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BODY-FITTED TRACKING WITHIN A SURFACE VIA A LEVEL SET BASED MESH

EVOLUTION METHOD

C. BRITO-PACHECO 1 AND C. DAPOGNY1

1 Univ. Grenoble Alpes, CNRS, Grenoble INP1, LJK, 38000 Grenoble, France.

Abstract. This article introduces a robust numerical strategy for tracking the arbitrarily large motion of a
region G(t) within a three-dimensional surface S under the effect of a complex velocity field V (t, x). Following

our earlier work about evolving domains in the Euclidean space Rd, two complementary representations of

the region G(t) ⊂ S are combined at each stage of the iterative process. On the one hand, G(t) is meshed
exactly, which allows for precise geometric and finite element computations, such as those required by

the evaluation of V (t, x). On the other hand, G(t) is represented implicity, via the level set method – a

format under which dramatic deformations of this region can be captured, including changes in its topology.
Efficient numerical algorithms make it possible to switch consistently from one of these representations to

the other, depending on its relevance with respect to the ongoing operation. After numerical validation, this

strategy is applied to address two concrete physical problems, namely the simulation of the evolution of a
fire front within a complex landscape, and the optimization of the shape of regions supporting the boundary

conditions of a mechanical boundary value problem.
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1. Introduction

The broad task of representing the evolution of a domain G(t) ⊂ Rd (d = 2 or 3 in practice) has sparked
extensive mathematical and numerical investigations. This topic plays a central role in various applied
disciplines, ranging from computer graphics and vision [31, 109] to the numerical simulation of physical
phenomena such as fracture propagation [25] or fluid interface dynamics [38, 40], including inverse problems
and shape optimization [8, 11, 29].

Multiple numerical strategies have been proposed to address this task, with competing assets and draw-
backs. However, all implementations face a major challenge: in complex, realistic situations, the velocity
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field V (t, x) driving the motion of G(t) has a physical origin and depends on high-order geometric features
of this region (notably, the curvature of ∂G(t)), or on the solution to a boundary value problem posed on the
latter. It is then notoriously difficult to find a framework reconciling an accurate description of G(t) allowing
for precise calculations of these quantities at any time t – which ideally demands an exact, high-quality mesh
– with the robust treatment of its evolution.

In this regard, Lagrangian strategies, tracking the evolution of an exact mesh of G(t) by displacing its
vertices according to V (t, x) between successive iterations of the process, are usually undermined by a severe
degradation of the quality of the mesh, which rapidly becomes invalid and incompatible with computations,
see e.g. [54, 55]. Admittedly, several heuristics enhance the robustness of this practice. For instance, one
may alternate deformations of the mesh with occasional remeshing steps aimed to improve its quality. Going
further, one may detect and remove ill-shaped elements before they lead to complete degeneracy, or even
modify the velocity of the internal vertices of the mesh to reduce the onset of overlapping patterns, see e.g.
[14, 19, 30, 50, 106] about these ideas.

In this spirit, the recent Deformable Simplicial Complex technique has demonstrated the ability to cope
with impressively large motions by using the formation of nearly degenerate mesh elements near the boundary
of the domain as a trigger for topological changes, see [37, 36, 77]. Even more recently, the X-mesh method [78]
proceeds by displacing the vertices of the mesh of G(t) according to V (t, x) up the point where the measure
of some elements equals zero. The motion is then relayed between neighboring nodes while preserving the
connectivity of the mesh. This strategy rests on the assumption that boundary value problems can be
effectively solved on meshes with degenerate elements, under appropriate assumptions on their aspect ratios.
Despite these noteworthy achievements, let us emphasize that such Lagrangian mesh deformation strategies
are usually reserved for the description of “relatively small” motions of the set G(t).

To overcome the weaknesses of Lagrangian strategies, Eulerian interface capturing techniques are based
on an implicit description of the moving shape G(t). Among these, the level set method, introduced in [86],
features a description of G(t) as the negative subdomain of an auxiliary “level set function” φ(t, ·) : Rd → R
defined on the whole ambient space Rd, see [85, 93]. The domain G(t) is never meshed explicitly, being
rediscovered at each iteration of the process from the values of φ(t, ·). Although it allows to describe
arbitrarily large motions, such an implicit representation is unfortunately less amenable to the accurate
solution of partial differential equations defined on G(t).

These central and popular questions in the numerical analysis of the motion of a domain G(t) have received
surprisingly little attention when the ambient medium is a manifold – notably a surface S in R3; yet, this
alternative context embraces multiple applications of interest:

• Geometric flows, such as the mean curvature flow or the Willmore flow, where the velocity field
V (t, x) depends on high-order geometric features of G(t), can be adapted to the case of a region
within a surface [100].

• Diverse operations of interest in the field of computer graphics are conveniently formulated in terms
of the evolution of a region within a surface. For instance, one popular model for the generation of
textures on a surface relies on the resolution of a reaction-diffusion equation, see e.g. [102, 103]; also,
image segmentation on surfaces can be addressed thanks to a suitable adaptation of the Chan-Vese
algorithm [100].

• Various physical evolution problems occur within a surface, see for instance [83] about the solidifica-
tion of a thin fluid film front on a surface substrate, and [99] about the dynamics of phase changes
on surfaces in material science.

• The wish to optimize the shape of regions within a given ambient surface arises for instance in the
optimal design of shells [101], of curvilinear electronic devices [72], in the context of surface flows
[48], or in the identification of optimal fixation systems for mechanical structures, see e.g. [45, 104].

To the best of our knowledge, the first numerical simulations of the evolution of a region G(t) within
a surface S, proposed in [35] and [70], were concerned with the geodesic curvature flow. These leverage a
version of the level set method tailored to the datum of S as a parametrized patch, or as the graph of a
function defined on the 2d space, respectively. A more general setting is proposed in [23] and [34], where
the closed surface S :=

{
x ∈ Rd, ψ(x) = 0

}
is represented as the 0 level set of a fixed function ψ : Rd → R,

and G(t) = {x ∈ S, φ(t, x) < 0} is the negative subregion of S induced by another (time-dependent) level
set function φ(t, ·) : Rd → R. Here and in the subsequent investigations in this framework [22, 65, 90], the
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equation governing the evolution of the level set function φ(t, ·) is formulated in the whole space Rd with
the help of projection operators. Another series of contributions [75, 89] leverages the so-called closest point
method of [74], devoted to the solution of partial differential equations on surfaces. As the latter solely
requires the datum of a mapping associating to any point x ∈ Rd one closest point (in terms of Euclidean
distance) to the surface S, this latter framework leaves the room for S to be open.

The present article aims to introduce a robust numerical methodology for tracking arbitrarily large motions
of a region G(t) within an ambient surface S ⊂ R3 – including changes of its topology – while maintaining
an exact meshed representation of the latter throughout the process. The proposed strategy is a natural
extension of our earlier contributions [4, 5, 6] – which were devoted to evolving domains of the Euclidean space
Rd – to the present context where the ambient medium is a surface S in Rd. It combines two complementary
representations of G(t) at each stage of the evolution: on the one hand, G(t) is explicitly discretized, as
a submesh of a high-quality surface triangulation T of the ambient surface S, which allows to accurately
calculate its geometric features or to solve related boundary value problems via the finite element method –
and thereby to evaluate the velocity field V (t, x) precisely. On the other hand, G(t) is described implicitly
via the level set method, as the negative subdomain of a scalar function φ(t, ·) : S → R, so that arbitrarily
large motions of G(t) can be realized. The cornerstone of this strategy is a set of efficient meshing algorithms
and numerical schemes for passing from one representation to the other.

This article is organized as follows. In the next Section 2, we present in more details the issue of tracking
the evolution of a region within a surface. Then, in Section 3, we describe the proposed numerical strategy to
realize this task and we detail its main ingredients; we notably discuss the calculation of the signed distance
function to a region on a surface, the resolution of the level set evolution equation in this context, and
our main remeshing operations dedicated to surface triangulations. Interestingly, these numerical methods
are implemented in open-source codes which can easily be used in a black-box fashion. A few numerical
applications of our framework are presented in Section 4: after appraising its efficiency on an analytical
test-case, we consider the motion of a complex interface accounting for a fire front, whose expansion within
a fixed landscape is driven by geometric quantities attached to the fire and those of the landscape. We then
deal with the optimization of the shape of the regions supporting the boundary conditions of a boundary
value problem – an iterative process which requires an accurate solution of the latter at each state of the
process. Eventually, we draw the main conclusions of this work and outline a few perspectives in Section 5.

2. Evolution of a region on a surface in the level set framework

This section introduces the issue of evolving regions within a surface and sets the main notations used
throughout.

Let S be a smooth hypersurface, with or without boundary, in the d-dimensional space Rd. Here, d
equals 2 or 3, and although we shall focus on the three-dimensional case d = 3, which is on any point more
challenging than its 2d counterpart, we retain the generic notation d whenever possible. For simplicity of
the discussion, the hypersurface S is assumed to be oriented, but our developments and numerical methods
extend readily to the case of a non-orientable surface. For any point x ∈ S, n(x) is the unit normal vector
to S at x and the tangent plane to S at x – that is, the vector plane orthogonal to n(x) – is denoted by
TxS :=

{
v ∈ Rd, v · n(x) = 0

}
.

Let G ⊂ S be a smooth open subdomain of S with boundary Σ := ∂G. For x ∈ Σ, we denote by
nΣ(x) ∈ TxS the conormal vector to Σ at x, pointing outward G, see Fig. 1. Let V : (0, T ) × S → R3 be a
smooth vector field defined over the considered time period (0, T ), which is tangential to S, that is:

(2.1) ∀t > 0 and x ∈ S, V (t, x) ∈ TxS.

We wish to track the region G(t) evolving from G(0) ≡ G under the effect of V (t, x) over [0, T ]. This notion
of evolution is intuitively defined as follows: for any x ∈ S, let t 7→ χ(t, 0, x) be the characteristic curve of V
emerging from x at time 0, i.e. the solution to the ordinary differential equation

(2.2)

{
dχ
dt (t, 0, x) = V (t, χ(t, 0, x)), for t ∈ (0, T ),

χ(0, 0, x) = x.
3
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Figure 1. Example of a region G(t) of a three-dimensional surface S evolving according to
a tangential velocity field V (t, x).

The region G(t) is then defined as the set of the positions occupied at time t by the points lying in G at
time 0:

(2.3) G(t) =
{
χ(t, 0, x), x ∈ G

}
.

As we have mentioned in Section 1, the numerical simulation of the evolution of a domain has long been
a thorny issue. Among the numerous frameworks implemented to achieve this goal, the level set method has
proved to be particularly convenient since its introduction in [86]; we refer to [85, 93] for a presentation of
various aspects of the level set method and its countless applications in scientific computing, see also [64]
about its mathematical aspects and its impact on the theory of moving domains.

In the context of the present article, where the ambient medium is a surface S ⊂ Rd and G ⊂ S is an open
region with boundary Σ := ∂G, an auxiliary “level set” function φ : S → R is introduced, whose negative
subset coincides with G, that is:

(2.4) ∀x ∈ S,

 φ(x) < 0 if x ∈ G,
φ(x) = 0 if x ∈ Σ,
φ(x) > 0 otherwise.

A formal use of the chain rule reveals that if G(t) is a smooth region of S evolving according to a smooth
tangential velocity field V (t, x) over a time period [0, T ], any associated level set function φ(t, x) satisfies the
so-called level set advection equation:

(2.5)
∂φ

∂t
(t, x) + V (t, x) · ∇Sφ(t, x) = 0, t ∈ (0, T ), x ∈ S,

where ∇Sφ := ∇φ− (∇φ · n)n denotes the tangential gradient of the function φ (with respect to the spatial
variable). Alternatively, introducing the component v(t, x) of V (t, x) in the direction of the conormal vector

nΣ(t)(x) = ∇Sφ(t,x)
|∇Sφ(t,x)| to G(t), that is

(2.6) v(t, x) := V (t, x) · nΣ(t)(x),

the equation (2.5) rewrites as a Hamilton-Jacobi equation:

(2.7)
∂φ

∂t
(t, x) + v(t, x)|∇Sφ(t, x)|= 0, , t ∈ (0, T ), x ∈ S.

In our applications, notably those targeting the description of the evolution of physical interfaces, the
velocity field V (t, x) may depend on the moving region G(t) in a very complicated way, often not only
through geometric quantities but also via the solution to partial differential equations involving G(t). Hence,
the velocity field V (t, x) and its normal component v(t, x) in (2.6) depend in an implicit way on G(t), and
thus on φ itself. The only realistic means to address the numerical resolution of (2.5) is a fully explicit
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procedure: the total time interval (0, T ) is decomposed into a series of subintervals of the form (tn, tn+1),
which are “small enough” so that V (t, x) can be frozen in time, that is

∀t ∈ (tn, tn+1), V (t, x) ≈ V (tn, x);

this practice leads to the solution of a series of “true” advection equations of the form (2.5) with time-
independent fields V (tn, ·) computed from the region G(tn) (or the level set function φ(tn, ·)). An alternative
approach consists in freezing only the normal component v(t, x) over each subinterval (tn, tn+1), i.e.

∀t ∈ (tn, tn+1), v(t, x) ≈ v(tn, x),

which leads to the resolution of a series of “true” non linear Hamilton-Jacobi equations of the form (2.7),
with time-independent normal velocities v(tn, ·). This second possibility retains more information from the
original evolution equation (2.5) (namely, the fact that the motion is consistently oriented in the direction
of the normal vector nΣ(t)), but it requires the solution of more complex, non linear evolution equations.

Remark 2.1. In physical applications, the velocity V (t, x) of the region G(t) often makes sense only on
the boundary Σ(t), while the formalism of the level set method requires that it should extended to the whole
surface S, see (2.5) and (2.7). Actually, it is a classical feature of the level set method that under “mild
assumptions”, the 0 level set of the solution to (2.5) or (2.7) does not depend on the choice of such an
extension for V (t, ·) outside Σ(t), see [64]. In practice, however, the choice of a particular extension may
have a great impact on the numerical realization of the motion of G(t), and it may be conducted differently
depending on the application, see Section 4 for several examples.

