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Abstract
This paper combines a hyper-reduction procedure, the proper orthogonal
decomposition unassembled discrete empirical interpolation method, with a
non-iterative α-operator splitting (α-OS) time-integration scheme for accelerat-
ing parametric analyses on damageable civil engineering structures subjected
to earthquakes. Applications on a two-story reinforced concrete frame building
modeled by multi-fiber beams provide guidelines to define hyper-reduced order
models (HROMs) for real-life applications that use seismic databases or variable
loading assumptions. The α-OS HROMs proved their applicability in approxi-
mating high-fidelity dynamic responseswith speed-up factors higher than 60 and
errors lower than 0.6% for the present case study.

1 INTRODUCTION

An important part of civil engineering structures design
is the capability to withstand earthquakes. The variability
of seismic loadings requires multiple reassessments of
the structural responses to efficiently optimize the con-
struction costs (Sarma & Adeli, 1998). Classical simplified
approaches, such as lateral forces, spectral, modal, push-
over, or linear dynamic analyses can be used to evaluate
the response of civil engineering structures (Chopra, 2017),
whose design should meet all the safety requirements
(e.g., horizontal drift, seismic force, or seismic demand)
specified by the building codes. All these methods are very
efficient and widely used in design offices for structural
optimization but remain limited, compared to nonlinear
dynamic analyses since most of them do not capture all
the physics of the actual dynamic responses (e.g., kine-
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matics, loading path-dependent dissipative mechanisms,
or torsion at floor level).
As earthquakes are critical loadings, performing tri-

dimensional (3D) nonlinear dynamic analyses helpsmodel
the damage growth physically. If beam elements are com-
monly used with plastic hinges to model frame structures
(Hafezolghorani et al., 2022), meshes that include local or
semi-global damageable finite elements (e.g., multi-fiber
beams or multilayer shells) allow for precisely modeling
complex dissipative mechanisms (e.g., damage, frictional
sliding, or kinematic hardening) that appear at local
scale over the height and the width of sections or at
column/beam connections (Hervé-Secourgeon, 2021).
Combining such models with kriging methods (Yuan

et al., 2023), machine learning algorithms, or neural
networks to build response surfaces could signifi-
cantly improve the existing optimization and structural
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monitoring methods. Modal and push-over analyses are
already used with machine learning algorithms that are
supplied bymeasured data for damage detection (Ozdaghli
&Koutsoukos, 2019;Wen et al., 2023) and structural health
monitoring (Hwang et al., 2022). Structures can also be effi-
ciently optimized with linear analyses involving stochastic
dynamic loadings (Xu et al., 2017) or parametric analyses
on nonlinear simplified macro elements using neural
networks (Noureldin et al., 2023). As an extension of the
above-mentioned methods, nonlinear dynamic analyses
on high-dimensional systems could be coupled with inter-
polation methods (e.g., kriging) to build complex paramet-
ric response surfaces for models defined by loading path-
dependent variables (e.g., damage index or accumulated
plastic strain). However, this dependency requires using
local material laws (e.g., quasi-brittle softening damage
laws for concrete), which increases the central processing
unit (CPU) time that is needed to update the material
properties when the nonlinear Finite Element dynamic
analyses proceed, in particular for high-dimensional
systems.
Efficient algorithms are required to solve such problems

(Adeli et al., 1978), with an optimized implementation in
accordance with the computer system architecture (Adeli
& Yu, 1995; Yu & Adeli, 1993). However, as parametric
response surfaces require a huge number of data to be cor-
rectly defined, a special treatment still needs to be applied
to reduce the computational cost of the nonlinear analy-
ses used to define reference solutions for the interpolation
algorithms.
As high-dimensional systems require more random

access memory (RAM) to be solved, reducing their size is
necessary. An efficient way to accelerate the computation
of the structural responses consists of using available
high-order solutions to approximate new ones on a
reduced basis. Such reduced order modeling (ROM) pro-
cedures could be used with the above-mentioned methods
(e.g., machine learning, neural networks, or kriging) to
efficiently build response surfaces for complex nonlinear
parametric systems.
Craig and Bampton (1968) were the first to propose an

efficient ROM method to perform linear dynamic FEM
analyses. This extension to the Guyan (1965) reduction
adds eigenmodes to the modal basis to model the inertia of
the internal degrees of freedom (DOFs), while staticmodes
are used for the boundary DOFs. This approach proved
efficient in performing parametric analyses on linear case
studies but is limited when introducing nonlinearities.
Building reduced bases for nonlinear systems requires

data-driven methods that use high-order reference solu-
tions as training data, such as the proper orthogonal
decomposition (POD) method (Karhunen, 1946; Kosambi,
1943; Loève, 1948). The POD was first applied to fluid

dynamics models to identify coherent structures (Sirovich,
1987). It was later extended to turbulent flows modeling
(Hall et al., 2000; Epureanu, 2003), dynamic systems
control (Ravindran, 2000), damage detection (De Boe &
Golinval, 2003), finite element model updating (Hemez &
Doebling, 2001), and model order reduction in structural
dynamics (Azeez & Vakakis, 1999). Recent works applied
the POD to elastic–plastic reinforced concrete (RC) frame
structures subjected to earthquakes (Ayoub et al., 2022).
Still, the time savings are limited when nonlinear terms

of the reduced matrix system (e.g., restoring forces) need
to be computed on the full basis as with nonlinearmaterial
laws. This problem can be solved by interpolating these
terms using the response of a reduced set of elements
included in a reduced integration domain (RID), where
the physics is explicitly modeled. An interpolation opera-
tor, which is defined by high-dimensional training data, is
used to approximate the nonlinear terms on the other parts
of the mesh where the model properties are not updated.
Such hyper-reduction methods are inherited from the
“gappy” POD, which was developed to reconstruct facial
images (Everson & Sirovich, 1995), to hyper-reduce non-
linear fluid dynamics systems (Bui-Thanh et al., 2003;
Willcox, 2006), or to perform process simulations (Astrid,
2004).
An empirical “greedy” algorithm was later used to

improve the selection of the RID components up to a rela-
tive tolerance set by the user (Chaturantabut & Sorensen,
2010). This contribution pushed forward the development
of discrete empirical interpolation methods (DEIMs),
commonly combined with the POD for building hyper-
reduced order models (HROMs) to accelerate parametric
FEM analyses. HROMs can model all kinds of physics
that are introduced in the training dataset (e.g., damage,
plasticity, or large deformations). As finite elements are
linked to nodes defined by several DOFs, the RID usually
includes more components than those selected by the
“greedy” algorithm. Collocation techniques are commonly
used to add all the computed components to the RID and
improve the stability of the POD-DEIM (Rutzmoser, 2017).
The force basis can also be built using unassembled force
snapshots (i.e., computed element per element) to directly
select the element that belongs to the RID instead of the
DOFs when the greedy algorithm runs (Tiso & Rixen,
2013). Recent works showed that a better approximation
is reached with smaller RIDs using the unassembled
DEIM (UDEIM) since only elements where nonlinearities
appear are selected (Rutzmoser, 2017).
Another possibility is to use a k-means clustering

algorithm to classify the training data and define several
reduced bases that are selected using a nearest-neighbor
classifier (Ghavamian et al., 2017; Peherstorfer et al.,
2014). Improved strategies could also be used to select
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478 BODNAR et al.

the collocation components (Drmac & Gugercin, 2016),
alternatively to the method proposed by Chaturantabut
and Sorensen (2010).
DEIM-based methods proved efficient in hyper reduc-

ing various physical parametric systems (Antil et al., 2014;
Benner et al., 2015), which include strain-softening vis-
coplasticity (Ghavamian et al., 2017), large deformations
with nonlinear hyper-elastic materials (Radermacher
& Reese, 2016; Rutzmoser, 2017), nonlinear heat and
moisture transfer (Hou et al., 2020), electro thermome-
chanical coupling (Roy & Nabi, 2021), magneto dynamics
(Maierhofer & Rixen, 2022), or Stokes/Darcy coupling
(Stoter et al., 2022). Hyper-reduction for accelerating
dynamic analyses on damageable structures has never
been investigated despite being promising for parametric
analyses that use seismic databases.
To avoid iterating and save more CPU time, hyper-

reduction could also be combined with a non-iterative
α-operator splitting (α-OS) time integration, which was
developed to perform dynamic FEM analyses during
real-time hybrid tests on civil engineering structures
(Nakashima et al., 1992). The α-OS method maintains
the stability of the implicit Hilber–Hugues–Taylor (HHT;
Hilber et al., 1977) method without iterating by splitting
the restoring force vector into a linear part that depends on
the elastic stiffness matrix and a nonlinear part computed
once per time step using an explicit prediction of the dis-
placement. An error is thus introduced, but Combescure
et al. (1995) have shown that the α-OS method provides
results quasi-identical to iterative implementations of the
α-method under the infinitesimal strains assumption.
An extension of the POD-UDEIM for models involving

softening damage laws with plastic dissipative mech-
anisms is proposed in this paper, with a focus on its
robustness when performing parametric analyses on civil
engineering structures subjected to earthquakes. The
implicit Newmark and the α-OS methods also challenge
the hyper-reduction procedure using seismic loadings
that exceed the mechanical strength of the structures. A
comparison between full and hyper-reduced solutions
gives an overview of the possibilities HROMs offer for
earthquake engineering analyses.
The non-iterative α-OSmethod is described in Section 2,

while the POD-UDEIM procedure is detailed in Section 3.
HROMs are then used in Section 4 to accelerate two
parametric analyses on an RC frame building modeled
using multi-fiber beam elements. Stiffness and mass
centers are slightly off-center to induce torsion at floor
level. The case study is voluntarily undersized to highlight
the limitations of hyper-reduction and provides guidelines
(e.g., truncation criterion or choice of the training data)
that can be applied to most real-life applications, includ-
ing highly damaged structures. The first analysis uses

different ground motions as variables, while the second
uses the orientation of the earthquake as a parameter.

