\}$.

We just proved the five items assuming the existence of $\overline{\Sigma}_{\mathcal{T}} \triangleleft (\Sigma_{\mathcal{T}} \cup \Sigma_{\mathcal{T}}^{ax})$. For $\Sigma_{\mathcal{T}} \cup \Sigma_{\mathcal{T}}^{ax} = \Sigma_{\mathcal{T}}', c : A$ there exists a derivation $\vdash_{\mathcal{R}} A : s$ inside \mathcal{T}' . We use the first step of the proof: we assume the existence of a translation of $\Sigma_{\mathcal{T}}'$, and we obtain a translation $\overline{A} \triangleleft A$. We add $c : \overline{A}$ to the translation of $\Sigma_{\mathcal{T}}'$ to obtain a

translation of $\varSigma'_{\mathcal{T}}, c: A.$ We iterate the process, that terminates since the length of the signature decreases.