Remark 2.2. From the mathematical viewpoint, the intuitive definition (2.3) of the evolving region G(t)
makes sense as long as G(t) and V (t, x) are “smooth enough”, which is usually the case when the time t is
“small enough”. Unfortunately, even in the case of a “simple” flow, featuring a “smooth” initial state G(0),
the region G(t) or the velocity V (t, x) will inevitably become singular in finite time [9, 64]. One possibility
to define a generalized motion (2.3) beyond this point rests on the level set method: considering one level set
function φ(0, ·) for the initial region G(0), the evolution equation (2.5) is solved in the generalized sense of
viscosity, see [41], or again [9, 64] about this notion. It turns out that, under reasonable assumptions, (2.5)
has a unique viscosity solution φ(t, ·), from which G(t) is then defined by

G(t) :=
{
x ∈ S, φ(t, x) < 0

}
.

Such theoretical questions have been extensively studied, particularly in situations where V (t, x) is com-
posed of geometric quantities attached to G(t), see for instance [68] about the study of the mean curvature
flow within a surface. Without entering into details, let us mention a few concurrent attempts to the level
set method aimed at generalizing this motion of G(t) past the onset of singularities.

• Parametric methods insist on the description (2.3) of the evolving region G(t), relying on a (tedious)
classification of the various types of possible singularities and on an appropriate selection of what is
the “correct” evolution of G(t) in each case, see for instance [56].

• Varifold solutions were initially proposed in [26] to deal with the problem of domain evolution. These
are measure-theoretic solutions which unfortunately lack uniqueness in their characterization of the
evolving set G(t).

• Phase field methods were introduced in this mathematical context in [27, 32, 46]. They encode the
evolution problem of G(t) into a a scalar “phase field” function, taking values −1 “well inside” G(t)
and 1 “well outside” G(t); the thin transition region between both zones is sought as the solution to
an energy minimization problem, see [52] for a recent overview.

3. Presentation of the numerical strategy

In this section again, G(t) denotes a region of a fixed surface S ⊂ Rd, evolving over a time period (0, T )
according to a tangential velocity field V (t, x), see (2.1). We do not specify the nature of V for the moment,
but we assume that the calculation of V (t, ·) : S → Rd at one particular time is difficult and costly, as it
involves either geometric quantities, or the solution to a boundary value problem attached to G(t).

The proposed numerical strategy for tracking the evolution of G(t) is summarized in Section 3.1. The
pivotal ingredients involved in its implementation are fairly classical when the ambient medium is the 2d
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Figure 2. (a) Level set function φ : S → R for a region G ⊂ S defined at the vertices of
the triangulation of a surface S ⊂ R3 ; (b) High-quality mesh T of S, enclosing a submesh
Tint of G (in dark blue).

or 3d space, but much less so when it is a surface S in R3. Hence, we present them in this context with
somedetails in the next Sections 3.2 to 3.4.

3.1. Outline of the numerical algorithm

The time interval (0, T ) is split into a series of subintervals of the form (tn, tn+1), n = 0, . . . , N − 1, where
tn = n∆t and ∆t is a “small” time step; we indicate with a superscript n the value of a time-dependent
object at tn: for instance, Gn stands for G(tn), V n(·) denotes the velocity field V (tn, ·), etc.

The proposed algorithm for tracking the motion of G(t) is based on two complementary representations
of each intermediate configuration Gn:

• A level set representation. On the one hand, Gn is known as the negative subset of a level set
function φn : S → R, i.e. (2.4) holds. In practice, φn is supplied at the vertices of a triangular mesh
of S, see Fig. 2 (a).

• A meshed representation. On the other hand, Gn is meshed exactly. More precisely, a triangular
mesh T n of S is available, with the following properties:
(i) T n is valid: the intersection between any two different open triangles Ti, Tj ∈ T n is empty;

(ii) T n is conforming: the intersection Ti ∩ Tj between the closures of any two different triangles
Ti, Tj ∈ T n is either a vertex or an edge of T n;

(iii) T n has high quality: the triangles T ∈ T n are close to being equilateral;
(iv) T n is made of two submeshes T nint, T next – that is, collections of subsets of its triangles – associated

to the respective regions Gn and S \Gn.
The requirements (i-iii) are ubiquitous in the scientific computing literature, notably when it comes
to guaranteeing the accuracy of finite element computations on S [39]; they are illustrated on Fig. 3.
The property (iv) is more specific to our meshed representation, see Fig. 2 (b).

The meshed representation of Gn is particularly useful when it comes to calculating some of its geometric
features (e.g. the normal vector field nΣn to Σn, its curvature, etc.), or to solve related “physical” boundary
value problems – operations which are involved in the definition of the velocity field V n(x) or its normal
component vn(x). In turn, the level set representation φn allows for a robust description of the motion of
G(t) between the times tn and tn+1 via the solution of the advection equation (2.5) with velocity field V n,
or that of the Hamilton-Jacobi equation (2.7) with normal velocity vn. Efficient numerical algorithms make
it possible to switch between these representations so that every operation involving Gn can be carried out
within the most appropriate framework.

Our numerical algorithm for the simulation of the motion of G(t) proceeds as follows, see Algorithm 1
for a summarizing sketch. Every iteration n = 0, . . . starts with the datum of the region Gn under meshed
representation: a valid, conforming and high-quality mesh T n of S is available, a submesh T nint of which
is an explicit mesh for the region Gn. By performing geometric or mechanical calculations related to Gn

on this mesh, the velocity field V n : S → Rd is calculated at the vertices of T n. A particular level set
6
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Figure 3. (a) Invalid two-dimensional triangulation, presenting overlapping triangles (in
red); (b) Valid, yet non conforming mesh (the red node lies strictly inside an edge); (c) Valid,
conforming, but ill-shaped mesh (the red triangles are nearly degenerate); (d) High-quality
computational mesh.

representation φn : S → R for Gn is then calculated at the vertices of T n, as the signed distance function
dGn to Gn. The evolution of G(t) between times tn and tn+1 is carried out by solving the evolution equation
(2.5) over the time period (tn, tn+1) with the velocity field V n and the initial datum φn. This yields a level
set representation φn+1 : S → R for Gn+1, at the vertices of the mesh T n. Finally, a meshed representation
for Gn+1 is obtained from these data, with the help of suitable remeshing algorithms; this produces a new
high-quality mesh T n+1 of S is produced, a submesh T n+1

int that explicitly discretizes Gn+1.
The main stages of this method are described in more detail in the next sections: in Section 3.2, we

discuss the numerical computation of the signed distance function to a subregion G of a surface S, which
allows to pass from a meshed description of G to a level set description. In Section 3.3, we describe the
numerical solution of the level set advection equation (2.5) on the surface S, accounting for the update of
G(t) between successive iterations. Finally, in Section 3.4, we outline the remeshing operations involved in
the construction of a meshed representation of a region G ⊂ S from a level set representation φ : S → R.

3.2. Computation of the signed distance function on a surface

Let T be a triangulation of a surface S ⊂ Rd, and let Tint denote a submes for a region G ⊂ S; we wish to
generate a level set function φ : S → R for G at the vertices of T , i.e. a function φ satisfying (2.4).

Although many choices are possible, stability issues in the numerical practice of the level set method raise
the need to select one which presents “neither too steep, nor too flat” variations, see e.g. [35]. To comply
with this requirement, and due to its desirable properties in connection with the geometry of G (see e.g.
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Algorithm 1: Body-fitted tracking of the evolution of a region G(t) ⊂ S.

Input: Mesh T 0 of S featuring an explicit discretization of the initial region G0.
for n = 0, . . . , N − 1 do

(1) Compute the velocity field V n(x) at the vertices x of T n with the help of the meshes T nint, T next of

Gn and S \Gn, respectively.
(2) Compute the signed distance function dGn to Gn at the vertices of the mesh T n of S.
(3) Solve the advection equation{

∂φ
∂t (t, x) + V n(x) · ∇Sφ(t, x) = 0 for (t, x) ∈ (0,∆t)× S,

φ(0, x) = dGn(x) for x ∈ S,
on the total mesh T n of S. A new level set function φn+1 = φ(∆t, ·) is obtained for

Gn+1 =
{
x ∈ S, φn+1(x) < 0

}
.

(4) From the datum of φn+1 at the vertices of T n, create a new, high-quality mesh T n+1 of S made of

two submeshes T n+1
int and T n+1

ext for Gn+1 and S \Gn+1, respectively.

end

Output: Mesh T N of S featuring an explicit discretization T Nint of GN .

[47]), we calculate the signed distance function dG to G, defined by

(3.1) ∀x ∈ S, dG(x) =


−dS(x,Σ) if x ∈ G,

0 if x ∈ Σ,
dS(x,Σ) if x ∈ S \G,

where the distance dS(x,Σ) = inf
p∈Σ

dS(x, p) from a point x ∈ S to Σ is defined from the geodesic distance

∀x, y ∈ S, dS(x, y) = inf

{∫ 1

0

|γ′(u)| du, γ ∈ C1([0, 1], S), γ(0) = x, γ(1) = y

}
.

Multiple numerical algorithms allow to calculate the signed distance function to a subdomain of R2 or
R3: the fast marching method [92], the fast sweeping method [108], among others. Much fewer allow to deal
with the case where the ambient medium is a surface of Rd equipped with a surface triangulation, as is our
concern in the present work; in our implementation, we rely on the non trivial extension of the fast marching
algorithm proposed in [71].

3.3. Resolution of the level set advection equation on the surface S

In this section, we discuss the numerical realization of the evolution of G(t) over a generic time period
(0, Tg) (which stands for any of the intervals (tn, tn+1) featured in Algorithm 1) according to a stationary
tangential vector field V (x) (accounting for V n(x)), or normal velocity v(x), starting from an initial datum
φ0 (representing φn). We consider the solution of the level set evolution equation under advection form:

(3.2)

{
∂φ

∂t
(t, x) + V (x) · ∇Sφ(t, x) = 0, for t ∈ (0, Tg), x ∈ S,

φ(0, x) = φ0(x), for x ∈ S,
or that of its Hamilton-Jacobi counterpart:

(3.3)

{
∂φ

∂t
(t, x) + v(x) |∇Sφ(t, x)| = 0, for t ∈ (0, Tg), x ∈ S,

φ(0, x) = φ0(x), for x ∈ S.
This topic is quite classical in the literature when the ambient medium is the Euclidean space R2 or

R3. Efficient numerical schemes are available if the latter is discretized with a Cartesian grid, see notably
[94, 96, 69] about (weighted) Essentially Non Oscillatory finite difference methods, and [107] for a survey.
In the case when the computational support is a simplicial mesh, we refer to [1, 20, 53, 84] for adapted
numerical schemes for the Hamilton-Jacobi equation (3.3), and more recently to [13, 49] about discontinuous
Galerkin methods for the advection equation (3.2).
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By contrast, the resolution of (3.2) or (3.3) has been seldom considered in the present context where the
ambient medium is a surface S in R3. The aforementioned articles [22, 65, 74, 89, 90], which are based on
a level set or closest point description of S, rely on the construction of reformulations of the equations (3.2)
or (3.3) on the whole ambient space R3. In [54], a finite element method on a triangulation of S is proposed
for the conservative counterpart of the advection equation (3.2).

In our implementation, following [28], we solve the advection equation (3.2) thanks to the method of
characteristics [87], a procedure which can be understood as a semi-Lagrangian scheme for the original
evolution equation (2.5), see [97]. This method relies on the explicit expression of the solution to (3.2) in
terms of the characteristic curves t 7→ χ(t, t0, x) of the velocity field V . Like in Section 2, for t0 ∈ (0, Tg)
and x ∈ S, χ(·, t0, x) is characterized by the following ordinary differential equation:

(3.4)

{
dχ
dt (t, t0, x) = V (t, χ(t, t0, x)), for t ∈ (0, Tg),

χ(t0, t0, x) = x.

The solution to (3.2) then reads:

(3.5) φ(t, x) = φ0(χ(0, t, x)), t ∈ [0, Tg], x ∈ S,
that is, the value of φ at time t and point x is the value taken by the initial function φ0 at the position
initially occupied by the particle lying in x at time t.

We leverage this property by discretizing explicitly the formula (3.5). In our implementation, the surface
S is equipped with a triangulation T ; the velocity field V (x) and the initial datum φ0 are Lagrange P1 finite
element functions on T : they are defined by their values at the vertices of T , and their evaluation at other
points on S is achieved by piecewise linear interpolation. For every vertex x of T , we solve the ordinary
differential equation (3.4) for the position χ(0, Tg, x) thanks to a classical Euler scheme, or by a more involved
Runge-Kutta strategy. This task brings into play (yet another) subdivision of the time interval (0, Tg); it
relies on efficient data structures for locating the neighbors of the triangles in the mesh T , and some care is
needed when realizing linear combinations of the various velocity vectors attached to different points x ∈ S,
which belong to different tangent planes. We refer to [81] for the implementation of Runge-Kutta methods
for the solution of ordinary differential equations on surfaces.

Remark 3.1. In practical situations, some of the characteristic lines u 7→ χ(u, Tg, x) may not be defined
over the whole interval [0, Tg]. This happens when S is open and V (x) · nS(x) < 0 at some points x ∈ ∂S,
where nS(x) ∈ TxS is the conormal vector to the surface S. Physically, the velocity field enters the surface
at such points, and the equation (3.2) has to be complemented with adequate boundary conditions at such
“entrant” regions of the boundary ∂S. When this situation occurs, we simply linearly interpolate the values
of V and φ outside the surface ∂S from their values on ∂S to complete the integration of (3.4) with consistent
values.

3.4. Meshing of the negative subdomain of a level set function

Let T be a triangulation of a surface S in R3, and let φ : S → R be a level set function for a region G ⊂ S,
which is supplied by its values at the vertices of T . We aim to construct a new, high-quality computational

mesh T̃ of S which comprises two submesh T̃int and T̃ext for the regions G and S \G. This operation can be
achieved by various strategies, see e.g. [62, 63], and we adopt here that of our previous work [42].

The latter proceeds in two steps:

(1) The triangles T ∈ T crossing the 0 level set Σ = ∂G of φ are identified from the values of this function
at the vertices of T , and Σ is discretized explicitly into T . This pretty simple operation is based on
the so-called marching tetrahedra algorithm [51] – a variant of the famous marching cubes method
[73]: pre-defined patterns are used to split each triangle T ∈ T into a valid, conforming configuration
where the line segments Σ ∩ T appears explicitly. This step results in a surface triangulation Ttemp

of S featuring explicit submeshes Ttemp,int and Ttemp,ext of G and S \G. Unfortunately, Ttemp is ill-
shaped: it inevitably features thin, nearly flat elements, which makes it unsuitable for the practice
of accurate geometric and finite element calculations, see again [39] about this classical issue.