2 α-OS TIME INTEGRATION SCHEME

To avoid multiple reassessments of the tangent stiffness
matrix and iterations at each time step, it is possible to use
a non-iterative and unconditionally stable time integration
scheme to perform nonlinear dynamic FEM analyses. The
α-OS time integration scheme meets those requirements.
This method was developed to solve the spatially discrete
equation ofmotion during pseudo-dynamic hybrid tests on
RC specimens (Pegon & Pinto, 2000).
The α-OS method is based on the classical HHTmethod

(Hilber et al., 1977). Its originality lies in splitting the
restoring force vector into a nonlinear part �̃�NL(�̃�), which
is approximated using an explicit prediction of the dis-
placements �̃�, and a linear part that depends on the elastic
stiffness matrix (Nakashima et al., 1992):

𝒓 (𝒖) ≅ 𝑲E𝒖 + �̃�NL (�̃�) (1)

where 𝑲E is the elastic stiffness matrix, and 𝒖 is the dis-
placement vector. At time step n + 1, nonlinear material
laws use the strains 𝜺𝑛+1, which are functions of �̃�𝑛+1,
to update the stresses �̃�𝑛, so �̃�𝑛(𝜺𝑛) → �̃�𝑛+1(𝜺𝑛+1). The
predicted restoring force vector �̃�𝑛+1(�̃�𝑛+1) is then built
by integrating �̃�𝑛+1 on each finite element. Its nonlinear
part is defined as �̃�NL

𝑛+1
(�̃�𝑛+1) = �̃�𝑛+1(�̃�𝑛+1) − 𝑲E�̃�𝑛+1. The

system of linear equations to be solved to compute the
acceleration vector �̈�𝑛+1 is given by introducing (1) into the
equation of motion:

�̂��̈�𝑛+1 = �̂�𝑛+1+𝛼 (2)

where �̂� is the pseudo-mass matrix, and �̂�𝑛+1+𝛼 is the
pseudo-force vector (Pegon & Pinto, 2000). Note that this
method depends on an α parameter usually set between
−1/3 and 0, even if a value close to−0.05 is commonly used
(Hilber et al., 1977).
The α-OS method is implicit in the linear phase and

explicit in the nonlinear phase. No iteration is required
since the predictive restoring force vector �̃�𝑛+1(�̃�𝑛+1) is
assessed once per time step. In addition, as 𝑲𝐸 is a
constant, the matrix �̂�−1 is computed once before enter-
ing the time step loop, which decreases the CPU time.
As demonstrated in practical cases, the residual error
due to the approximation in (1) is almost negligible in
the case of dynamic FEM analyses on RC structures
subjected to infinitesimal strains (Combescure et al.,
1995), which makes it suitable for earthquake engineering
applications.
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BODNAR et al. 479

3 USING A POD-UDEIM APPROACH

Using nonlinear material laws increases the CPU time
necessary to compute the restoring force vector at each
time step, even if a non-iterative time integration scheme
is used. In addition, performing all the matrix operations
on a full basis can also be time-consuming, especially if the
structure has a high number of DOFs. To reduce the com-
putational cost of the high-dimensional full-order model
(FOM), a POD-UDEIM hyper-ROM approach is proposed.
The key idea of the POD is to first perform a small

number of nonlinear FEM analyses on the FOM using
variable loadings and/or several sets of mechanical prop-
erties. From these responses, NS displacement vectors
𝒖(𝑡) ∈ ℝ𝑁DOFs (a.k.a, displacement snapshots) are then
selected at different calculation times and stored in
columns inside a sample matrix 𝑺u ∈ ℝ𝑁DOFs⋅𝑁S . Snap-
shots computed from different dynamic FEM analyses are
mixed to capture the physics of the nonlinear parametric
system for several loading paths. The components of 𝑺u
can be seen as discrete values of a function 𝑠u(𝒙, 𝑡) that
can be approximated by a sum of N products of functions
of space 𝜑𝑖 = 1,…, 𝑁(𝒙) and time 𝜅𝑖 = 1,…, 𝑁(𝑡) weighted by
singular values 𝜆𝑖 = 1,…, 𝑁 (3):

𝑠u (𝒙, 𝑡) ≈

𝑁∑
𝑖 = 1

𝜑𝑖 (𝒙) 𝜆𝑖𝜅𝑖 (𝑡) (3)

where N=min (NDOFs; NS) is the number of products that
can be built from the discrete training data. The discrete
values of 𝜑𝑖(𝑥) and 𝜅𝑖(𝑡) stored in vectors 𝝋𝑖 and 𝜿𝑖 are
computed performing a singular value decomposition
(SVD) on 𝑺u (Karhunen, 1946; Loève, 1948) (4):

𝑺u ≈ 𝚽𝚲𝐊T =
[
𝝋1 … 𝝋𝑁

] ⎡⎢⎢⎣
𝜆1 0 0

0 ⋱ 0

0 0 𝜆𝑁

⎤⎥⎥⎦
⎡⎢⎢⎣
𝜿T
𝑖

⋮

𝜿T𝑁

⎤⎥⎥⎦
(4)

where𝚽 ∈ ℝ𝑁𝐷𝑂𝐹𝑠 × 𝑁 is a displacementmodal basis made
of N POD modes 𝝋𝑖 . The similarity of a POD mode with
the training dataset is quantified by its singular value 𝜆𝑖 ,
whose value decreases as the order i increases. As low
singular values refer to POD modes whose contribution
to the response is almost negligible, the basis 𝚽 can be
truncated as described in (5):

1 −

∑𝑛

𝑖 = 1
𝜆𝑖∑𝑁

𝑗 = 1
𝜆𝑗

≤ 𝜀 (5)

where n ≪ N is the number of POD modes in the trun-
cated modal basis, λi the singular value of the ith POD
mode, and ε is a tolerance usually set to 10-2 (Ayoub

et al., 2022). As the singular values are summed from the
lowest to the highest order, the truncation criterion in (5)
converges toward a constant value since lim

𝑖→𝑁
𝜆𝑖 = 0. The

displacement vector 𝒖 ∈ ℝ𝑁𝐷𝑂𝐹𝑠 can thus be expressed in
a new basis 𝚽 ∈ ℝ𝑁DOFs × 𝑛 as described in (6):

𝒖 ≈ 𝚽𝒒 w𝑖𝑡ℎ 𝚽 =
[
𝝋1 ⋯ 𝝋𝑛

]
(6)

where 𝒒 ∈ ℝ𝑛 is the reduced displacement vector. The
number of DOFs, as well as the computational cost of
the matrix operations, are thus significantly reduced.
Note that displacement snapshots defined using several
loadings (e.g., earthquake or wind) and/or mechanical
properties (e.g., dimensions or material law parameters)
could be combined to expand the applicability of the
ROM, even if this decreases the efficiency of the method
since more POD modes are required to correctly model
the variability of the nonlinear parametric system.
A UDEIM operator is also added to the solving process

to avoid updating the material properties on the entire
mesh (Tiso & Rixen, 2013). Similarly to (3) and (4), a
force basis is built using force snapshots defined using the
nonlinear part of the unassembled restoring force vector
𝒓NL,u ∈ ℝ𝑁𝑒⋅𝑁𝑐 (i.e., computed element per element). Let
Ne be the number of finite elements and Nc the number of
force components per element. When the α-OS method is
used, the explicit prediction of 𝒓NL,u defined in (1) is taken
as a force snapshot, resulting in:

�̃�NL,u = �̃�u (�̃�) − 𝑲u
E
𝑩�̃� (7)

where 𝑲u
E
∈ ℝ𝑁𝑒⋅𝑁𝑐 × 𝑁𝑒⋅𝑁𝑐 is the unassembled elastic

stiffness matrix, 𝑩 = [𝑳𝑇1 ⋯ 𝑳𝑇𝑁𝑒
]
𝑇
∈ ℝ𝑁𝑒⋅𝑁𝑐 × 𝑁𝐷𝑂𝐹𝑠 is a

Boolean assembly matrix, and 𝑳𝑖 = 1,…, 𝑁𝑒
∈ ℝ𝑁𝑐 × 𝑁𝐷𝑂𝐹𝑠 is

a collocationmatrix used to select the displacements of the
nodes connected to the ith finite element (8):

�̃�u =

⎛⎜⎜⎜⎝

�̃�u
1

⋮

�̃�u𝑁𝑒

⎞⎟⎟⎟⎠
& 𝑲u

E =

⎛⎜⎜⎜⎝

𝑲u
E,1

… 0

⋮ ⋱ ⋮

0 … 𝑲u
E,𝑁𝑒

⎞⎟⎟⎟⎠
(8)

The m first UDEIM modes are then selected accord-
ing to (5) to build a second truncated modal basis 𝚿 ∈

ℝ𝑁𝑒⋅𝑁𝑐 × 𝑚. So �̃�NL,u ≅ 𝚿𝒄where 𝒄 ∈ ℝ𝑚 is the vector con-
taining the scalar weights associated with the truncated
modal basis𝚿 = [𝜓1 ⋯ 𝜓𝑚]. It should be noted that since
the tolerance ε used for the truncation of 𝚿 defines the
number of collocation components, its value may depend
on the physics of the case study. A sensitivity analysis could
thus be necessary to assess ε. Whenm is known, the greedy
Algorithm 1 is then used to find for each UDEIM mode
𝝍𝑖 ∈ ℝ𝑁𝑒⋅𝑁𝑐 the best collocation component (i.e., indexed

 14678667, 2024, 4, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/m

ice.13120 by C
N

A
M

, W
iley O

nline L
ibrary on [27/02/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



480 BODNAR et al.

ALGORITHM 1 DEIM algorithm

Input: A set of DEIM modes𝚿 = [𝝍1 ⋯ 𝝍𝑚 ]

Output: Index of the interpolation DOFs 𝑰𝐷 = [ 𝐼𝐷1 ⋯ 𝐼𝐷𝑚 ]

and partition matrix 𝑷 = [𝒑1 … 𝒑𝑚 ]

Set 𝐼𝐷1 = index of the maximum component of |𝝍1|
Set 𝑰𝑑 = [ 𝒆1 … 𝒆𝑁𝑒⋅𝑁𝑐

] the identity matrix of size Ne⋅Nc × Ne⋅Nc

Initiate matrices: 𝑽 = [𝝍1], 𝑷 = [𝒆𝐼𝐷1
], 𝑰𝐷 = [𝐼𝐷1]

For i = 2,. . . ,m do

Solve 𝑷T𝑽𝒄𝑖 = 𝑷T𝝍𝑖

Compute residual 𝒓𝑒𝑠 = |𝝍𝑖 − 𝑽𝒄𝑖|
Set 𝐼𝐷𝑖 = index of the maximum component of 𝒓𝑒𝑠

Augment 𝑽 ← [𝑽 𝝍𝑖 ], 𝑷 ← [𝑷 𝒆𝐼𝐷𝑖
], 𝑰𝐷 ← [ 𝑰𝐷 𝐼𝐷𝑖 ]

End

𝐼𝐷𝑖) related to the maximum value of the residual 𝒓𝑒𝑠 =
|𝝍𝑖 − 𝑽𝒄𝑖|.
Let 𝑽 ∈ ℝ𝑁𝑒⋅𝑁𝑐 ×(𝑖−1) be a basis made of the 𝑖 − 1 first

UDEIMmodes and 𝒄𝑖 the scalar weights computed by solv-
ing 𝑷𝑇𝑽𝒄𝑖 = 𝑷𝑇𝝍𝑖 , where 𝑷 ∈ ℝ𝑁𝑒⋅𝑁𝑐 ×(𝑖−1) is the Boolean
partitionmatrix used to select the collocation components.
When the component related to the ith mode is known,
the column 𝒆𝐼𝐷𝑖 of the 𝑰𝑑 ∈ ℝ𝑁𝑒⋅𝑁𝑐 ×𝑁𝑒⋅𝑁𝑐 identity matrix
is added to the partition matrix, so 𝑷 ← [𝑷 𝒆𝐼𝐷𝑖 ] and𝑽 ←

[𝑽 𝝍𝑖 ]. These steps are repeated until all them collocation
components are known.
When the UDEIM is used with implicit time integration

methods, the tangent operator must also be interpolated
during the solving process. As the symmetry of the
approximated tangent operator is not kept, difficulties
for converging (i.e., numerical instabilities) appear over
time as nonlinear mechanisms (e.g., large deformations,
damage, friction, or hardening) occur. To preserve as
much as possible the symmetry of the matrix system,
the unassembled tangent operator 𝑲u

T
is redefined as a

sum of 𝑲u
E
(7), which is constant and symmetric, with an

asymmetric correction Δ𝑲u
T
that is approximated during

the online phases (i.e., nonlinear FEM analyses where
the hyper-reduced matrix system is solved on the reduced
basis 𝚽). As the tangent operator is only interpolated
on the elements where nonlinear mechanisms appear,
the robustness of the UDEIM is improved, even if the
convergence is still not guaranteed. To avoid numerical

instabilities, it is possible to add the unused components of
the RID to the partition matrix 𝑷 ∈ ℝ𝑁𝑒⋅𝑁𝑐 × 𝑚. The num-
ber of collocation components k is thus higher than the
number m of UDEIM modes (i.e., k > m). Considering a
new partition matrix 𝑷 ∈ ℝ𝑁𝑒⋅𝑁𝑐 × 𝑘 leads to an overdeter-
mined matrix system 𝑷T𝝍𝒄 ≈ 𝑷T�̃�NL,u. The scalar weights
𝒄 ∈ ℝ𝑚 are thus computed in the least square sense using a
Monroe–Penrose pseudo-inverse (⋅)+ to minimize residual
in the L2-norm, leading to 𝒄 ≈ (𝑷T𝝍)

+
𝑷T�̃�NL,u. It should

be noted that when Algorithm 1 runs, the selection of the
collocation components could be improved by directly
adding the additional components to 𝑷 (Rutzmoser, 2017).
Unfortunately, the computational cost of Algorithm 1
increases drastically since the size of the matrix system
solved at each iteration is Nc times higher. In addition, the
accuracy of the interpolation operator does not change
significantly. The additional components are thus added
to P a posteriori (i.e., when the RID is already defined).
When the k collocation components are set, the online

phases proceed. The material laws are updated on the
elements belonging to the RID (i.e., where the nonlinear
part of the unassembled restoring force vector needs to
be computed). The k collocation components stored in
�̃�
NL,u
RID

= 𝑷T�̃�NL,u ∈ ℝ𝑘 are thenused as samples to build the
vector �̃� ∈ ℝ𝑁𝐷𝑂𝐹𝑠 on the entire domain as described in (9):

�̃� (Φ�̃�) = 𝑩T
(
𝑲u
E
𝑩Φ�̃� + 𝑨�̃�

NL,u
RID (Φ�̃�)

)
𝑨 = 𝚿

(
𝑷T𝚿

)+ (9)

where𝑲u
E
∈ ℝ𝑁𝑒⋅𝑁𝑐 × 𝑁𝑒⋅𝑁𝑐 is the unassembled elastic stiff-

ness matrix, 𝚽 ∈ ℝ𝑁𝐷𝑂𝐹𝑠 × 𝑛 is the basis of POD modes,
�̃� ∈ ℝ𝑛 is the prediction of the displacement vector in
basis 𝚽, 𝚿 ∈ ℝ𝑁𝑒⋅𝑁𝑐 × 𝑚 is the basis of UDEIM modes,
𝑷 ∈ ℝ𝑁𝑒⋅𝑁𝑐 × 𝑘 is the partition matrix, and 𝑨 ∈ ℝ𝑁𝑒⋅𝑁𝑐 × 𝑘

is theUDEIM interpolation operator. As a result, according
to (7), (9) becomes:

�̃� (𝚽�̃�) = 𝑩T
(
𝑰d − 𝑨𝑷T

)
𝑲u
E
𝑩𝚽�̃� + 𝑩T𝑨�̃�u

RID (𝚽�̃�) (10)

where 𝑰d ∈ ℝ𝑁𝑒⋅𝑁𝑐 × 𝑁𝑒⋅𝑁𝑐 is an identity matrix, and
�̃�u
RID

(𝚽�̃�) ∈ ℝ𝑘 is the prediction of the unassembled
restoring force vector assessed on the k collocation com-
ponents belonging to the RID. During the online phase,
the acceleration vector �̈� ∈ ℝ𝑛 in the reduced basis Φ is
computed at time step n + 1 as described in (11):

�̈�𝑛+1 =
(
𝚽T𝑴𝚽

)−1
𝚽T𝑭𝑛+1+𝛼 (𝚽�̃�𝑛+1) (11)

Even if iterations are avoided with the α-OS method,
they are still required when the HROM is used to per-
form static or implicit dynamic FEM analyses. In these
cases, the reduced tangent stiffness matrix �̄�𝑇 ∈ ℝ𝑛 × 𝑛
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BODNAR et al. 481

F IGURE 1 Proper orthogonal decomposition–discrete
empirical interpolation method (POD-UDEIM) hyper-reduction
procedure. RID, reduced integration domain.

and the reduced restoring force vector �̄�(𝚽𝒒) ∈ ℝ𝑛 need to
be updated when iterating. As a result, (10) becomes:

�̄� (𝚽𝒒) = 𝚽T𝑩T
(
𝑰d − 𝑨𝑷T

)
𝑲u
E
𝑩𝚽𝒒 + 𝚽T𝑩T𝑨𝑟uRID (𝚽𝒒)

(12)
where 𝒓u

RID
(𝚽𝒒) ∈ ℝ𝑘 is the unassembled restoring force

vector assessed on the k collocation components belonging
to the RID. The reduced tangent stiffness matrix �̄�T can
thus be approximated by derivation of (12) with respect to
𝒒 (13):

�̄�T =
𝜕�̄� (𝚽𝒒)

𝜕𝒒

�̄�T ≈ 𝚽T𝑩T
((
𝑰d − 𝑨𝑷T

)
𝑲u
E
+ 𝑨𝐾u

T,RID

)
𝑩𝚽

(13)

where 𝑲u
T,RID

=
𝜕𝒓u

RID
(𝚽𝒒)

𝜕𝑩𝚽𝒒
= 𝑷T

𝜕𝒓u(𝚽𝒒)

𝜕𝑩𝚽𝒒
∈ ℝ𝑘 × 𝑁𝑒⋅𝑁𝑐 is the

unassembled tangent stiffness matrix related to the k col-
location components included in the RID, computedwhen
iterating and used as a sample to approximate �̄�T. The
hyper-reduction procedure is summarized in the block
scheme in Figure 1.