(2) The intermediate mesh Ttemp is iteratively modified to improve the quality of its elements, i.e. to

make them close to equilateral, insofar as possible. A new, high-quality mesh T̃ of S is obtained,
which provides explicit discretizations of G and S \G.
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Figure 4. (a) Values of a level set function φ : S → R for a region G ⊂ S; (b) Ill-
shaped mesh Ttemp obtained after explicit discretization of G into T ; (c) High-quality mesh

T̃ obtained after remeshing Ttemp.

The latter step is by far the most complicated of the process, and it deserves a few comments. It starts
with a series of geometric computations, such as the normal vector n to S, the conormal vector nΣ to Σ and
the deviation of their values at neighboring vertices of T . This allows to identify the suitable local size of
the elements of the mesh ensuring an accurate approximation of S and G.

Then, guided by this information, four local remeshing operations are intertwined, provided they improve
the global quality of the mesh, see e.g. [61].

• Edge split. An edge pq in T which is “too long” is split by introducing a new pointm and reconnecting
the triangles sharing pq as an edge accordingly, see Fig. 5 (a).

• Edge collapse. The endpoints of an edge pq which is “too short” are merged, see Fig. 5 (b).
• Edge swap. The edge pq between two adjacent triangle pqr and pqs is suppressed and the alternate

configuration, featuring the edge rs and the triangles rsp and rsq, is retained, see Fig. 5 (c).
• Vertex relocation. A vertex p of T is slightly moved on the continuous surface, see Fig. 5 (d).

Importantly, this remeshing stage leaves room for an adaptation of the computational mesh T with respect
to geometric quantities of S or G, or to a priori or a posteriori error estimates attached to the resolution of
partial differential equations on surfaces.

Remark 3.2. In some applications, such as those of Section 4.4, it happens that the considered surface
S is the boundary ∂Ω of a three-dimensional domain Ω equipped with a tetrahedral mesh K, and that the
considered surface triangulation T is the boundary part of K. In such a situation, the above operations

can be applied to the whole tetrahedral mesh K, producing a new mesh K̃ of Ω, whose surface part T̃ is a

triangulation of ∂Ω enclosing submeshes T̃int and T̃ext of G and S \G, respectively.
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<latexit sha1_base64="QwuOKgOaXbgeiHNUYT6ckfJtWAo=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LBbBU0jEr2PBi8cK9gPaUDbbTbt0swm7E6GE/ggvHhTx6u/x5r9x2+agrQ8GHu/NMDMvTKUw6HnfTmltfWNzq7xd2dnd2z+oHh61TJJpxpsskYnuhNRwKRRvokDJO6nmNA4lb4fju5nffuLaiEQ94iTlQUyHSkSCUbRSuxdmUnLsV2ue681BVolfkBoUaPSrX71BwrKYK2SSGtP1vRSDnGoUTPJppZcZnlI2pkPetVTRmJsgn587JWdWGZAo0bYUkrn6eyKnsTGTOLSdMcWRWfZm4n9eN8PoNsiFSjPkii0WRZkkmJDZ72QgNGcoJ5ZQpoW9lbAR1ZShTahiQ/CXX14lrQvXv3avHi5rdbeIowwncArn4MMN1OEeGtAEBmN4hld4c1LnxXl3PhatJaeYOYY/cD5/AHVNj5o=</latexit>•

<latexit sha1_base64="QwuOKgOaXbgeiHNUYT6ckfJtWAo=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LBbBU0jEr2PBi8cK9gPaUDbbTbt0swm7E6GE/ggvHhTx6u/x5r9x2+agrQ8GHu/NMDMvTKUw6HnfTmltfWNzq7xd2dnd2z+oHh61TJJpxpsskYnuhNRwKRRvokDJO6nmNA4lb4fju5nffuLaiEQ94iTlQUyHSkSCUbRSuxdmUnLsV2ue681BVolfkBoUaPSrX71BwrKYK2SSGtP1vRSDnGoUTPJppZcZnlI2pkPetVTRmJsgn587JWdWGZAo0bYUkrn6eyKnsTGTOLSdMcWRWfZm4n9eN8PoNsiFSjPkii0WRZkkmJDZ72QgNGcoJ5ZQpoW9lbAR1ZShTahiQ/CXX14lrQvXv3avHi5rdbeIowwncArn4MMN1OEeGtAEBmN4hld4c1LnxXl3PhatJaeYOYY/cD5/AHVNj5o=</latexit>•
<latexit sha1_base64="7JtGreiBllbyb4k/it0D6gC1/CY=">AAAB6HicbVDLSgNBEOyNrxhfUY9eBoPgadkVX8eAF48JmAckS5id9CZjZmeXmVkhhHyBFw+KePWTvPk3TpI9aGJBQ1HVTXdXmAqujed9O4W19Y3NreJ2aWd3b/+gfHjU1EmmGDZYIhLVDqlGwSU2DDcC26lCGocCW+Hobua3nlBpnsgHM04xiOlA8ogzaqxUT3vliud6c5BV4uekAjlqvfJXt5+wLEZpmKBad3wvNcGEKsOZwGmpm2lMKRvRAXYslTRGHUzmh07JmVX6JEqULWnIXP09MaGx1uM4tJ0xNUO97M3E/7xOZqLbYMJlmhmUbLEoygQxCZl9TfpcITNibAllittbCRtSRZmx2ZRsCP7yy6ukeeH61+5V/bJSdfM4inACp3AOPtxAFe6hBg1ggPAMr/DmPDovzrvzsWgtOPnMMfyB8/kD11WM6g==</latexit>

p

<latexit sha1_base64="huJ7eeTwxbuWk+rvtFVnL5gyWUo=">AAAB6HicbVDLSgNBEOz1GeMr6tHLYBA8Lbvi6xjw4jEB84BkCbOT3mTM7Ow6MyuEkC/w4kERr36SN//GSbIHTSxoKKq66e4KU8G18bxvZ2V1bX1js7BV3N7Z3dsvHRw2dJIphnWWiES1QqpRcIl1w43AVqqQxqHAZji8nfrNJ1SaJ/LejFIMYtqXPOKMGivVHrulsud6M5Bl4uekDDmq3dJXp5ewLEZpmKBat30vNcGYKsOZwEmxk2lMKRvSPrYtlTRGHYxnh07IqVV6JEqULWnITP09Maax1qM4tJ0xNQO96E3F/7x2ZqKbYMxlmhmUbL4oygQxCZl+TXpcITNiZAllittbCRtQRZmx2RRtCP7iy8ukce76V+5l7aJccfM4CnAMJ3AGPlxDBe6gCnVggPAMr/DmPDgvzrvzMW9dcfKZI/gD5/MH2NmM6w==</latexit>

q

<latexit sha1_base64="35NOao54LO4HF5rmRaO4FLdAHt0=">AAAB6HicbVDLSgNBEOyNrxhfUY9eBoPgadkVX8eAF48JmAckS5id9CZjZmeXmVkhhHyBFw+KePWTvPk3TpI9aGJBQ1HVTXdXmAqujed9O4W19Y3NreJ2aWd3b/+gfHjU1EmmGDZYIhLVDqlGwSU2DDcC26lCGocCW+Hobua3nlBpnsgHM04xiOlA8ogzaqxUV71yxXO9Ocgq8XNSgRy1Xvmr209YFqM0TFCtO76XmmBCleFM4LTUzTSmlI3oADuWShqjDibzQ6fkzCp9EiXKljRkrv6emNBY63Ec2s6YmqFe9mbif14nM9FtMOEyzQxKtlgUZYKYhMy+Jn2ukBkxtoQyxe2thA2poszYbEo2BH/55VXSvHD9a/eqflmpunkcRTiBUzgHH26gCvdQgwYwQHiGV3hzHp0X5935WLQWnHzmGP7A+fwB2l2M7A==</latexit>

r

<latexit sha1_base64="yr2yuXv6inEk/ityTYqyWFDMY9Y=">AAAB63icbVDLSsNAFL2pr1pfVZduBotQNyERX8uCG5cV7APaUCbTSTt0ZhJmJkIJ/QU3LhRx6w+582+ctFlo64ELh3Pu5d57woQzbTzv2ymtrW9sbpW3Kzu7e/sH1cOjto5TRWiLxDxW3RBrypmkLcMMp91EUSxCTjvh5C73O09UaRbLRzNNaCDwSLKIEWxySdaT80G15rneHGiV+AWpQYHmoPrVH8YkFVQawrHWPd9LTJBhZRjhdFbpp5ommEzwiPYslVhQHWTzW2fozCpDFMXKljRorv6eyLDQeipC2ymwGetlLxf/83qpiW6DjMkkNVSSxaIo5cjEKH8cDZmixPCpJZgoZm9FZIwVJsbGU7Eh+Msvr5L2hetfu1cPl7WGW8RRhhM4hTr4cAMNuIcmtIDAGJ7hFd4c4bw4787HorXkFDPH8AfO5w9pq43H</latexit>

n(p)

<latexit sha1_base64="M/HrPZR4ZERL2v7ngce5eMre2nk=">AAAB63icbVDLSsNAFL3xWeur6tLNYBHqJiTia1lw47KCfUAbymQ6aYfOTOLMRCihv+DGhSJu/SF3/o2TNgttPXDhcM693HtPmHCmjed9Oyura+sbm6Wt8vbO7t5+5eCwpeNUEdokMY9VJ8SaciZp0zDDaSdRFIuQ03Y4vs399hNVmsXywUwSGgg8lCxiBJtckrXHs36l6rneDGiZ+AWpQoFGv/LVG8QkFVQawrHWXd9LTJBhZRjhdFrupZommIzxkHYtlVhQHWSzW6fo1CoDFMXKljRopv6eyLDQeiJC2ymwGelFLxf/87qpiW6CjMkkNVSS+aIo5cjEKH8cDZiixPCJJZgoZm9FZIQVJsbGU7Yh+IsvL5PWuetfuZf3F9W6W8RRgmM4gRr4cA11uIMGNIHACJ7hFd4c4bw4787HvHXFKWaO4A+czx9rMI3I</latexit>

n(q)

<latexit sha1_base64="H8myLkzoNETOjz7IPMNkhV2SB10=">AAAB63icbVDLSsNAFL2pr1pfVZduBotQNyERX8uCG5cV7APaUCbTSTt0ZhJmJkIJ/QU3LhRx6w+582+ctFlo64ELh3Pu5d57woQzbTzv2ymtrW9sbpW3Kzu7e/sH1cOjto5TRWiLxDxW3RBrypmkLcMMp91EUSxCTjvh5C73O09UaRbLRzNNaCDwSLKIEWxySdbV+aBa81xvDrRK/ILUoEBzUP3qD2OSCioN4Vjrnu8lJsiwMoxwOqv0U00TTCZ4RHuWSiyoDrL5rTN0ZpUhimJlSxo0V39PZFhoPRWh7RTYjPWyl4v/eb3URLdBxmSSGirJYlGUcmRilD+OhkxRYvjUEkwUs7ciMsYKE2PjqdgQ/OWXV0n7wvWv3auHy1rDLeIowwmcQh18uIEG3EMTWkBgDM/wCm+OcF6cd+dj0Vpyiplj+APn8wdstY3J</latexit>

n(r)

<latexit sha1_base64="QwuOKgOaXbgeiHNUYT6ckfJtWAo=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LBbBU0jEr2PBi8cK9gPaUDbbTbt0swm7E6GE/ggvHhTx6u/x5r9x2+agrQ8GHu/NMDMvTKUw6HnfTmltfWNzq7xd2dnd2z+oHh61TJJpxpsskYnuhNRwKRRvokDJO6nmNA4lb4fju5nffuLaiEQ94iTlQUyHSkSCUbRSuxdmUnLsV2ue681BVolfkBoUaPSrX71BwrKYK2SSGtP1vRSDnGoUTPJppZcZnlI2pkPetVTRmJsgn587JWdWGZAo0bYUkrn6eyKnsTGTOLSdMcWRWfZm4n9eN8PoNsiFSjPkii0WRZkkmJDZ72QgNGcoJ5ZQpoW9lbAR1ZShTahiQ/CXX14lrQvXv3avHi5rdbeIowwncArn4MMN1OEeGtAEBmN4hld4c1LnxXl3PhatJaeYOYY/cD5/AHVNj5o=</latexit>•

<latexit sha1_base64="yWiF0TaPsZikRVmrGMJO8CRmT4o=">AAAB7nicdVDLSgNBEOz1GeMr6tHLYBA8LbuJRr0FvHiMYB6QLGF20psMmZ1dZmaFEPIRXjwo4tXv8ebfOHkIUbSgoajqprsrTAXXxvM+nZXVtfWNzdxWfntnd2+/cHDY0EmmGNZZIhLVCqlGwSXWDTcCW6lCGocCm+HwZuo3H1Bpnsh7M0oxiGlf8ogzaqzU7ISZEGi6haLvejMQb4mUS+XKNfm2irBArVv46PQSlsUoDRNU67bvpSYYU2U4EzjJdzKNKWVD2se2pZLGqIPx7NwJObVKj0SJsiUNmanLE2Maaz2KQ9sZUzPQv72p+JfXzkx0FYy5TDODks0XRZkgJiHT30mPK2RGjCyhTHF7K2EDqigzNqH8cgj/k0bJ9Svuxd15seou4sjBMZzAGfhwCVW4hRrUgcEQHuEZXpzUeXJenbd564qzmDmCH3DevwCXLI+y</latexit>•
<latexit sha1_base64="l67j8P3XiV1P3pwg3r0K4PS/3AA=">AAAB6HicdVDLSgNBEOyNrxhfUY9eBoPgadmNGvUW8OIxAfOAZAmzk9lkzMzsMjMrhCVf4MWDIl79JG/+jZOHEEULGoqqbrq7woQzbTzv08mtrK6tb+Q3C1vbO7t7xf2Dpo5TRWiDxDxW7RBrypmkDcMMp+1EUSxCTlvh6Gbqtx6o0iyWd2ac0EDggWQRI9hYqS56xZLvejMgb4mclc8q1+jbKsECtV7xo9uPSSqoNIRjrTu+l5ggw8owwumk0E01TTAZ4QHtWCqxoDrIZodO0IlV+iiKlS1p0Exdnsiw0HosQtspsBnq395U/MvrpCa6CjImk9RQSeaLopQjE6Pp16jPFCWGjy3BRDF7KyJDrDAxNpvCcgj/k2bZ9SvuRf28VHUXceThCI7hFHy4hCrcQg0aQIDCIzzDi3PvPDmvztu8NecsZg7hB5z3L/SojP8=</latexit>

m

a

<latexit sha1_base64="QwuOKgOaXbgeiHNUYT6ckfJtWAo=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LBbBU0jEr2PBi8cK9gPaUDbbTbt0swm7E6GE/ggvHhTx6u/x5r9x2+agrQ8GHu/NMDMvTKUw6HnfTmltfWNzq7xd2dnd2z+oHh61TJJpxpsskYnuhNRwKRRvokDJO6nmNA4lb4fju5nffuLaiEQ94iTlQUyHSkSCUbRSuxdmUnLsV2ue681BVolfkBoUaPSrX71BwrKYK2SSGtP1vRSDnGoUTPJppZcZnlI2pkPetVTRmJsgn587JWdWGZAo0bYUkrn6eyKnsTGTOLSdMcWRWfZm4n9eN8PoNsiFSjPkii0WRZkkmJDZ72QgNGcoJ5ZQpoW9lbAR1ZShTahiQ/CXX14lrQvXv3avHi5rdbeIowwncArn4MMN1OEeGtAEBmN4hld4c1LnxXl3PhatJaeYOYY/cD5/AHVNj5o=</latexit>•