It should be noted that the accuracy of the POD-UDEIM
hyper-reduction method highly depends upon k. Even
if refined meshes could amplify local nonlinearities and
lead to higher k values, this phenomenon is limited since
the system is projected on a POD displacement basis
that regularizes the physics and avoids an excessive mesh
dependency. The number k of components in the RID thus
increases proportionally to the number of nonlinear ele-
ments in the training dataset (e.g., where damage appears).
In addition, k also depends on the variability of the force
snapshots that define the limits of the parametric system
since a bigger RID is required to correctly approximate
the nonlinear response when several settings may vary
simultaneously. As the singular values well capture this
variability, the force basis can be efficiently truncated using
a tolerance ε usually set between 10−4 and 10−2 (5). Even
if 10−2 is usually recommended for ε, lower values can be
required for nonlinear systems that use complex materials
laws defined by loading path-dependent internal variables,
which can be hard to approximate on a reduced basis, as is
the case for concrete on the present work (see Section 4.1).
A sensitivity analysis will be performed on a practical

case in Section 4.5 to find the tolerance ε to use for the trun-
cation of the force basis𝚿 to ensure a good accuracy of the
results with significant CPU time-savings. The efficiency
of hyper-reduction in accelerating earthquake engineering
parametric analyses about the loading properties will then
be discussed.

4 APPLICATIONS

4.1 Numerical modeling of RC
structures

The global kinematics of the following case studywasmod-
eled with Timoshenko multi-fiber beam elements defined
by quadratic and cubic shape functions for the bending
rotations and the transverse displacements, respectively
(Davenne et al., 2003). An example of multi-fiber mesh for
a simply supported RC beam is presented in Figure 2.
The integration points were linked to sections made of

nonlinear fibers. The deformations of those fibers were
assessed using the beam kinematics under the assumption
that the sections remain flat. The material properties were
locally updated on concrete fibers located at the integra-
tion points of meshes that defined the cross-sections of
the beams (see Figure 2b), but also on additional steel
fibers that modeled the longitudinal reinforcements (see
Figure 2a). The surface meshes were located at the Gauss
points of the beam elements. The restoring force vector
was computed by double integrating the stresses: on the
sections to evaluate the generalized stresses at the Gauss
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482 BODNAR et al.

F IGURE 2 Reinforced concrete beam with simple supports (a)
and multi-fiber mesh with two Timoshenko beam elements (b).

points and on the beam elements to compute the restoring
forces at the nodes. Knowing that the length/height ratio
of the structural components (e.g., beams or columns)
is usually higher than 10 for civil engineering frame
structures, the damage was assumed to be mainly due
to bending (Davenne et al., 2003). As a result, only one-
dimensional (1D) nonlinear material laws were used,
while shear and torsion remained elastic. The transverse
steel reinforcements were also assumed to prevent shear-
ing failure mechanisms since they were not explicitly
included in the multi-fiber mesh, even if experiments and
post-seismic inspections proved that such phenomena
could also appear on short beams and columns as well as
on column/beam connections subjected to cyclic loadings
(Alcocer et al., 2020). A better modeling of concrete
shearing could have been achieved using a 2D plane strain
material law, even if modeling accurately shearing failure
mechanisms still requires 3D finite elements linked to
1D steel reinforcements (Hervé-Secourgeon et al., 2021),
which was not addressed in this work. Multilayer plates
or shells could also have been used to model membrane
components (e.g., walls or slabs), as well as nonlinear
macro elements to model the RC column/beam connec-
tions using homogenized properties that depend on the
steel reinforcements (Pantò et al., 2021).
Many material laws can be used to model the behav-

ior of RC frame structures. If elastic plastic hinges are
well suited for homogenized cross-sections (Hafezolgho-
rani et al., 2022), the multi-fiber beam element support
allows for the use of quasi-brittle damage laws that are
locally applied to the concrete fibers (see Figure 6c).

F IGURE 3 One-dimensional damage law for concrete with
opening/closing of cracks (a) and frictional sliding (b).

Under dynamic or cyclic loadings, damage leads to soft-
ening and hysteretic energy dissipations due to frictional
sliding but also to a progressive recovery of the secant
modulus when the cracks are closing. A quasi-brittle
damage law that model accurately all these phenomena
(Richard & Ragueneau, 2013) was used for concrete (see
Figure 3).
The parameters of the concrete material law were set

according to experiments (Terrien, 1980). Here, an elastic
modulus of 36 GPa and a Poisson’s ratio of 0.2 were con-
sidered. The damage-yielding surface was defined by an
initial energy threshold of 83 J/m3 and a brittleness coef-
ficient of 2.9 × 10−2 m3/J. The frictional sliding evolution
depended on a kinematic hardening surface modulus of
7.0 × 109 Pa and a kinematic hardening pseudo-potential
modulus of 7.0 × 10-6 Pa−1. The cracks were closed when
the stresses were lower than a mean closure value of
−3.0 MPa, while the hardening appeared in compression
when a strength of −15 MPa was reached. The evolution
of the hardening was defined by a plastic surface modulus
of 0.25, a plastic pseudo-potential modulus of 0.91 for
modeling the dilatancy, a plastic hardening modulus of
55 GPa, and a plastic hardening coefficient of 600 that
drove the softening. The CPU time heavily increased
when concrete dissipative mechanisms occurred. Mod-
eling them was costly since internal variables had to be
updated using a return-mapping algorithmwith strain sub
increments lower than 10−5 m/m to converge (Richard &
Ragueneau, 2013). A lower initial energy threshold (i.e.,
tensile strength) would have led to higher CPU times since
damage, softening, and frictional sliding loops would have
appeared earlier.
Cyclic movements also generated kinematic hardening

of the steel reinforcements. These mechanisms were
modeled on the steel fibers using a bilinear elastic–plastic
law defined by an elastic modulus of 210 GPa, a yielding
stress of 500 MPa, and a kinematic hardening modulus of
1000 MPa.
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BODNAR et al. 483

4.2 Case study

Simulations were performed on a two-story RC building
subjected to earthquakes to challenge the efficiency of the
POD-UDEIM hyper-ROM method in accurately approxi-
mating nonlinear structural dynamic responses at a lower
computational cost. All the simulations were carried out
using custom procedures implemented in MATLAB soft-
ware. The seismic hazard was modeled by a set of 12
natural ground motions recorded at Friuli on May 6, 1976,
Montenegro on April 15, 1979, and May 25, 1979, Adana
on July 27, 1998, Alkion on February 24, 1981, Izmit on
August 17, 1999, Kalamata on September 13, 1986, and
Umbria Marche on September 26, 1997. All these earth-
quakes were modified by Diana et al. (2018) using a
non-stationary spectral matching method to fit the design
spectrum of the “Rhonetal” microzoning area around the
city of Visp in Switzerland. All the ground motions were
sampled at 100 Hz. Even if these signals are of the same
order of magnitude (i.e., with a peak ground accelera-
tion [PGA] between 2.3 and 2.8 m/s2), their frequency,
strong motion duration, and number of aftershocks dif-
fered (see Figure 4). Three were first used to compute
the snapshots, the POD modal basis 𝚽, and the UDEIM
interpolation operator 𝑨. The responses related to the
nine others were approximated using hyper-reduction.
The pseudo-acceleration floor response spectra at ground
level with a damping ratio of 5% are compared to the design
spectrum in Figure 5.
The case study was a two-story RC building defined by

1555 nodes linked by 1712 multi-fiber beam elements (see
Figure 6a). All the columns were embedded to the floor
level, and 9222 free DOFs modeled the structure. Both
stories were 3-m high, each with spans of 3 m. The beam
elements were 25-cm long, and a center-to-center distance
of 1 m was applied to the transverse and the longitudinal
beams for modeling the floors. A stairwell occupying an
area of 2 × 2 m2 was located at the northwest corner of
the building and was modeled by three columns, which
increased the stiffness locally. A mass per unit area of
500 kg/m2 was applied to both floors via the longitudinal
beams, whereas the mass of the stairwell was neglected.
To model the mass of the structural components, densities
of 2350 and 7850 kg/m3 were used for the concrete and the
steel, respectively.
As HROMs are most of the time used to model smooth

physics with moderate nonlinearities, small sections
were used for the structural components to be sure
that earthquakes induce significant nonlinear dissipative
mechanisms (e.g., damagewith softening or frictional slid-
ing) that challenge the applicability of hyper-reduction.

F IGURE 4 Set of 12 natural ground motions modified to fit the
design spectrum of the “Rhonetal” area around the city of Visp in
Switzerland.
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484 BODNAR et al.

F IGURE 5 Pseudo-acceleration spectra related to the 12
ground motions with ξ = 5%. HROM, hyper-reduced order model.

F IGURE 6 Mesh of the building (a), cross-section of the
beams (b), and mesh of the cross-section of the beams (c).

The columns had a 15 × 15 cm square cross-section, and
the beams had a 15 × 25 cm rectangular one. The diameter
of each longitudinal steel reinforcement was set at 12 mm,
and the concrete cover was 20 mm (see Figure 6b). All the
cross-sections were divided into 5 × 5 surface elements,
each using four integration points with linear shape

TABLE 1 Main eigenfrequencies and percentages of effective
modal mass of the model.

Eigenfrequency % of the effective modal mass
(Hz) x-axis y-axis z-axis
1.41 6.84 76.7 ∼0
1.47 84.6 7.92 ∼0
1.90 1.12 7.81 ∼0
3.82 0.40 5.31 ∼0
4.01 5.80 0.49 ∼0
5.23 0.09 0.59 ∼0
12.3 ∼0 ∼0 ∼0

functions for integrating the local stresses (see Figure 6c).
The nonlinear material laws were thus locally applied to
356,100 fibers distributed on 3424 sections (i.e., two per
beam element), which significantly increased the com-
plexity of the multi-fiber beam model. All in all, 342,400
concrete fibers were located at the integration points of
the surface elements (see the gray dots), while 13,700 steel
fibers (see the black dots) were located at 34 mm from the
corners of the cross-sections.
The main eigenmodes and percentages of effective

modal mass are summarized in Table 1. The structure
weighed 108 tons and was mainly affected by the six
first eigenmodes, with a cumulative modal mass reach-
ing 106 tons (i.e., 98.8% of the total mass). A Rayleigh
viscous damping ratio was applied with respect to this fre-
quency range to arbitrarily model additional dissipative
mechanisms (e.g., thermal breaks or friction between steel
reinforcements and concrete) that appear on actual struc-
tures and are not included in the physics of the multi-fiber
mesh.
As recommended for damageable RC buildings (Cham-

breuil, 2022), the damping ratio was set at ξ = 2% at
f1 = 1.41 Hz (i.e., eigenfrequency #1) and f6 = 5.23 Hz (i.e.,
eigenfrequency #6) so that its value reached a minimum
around the main eigenmodes.
The damping matrix was thus equal to 𝑪 = 𝛼𝑀𝑴 +

𝛽𝑀𝑲𝐸 with αM = 4⋅π⋅ξ⋅f1⋅f6⋅(f1 - f6)/(f12 − f62) and
βM = ξ/π⋅(f1 − f6)/(f12 − f62) (Rayleigh, 1896), so
αM = 0.28 rad/s and βM = 9.58 × 10-4 s/rad. To induce high
damage levels, the groundmotionswere all weighted by 1.0
in the x-direction, −0.7 in the y-direction, and 0.3 in the z-
direction. The dead and live loads were statically applied
before entering the time step loop.

4.3 Choice of the training data

Training data extracted from simulations that lead to
high damage levels are required to ensure that HROMs
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BODNAR et al. 485

can correctly approximate the restoring forces when
dissipative mechanisms appear on a large set of elements.
References solutions computed using ground motions
either having the highest PGA, peak ground displacement
(PGD), and peak ground velocity (PGV) or activating
the main eigenfrequencies of the model could be used
for this purpose (Ayoub et al., 2022). Such indicators are
commonly correlated with the structural damage level
since the PGA, the PGV, and the PGD are defined as the
maximum acceleration, velocity, and displacement at
ground level, respectively (Lai et al., 2022). The training
dataset must also include snapshots computed with
earthquakes of moderate intensity that best represent the
expected average structural response of the parametric
system. Such mixed data improve the approximation
of the restoring forces vector using the force basis 𝚿,
regardless of the evolution of the loading path-dependent
internal variables within the RID. Thus, the range of
physical mechanisms that can be simulated becomes
larger.
Two criteria were applied to select earthquakes that lead

to high damage levels. The average band-limited power
𝑃𝐵𝐿 contained around the main eigenfrequencies of the
model was used first. It quantifies the ability of an earth-
quake to activate the main eigenmodes of the model (i.e.,
between fmin and fmax here) and takes into account the
amplitude of the PGA since the acceleration of the ground
�̈�𝑔(𝑡) is used to compute the energy spectral density �̄�𝑥𝑥(𝑓)
as described in (14):

𝑃𝐵𝐿 = 2

𝑓m𝑎𝑥

∫
𝑓m𝑖𝑛

�̄�𝑥𝑥 (𝑓) 𝑑𝑓 w𝑖𝑡ℎ �̄�𝑥𝑥 (𝑓) =
|�̂� (𝑓)|2
𝑓𝑠

(14)

where �̂�(𝑓) is the discrete fast Fourier transform of the
ground motion �̈�𝑔(𝑡) (computed using 215 samples with
zero-padding), and fs = 100 Hz is the sampling frequency.
An integration interval between f1 = 1.41 Hz (eigenfre-
quency #1) and f5 = 4.01 Hz (eigenfrequency #5) was used.
The eigenfrequency #6 was not included since its percent-
age of effective modal mass was almost negligible (i.e.,
less than 1%, see Table 1). The main bending and tor-
sional eigenmodes are expected to be strongly activated
with earthquakes that maximize PBL. As the amplitude of
the cycles is higher with such ground motions, the strains
increase, as well as the damage level.
The PGV, computed by integrating the ground motion

over time, is also a good indicator since high values refer to
strong-intensity earthquakes that are more likely to cause
significant damage (Alcocer et al., 2020). However, the
PGD was not used here to select earthquakes, as it is more
suited for tall structures (Lai et al., 2022). All these criteria
are summarized in Table 2.

TABLE 2 Peak ground acceleration (PGA), peak ground
velocity (PGV), peak ground displacement (PGD), and average
band-limited power of each ground motion.

Ground
motion

PGA
(m/s2)

PGV
(m/s)

PGD
(m)

PBL
(m2⋅s−3)

# 1 2.37 0.163 0.053 4.28
# 2 2.56 0.256 0.057 4.00
# 3 2.41 0.171 0.048 3.30
# 4 2.58 0.208 0.050 2.54
# 5 2.39 0.179 0.041 3.42
# 6 2.64 0.202 0.134 2.24
# 7 2.51 0.212 0.179 3.13
# 8 2.70 0.249 0.310 1.52
# 9 2.51 0.189 0.086 3.93
# 10 2.80 0.196 0.182 3.41
# 11 2.46 0.175 0.095 2.93
# 12 2.51 0.184 0.045 2.75

It should be noted that high PGAs do not necessarily
lead to high PGVs in the case of ground motions defined
by high natural frequencies. Among the set of available
earthquakes, #1 and #2 exhibit the highest average band-
limited power, with values equal to 4.28 and 4.00 m2⋅s−3,
respectively. They are thus more likely to activate the main
eigenmodes. In addition, the highest PGV (i.e., 0.256 m/s)
was recorded on ground motion #2, making it even more
relevant for the computation of snapshots.
To complete the set of training data, an earthquake of

moderate intensity has to take intermediate damage levels
into account. Ground motions #4, #6, and #12, which are
defined bymoderate average-band limited powers between
2 and 3 m2⋅s−3, could be used for this purpose since they
are most likely to be representative of the average response
of the parametric system. As it is the shortest, #4 was used
since less CPU time is required to compute the nonlin-
ear dynamic response of the FOM. Other indicators than
PBL could be used to determine the intensity of ground
motions (e.g., Housner intensity, significant duration, or
cumulative absolute velocity; Lai et al., 2022). A detailed
sensitivity analysis, which is not carried out in this paper,
would be helpful to find the best indicators for selecting
ground motions that are representative of entire seismic
databases that need to be simulated on structural mod-
els. Efficient HROMs could thus be built using the selected
ground motions for accelerating parametric analyses (e.g.,
fragility curves).

4.4 Accuracy of the α-OS method

Following the conclusions of Section 4.3, the HROM
was built using a set of 2899 snapshots based on the
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486 BODNAR et al.

F IGURE 7 Displacement component ux of the northwest corner—full-order model (FOM) with the 1st (a), 2nd (b), and 4th (c) ground
motions, and moment/curvature response of the northwest corner with the 4th ground motion (d).