<latexit sha1_base64="QwuOKgOaXbgeiHNUYT6ckfJtWAo=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LBbBU0jEr2PBi8cK9gPaUDbbTbt0swm7E6GE/ggvHhTx6u/x5r9x2+agrQ8GHu/NMDMvTKUw6HnfTmltfWNzq7xd2dnd2z+oHh61TJJpxpsskYnuhNRwKRRvokDJO6nmNA4lb4fju5nffuLaiEQ94iTlQUyHSkSCUbRSuxdmUnLsV2ue681BVolfkBoUaPSrX71BwrKYK2SSGtP1vRSDnGoUTPJppZcZnlI2pkPetVTRmJsgn587JWdWGZAo0bYUkrn6eyKnsTGTOLSdMcWRWfZm4n9eN8PoNsiFSjPkii0WRZkkmJDZ72QgNGcoJ5ZQpoW9lbAR1ZShTahiQ/CXX14lrQvXv3avHi5rdbeIowwncArn4MMN1OEeGtAEBmN4hld4c1LnxXl3PhatJaeYOYY/cD5/AHVNj5o=</latexit>•
<latexit sha1_base64="7JtGreiBllbyb4k/it0D6gC1/CY=">AAAB6HicbVDLSgNBEOyNrxhfUY9eBoPgadkVX8eAF48JmAckS5id9CZjZmeXmVkhhHyBFw+KePWTvPk3TpI9aGJBQ1HVTXdXmAqujed9O4W19Y3NreJ2aWd3b/+gfHjU1EmmGDZYIhLVDqlGwSU2DDcC26lCGocCW+Hobua3nlBpnsgHM04xiOlA8ogzaqxUT3vliud6c5BV4uekAjlqvfJXt5+wLEZpmKBad3wvNcGEKsOZwGmpm2lMKRvRAXYslTRGHUzmh07JmVX6JEqULWnIXP09MaGx1uM4tJ0xNUO97M3E/7xOZqLbYMJlmhmUbLEoygQxCZl9TfpcITNibAllittbCRtSRZmx2ZRsCP7yy6ukeeH61+5V/bJSdfM4inACp3AOPtxAFe6hBg1ggPAMr/DmPDovzrvzsWgtOPnMMfyB8/kD11WM6g==</latexit>

p

<latexit sha1_base64="huJ7eeTwxbuWk+rvtFVnL5gyWUo=">AAAB6HicbVDLSgNBEOz1GeMr6tHLYBA8Lbvi6xjw4jEB84BkCbOT3mTM7Ow6MyuEkC/w4kERr36SN//GSbIHTSxoKKq66e4KU8G18bxvZ2V1bX1js7BV3N7Z3dsvHRw2dJIphnWWiES1QqpRcIl1w43AVqqQxqHAZji8nfrNJ1SaJ/LejFIMYtqXPOKMGivVHrulsud6M5Bl4uekDDmq3dJXp5ewLEZpmKBat30vNcGYKsOZwEmxk2lMKRvSPrYtlTRGHYxnh07IqVV6JEqULWnITP09Maax1qM4tJ0xNQO96E3F/7x2ZqKbYMxlmhmUbL4oygQxCZl+TXpcITNiZAllittbCRtQRZmx2RRtCP7iy8ukce76V+5l7aJccfM4CnAMJ3AGPlxDBe6gCnVggPAMr/DmPDgvzrvzMW9dcfKZI/gD5/MH2NmM6w==</latexit>

q

<latexit sha1_base64="35NOao54LO4HF5rmRaO4FLdAHt0=">AAAB6HicbVDLSgNBEOyNrxhfUY9eBoPgadkVX8eAF48JmAckS5id9CZjZmeXmVkhhHyBFw+KePWTvPk3TpI9aGJBQ1HVTXdXmAqujed9O4W19Y3NreJ2aWd3b/+gfHjU1EmmGDZYIhLVDqlGwSU2DDcC26lCGocCW+Hobua3nlBpnsgHM04xiOlA8ogzaqxUV71yxXO9Ocgq8XNSgRy1Xvmr209YFqM0TFCtO76XmmBCleFM4LTUzTSmlI3oADuWShqjDibzQ6fkzCp9EiXKljRkrv6emNBY63Ec2s6YmqFe9mbif14nM9FtMOEyzQxKtlgUZYKYhMy+Jn2ukBkxtoQyxe2thA2poszYbEo2BH/55VXSvHD9a/eqflmpunkcRTiBUzgHH26gCvdQgwYwQHiGV3hzHp0X5935WLQWnHzmGP7A+fwB2l2M7A==</latexit>

r

<latexit sha1_base64="QwuOKgOaXbgeiHNUYT6ckfJtWAo=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LBbBU0jEr2PBi8cK9gPaUDbbTbt0swm7E6GE/ggvHhTx6u/x5r9x2+agrQ8GHu/NMDMvTKUw6HnfTmltfWNzq7xd2dnd2z+oHh61TJJpxpsskYnuhNRwKRRvokDJO6nmNA4lb4fju5nffuLaiEQ94iTlQUyHSkSCUbRSuxdmUnLsV2ue681BVolfkBoUaPSrX71BwrKYK2SSGtP1vRSDnGoUTPJppZcZnlI2pkPetVTRmJsgn587JWdWGZAo0bYUkrn6eyKnsTGTOLSdMcWRWfZm4n9eN8PoNsiFSjPkii0WRZkkmJDZ72QgNGcoJ5ZQpoW9lbAR1ZShTahiQ/CXX14lrQvXv3avHi5rdbeIowwncArn4MMN1OEeGtAEBmN4hld4c1LnxXl3PhatJaeYOYY/cD5/AHVNj5o=</latexit>•

<latexit sha1_base64="yWiF0TaPsZikRVmrGMJO8CRmT4o=">AAAB7nicdVDLSgNBEOz1GeMr6tHLYBA8LbuJRr0FvHiMYB6QLGF20psMmZ1dZmaFEPIRXjwo4tXv8ebfOHkIUbSgoajqprsrTAXXxvM+nZXVtfWNzdxWfntnd2+/cHDY0EmmGNZZIhLVCqlGwSXWDTcCW6lCGocCm+HwZuo3H1Bpnsh7M0oxiGlf8ogzaqzU7ISZEGi6haLvejMQb4mUS+XKNfm2irBArVv46PQSlsUoDRNU67bvpSYYU2U4EzjJdzKNKWVD2se2pZLGqIPx7NwJObVKj0SJsiUNmanLE2Maaz2KQ9sZUzPQv72p+JfXzkx0FYy5TDODks0XRZkgJiHT30mPK2RGjCyhTHF7K2EDqigzNqH8cgj/k0bJ9Svuxd15seou4sjBMZzAGfhwCVW4hRrUgcEQHuEZXpzUeXJenbd564qzmDmCH3DevwCXLI+y</latexit>•
<latexit sha1_base64="l67j8P3XiV1P3pwg3r0K4PS/3AA=">AAAB6HicdVDLSgNBEOyNrxhfUY9eBoPgadmNGvUW8OIxAfOAZAmzk9lkzMzsMjMrhCVf4MWDIl79JG/+jZOHEEULGoqqbrq7woQzbTzv08mtrK6tb+Q3C1vbO7t7xf2Dpo5TRWiDxDxW7RBrypmkDcMMp+1EUSxCTlvh6Gbqtx6o0iyWd2ac0EDggWQRI9hYqS56xZLvejMgb4mclc8q1+jbKsECtV7xo9uPSSqoNIRjrTu+l5ggw8owwumk0E01TTAZ4QHtWCqxoDrIZodO0IlV+iiKlS1p0Exdnsiw0HosQtspsBnq395U/MvrpCa6CjImk9RQSeaLopQjE6Pp16jPFCWGjy3BRDF7KyJDrDAxNpvCcgj/k2bZ9SvuRf28VHUXceThCI7hFHy4hCrcQg0aQIDCIzzDi3PvPDmvztu8NecsZg7hB5z3L/SojP8=</latexit>

m

<latexit sha1_base64="QwuOKgOaXbgeiHNUYT6ckfJtWAo=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LBbBU0jEr2PBi8cK9gPaUDbbTbt0swm7E6GE/ggvHhTx6u/x5r9x2+agrQ8GHu/NMDMvTKUw6HnfTmltfWNzq7xd2dnd2z+oHh61TJJpxpsskYnuhNRwKRRvokDJO6nmNA4lb4fju5nffuLaiEQ94iTlQUyHSkSCUbRSuxdmUnLsV2ue681BVolfkBoUaPSrX71BwrKYK2SSGtP1vRSDnGoUTPJppZcZnlI2pkPetVTRmJsgn587JWdWGZAo0bYUkrn6eyKnsTGTOLSdMcWRWfZm4n9eN8PoNsiFSjPkii0WRZkkmJDZ72QgNGcoJ5ZQpoW9lbAR1ZShTahiQ/CXX14lrQvXv3avHi5rdbeIowwncArn4MMN1OEeGtAEBmN4hld4c1LnxXl3PhatJaeYOYY/cD5/AHVNj5o=</latexit>• <latexit sha1_base64="0I61xXp+p64mc5WUmFnVTb/me4I=">AAAB7nicdVDJSgNBEK1xjXGLevTSGARPYUbcjgEvHiOYBZIh9HRqkiY9PUN3jRCGfIQXD4p49Xu8+TdOFiFuDwoe71VRVS9IlLTkuh/O0vLK6tp6YaO4ubW9s1va22/YODUC6yJWsWkF3KKSGuskSWErMcijQGEzGF5P/OY9GitjfUejBP2I97UMpeCUS81OkCqF1C2VvYo7BXN/kS+rDHPUuqX3Ti8WaYSahOLWtj03IT/jhqRQOC52UosJF0Pex3ZONY/Q+tn03DE7zpUeC2OTlyY2VRcnMh5ZO4qCvDPiNLA/vYn4l9dOKbzyM6mTlFCL2aIwVYxiNvmd9aRBQWqUEy6MzG9lYsANF5QnVFwM4X/SOK14F5Xz27NytTKPowCHcAQn4MElVOEGalAHAUN4gCd4dhLn0XlxXmetS8585gC+wXn7BHbNj5s=</latexit>•
<latexit sha1_base64="l8VTAi7WFUEKwaWUfDLQDkhy+ag=">AAAB6HicdVDJSgNBEK2JW4xb1KOXxiB4GmbE7Rjw4jEBs0AyhJ5OTdKmp2fo7hHCkC/w4kERr36SN//GziK4Pih4vFdFVb0wFVwbz3t3CkvLK6trxfXSxubW9k55d6+pk0wxbLBEJKodUo2CS2wYbgS2U4U0DgW2wtHV1G/dodI8kTdmnGIQ04HkEWfUWKme9soV3/VmIN4v8mlVYIFar/zW7Scsi1EaJqjWHd9LTZBTZTgTOCl1M40pZSM6wI6lksaog3x26IQcWaVPokTZkobM1K8TOY21Hseh7YypGeqf3lT8y+tkJroMci7TzKBk80VRJohJyPRr0ucKmRFjSyhT3N5K2JAqyozNpvQ1hP9J88T1z92z+mml6i7iKMIBHMIx+HABVbiGGjSAAcI9PMKTc+s8OM/Oy7y14Cxm9uEbnNcP2NWM6w==</latexit>

p
<latexit sha1_base64="huJ7eeTwxbuWk+rvtFVnL5gyWUo=">AAAB6HicbVDLSgNBEOz1GeMr6tHLYBA8Lbvi6xjw4jEB84BkCbOT3mTM7Ow6MyuEkC/w4kERr36SN//GSbIHTSxoKKq66e4KU8G18bxvZ2V1bX1js7BV3N7Z3dsvHRw2dJIphnWWiES1QqpRcIl1w43AVqqQxqHAZji8nfrNJ1SaJ/LejFIMYtqXPOKMGivVHrulsud6M5Bl4uekDDmq3dJXp5ewLEZpmKBat30vNcGYKsOZwEmxk2lMKRvSPrYtlTRGHYxnh07IqVV6JEqULWnITP09Maax1qM4tJ0xNQO96E3F/7x2ZqKbYMxlmhmUbL4oygQxCZl+TXpcITNiZAllittbCRtQRZmx2RRtCP7iy8ukce76V+5l7aJccfM4CnAMJ3AGPlxDBe6gCnVggPAMr/DmPDgvzrvzMW9dcfKZI/gD5/MH2NmM6w==</latexit>

q

b

<latexit sha1_base64="QwuOKgOaXbgeiHNUYT6ckfJtWAo=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LBbBU0jEr2PBi8cK9gPaUDbbTbt0swm7E6GE/ggvHhTx6u/x5r9x2+agrQ8GHu/NMDMvTKUw6HnfTmltfWNzq7xd2dnd2z+oHh61TJJpxpsskYnuhNRwKRRvokDJO6nmNA4lb4fju5nffuLaiEQ94iTlQUyHSkSCUbRSuxdmUnLsV2ue681BVolfkBoUaPSrX71BwrKYK2SSGtP1vRSDnGoUTPJppZcZnlI2pkPetVTRmJsgn587JWdWGZAo0bYUkrn6eyKnsTGTOLSdMcWRWfZm4n9eN8PoNsiFSjPkii0WRZkkmJDZ72QgNGcoJ5ZQpoW9lbAR1ZShTahiQ/CXX14lrQvXv3avHi5rdbeIowwncArn4MMN1OEeGtAEBmN4hld4c1LnxXl3PhatJaeYOYY/cD5/AHVNj5o=</latexit>•<latexit sha1_base64="huJ7eeTwxbuWk+rvtFVnL5gyWUo=">AAAB6HicbVDLSgNBEOz1GeMr6tHLYBA8Lbvi6xjw4jEB84BkCbOT3mTM7Ow6MyuEkC/w4kERr36SN//GSbIHTSxoKKq66e4KU8G18bxvZ2V1bX1js7BV3N7Z3dsvHRw2dJIphnWWiES1QqpRcIl1w43AVqqQxqHAZji8nfrNJ1SaJ/LejFIMYtqXPOKMGivVHrulsud6M5Bl4uekDDmq3dJXp5ewLEZpmKBat30vNcGYKsOZwEmxk2lMKRvSPrYtlTRGHYxnh07IqVV6JEqULWnITP09Maax1qM4tJ0xNQO96E3F/7x2ZqKbYMxlmhmUbL4oygQxCZl+TXpcITNiZAllittbCRtQRZmx2RRtCP7iy8ukce76V+5l7aJccfM4CnAMJ3AGPlxDBe6gCnVggPAMr/DmPDgvzrvzMW9dcfKZI/gD5/MH2NmM6w==</latexit>

q

<latexit sha1_base64="XAQDVUrwCEzRV0kApzCPY4ywu1w=">AAAB7nicdZDLSgMxFIYz9VbrrerSTbAIroZMrbXLghuXFewF2qFk0kwbmskMyRmhDH0INy4UcevzuPNtzLQVVPSHwMd/ziHn/EEihQFCPpzC2vrG5lZxu7Szu7d/UD486pg41Yy3WSxj3Quo4VIo3gYBkvcSzWkUSN4Nptd5vXvPtRGxuoNZwv2IjpUIBaNgre4gSKXkMCxXiEtItVZv4BxIrUGWcEGq2MvBqoJWag3L74NRzNKIK2CSGtP3SAJ+RjUIJvm8NEgNTyib0jHvW1Q04sbPFuvO8Zl1RjiMtX0K8ML9PpHRyJhZFNjOiMLE/K7l5l+1fgphw8+ESlLgii0/ClOJIcb57XgkNGcgZxYo08LuitmEasrAJlSyIXxdiv+HTtX16u7lba3SdFdxFNEJOkXnyENXqIluUAu1EUNT9ICe0LOTOI/Oi/O6bC04q5lj9EPO2yerLo+/</latexit>•

<latexit sha1_base64="XAQDVUrwCEzRV0kApzCPY4ywu1w=">AAAB7nicdZDLSgMxFIYz9VbrrerSTbAIroZMrbXLghuXFewF2qFk0kwbmskMyRmhDH0INy4UcevzuPNtzLQVVPSHwMd/ziHn/EEihQFCPpzC2vrG5lZxu7Szu7d/UD486pg41Yy3WSxj3Quo4VIo3gYBkvcSzWkUSN4Nptd5vXvPtRGxuoNZwv2IjpUIBaNgre4gSKXkMCxXiEtItVZv4BxIrUGWcEGq2MvBqoJWag3L74NRzNKIK2CSGtP3SAJ+RjUIJvm8NEgNTyib0jHvW1Q04sbPFuvO8Zl1RjiMtX0K8ML9PpHRyJhZFNjOiMLE/K7l5l+1fgphw8+ESlLgii0/ClOJIcb57XgkNGcgZxYo08LuitmEasrAJlSyIXxdiv+HTtX16u7lba3SdFdxFNEJOkXnyENXqIluUAu1EUNT9ICe0LOTOI/Oi/O6bC04q5lj9EPO2yerLo+/</latexit>•

<latexit sha1_base64="XAQDVUrwCEzRV0kApzCPY4ywu1w=">AAAB7nicdZDLSgMxFIYz9VbrrerSTbAIroZMrbXLghuXFewF2qFk0kwbmskMyRmhDH0INy4UcevzuPNtzLQVVPSHwMd/ziHn/EEihQFCPpzC2vrG5lZxu7Szu7d/UD486pg41Yy3WSxj3Quo4VIo3gYBkvcSzWkUSN4Nptd5vXvPtRGxuoNZwv2IjpUIBaNgre4gSKXkMCxXiEtItVZv4BxIrUGWcEGq2MvBqoJWag3L74NRzNKIK2CSGtP3SAJ+RjUIJvm8NEgNTyib0jHvW1Q04sbPFuvO8Zl1RjiMtX0K8ML9PpHRyJhZFNjOiMLE/K7l5l+1fgphw8+ESlLgii0/ClOJIcb57XgkNGcgZxYo08LuitmEasrAJlSyIXxdiv+HTtX16u7lba3SdFdxFNEJOkXnyENXqIluUAu1EUNT9ICe0LOTOI/Oi/O6bC04q5lj9EPO2yerLo+/</latexit>•

<latexit sha1_base64="XAQDVUrwCEzRV0kApzCPY4ywu1w=">AAAB7nicdZDLSgMxFIYz9VbrrerSTbAIroZMrbXLghuXFewF2qFk0kwbmskMyRmhDH0INy4UcevzuPNtzLQVVPSHwMd/ziHn/EEihQFCPpzC2vrG5lZxu7Szu7d/UD486pg41Yy3WSxj3Quo4VIo3gYBkvcSzWkUSN4Nptd5vXvPtRGxuoNZwv2IjpUIBaNgre4gSKXkMCxXiEtItVZv4BxIrUGWcEGq2MvBqoJWag3L74NRzNKIK2CSGtP3SAJ+RjUIJvm8NEgNTyib0jHvW1Q04sbPFuvO8Zl1RjiMtX0K8ML9PpHRyJhZFNjOiMLE/K7l5l+1fgphw8+ESlLgii0/ClOJIcb57XgkNGcgZxYo08LuitmEasrAJlSyIXxdiv+HTtX16u7lba3SdFdxFNEJOkXnyENXqIluUAu1EUNT9ICe0LOTOI/Oi/O6bC04q5lj9EPO2yerLo+/</latexit>•

<latexit sha1_base64="JoKTVovGdNz6tktHk8/EtoX2Ggg=">AAAB6HicdZDLSgMxFIYz9VbrrerSTbAIroa01tplwY3LFuwF2qFk0jNtbCYzJBmhDH0CNy4UcesjufNtzLQVVPSHwMd/ziHn/H4suDaEfDi5tfWNza38dmFnd2//oHh41NFRohi0WSQi1fOpBsEltA03AnqxAhr6Arr+9Dqrd+9BaR7JWzOLwQvpWPKAM2qs1YqHxRJxCalUa3WcAanWyRIuSAWXM7AqoZWaw+L7YBSxJARpmKBa98skNl5KleFMwLwwSDTElE3pGPoWJQ1Be+li0Tk+s84IB5GyTxq8cL9PpDTUehb6tjOkZqJ/1zLzr1o/MUHdS7mMEwOSLT8KEoFNhLOr8YgrYEbMLFCmuN0VswlVlBmbTcGG8HUp/h86Fbdccy9b1VLDXcWRRyfoFJ2jMrpCDXSDmqiNGAL0gJ7Qs3PnPDovzuuyNeesZo7RDzlvnw1FjQ8=</latexit>

p

<latexit sha1_base64="DRaTFQ9gXS3O+HwpXm+H/Cl84Jw=">AAAB6HicdZDLSgMxFIbPeK31VnXpJlgEV0Om1tplwY3LFuwF2qFk0rSNzWTGJCOUoU/gxoUibn0kd76NmbaCiv4Q+PjPOeScP4gF1wbjD2dldW19YzO3ld/e2d3bLxwctnSUKMqaNBKR6gREM8ElaxpuBOvEipEwEKwdTK6yevueKc0jeWOmMfNDMpJ8yCkx1mrc9QtF7GJcKleqKANcruIFnOMS8jKwKsJS9X7hvTeIaBIyaaggWnc9HBs/JcpwKtgs30s0iwmdkBHrWpQkZNpP54vO0Kl1BmgYKfukQXP3+0RKQq2nYWA7Q2LG+nctM/+qdRMzrPopl3FimKSLj4aJQCZC2dVowBWjRkwtEKq43RXRMVGEGptN3obwdSn6H1ol16u4F41yseYu48jBMZzAGXhwCTW4hjo0gQKDB3iCZ+fWeXRenNdF64qznDmCH3LePgEOyY0Q</latexit>

q

<latexit sha1_base64="Cnqf1i8vZlyT9W/lU/GfzaVkSOo=">AAAB6HicdZDLSgMxFIYz9VbrrerSTbAIroa01tplwY3LFuwF2qFk0jNtbCYzJBmhDH0CNy4UcesjufNtzLQVVPSHwMd/ziHn/H4suDaEfDi5tfWNza38dmFnd2//oHh41NFRohi0WSQi1fOpBsEltA03AnqxAhr6Arr+9Dqrd+9BaR7JWzOLwQvpWPKAM2qs1VLDYom4hFSqtTrOgFTrZAkXpILLGViV0ErNYfF9MIpYEoI0TFCt+2USGy+lynAmYF4YJBpiyqZ0DH2LkoagvXSx6ByfWWeEg0jZJw1euN8nUhpqPQt92xlSM9G/a5n5V62fmKDupVzGiQHJlh8FicAmwtnVeMQVMCNmFihT3O6K2YQqyozNpmBD+LoU/w+diluuuZetaqnhruLIoxN0is5RGV2hBrpBTdRGDAF6QE/o2blzHp0X53XZmnNWM8foh5y3TxBNjRE=</latexit>

r
<latexit sha1_base64="Hkiy4KUWBO0pzoEM5Ub3TpSnyq0=">AAAB6HicdZDLSgMxFIYz9VbrrerSTbAIroa01tplwY3LFuwF2qFk0jNtbCYzJBmhDH0CNy4UcesjufNtzLQVVPSHwMd/ziHn/H4suDaEfDi5tfWNza38dmFnd2//oHh41NFRohi0WSQi1fOpBsEltA03AnqxAhr6Arr+9Dqrd+9BaR7JWzOLwQvpWPKAM2qs1dLDYom4hFSqtTrOgFTrZAkXpILLGViV0ErNYfF9MIpYEoI0TFCt+2USGy+lynAmYF4YJBpiyqZ0DH2LkoagvXSx6ByfWWeEg0jZJw1euN8nUhpqPQt92xlSM9G/a5n5V62fmKDupVzGiQHJlh8FicAmwtnVeMQVMCNmFihT3O6K2YQqyozNpmBD+LoU/w+diluuuZetaqnhruLIoxN0is5RGV2hBrpBTdRGDAF6QE/o2blzHp0X53XZmnNWM8foh5y3TxHRjRI=</latexit>

s

c

<latexit sha1_base64="XAQDVUrwCEzRV0kApzCPY4ywu1w=">AAAB7nicdZDLSgMxFIYz9VbrrerSTbAIroZMrbXLghuXFewF2qFk0kwbmskMyRmhDH0INy4UcevzuPNtzLQVVPSHwMd/ziHn/EEihQFCPpzC2vrG5lZxu7Szu7d/UD486pg41Yy3WSxj3Quo4VIo3gYBkvcSzWkUSN4Nptd5vXvPtRGxuoNZwv2IjpUIBaNgre4gSKXkMCxXiEtItVZv4BxIrUGWcEGq2MvBqoJWag3L74NRzNKIK2CSGtP3SAJ+RjUIJvm8NEgNTyib0jHvW1Q04sbPFuvO8Zl1RjiMtX0K8ML9PpHRyJhZFNjOiMLE/K7l5l+1fgphw8+ESlLgii0/ClOJIcb57XgkNGcgZxYo08LuitmEasrAJlSyIXxdiv+HTtX16u7lba3SdFdxFNEJOkXnyENXqIluUAu1EUNT9ICe0LOTOI/Oi/O6bC04q5lj9EPO2yerLo+/</latexit>•

<latexit sha1_base64="XAQDVUrwCEzRV0kApzCPY4ywu1w=">AAAB7nicdZDLSgMxFIYz9VbrrerSTbAIroZMrbXLghuXFewF2qFk0kwbmskMyRmhDH0INy4UcevzuPNtzLQVVPSHwMd/ziHn/EEihQFCPpzC2vrG5lZxu7Szu7d/UD486pg41Yy3WSxj3Quo4VIo3gYBkvcSzWkUSN4Nptd5vXvPtRGxuoNZwv2IjpUIBaNgre4gSKXkMCxXiEtItVZv4BxIrUGWcEGq2MvBqoJWag3L74NRzNKIK2CSGtP3SAJ+RjUIJvm8NEgNTyib0jHvW1Q04sbPFuvO8Zl1RjiMtX0K8ML9PpHRyJhZFNjOiMLE/K7l5l+1fgphw8+ESlLgii0/ClOJIcb57XgkNGcgZxYo08LuitmEasrAJlSyIXxdiv+HTtX16u7lba3SdFdxFNEJOkXnyENXqIluUAu1EUNT9ICe0LOTOI/Oi/O6bC04q5lj9EPO2yerLo+/</latexit>•