FOM responses to ground motions #1, #2, and #4. The
FEM analyses were all performed with a time step
Δt equal to 10 ms and an α parameter equal to −0.05
so that β = 0.28 and γ = 0.55 (Pegon & Pinto, 2000).
All calculations were carried out on an Intel Core i9-
10900K CPU@ 3.70 GHz and 64 GB RAM computer using
MATLAB software. The memory usage remained constant
and did not exceed 35% of the inherent memory of the
computer.
The displacement component 𝑢𝑥 of the northwest cor-

ner (see the location of the star in Figure 6a) is computed
in Figure 7 for each ground motion using both the α-OS
and the implicit Newmark methods (i.e., β = 0.25 and
γ = 0.50). A relative tolerance of 10−6 was used to control
the convergence of the implicit method. Both responses
are quasi-identical despite being highly affected in ampli-
tude and frequency by the material nonlinearities (see
Figure 7d).
The CPU time and the error that are summarized in

Table 3 quantify the applicability of the α-OS method to
compute the nonlinear response to groundmotions #1, #2,
and #4.
In this paper, the solutions (𝒖, 𝒓) are compared to the

implicitNewmark reference (𝒖FOM, 𝒓FOM)using the strain

TABLE 3 Central processing unit (CPU) times and errors
introduced by the α-operator splitting (α-OS) method for ground
motions #1, #2, and #4.

CPU time

Ground
motion

εEd
(%)

Impl. New.
full-order
model (FOM) α-OS FOM

Speed up
factor
(−)

# 1 0.17 1 h 34 min 58 s 11 min 28 s 8.2
# 2 0.08 1 h 51 min 28 s 14 min 12 s 7.8
# 4 0.09 53 min 14 s 6 min 47 s 7.8

energy error εEd defined in (15):

𝜀Ed =
Δ𝐸d

𝐸FOM
d

× 100 %

Δ𝐸d =
1

2𝑁𝑡Δ𝑡

𝑁𝑡⋅Δ𝑡

∫
0

||𝚫𝒖T (𝑡) 𝚫𝒓 (𝑡)|| 𝑑𝑡
(15)

where 𝐸FOM
d

is the strain energy of the implicit Newmark
FOM,Δ𝐸d is the difference in strain energy,𝑁𝑡 is the num-
ber of time intervals, Δ𝑡 is the time step, Δ𝒖 = 𝒖 − 𝒖FOM

is the difference in displacements, and Δ𝒓 = 𝒓 − 𝒓FOM is
the difference in restoring forces. It should be noted that
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BODNAR et al. 487

F IGURE 8 Damage index distribution applied to the final
displacement field (amplification factor equal to 35) using ground
motion #1: implicit Newmark method (a) and α-operator splitting
(α-OS) method (b).

the dissipated energy could be used instead of the strain
energy in (15) to quantify the ability of the solution to
model the earthquake-induced degrading mechanisms. Its
computation is not addressed in this paper but could be
performed on the force/displacement responses using a
rainflowmethod, which proved its efficiency for nonlinear
fatigue-based structural health monitoring (Pavlou, 2022).
Table 3 shows that the strain energy error introduced

by the α-OS method is almost negligible, with a value
of less than 0.2%. In addition, the speed-up factor is
approximately equal to 8 since no iteration or reassess-
ment of the tangent stiffness matrix is required. Damage
indices related to both methods are averaged on the beam
elements and plotted in Figure 8 for ground motion #1.
Local indices are also visible on beam sections located
at the southwest corner of the building. The damage is
quasi-identical at local and global scales regardless of
the method used with 1268 damaged elements (see the
darkened elements in Figure 8). This proves that the α-OS
method is well suited for performing FEM analyses on
models of RC structures that use softening damage laws,
so it can advantageously be used with HROMs under the
infinitesimal strains assumption.

4.5 Truncation of the displacement and
force bases

Dynamic responses computed using ground motions #1,
#2, and #4 as external loadings were used to produce high-

F IGURE 9 Criterion used to truncate the POD modal basis 𝚽.

TABLE 4 Error, online, and offline CPU times of the
hyper-reduced order model (HROM) with several number of
unassembled discrete empirical interpolation method (UDEIM)
modes based on the response related to ground motion #5.

CPU time (s)
m (−)

Truncation
criterion (%) εEd (%) Offline Online

50 9.37 143 32 42
100 5.66 2.43 33 20
150 3.90 0.54 35 26
200 2.86 0.35 37 35
250 2.18 0.21 40 42
300 1.70 0.27 43 47
350 1.34 0.16 47 71
400 1.07 0.14 52 79
450 0.87 0.14 58 82
500 0.70 0.15 64 96

dimensional reference solutions. The displacement and
force snapshots, which defined the training dataset, were
then selected from the beginning to the end of each loading
path-dependant solution from intervals of three-time steps
(i.e., every 30 ms) to avoid unnecessary redundancy of the
input data.Within the training dataset, 974 snapshots were
related to groundmotion #1, 1395 to #2, and 530 to #4. SVDs
were then performed on two sets of displacement and force
snapshots (i.e., 𝑺d and 𝑺f , respectively) to build the POD
and UDEIM modal bases 𝚽 and 𝚿 (see Figure 1). By con-
sidering a tolerance ε equal to 10−2 for the truncation of𝚽,
the criterion in (5) was fulfilled with a number n of 24 POD
modes using the α-OS method and 22 POD modes using
the implicit Newmark method (see Figure 9).
Each HROM was then used to compute the response

related to ground motion #5 using the α-OS method. The
error, as well as the online and offline CPU times, is
summarized in Table 4.
In addition, the displacement component 𝑢𝑥 of the

northwest corner is plotted for several HROMs in
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488 BODNAR et al.

(a)

(b)

F IGURE 10 Strain energy error and truncation criterion with
respect to the numberm of UDEIM modes (a) and displacement
component ux of the northwest corner computed with ground
motion #5 (24 POD modes) (b). HROM, hyper-reduced order model.

Figure 10b, while the strain energy error and the trun-
cation criterion are drawn in Figure 10a with respect to
the number m of UDEIM modes. Figure 10a highlights
that the strain energy error does not necessarily decrease
when new UDEIM modes are added as shown by the
loss of accuracy with m = 300. Indeed, the loading
path-dependency of the internal variables can lead to
an additional error if the UDEIM approximation over-
estimates the components of the restoring force vector
locally at some DOFs belonging to the RID. Such an error
can occur, for example, when new UDEIM modes are
added to 𝚿, even if the strain energy error stabilizes at
a low value when enough UDEIM modes are taken into
account.
The CPU times in Table 4 show that the duration of the

offline phase, which includes the computation of the dis-
placement basis 𝚽, the force basis 𝚿, the partition matrix
𝑷, and the interpolation operator 𝑨 (see Figure 1), is twice
as highwhen the numberm of UDEIMmodes increases by
a factor of 10. According to the DEIM procedure defined in
Algorithm 1, the size of the matrix system to solve to find
each new collocation component increases when a new
UDEIMmode is added. As a result, the offline CPU time is

F IGURE 11 Criterion used to truncate the UDEIM modal
basis𝚿.

higher since the value ofm increases when the tolerance ε
decreases. However, as the unused additional components
of the RID are added a posteriori to the partition matrix
𝑷, the size of the matrix system to solve when Algorithm 1
runs does not exceed ℝ𝑚 × 𝑚. Thus, the offline CPU time
remains low since its value is less than 60 s when the
minimal strain energy error εEd = 0.13% is reached with
ground motion #5 (see Figure 10a). The duration of the
online phase also increases with respect to the number m
of UDEIM modes since adding new collocation compo-
nents increases the size of the RID. In comparison to an
HROM made of 100 UDEIM modes, the online CPU time
is five times higher when 500 UDEIM modes are taken
into account, even if an insufficient number of modes may
also lead to a higher CPU time, as it is the case when only
50 UDEIM modes are used (see Table 4). If the HROM is
not accurate enough, the displacement and the strains are
overestimated, increasing the time necessary to update
the material properties on the RID.
The strain energy error εEd plotted in Figure 10a is well

stabilized when more than 400 UDEIM modes are used
in the truncated basis 𝚿. Considering that the truncation
criterion (5) is lower than 1.07% (see Table 4), a tolerance
ε equal to 1% can thus be reasonably used to truncate 𝚿,
which is the highest value that is usually recommended
regardless of the physics of the case study. This choice
leads to a basis made of 417 UDEIM modes using the
α-OS method and 362 UDEIM modes using the implicit
Newmark method (see Figure 11).
The value of m varies since an explicit prediction of the

force snapshots is used with the α-OS method instead of
the converged results. Thus, the data used to build the
HROM are slightly different with the α-OS method, which
explains why more UDEIM modes are required. Higher-
dimensional bases 𝚽 and 𝚿 could also be required for
irregular structures with more complex geometries since
the singular values identified from the training dataset are
expected to decreasemore slowly, which could increase the
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BODNAR et al. 489

F IGURE 1 2 Reduced integration domains (RIDs) built using
snapshots computed with the α-OS method (417 beam elements) (a)
and the implicit Newmark method (362 beam elements) (b), and
domain where nonlinearities are the most likely to appear according
to the snapshots (1317 beam elements) (c).

number of modes necessary to fulfill (5) using a tolerance
of 1%.
The RIDs built using snapshots computed with the α-

OS and implicit Newmarkmethods are drawn in Figure 12.
When the α-OS method is used, the RID is made of 417
beamelements (see the black elements in Figure 12a).With
the implicit Newmarkmethod, the RID includes 362 beam
elements (see Figure 12b). The number of elements in the
RID is thus equal tom in both cases.
As shown by the maximal damage index distribution

computed with ground motions #1, #2, and #4, damage
may appear on 1317 beam elements (see Figure 12c). Thus,
the RIDs are 68% and 73% smaller than the domain where
nonlinearities are the most likely to appear, which saves a
significant CPU time during the online phases.
The amplified shapes of the first four PODmodes used to

build the displacement basis𝚽 are drawn in Figure 13, with
snapshots computed using the α-OS method. The POD
modes differ from the eigenmodes since they efficiently
model local nonlinearities (e.g., damage) but depend on
the loadings used to compute the nonlinear responses
that are added to the training dataset. The frequency
fRi that activates the ith POD mode 𝝋𝑖 ∈ ℝ𝑁𝐷𝑂𝐹𝑠 can be
approximated using its Rayleigh quotient Ri (16):

𝑓Ri ≈

√
𝑅𝑖

2𝜋
with 𝑅𝑖 =

𝝋T
𝑖
𝑲E𝝋𝑖

𝝋T
𝑖
𝑴𝝋𝑖

(16)

F IGURE 13 Shapes of POD mode #1 (a), POD mode #2 (b),
POD mode #3 (c), and POD mode #4 (d) with snapshots computed
using the α-OS method.

where 𝑲E ∈ ℝ𝑁𝐷𝑂𝐹𝑠×𝑁𝐷𝑂𝐹𝑠 is the elastic stiffness matrix,
and𝑴 ∈ ℝ𝑁DOFs×𝑁DOFs is the mass matrix.
POD mode #1 (fR1 = 1.54 Hz) is close to the eigenmode

of bending #1 along the x-axis (f1 = 1.47 Hz). The shape
of POD mode #2 (fR2 ≈ 8.0 Hz) is close to the eigenmode
of bending #2 along the x-axis (f5 = 5.23 Hz). POD mode
#3 represents the torsional effects activated by the bidi-
rectional horizontal loading and induced by the stairwell
that increases the stiffness locally. The shape of POD
mode #3 is close to the torsional eigenmode #1 about the
z-axis (f3 = 1.90 Hz). PODmode #4 represents the bending
strains due to the vertical loads (i.e., static dead and live
loads, and vertical component of the ground motion).
The frequencies provided by the Rayleigh quotients are
higher than expected for PODmodes #2 and #3 since floor
deformations that refer to high-order eigenmodes are
included in the POD modal shapes. The decrease of the
truncation criterion in Figure 9 shows that POD modes
#1, #2, and #3 contribute up to 72.0%, 9.5%, and 5.7% to
the POD basis𝚽, respectively. The response is thus mainly
affected by bending using ground motions weighted by
1.0, −0.7, and 0.3 along the x, y, and z-axes, respectively.

4.6 Parametric analysis that involves
several earthquakes

The HROMs built in Section 4.5 were used to compute the
dynamic response of the two-story building (see Figure 6)
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490 BODNAR et al.

when subjected to ground motions #3, #5, #6, #7, #8, #9,
#10, #11, and #12 (see Figure 4).
The earthquakes #1 to #12 define a parametric loading

involving many variables (e.g., PGA, PGV, or average
band-limited power) as explained in Section 4.3. But,
since the evolution of natural ground motions is hard
to describe on a reduced set of parameters, intervals
cannot be explicitly identified for the parametric system.
However, as the finite elements where damage grows
(e.g., around the column/beam connections) are usually
the same regardless the properties of the earthquake,
hyper-reduction is expected to correctly approximate
dynamic responses induced by random ground motions of
the same order of magnitude.
The modeling assumptions (e.g., material properties,

steel reinforcements, or areas of the sections) defined in
Sections 4.1 and 4.2 remained the same for all the hyper-
reduced simulations (i.e., online phases). The parametric
analysiswas repeated using theα-OS and the implicit New-
mark methods to quantify the fidelity and the additional
CPU time-saving allowed by the operator splitting when
hyper-reduction is used.
Figure 14 compares the strain energy error, the online

CPU times, and the number of iterations related to the
FOMs, the POD ROMs, and the POD-UDEIM HROMs.
The horizontal displacement of the northwest corner
was also computed along the x-axis using the implicit
Newmark FOM and both HROMs (see Figure 15).
According to Figure 14a, the strain energy error is less

than 0.7% for all the ground motions, which highlights
the accuracy of the HROMs. The displacement component
ux of the Northwest corner computed using the HROMs
also agrees well with the implicit Newmark FOM (see
Figure 15j). For real-life applications, note that the error
that is introduced by the hyper-reduction could also be
quantified without knowing the response of the FOM
using an error criterion based on the balance of the equa-
tion of motion in the high-dimensional basis as used by
a priori ROM methods for selecting new modes (Chinesta
et al., 2014).
Figure 14b shows that using an implicit Newmark

method with a POD ROM leads to an online speed-up fac-
tor of 2. The POD method saves a significant part of the
online CPU time with iterative methods (i.e., 50%) since
the computational cost required to solve thematrix system
is almost negligible. The POD-UDEIM is even more effi-
cient, with a speed-up factor of 16. As less elements need
to be updated when the online phase proceeds, approx-
imately 94% of the online CPU time can thus be saved.
Figure 14c demonstrates that twice as few iterations are
required using reduced order models, which improves the
efficiency of the POD and the POD-UDEIM even more.

F IGURE 14 Strain energy error (a), online central processing
unit (CPU) time (logarithmic scale) (b), and number of iterations
(logarithmic scale) of the FOMs, POD ROMs, and POD-UDEIM
HROMs.

Higher time-savings are reachable with the α-OS
method as no reassessment of the tangent stiffness matrix
or system inversion is required. Compared to the α-OS
FOM, the online speed-up factor does not exceed 1.1 with
the α-OS POD ROM but reaches 7.9 when the α-OS
POD-UDEIM HROM is used (see Figure 14b). This value
increases to become approximately equal to 60 if the α-OS
HROM is compared to the implicit Newmark FOM.
The CPU times summarized in Table 5 quantify the

duration of the parametric analysis, including the com-
putation of the training data as well as the offline and
online phases. The α-OS POD-UDEIM HROM saves a
significant part of the CPU time since the response of
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BODNAR et al. 491

(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i) (j)

F IGURE 15 Displacement component ux of the northwest corner related to ground motions #3 (a), #5 (b), #6 (c), #7 (d), #8 (e), #9 (f),
#10 (g), #11 (h), #12 (i) and focus between 7 and 10 s with the 12th ground motion (j)—comparison between the FOM and the POD-UDEIM
HROMs.
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492 BODNAR et al.

TABLE 5 Comparison of the CPU times necessary to achieve
the parametric analysis involving several ground motions.

Method CPU time
Implicit Newmark FOM 18 h 23 min 46 s
Implicit Newmark proper orthogonal
decomposition–reduced order modeling
(POD ROM)

11 h 7 min 13 s

Implicit Newmark POD-UDEIM HROM 5 h 13 min 3 s
α-OS FOM 2 h 18 min 50 s
α-OS POD ROM 2 h 14 min 27 s
α-OS POD-UDEIM HROM 47 min 44 s

the 12 ground motions is computed three times faster,
compared to the α-OS FOM, and 23 times more quickly,
compared to implicit Newmark FOM, which is the default
method used by most industrial software. In addition, the
POD-UDEIM is far more efficient than the POD method
since the parametric analysis is achieved eight times faster
when aUDEIM interpolation operator is used. Because the
CPU time-saving of the entire analysis increases when the
time necessary to compute the snapshots decreases, using
HROMs with the α-OS method offers an excellent strat-
egy to accelerate parametric analyses that involve several
earthquakes. Section 4.7 proposes applying this methodol-
ogy to another parametric analysis on the directionality of
earthquakes.

4.7 Parametric analysis on the
directionality of earthquakes

An α-OS HROM was next used to compute the response
related to groundmotion #4 (see Figure 4d), assuming that
the seismic waves may come from several directions. An
angle θ was used as a parameter to define the orientation
of the earthquake with respect to the x-axis. The values of
θ taken into account for the parametric analysis are drawn
on the plan view of the mesh in Figure 16. The ground
motion #4 was weighed by cos θ in the x-direction, sin θ in
the y-direction, and 0.3 in the z-direction. θwas between 0
and 2π rad, and the response of the building was computed
every π/8 rad.
To be sure that the HROM can correctly model bend-

ing and torsion at floor level, snapshots were built with
θ = 0 rad (i.e., bending along the longitudinal axis),
θ = π/4 rad (i.e., torsion around the vertical axis), and
θ = π/2 rad (i.e., bending along the transversal axis) using
the α-OS method (see the bold axes in Figure 16). Because
training data are less redundant when the weights applied
to the ground motion vary, the snapshots were selected
every 10 ms. All the 4770 available snapshots (i.e., 1590 per
training FEManalysis) were then used to build theHROM.