<latexit sha1_base64="XAQDVUrwCEzRV0kApzCPY4ywu1w=">AAAB7nicdZDLSgMxFIYz9VbrrerSTbAIroZMrbXLghuXFewF2qFk0kwbmskMyRmhDH0INy4UcevzuPNtzLQVVPSHwMd/ziHn/EEihQFCPpzC2vrG5lZxu7Szu7d/UD486pg41Yy3WSxj3Quo4VIo3gYBkvcSzWkUSN4Nptd5vXvPtRGxuoNZwv2IjpUIBaNgre4gSKXkMCxXiEtItVZv4BxIrUGWcEGq2MvBqoJWag3L74NRzNKIK2CSGtP3SAJ+RjUIJvm8NEgNTyib0jHvW1Q04sbPFuvO8Zl1RjiMtX0K8ML9PpHRyJhZFNjOiMLE/K7l5l+1fgphw8+ESlLgii0/ClOJIcb57XgkNGcgZxYo08LuitmEasrAJlSyIXxdiv+HTtX16u7lba3SdFdxFNEJOkXnyENXqIluUAu1EUNT9ICe0LOTOI/Oi/O6bC04q5lj9EPO2yerLo+/</latexit>•

<latexit sha1_base64="JoKTVovGdNz6tktHk8/EtoX2Ggg=">AAAB6HicdZDLSgMxFIYz9VbrrerSTbAIroa01tplwY3LFuwF2qFk0jNtbCYzJBmhDH0CNy4UcesjufNtzLQVVPSHwMd/ziHn/H4suDaEfDi5tfWNza38dmFnd2//oHh41NFRohi0WSQi1fOpBsEltA03AnqxAhr6Arr+9Dqrd+9BaR7JWzOLwQvpWPKAM2qs1YqHxRJxCalUa3WcAanWyRIuSAWXM7AqoZWaw+L7YBSxJARpmKBa98skNl5KleFMwLwwSDTElE3pGPoWJQ1Be+li0Tk+s84IB5GyTxq8cL9PpDTUehb6tjOkZqJ/1zLzr1o/MUHdS7mMEwOSLT8KEoFNhLOr8YgrYEbMLFCmuN0VswlVlBmbTcGG8HUp/h86Fbdccy9b1VLDXcWRRyfoFJ2jMrpCDXSDmqiNGAL0gJ7Qs3PnPDovzuuyNeesZo7RDzlvnw1FjQ8=</latexit>

p

<latexit sha1_base64="DRaTFQ9gXS3O+HwpXm+H/Cl84Jw=">AAAB6HicdZDLSgMxFIbPeK31VnXpJlgEV0Om1tplwY3LFuwF2qFk0rSNzWTGJCOUoU/gxoUibn0kd76NmbaCiv4Q+PjPOeScP4gF1wbjD2dldW19YzO3ld/e2d3bLxwctnSUKMqaNBKR6gREM8ElaxpuBOvEipEwEKwdTK6yevueKc0jeWOmMfNDMpJ8yCkx1mrc9QtF7GJcKleqKANcruIFnOMS8jKwKsJS9X7hvTeIaBIyaaggWnc9HBs/JcpwKtgs30s0iwmdkBHrWpQkZNpP54vO0Kl1BmgYKfukQXP3+0RKQq2nYWA7Q2LG+nctM/+qdRMzrPopl3FimKSLj4aJQCZC2dVowBWjRkwtEKq43RXRMVGEGptN3obwdSn6H1ol16u4F41yseYu48jBMZzAGXhwCTW4hjo0gQKDB3iCZ+fWeXRenNdF64qznDmCH3LePgEOyY0Q</latexit>

q

<latexit sha1_base64="Cnqf1i8vZlyT9W/lU/GfzaVkSOo=">AAAB6HicdZDLSgMxFIYz9VbrrerSTbAIroa01tplwY3LFuwF2qFk0jNtbCYzJBmhDH0CNy4UcesjufNtzLQVVPSHwMd/ziHn/H4suDaEfDi5tfWNza38dmFnd2//oHh41NFRohi0WSQi1fOpBsEltA03AnqxAhr6Arr+9Dqrd+9BaR7JWzOLwQvpWPKAM2qs1VLDYom4hFSqtTrOgFTrZAkXpILLGViV0ErNYfF9MIpYEoI0TFCt+2USGy+lynAmYF4YJBpiyqZ0DH2LkoagvXSx6ByfWWeEg0jZJw1euN8nUhpqPQt92xlSM9G/a5n5V62fmKDupVzGiQHJlh8FicAmwtnVeMQVMCNmFihT3O6K2YQqyozNpmBD+LoU/w+diluuuZetaqnhruLIoxN0is5RGV2hBrpBTdRGDAF6QE/o2blzHp0X53XZmnNWM8foh5y3TxBNjRE=</latexit>

r
<latexit sha1_base64="Hkiy4KUWBO0pzoEM5Ub3TpSnyq0=">AAAB6HicdZDLSgMxFIYz9VbrrerSTbAIroa01tplwY3LFuwF2qFk0jNtbCYzJBmhDH0CNy4UcesjufNtzLQVVPSHwMd/ziHn/H4suDaEfDi5tfWNza38dmFnd2//oHh41NFRohi0WSQi1fOpBsEltA03AnqxAhr6Arr+9Dqrd+9BaR7JWzOLwQvpWPKAM2qs1dLDYom4hFSqtTrOgFTrZAkXpILLGViV0ErNYfF9MIpYEoI0TFCt+2USGy+lynAmYF4YJBpiyqZ0DH2LkoagvXSx6ByfWWeEg0jZJw1euN8nUhpqPQt92xlSM9G/a5n5V62fmKDupVzGiQHJlh8FicAmwtnVeMQVMCNmFihT3O6K2YQqyozNpmBD+LoU/w+diluuuZetaqnhruLIoxN0is5RGV2hBrpBTdRGDAF6QE/o2blzHp0X53XZmnNWM8foh5y3TxHRjRI=</latexit>

s

<latexit sha1_base64="XAQDVUrwCEzRV0kApzCPY4ywu1w=">AAAB7nicdZDLSgMxFIYz9VbrrerSTbAIroZMrbXLghuXFewF2qFk0kwbmskMyRmhDH0INy4UcevzuPNtzLQVVPSHwMd/ziHn/EEihQFCPpzC2vrG5lZxu7Szu7d/UD486pg41Yy3WSxj3Quo4VIo3gYBkvcSzWkUSN4Nptd5vXvPtRGxuoNZwv2IjpUIBaNgre4gSKXkMCxXiEtItVZv4BxIrUGWcEGq2MvBqoJWag3L74NRzNKIK2CSGtP3SAJ+RjUIJvm8NEgNTyib0jHvW1Q04sbPFuvO8Zl1RjiMtX0K8ML9PpHRyJhZFNjOiMLE/K7l5l+1fgphw8+ESlLgii0/ClOJIcb57XgkNGcgZxYo08LuitmEasrAJlSyIXxdiv+HTtX16u7lba3SdFdxFNEJOkXnyENXqIluUAu1EUNT9ICe0LOTOI/Oi/O6bC04q5lj9EPO2yerLo+/</latexit>•

<latexit sha1_base64="2Wilt3oyPD2WMsBIA6drESGUSYU=">AAAB6HicdVDJSgNBEK2JW4xb1KOXxiB4GmZckhwDXjwmYBZIhtDTqUna9PQM3T1CGPIFXjwo4tVP8ubfOFmEKPqg4PFeFVX1/FhwbRzn08qtrW9sbuW3Czu7e/sHxcOjlo4SxbDJIhGpjk81Ci6xabgR2IkV0tAX2PbHNzO//YBK80jemUmMXkiHkgecUZNJjbhfLLm2MwdxVshlpVwtk2+rBEvU+8WP3iBiSYjSMEG17rpObLyUKsOZwGmhl2iMKRvTIXYzKmmI2kvnh07JWaYMSBCprKQhc3V1IqWh1pPQzzpDakb6tzcT//K6iQmqXsplnBiUbLEoSAQxEZl9TQZcITNikhHKFM9uJWxEFWUmy6awGsL/pHVhu2X7unFVqtnLOPJwAqdwDi5UoAa3UIcmMEB4hGd4se6tJ+vVelu05qzlzDH8gPX+BQMrjQk=</latexit>

p
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Figure 5. Illustration of the four operations involved in the remeshing strategy of Sec-
tion 3.4; (a) Split of the “long” edge pq into two edges pm and mp, where the new point m
is introduced on S; (b) Collapse of the “short” edge pq; (c) Swap of the edge pq between the
triangles pqr and pqs for the alternate configuration, featuring the edge rs and the triangles
rsp and rsq; (d) Relocation of the vertex p which slides along S.

4. Numerical examples

In this section, we present numerical examples illustrating the main features of the proposed evolution
Algorithm 1. After a short description of our practical implementation in Section 4.1, the first example in
Section 4.2 deals with a simple situation meant to appraise its accuracy, that of a region G(t) on the unit
sphere S2 in R3 evolving according to its conormal vector field. In Section 4.3 we turn to the numerical
simulation of the physical evolution of a fire front, which is driven by the geometric features of the front
and those of the underlying landscape S. Finally in Section 4.4, we leverage our methodology to optimize
the shape of the regions supporting the boundary conditions of a boundary value problem with respect to a
physical performance criterion. The gradient flow associated to the minimization yields an evolution problem
of the form considered in this article, where the velocity field is the shape gradient of the objective criterion,
depending on the solution to several versions of the considered boundary value problem.

4.1. Numerical framework

As presented in Section 3, the numerical implementation of the examples proposed in the subsequent sections
relies on a surface triangulation T of the ambient surface S ⊂ Rd, which is modified between the consecutive
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steps n = 0, . . . of the evolution process. Typically, various scalar and vector fields are defined and handled
on S, such as level set functions φ : S → R for regions G ⊂ S or velocity fields V : S → Rd. They are
discretized as Lagrange P1 finite element functions on T , i.e. they are continuous, and their restriction to
each triangle T ∈ T is affine. As such, these quantities are characterized by their values at the vertices of T
and their evaluation at other points x ∈ S is realized by linear interpolation from these data.

We rely on various computational tools to conduct the main steps of our evolution Algorithm 1:

• Computations involving finite element functions on the triangulation T , such as their evaluation or
the solution of boundary value problems, are handled by the finite element library MFEM, described
in [12] and available at:

https://github.com/mfem/mfem/ .

• The computation of the signed distance function dG to a region G ⊂ S is realized thanks to the ISCD

Mshdist software [44], which can be downloaded at:

https://github.com/ISCDtoolbox/Mshdist ,

see again Section 3.2.
• The solution of the level set evolution equation (2.5) on the triangulation T of S relies on the ISCD

Advection software [28], available at:

https://github.com/ISCDtoolbox/Advection .

This tool implements the method described in Section 3.3.
• The operations of our framework related to mesh modification leverage the MMG library, found at:

https://github.com/MmgTools/mmg ,

see the companion articles [15, 42].

These resources are freely available in the form of open-source libraries and programs, which can be used
in a black-box fashion; they have been combined into an educational implementation devoted to 2d and 3d
shape and topology optimization problems which is described in [43].

The numerical experiments discussed in the next Sections 4.2 to 4.4 are executed on a regular laptop
Apple MacBookPro 18,3 (M1 Pro chip) with 10 cores and 16 GB of memory. The exact code used in their
treatment is open source and can be downloaded at the following address:

https://github.com/cbritopacheco/rodin .

4.2. Numerical validation: motion in the direction of the conormal vector field

This first example aims to evaluate the efficiency of our numerical Algorithm 1 in the context of a simple
motion where an analytical solution is available. The ambient surface S is the unit sphere S2 ⊂ R3; it is
equipped with the spherical coordinates (α, β) centered at the origin 0, which induce the following (non
injective) parametrization:

σ : [0, 2π]× [0, π] → S2

(α, β) 7→ (cosα sinβ, sinα sinβ, cosβ).

In this setting, we wish to track the region G(t) ⊂ S evolving from the upper spherical cap Ca with azimuth
angle a ∈ (0, π2 ),

G(0) = Ca := σ([0, 2π]× [0, a)),

according to the conormal vector field to the interface Σ(t) = ∂G(t):

∀t ∈ (0, T ), x ∈ Σ(t), V (t, x) = nΣ(t)(x),

over the time period (0, T ), with T = π
2 − a, see Fig. 6. Note that V (t, x) can be conveniently extended to

the whole surface S as:

(4.1) V (t, x) = ∇SdG(t)(x), for a.e. x ∈ S,

where dG(t) is the signed distance function (3.1) to G(t), see e.g. [47] about this property and Remark 2.1.
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Figure 6. Setting of the motion of a region G(t) within the unit sphere S2 along the conor-
mal vector field nΣ(t) considered in Section 4.2

As we have mentioned, in this simple setting, all the features attached to the evolution of G(t) can be
expressed analytically. Indeed, for t ∈ (0, T ), the deformed domain G(t) is the upper spherical cap with
azimuth angle a+ t:

(4.2) G(t) = Ca+t = σ
(

[0, 2π]× [0, a+ t)
)
.

In particular, since T = π
2 − a, the final region G(T ) coincides with the upper half-sphere. Besides, the

geodesic signed distance function dG(t) to G(t) has the following analytical expression:

(4.3) ∀(α, β) ∈ [0, 2π]× [0, π], dCa(t)(σ(α, β)) = β − t− a.
Finally, let us observe that, in this very specific case where the normal component of the velocity field V (t, x)
identically equals 1, the exact solution φ(t, x) to the evolution equation (2.5) when initialized with the signed
distance function φ(0, ·) = dG(0) = dCa is given by:

(4.4) φ(t, x) = dCa(t)(x),

in particular, φ(t, ·) is the signed distance function to G(t) for all t > 0.

In our numerical simulation of the motion of G(t) by means of Algorithm 1, the time interval (0, T ) is
discretized into N subintervals of the form (tn, tn+1), where 0 ≤ n ≤ N − 1, tn = n∆t, and ∆t is a “small”
time step. In order to appraise the convergence of our strategy, we measure the least-square difference E
between the numerical level set function φN for the tracked region GN (that is, the outcome of the calculation
of the signed distance function dGN with the help of the final mesh T N of S) at the final iteration N , and
the exact value φ(T, ·) of the solution to (3.2), given by (4.3) and (4.4):

(4.5) E :=

(∫
S

∣∣φN (x)− φ(T, x)
∣∣2 ds(x)

)1/2

;

thus, E measures the potential accumulation of errors incurred by the various stages of Algorithm 1 through-
out the iterations n = 0, . . ., namely the inexact calculation of the signed distance function to the regions
Gn, the error in the numerical resolution of the advection equation (3.2) between consecutive times tn and
tn+1 and the approximation of the geometry of Gn caused by its explicit discretization into the mesh T n.
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a b c

Figure 7. Evolution G(t) of the spherical cap Ca under unit conormal velocity considered
in Section 4.2; (a) Initial configuration G(0) = Ca; (b) Intermediate configuration G(t)at
time t = π/4; (c) Final region G(T ) corresponding to the upper half-sphere.

We wish to study the behavior of the error E in the limit where the time step ∆t vanishes and the mesh
is refined, i.e. the average size h of the edges of the mesh tends to 0. Since a fully explicit procedure is used
for approximating the solution to (2.5) by that of a series of linear evolution equations, featuring a frozen in
time velocity field (see Section 2), we anticipate that it is relevant to relate these two parameters as ∆t = ch,
where the parameterc plays the role of a CFL number, accounting for the number of mesh elements crossed
by the interface Σ(t) during a single time step.

Several numerical simulations of the motion of G(t) are performed, associated with different values of c
and h; a few iterations of the evolution process in one of these instances are depicted on Fig. 7, and the
behavior of the error E in the various considered situations is shown in Fig. 8. As expected, for a fixed, “not
too small” value of the ratio c, E tends to 0 as the mesh is refined (i.e. as h tends to 0). On the contrary,
this convergence is not observed when c is “small”, which can be attributed to the large accumulation of
numerical errors during the various stages of Algorithm 1 when the algorithm has to perform a “too large”
number of iterations with respect to the limited precision guaranteed by a fixed mesh size. The results of
Fig. 8 suggest to select a value of c within the range (1

3 , 1), so that at least 1
3 element is crossed at each

iteration of the process. Note that identical (unreported) experiments taking place in the context of a planar
ambient surface S show similar trends as regards the behavior of our strategy with respect to the values of
c and h.

4.3. Wildland fire propagation

With the increasing global warming and the intensification of human activity, among other factors, wild-
fires have emerged as a significant concern in recent decades, and much endeavour has been made towards
understanding, and ultimately predicting, their dynamics. The obvious limitations of practical experi-
ments raise the need to develop accurate models and efficient numerical simulation algorithms, see e.g.
[17, 18, 76, 91, 10, 88] and [80]. In this section, we show how the strategy of Section 3.1 for tracking the
evolution of a region G(t) within a surface S ⊂ R3 is a valuable tool in the numerical realization of a model
for the simulation of such a phenomenon, which is driven by the geometric characteristics of the evolving
front and of the landscape surface. We rely on the physical model of [16], which has been validated in e.g.
[18, 58, 59] and is used in softwares such as ForeFire [58]. For the convenience of the reader, we provide a
short, intuitive presentation of this model, referring to [16] for the details.

The ambient surface S ⊂ R3 represents the topography of the landscape. It is defined as the graph of a
function over a domain in the 2d horizontal plane, or, equivalently, in terms of the height function s : S → R:

∀x = (x1, x2, x3) ∈ S, s(x1, x2, x3) = x3.
14



Figure 8. History of the least-square error E in (4.5) for different values of the mesh size
h and “CFL number” c in the conormal advection example of Section 4.2.

Figure 9. Illustration of the evolution of a fire on a topography. The slope vector p indicates
the direction of greatest ascent as visualized by the arrows pointing towards the peaks. The
burning region G is indicated by the yellow-red zone whose motion is prescribed by the arrows
representing V .

The ground slope vector p is the unit tangential vector field pointing in the direction of the largest variation
of altitude:

∀x ∈ S, p(x) =
∇Ss(x)

|∇Ss(x)| ,
15



and the local slope of the land is the angle between this vector and the tangential directions:

α : S →
[
−π

2
,
π

2

]
, α = arcsin(p · e3),

see Fig. 9. The evolving subdomain G(t) ⊂ S and its boundary Σ(t) = ∂G(t) represent the burnt region

and the fire front, respectively, while the complement S\G(t) stands for the vegetal stratum, i.e., the part
of the land covered with vegetation that has not yet been ignited. The motion of Σ(t) is oriented along its
conormal vector field:

(4.6) ∀t ∈ (0, T ), x ∈ Σ(t), V (t, x) = R(t, x)nΣ(t)(x),

where the scalar component R(t, x) > 0 is the rate of spread of the front.
The quantity R(t, x) depends on the geometric features of the landscape S, the fire front Σ(t), and

on the physical characteristics of the actual situation. These data, whose values are determined through
measurements are the following:

• The rate of spread R0 > 0 of the burnt region in the absence of slope and wind (expressed in ms−1);
• The velocity u0 of the combustion gas in the absence of slope (in ms−1);
• The (dimensionless) ratio A > 0 between the incident radiant energy and the ignition energy of the

(wet) vegetal fuel;
• The velocity of the wind U : S → Rd (in ms−1).

The behavior of the rate of spread R(t, x) at some point x in the fire front Σ(t) depends on whether the
flame is directed towards the burnt region or the vegetal stratum. This feature is measured by the so-called
tilt angle γ(t, ·) : Σ(t)→ R, whose values depend on the velocity of the wind U(x), on the local slope α(x),
and on the vector nΣ(t)(x) via the following relation:

(4.7) ∀x ∈ Σ(t), tan γ(t, x) = tanα(x) cosβp(t, x) +
|U(x)|
u0

cosβU (t, x),

where βp(t, x) is the angle between the ground slope vector p(x) and nΣ(t)(x), and βU (t, x) is the angle
between the wind U(x) and nΣ(t)(x). Roughly speaking, at some point x ∈ Σ(t), the flame is tilted towards
the burnt region if γ(t, x) ≤ 0 and towards the vegetal stratum if γ(t, x) ≥ 0, see Fig. 10. The rate of spread
R(t, x) then takes “small” values in the former situation, and large values in the latter one; its definition of
R(t, x) brings into play the following two regimes:

• Case 1 (Slow backing fire spread) γ(t, x) ≤ 0. The flame axis at x is tilted towards the burnt region
and R(t, x) = R0.

• Case 2 (Fast fire spread) γ > 0. The flame axis at x is tilted towards the unburnt vegetation, thus
accelerating the ignition of the latter and the expansion of the front; R(t, x) is given by:

(4.8) R(t, x) = 0.5

(
Ra(t, x) +

(
Ra(t, x)2 +

48R2
0

cos γ(t, x)

) 1
2

)
, where

Ra(t, x) = R0 + 12AR0
1 + sin γ(t, x)− cos γ(t, x)

cos γ(t, x)
− 12R0

1

cos γ(t, x)
.

We conduct three experiments of the evolution of a burning region within a landscape S with complex
topography, associated to as many different scenarios. The surfaces S used in these examples are fictitious:
they are generated as graphs of random non negative functions defined over the horizontal base [0, 50]×[0, 50]
– where the retained unit for spatial coordinates is the km; see Fig. 11 (a,c) for an illustration. For simplicity,
we assume that a homogeneous vegetal stratum covers the entire terrain, so that the physical parameters
R0, u0 and A are constant; their values are taken from [16] and are reported in Table 1. We also report in
there the common values of the numerical parameters used in all three situations.

The use of Algorithm 1 in this context is straightforward: at each iteration n = 0, . . ., corresponding to
the time tn = n∆t, the computation of the velocity field V n = V (tn, ·) in (4.6) and (4.8) depends on that
of geometric quantities attached to S and Gn, that is conveniently realized with the help of the mesh T n
of S, where Gn is explicitly discretized. Note that, in keeping with Remark 2.1, in this example again, the
velocity field V (t, x) can be extended to the whole surface S by leveraging the same extension formula (4.1)
for the conormal vector field nΣ(t) as in the previous Section 4.2.
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a b

Figure 10. Illustration of the geometric relations involved in the computation of the rate
of spread R at the level of one triangle T ∈ T , in the fire propagation model of Section 4.3.

Parameter R0 u0 A ∆t hmax

Value 2.7 ms−1 39.8 ms−1 1.25 600 s 400 m

Table 1. Values of the parameters used in the experiments concerning the propagation of
a fire front in Section 4.3.

The landscape S considered in our first experiment is represented in Fig. 11 (b,d), and the initially burnt
region G(0) is a surface disk with radius 1 km, centered at the point x = (x1, x2, x3) ∈ S with coordinates
(x1, x2) = (19.5, 19.5). In this situation, the effect of the wind is neglected, i.e. U ≡ 0. We simulate the
evolution of G(t) thanks to Algorithm 1 over the time period [0, T ], where T = 400 mn, using the parameters
reported in Table 1. A few intermediate meshes T n obtained in the course of the evolution are displayed
in Fig. 12. In this experiment, the values of the rate of spread R(t, x) range between 0.4 and 27.35 ms−1,
with an average value of 2.26 ms−1. The values presented here align with findings in [16] as well as in other
studies like [98, 33], which also provide data on the mean, minimum, and maximum rates of spread. As
expected from the formulas in (4.8), the fire spreads rapidly towards regions where the flame is tilted towards
the unburnt region (typically in mountains).

From the technical vantage, let us point out that, at each iteration of the process, the complex landscape
surface S and burnt region Gn are equipped with exact, high-quality meshes, which are refined in the vicinity
of their sharp features. This allows for accurate calculations of quantities such as the conormal vector nΣ(t)

to the fire front as opposed to “classical” simulation methods and implementations in the fire dynamics
literature, that use marker methods on Cartesian grids and projections or reconstructions of the fire front,
see [60, 59, 58, 10].

We next turn to the study of a second scenario, aimed to appraise the behavior of our method in dealing
with regions with multiple connected components. The landscape S is the same as that used in the first
experiment, see again Fig. 11 (b,d); the initial region G(0) is the reunion of four disjoint surface disks with
radius 1 km, centered at the points of S whose whose horizontal coordinates equal (12.5, 12.5), (12.5, 37.5),
(37.5, 12.5), (37.5, 37.5), respectively. Still, wind is omitted.

The evolution of G(t) is tracked until the final time T = 500 mn. A few snapshots of the evolution process
are depicted on Fig. 13. In the course of the evolution, the four initially burnt regions expand and eventually
merge – the description of such complex topological changes being considerable eased by the use of our mesh
evolution Algorithm 1, which takes advantage of the level set method to deal with the update of the moving
region.

We finally turn to a third experiment, where the motion of the burning region G(t) is influenced by the
presence of a rotating wind. The landscape S is represented on Fig. 14 (a), and the wind velocity U : S → Rd
accounts for a rotation around the center of the landscape:

∀x ∈ S, U(x1, x2, x3) = (x2 − 25,−(x1 − 25), 0).
17
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c

d

Figure 11. Landscape surface S used in the first experiment of Section 4.3; the initially
burnt region G(0), visualized in (b) and (d), is represented in red, and the color scale in (a)
and (c) accounts for the height function s. The lower left corner of S is set to (0, 0, 0) ∈ R3.

A few snapshots of the simulation of the evolution of G(t) are presented in Fig. 14; here the final time
is T = 160 mn. Notably, the algorithm successfully accounts for the rotational characteristics of the wind
vector field and effectively managed the merging of burning regions resulting from such complex motions.
Understandably enough, the burning region tends to expand more rapidly when the fire is tilted towards
the unburnt vegetation and the latter is located in the general direction of the wind. Moreover, the motion
exhibits a faster rate of spread R(t, x) compared to that in the previous experiments, which is, again, caused
by the wind. Again, the algorithm successfully manages to account for the merging of the various components
of the burnt region.

Let us conclude this section with two general comments. Firstly, the meshes T n involved in each of the
above three experiments contain on average about 240,000 triangles, and each iteration of our algorithm
takes approximately 25 seconds, which suggests that our implementation proves quite efficient at simulating
fire propagation in real time. Secondly, as far as the sensitivity of the simulation with respect to the choice of
the parameters h and ∆t is concerned, the same trends as in Section 4.2 are observed: unreported numerical
tests indicate that the general aspect of the burnt region does not depend very much on the choice of these
parameters, as long as the time step ∆t is of the order of the mesh size h.
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(a) t = 0 min (b) t = 100 min

(c) t = 200 min (d) t = 400 min

Figure 12. Snapshots of the first experiment of propagation of a fire front conducted in
Section 4.3.
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(a) t = 100 min (b) t = 200 min

(c) t = 400 min (d) t = 500 min

Figure 13. Snapshots of the second experiment of propagation of a fire front conducted in
Section 4.3.

20



(a) t = 20 min (b) t = 40 min

(c) t = 80 min (d) t = 160 min

Figure 14. Snapshots of the third experiment of propagation of a fire front conducted in
Section 4.3. 21



4.4. Shape optimization of the regions supporting boundary conditions

This section exemplifies the efficiency of our algorithmic strategy in a context where the need for an exact,
meshed representation of the evolving region G(t) ⊂ S stems from the desire to accurately solve physical
boundary value problems involving G(t) with the finite element method.

More precisely, we consider a situation where the ambient surface S is the boundary of a fixed, smooth
and bounded domain Ω in Rd, and the region G of interest is the support of a particular boundary condition
accompanying a physical partial differential equation posed on Ω. The shape of G is optimized with respect
to a measure J(G) of the performance of the configuration: we track the region G(t) evolving in (pseudo-)
time t, starting from an initial design G0, via a velocity field V (t, x) induced by the shape derivative of J(G).

After recalling a few basic notions about shape optimization in the first Section 4.4.1, which are adapted
to the present context where the ambient medium is a surface, we formulate in Section 4.4.2 a model
problem in thermal mechanics where the region of the boundary of the computational domain bearing
homogeneous Dirichlet boundary conditions is optimized. A 3d numerical example is presented and discussed
in Section 4.4.3.

4.4.1. Optimization of the shape of a region on a surface by the method of Hadamard

Shape and topology optimization aims to find the optimal design of a device with respect to a criterion mea-
suring its physical performance. This general ambition has received a tremendous amount of attention lately,
due to the dramatic increase in the cost of raw materials and the pressing need for energy savings. Spurred
by the development of efficient mathematical programming techniques and the rise in computational power,
shape and topology optimization is by now a fairly mature discipline, which is able to handle increasingly
realistic situations; it is nowadays employed in a whole gammut of physical and industrial applications, in
structural mechanics, fluid mechanics, electromagnetism, etc. We refer to [7, 8, 21, 79] for overviews of such
applications and for expositions of the main numerical frameworks.