F IGURE 16 Orientations of the seismic waves used in the
parametric analysis focusing on the directionality of earthquakes
(plan view of the mesh).

(a)

(b)

F IGURE 17 Criteria used to truncate the POD (a) and UDEIM
(b) modal bases 𝚽 and𝚿.

Considering a truncation criterion ε equal to 1% led
to a displacement basis 𝚽 made of 27 POD modes (see
Figure 17a) and a force basis𝚿made of 395 UDEIMmodes
(see Figure 17b). It should be noted that approximately 80 s
were required to build the HROM (i.e., offline CPU time),
including the displacement basis𝚽 (i.e., 20 s) and the inter-
polation operator 𝑨 (i.e., 60 s). As a result, the duration
of the offline phase remained low, compared to the time
necessary to compute the snapshots (i.e., 15 min).
The damage index distribution and the first PODmodes

defined using the training data are shown in Figure 18.
According to the snapshots, damage may appear on 1299
elements (see the darkened lines in Figure 18a). The RID
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BODNAR et al. 493

F IGURE 18 Domain where damage may appear (1299 beam
elements) (a) and shapes of POD mode #1 (b), POD mode #2 (c),
and POD mode #3 (d) drawn with the RID (395 beam elements).

is made of 395 elements and is approximately 70% smaller
(see the black lines in Figure 18b–d). POD mode #1 is
close to the eigenmode of bending #1 along the y-axis
(fR1 ≈ f1 = 1.41Hz), #2 to the eigenmode of bending #1 along
the x-axis (fR2 ≈ f2 = 1.47 Hz), and #3 to the torsional eigen-
mode #1 about the z-axis (fR3 ≈ f3 = 1.90 Hz). According to
Figure 17a, POD modes #1, #2, and #3 are all significant
since they contribute up to 42.7%, 28.9%, and 12.3% to 𝚽,
respectively. As expected by the choice of the training data,
the POD modal basis can thus correctly describe torsion
and bending at floor level.
The strain energy errors and the online CPU times

related to the α-OS FOM, the α-OS POD ROM, and the
α-OS POD-UDEIM HROM are summarized in Figure 19
and Table 6, respectively. Figure 19 shows that the strain
energy error εEd does not exceed 0.35%with the PODROM,
while its value is between 0.11% (θ = 3π/8 rad) and 0.56%
(θ= 3π/2 rad)with the POD-UDEIMHROM.With an error
of less than 1%, the HROM can thus correctly describe the
nonlinear behavior of the damageable structure.
The CPU times in Table 6 show that even if all FEM

analyses are performed using the same ground motion,
their duration varies from 43 min (θ = π) to 55 min
(θ = 3π/2 rad). The values of θ that best activate torsional
effects at floor level (e.g., θ = 7π/4 rad) or bending move-
ments about the weak axis (e.g., θ = 3π/2 rad) usually lead
to more significant damage, which increases the CPU time
since more iterations are required to update the material

F IGURE 19 Strain energy error of the α-OS FOM, POD ROM,
and POD-UDEIM HROM (n = 27 −m = 395) for each value of θ.

TABLE 6 CPU time of the α-OS FOM, POD ROM, and
POD-UDEIM HROM (n = 27 −m = 395) for each value of θ.

θ
(rad)

CPU time
Impl. New. α-OS FOM α-OS POD

α-OS
HROM

π/8 48 min 5 s 5 min 21 s 5 min 18 s 43 s
3π/8 52 min 58 s 5 min 18 s 5 min 21 s 43 s
5π/8 50 min 9 s 5 min 3 s 4 min 56 s 41 s
3π/2 49 min 32 s 5 min 7 s 4 min 58 s 42 s
7π/8 47 min 15 s 4 min 41 s 4 min 36 s 39 s
π 43 min 3 s 4 min 24 s 4 min 18 s 36 s
9π/8 50 min 38 s 5 min 10 s 5 min 10 s 44 s
5π/4 53 min 3 s 5 min 32 s 5 min 31 s 47 s
11π/8 51 min 24 s 5 min 16 s 5 min 13 s 44 s
3π/2 54 min 44 s 4 min 51 s 4 min 40 s 39 s
13π/8 47 min 58 s 5 min 0 s 4 min 50 s 41 s
7π/4 52 min 7 s 5 min 9 s 4 min 57 s 42 s
15π/8 44 min 29 s 4 min 42 s 4 min 30 s 38 s

properties locally. The onlineCPU times are approximately
10 times lower with the α-OS FOM (i.e., 303 s) as well as
with the α-OS POD ROM (i.e., 298 s), and 72 times lower
with the α-OS POD-UDEIM HROM (i.e., 41 s).
Let uθ = ux⋅cosθ + uy⋅sinθ be the horizontal dis-

placement of the northwest corner along the direction of
earthquake #4, computed in Figure 20 for the eight values
of θ related to the highest strain energy error. The α-OS
HROM agrees well with the implicit Newmark FOM since
the amplitude and the frequency of both responses are
almost the same.However, slight amplitude variationsmay
appear when the displacement reaches extrema (e.g., after
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494 BODNAR et al.

F IGURE 20 Displacement uθ of the northwest corner along the direction of the earthquake with θ equal to 5π/8 rad (a), 3π/4 rad (b),
7π/8 rad (c), 9π/8 rad (d), 11π/8 rad (e), 3π/2 rad (f), 13π/8 rad (g), and 7π/4 rad (h)—comparison between the FOMs and the POD-UDEIM
HROM.

6 s with θ = 11π/8 rad, see Figure 20e). Although the accu-
racy of HROMs is high enough for earthquake engineering
purposes, this approach appears to be more limited when
the direction of the ground motion is used as a parameter.
Table 7 summarizes the CPU times necessary to achieve

the parametric analysis, including the computation of
training data as well as the offline and online phases. The
calculations can be performed in 25 min 30 s using the

TABLE 7 Comparison of the CPU times necessary to achieve
the parametric analysis on the directionality of earthquakes.

Method CPU time
Implicit Newmark FOM 13 h 14 min 10 s
α-OS FOM 1 h 20 min 43 s
α-OS POD ROM 1 h 19 min 49 s
α-OS POD-UDEIM HROM 25 min 27 s
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α-OS HROM, including 15 min to compute three sets of
snapshots (i.e., 59%), 1 min 20 s to build the HROM (i.e.,
offline phase, 5%), and 9 min to perform 13 online FEM
analyses (i.e., 36%). The computation of snapshots is a
significant part of the hyper-reduction procedure because
the training data need to be assessed on a full basis, even
if the α-OS method is used. However, using an HROM
is still helpful since the CPU time is approximately 3.2
times lower, compared to the α-OS FOM, and 31 times
lower, compared to the implicit Newmark FOM. The
computational cost related to the parametric analysis
on θ is thus highly reduced, showing that α-OS HROMs
are well suited to accelerate parametric analyses on the
directionality of earthquakes.

5 CONCLUSION

This paper used a hyper-reduction procedure to accel-
erate nonlinear dynamic parametric analyses on a civil
engineering structure. A POD reduction using a UDEIM
to approximate the restoring forces was combined with
a non-iterative α-OS time integration to reduce as much
as possible the calculation times. An asymmetric two-
story RC building subjected to earthquakes, which was
modeled using multi-fiber beam elements, has been used
as a case study. Complex dissipative mechanisms were
introduced locally using a quasi-brittle damage law with
softening and frictional sliding for the concrete, while
a bilinear elastic–plastic law with kinematic hardening
was used for the steel. Applications to analyses that used
variable ground motions or several orientations for the
earthquake demonstrated the efficiency of the proposed
approach since

1. using a non-iterative α-OS method accelerated eight
times the computation of full order solutions with a
negligible error;

2. hyper-reduced solutions were quasi-identical to the
full-order references, with an error of less than 0.6%;

3. hyper-reduction accelerated eight times the computa-
tion of the restoring forces when iterating;

4. implicit methods converged more easily with hyper-
reduction since two times less iterations were required;

5. using an α-OS method with hyper-reduction accel-
erated more than 60 times the computation of new
structural responses, compared to the implicit FOM.

Guidelines for performing seismic analyses were identi-
fied according to these results, which showed that

1. a tolerance of 1% can reasonably be used in (5) for the
truncation of the displacement and force bases;

2. HROMs of structures can be designed to simulate earth-
quake databases using a training dataset that mixes
responses of very high and moderate intensities;

3. HROMs adaptable to various loading directions can be
built mixing training data computed with earthquake
oriented along the longitudinal, transversal, and 45◦
axes.

Using hyper-reduction with a non-iterative α-OS
method proved efficient in accelerating parametric anal-
yses with variable loading properties (e.g., frequency,
PGA, strong motion phase duration, or orientation of
ground motions) on a model that introduced complex
nonlinear dissipative mechanisms. Such a method could
advantageously be used to build parametric response
surfaces for damageable structures coupling training data
computed from nonlinear dynamic FEM analyses with
values interpolated using machine learning or kriging
algorithms. Parametric analyses involving earthquakes
of differing orders of magnitude (e.g., fragility curves),
other finite elements (e.g., multilayer plates), or variable
mechanical properties (e.g., tensile strength) could also be
performed using hyper-reduction.
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