The present investigations arise in a context which slightly differs from the prevalent studies in shape and
topology optimization, while leveraging the main concepts: we aim to optimize the shape of a region G ⊂ S
of a fixed surface S ⊂ Rd. More precisely, we consider the problem

(4.9) min
G⊂S

J(G),

where J(G) is the considered objective function; for the sake of simplicity, we omit constraints in this
formulation, although they could be brought into play without much additional difficulty. We refer to e.g.
[45, 101, 105] for various concrete applications of this setting.

The numerical solution of a problem such as (4.9) hinges on the derivative of the objective J(G). This
notion can be given various meanings, and in the present study, we use an adapted version of the boundary
variation method of Hadamard, see [8, 47, 67, 82, 95]. In a nutshell, we consider variations of the region G
of the form

(4.10) Gθ := (Id + θ)(G), where θ ∈W 1,∞(Rd,Rd) is a “small” tangential vector field:

||θ||W 1,∞(Rd,Rd) < 1 and θ · n = 0,

see Fig. 15 for an illustration. The function J(G) is then said to be shape differentiable at G if the underlying
mapping θ 7→ J(Gθ), from W 1,∞(Rd,Rd) into R, is Fréchet differentiable at θ = 0. Denoting by J ′(G)(θ)
the corresponding “shape derivative”, the following expansion holds:

J(Gθ) = J(G) + J ′(G)(θ) + o(θ), where
|o(θ)|

||θ||W 1,∞(Rd,Rd)

θ→0−−−→ 0.

Remark 4.1. The considered variations Gθ of a region G ⊂ S in (4.10) are defined from tangential vector
fields θ, accounting for a sliding displacement of G while the ambient surface S remains unaltered. Note
that this operation does not exactly leave S invariant, which is only observed at “first order” in terms of θ;
a definition of the variation Gθ involving the flow of the tangential vector field θ would enforce strictly this
property, as in the so-called velocity method discussed in [95]. For simplicity, and since both approaches yield
the same notion of first-order derivative of a function J(G), we ignore this technicality in the following.
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On a different note, variations (4.10) of a region G ⊂ S can be defined from non tangential vector fields θ,
resulting in an additional “normal” motion of the surface S itself. This allows to optimize jointly the shape
of the underlying surface and that of the region G, as in our previous work [45].

Under mild assumptions, the shape derivative J ′(G)(θ) of a function J(G) of the region G ⊂ S turns out
to be of the form

(4.11) J ′(G)(θ) =

∫
Σ

vG θ · nΣ d`,

where the scalar field vG : Σ → R depends on the region G and the considered objective function J(G).
Depending on the nature of the latter, the expression of vG may involve the solution to one or several
boundary value problems attached to S and G, see for instance (4.11) below. The structure (4.11) readily
yields a descent direction for J(G) as θ = −vGnΣ. In practice, more involved strategies are often used to
extract a suitable descent direction, see e.g. [7] and the references therein.

The numerical implementation of these concepts fits in the general context of the evolution of a region
G(t) within a surface S ⊂ Rd discussed in Section 2. Introducing a pseudo-time t, one considers the evolution
G(t) of the region starting from an initial guess G0 ⊂ S, under the effect of the velocity field

V (t, x) = −vG(t)nΣ(t),

where vG is defined in (4.11). This resulting sequence of regions G(t) smoothly decreases the value of the
criterion J(G) until a (local) minimizer of (4.9) is attained. The numerical realization of this program can
be conducted by applying Algorithm 1.

Remark 4.2.

• Shape optimization problems of the form (4.9) are usually ill-posed, due to the so-called homogeniza-
tion effect: briefly, to get optimal with respect to a rather arbitrary criterion J(G) the shape G tends
to develop very thin patterns, up to the “microscopic” level, see e.g. [2, 8] about this phenomenon.
This effect also explains the existence of multiple local minima.

• The method of Hadamard, relying on variations of a region G of the form (4.10) does not allow for all
types of topological changes: separate parts of the boundary Σ of the optimized region G may collide
and merge, but no hole can emerge inside G. Since the problem (4.9) has multiple local minimizers,
this makes the optimization process very sensitive to the initial design. To remedy this, the above
setting is usually complemented with topological derivatives – a notion of sensitivity of J(G) with
respect to the nucleation of small holes. The development of such techniques in the present context
is the subject of future work, see Section 5.

4.4.2. A model optimization problem of the regions supporting boundary conditions of a thermal mechanics
problem

In order to illustrate the general setting of Section 4.4.1, we consider a situation in thermal mechanics which
elaborates on our previous work [45]. Let Ω be a fixed, smooth domain in Rd, made of a material with
smooth thermal conductivity satisfying

There exist 0 < α ≤ β <∞ s.t. ∀x ∈ Ω, α ≤ γ(x) ≤ β.

As depicted on Fig. 15, the boundary S = ∂Ω is divided into three disjoint regions:

S = G ∪ ΓN ∪ Γ, G ∩ ΓN = ∅,

where

• A heat flux g ∈ L2(ΓN ) is imposed on ΓN ;
• The temperature is maintained at fixed temperature 0 on G;
• The domain Ω is insulated from the outside on Γ.

23



Assuming that a heat source f ∈ L2(Ω) is acting within the medium, the temperature uG inside Ω is then
the unique solution in H1(Ω) to the following boundary value problem:

(4.12)


−div(γ∇uG) = f in Ω,

uG = 0 on G,

γ ∂uG

∂n = g on ΓN ,

γ ∂uG

∂n = 0 on Γ.

In this situation, we aim to identify the geometry of the region G which minimizes the temperature within
the domain Ω, namely, we consider the shape optimization problem (4.9), involving the functional J(G)

J(G) = T (G) + `Per(G),

where T (G) is the mean temperature inside Ω:

T (G) =
1

|Ω|

∫
Ω

uG dx,

and Per(G) =
∫
G

ds is the surface area of G.
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Figure 15. Optimization of the region G of the boundary S of a shape with respect to a
physical performance criterion by the method of Hadamard in Sections 4.4.1 and 4.4.2.

Beyond the classical issues associated to the computation of shape derivatives, the present situation raises
a number of issues, which are notably due to the weak singularity of the solution uG to (4.12) near Σ, see
[66]. To alleviate these, following [45], we consider an approximate version Tε(G) of the mean temperature
functional T (G), which leads to the approximate objective Jε(G) defined by:

(4.13) Jε(G) = Tε(G) + `Per(G), where Tε(G) =
1

|Ω|

∫
Ω

uG,ε dx,

and uG,ε is the solution to an approximate version of (4.12) where the transition Σ := ∂G between G and Γ
is smoothed:

(4.14)


−div(γ∇uG,ε) = f in Ω,

γ
∂uG,ε

∂n + hεuG,ε = 0 on G ∪ Γ,

γ
∂uG,ε

∂n = g on ΓN .

In this formulation, hε : S → R is defined by:

(4.15) hε(x) =
1

ε
h

(
dG(x)

ε

)
,
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bringing into play the signed distance function dG to G on ∂Ω, and h : R→ R satisfies:

(4.16) 0 ≤ h ≤ 1, h ≡ 1 on (−∞,−1), h(0) > 0, h ≡ 0 on [1,∞).

Omitting details for simplicity, the shape derivative of the resulting functional Jε(G) can be approximated
by the following formula:

(4.17) For any tangential deformation θ, J ′ε(G)(θ) ≈ − 1

ε2

∫
Σ

uG,ε pG,ε θ · nΣ d`+ `

∫
Σ

θ · nΣ d`,

where uG,ε ∈ H1(Ω) is the solution to (4.14), and pG,ε ∈ H1(Ω) is the solution to the adjoint problem:

(4.18)


−div(γ∇pG,ε) = −1 in Ω,

γ
∂pG,ε

∂n + hεpG,ε = 0 on G ∪ Γ,

γ
∂pG,ε

∂n = 0 on ΓN ,

see [3, 45] for the details.

4.4.3. Numerical example

In order to appraise the efficiency of the proposed framework, we consider the mechanical part Ω depicted
on Fig. 16. The latter is equipped with a tetrahedral mesh K. Here, the conductivity of the material is set
to γ ≡ 1, the volumetric source f identically equals 1 and the region ΓN where inhomogeneous Neumann
boundary conditions are imposed is empty.

Figure 16. Illustration of the mechanical part Ω where boundary conditions are optimized
in Section 4.4.3.
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In this setting, we solve the following unconstrained shape optimization problem associated to the func-
tional Jε(G) in (4.13):

(4.19) min
G⊂S

Jε(G), where Jε(G) = Tε(G) + `Per(G),

and the Lagrange multiplier ` is set to 0.01. The average size of the mesh edges equals h = 0.07. A few
intermediate designs obtained in the course of the optimization process are displayed in Fig. 17; the final
design and the associated convergence history are reported on Fig. 18. The values of the objective function
Jε(G) smoothly decrease to a local minimum. Interestingly, the optimization process starts by expanding
the region G endowed with homogeneous Dirichlet boundary conditions in an attempt to minimize the mean
temperature Tε(G) within Ω. Then, the algorithm attempts to distribute this region everywhere in S while
avoiding to create patterns with large area, which results in the creation of tree-like branches. This branching
phenomenon agrees with typical results in the optimal design of thermal structures, see for instance [57],
and it is rooted in the homogenization theory [2].

The very same problem (4.19) is considered with the same initialization, but the different numerical
parameters ` = 0.05 and h = 0.05; the optimized regionG resulting from this experiment and the convergence
history are reported on Fig. 19.

5. Conclusions and perspectives

In this article, we have proposed an efficient numerical framework for tracking arbitrarily large evolutions
of a region G(t) embedded within a fixed (two- or) three-dimensional surface S. Our method critically
hinges on the combination of an explicit representation of G(t) (i.e. with a high-quality mesh) allowing
for precise geometric and mechanical computations, with the level set method for capturing its (possibly
dramatic) motion. The cornerstone of this strategy is a set of efficient numerical algorithms for passing from
one representation to the other. Beyond its numerical validation, we have illustrated the efficiency of this
strategy with two physical applications: the evolution of a fire front under a velocity field depending on
its geometric features and on those of the landscape surface S, and the optimization of the region of the
boundary S = ∂Ω of a 3d domain Ω bearing the homogeneous Dirichlet boundary condition of a related
problem in thermal mechanics.

These developments pave the way to multiple interesting applications that we intend to consider in
the near future. Notably, elaborating upon our previous work [45], we wish to extend the range of the
model example of Section 4.4 to different mechanical contexts, including that of linearly elastic mechanical
structures, where the optimization of regions supporting boundary conditions encompasses the design of
fixture systems. Furthermore, leveraging the results of the recent contribution [24], we wish to design and
incorporate a notion of topological derivative dedicated to the optimization of such regions. On a different
note, and on a perhaps longer term, we wish to investigate the reinforcement and design of openings in shell
structures, whose delicate mechanical equations could benefit from the datum of a high-quality, body-fitted
computational meshes.
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discussions which initially motivated this work and consistently oriented its realization. This work was
completed while C. D. was visiting the Laboratoire Jacques-Louis Lions from Université Paris-Sorbonne,
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[10] M. Ambroz, M. Balažovjech, M. Medl’a, and K. Mikula, Numerical modeling of wildland surface fire propagation
by evolving surface curves, Advances in Computational Mathematics, 45 (2019), pp. 1067–1103.

[11] H. B. Ameur, M. Burger, and B. Hackl, Level set methods for geometric inverse problems in linear elasticity, Inverse

Problems, 20 (2004), p. 673.
[12] R. Anderson, J. Andrej, A. Barker, J. Bramwell, J.-S. Camier, J. Cerveny, V. Dobrev, Y. Dudouit, A. Fisher,

T. Kolev, et al., Mfem: A modular finite element methods library, Computers & Mathematics with Applications, 81
(2021), pp. 42–74.

[13] B. Ayuso and L. D. Marini, Discontinuous galerkin methods for advection-diffusion-reaction problems, SIAM Journal

on Numerical Analysis, 47 (2009), pp. 1391–1420.

[14] T. J. Baker, Mesh movement and metamorphosis, Engineering with Computers, 18 (2002), pp. 188–198.
[15] G. Balarac, F. Basile, P. Bénard, F. Bordeu, J.-B. Chapelier, L. Cirrottola, G. Caumon, C. Dapogny, P. Frey,

A. Froehly, et al., Tetrahedral remeshing in the context of large-scale numerical simulation and high performance
computing, to appear in Maths in Action, (2021).

[16] J. H. Balbi, F. Morandini, X. Silvani, J. B. Filippi, and F. Rinieri, A physical model for wildland fires, Combustion

and Flame, 156 (2009), pp. 2217–2230.
[17] J.-H. Balbi, J.-L. Rossi, T. Marcelli, and P.-A. Santoni, A 3d physical real-time model of surface fires across fuel

beds, Combustion Science and Technology, 179 (2007), pp. 2511–2537.

[18] J. Baptiste Filippi, F. Bosseur, C. Mari, C. Lac, P. Le Moigne, B. Cuenot, D. Veynante, D. Cariolle, and J.-H.
Balbi, Coupled atmosphere-wildland fire modelling, Journal of Advances in Modeling Earth Systems, 1 (2009).

[19] N. Barral and F. Alauzet, Three-dimensional cfd simulations with large displacement of the geometries using a

connectivity-change moving mesh approach, Engineering with Computers, 35 (2019), pp. 397–422.
[20] T. J. Barth and J. A. Sethian, Numerical schemes for the hamilton–jacobi and level set equations on triangulated

domains, Journal of Computational Physics, 145 (1998), pp. 1–40.

28



a

b

Figure 19. (a) Optimized design (n = 60) in the boundary optimization process of the me-
chanical device considered in Section 4.4 with penalization parameter ` = 0.05 and meshsize
hmax = 0.05; (b) Convergence history.

[21] M. P. Bendsoe and O. Sigmund, Topology optimization: theory, methods, and applications, Springer Science & Business

Media, 2013.
[22] M. Bertalmıo, L.-T. Cheng, S. Osher, and G. Sapiro, Variational problems and partial differential equations on

implicit surfaces, Journal of Computational Physics, 174 (2001), pp. 759–780.

[23] M. Bertalmio, G. Sapiro, and G. Randall, Region tracking on level-sets methods, IEEE transactions on Medical
Imaging, 18 (1999), pp. 448–451.

[24] E. Bonnetier, C. Dapogny, and M. S. Vogelius, Small perturbations in the type of boundary conditions for an elliptic
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