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Introduction

Mathematical modeling (e.g. [START_REF] Da | Modeling: The human approach to science[END_REF] involves using variables to represent quantities being modeled as well as transformations and operations taking place onto and among variables belonging to some structured space (vector space). Of particular importance because of their relative simplicity and ample applications are linear spaces, linear transformations, as well as bilinear operations.

Arguably, the scalar product is not only among the most central mathematical concepts, with wide theoretical and applied perspectives, but is also one the most important bilinear operation between two generic vectors.

The importance of the scalar product stems directly from its several properties and relationships with other key mathematical concepts, including the concepts of inner product, linear transformations, projections, distance, similarity and its sensitivity, as well as quadratic forms.

The integrated study of these relationships of the scalar product not only contributes to realizing the central role of the scalar product, but also provides a better and more integrated understanding of its possible characteristics, paving the way to several related applications. As it often happens in scientific modeling, the larger the number of perspectives from which a concept is approached, the more complete and integrated our respective understanding will turn out to be. Fortunately, most of the concepts involves in our presentation are also relatively simple, thus further contributing to a more accessible respective familiarization. Even so, a more effective read-ing of the present work will greatly benefit from preliminary familiarization with basic mathematical concepts. Related references providing related background as well as complementary material have been included.

The present work aims at describing and discussing the several above relationships of the scalar product. We start by providing some context in terms of the concepts of vector spaces and linear transformations and then proceeds by presenting, illustrating and commenting on each of the relationships between the scalar product and the related concepts observed above.

Vector Spaces and Linearity

The concept of vector space (also linear space) is central not only in mathematics, but also in virtually every scientific and technological areas that employ mathematics. Vector spaces are typically studied in Linear Algebra (e.g. [START_REF] Hubbard | Vector Calculus, Linear Algebra, and Differential Forms: A Unified Approach[END_REF][START_REF] Spence | Elementary linear algebra[END_REF][START_REF] Hoffman | Linear Algebra[END_REF]).

Basically, a vector space -VS for short -includes a set of vectors and operations obeying some special properties that enable well-defined handling of the involved vectors. For instance, the sum of two vectors in a VS is guaranteed to be a valid vector in that same VS, meaning that the this operation closed.

Two operations are considered respectively to a VS: product of a vector by a scalar '.', and sum of two vectors '+'. The scalars are values of a respective field F , such as the real or complex numbers. A field is a set of elements provided with addition and product operations 1 satisfying a number of requisites. Therefore, a VS can be represented by the tuple (V, ., +, F ), where V stands for the set of the vectors themselves. We henceforth limit our attention to F = R.

Importantly, vectors of a VS are understood in a broad sense, encompassing not only traditional vectors in R N , but also functions, matrices, fields, etc. Henceforth, we shall consider only R N .

An incomplete list of the properties that need to be satisfied by a VS is given in the following:

(i): Vector addition is commutative;

(ii): Vector addition is associative;

(iii): Scalar product is distributive respectively to vector addition;

The basic operation on a single vector ⃗ x in a VS of dimension N can be expressed as:

⃗ y = T (⃗ x) = A ⃗ x, α ∈ R (1) 
where ⃗ y belongs to the VS and A is an N × N matrix of real valued entries. T is typically called a transformation.

When applied to the vector ⃗ x = α ⃗ x + β ⃗ y, the above transformation can be developed, by using the property (iii) above, as follows:

T (α ⃗ x + β ⃗ y) = A (α ⃗ x + β ⃗ y) = α A ⃗ x + β A ⃗ y (2)
This result, which follows from property (iii) above, ensures the linearity of the transformation T , hence the term linear space being often used as a synonym of VS.

An important result from Linear Algebra states that any linear transformation, even for other types of vectors such as functions and matrices, can be placed in the form indicated in Equation 1.

Though the operations in a given VS are in principle restricted to the product by scalar and sum of vectors, it may also possess other well-defined operations and properties. For instance, we may have binary operations taking two vectors ⃗ x and ⃗ y as input and yielding a respective result R, i.e.:

R = B (⃗ x, ⃗ y) (3) 
Bilinear operations are a special type of binary operations that need to be linear respectively to both operands, i.e.:

L (α ⃗ x + β ⃗ w, ⃗ y) = α L (⃗ x, ⃗ y) + β L ( ⃗ w, ⃗ y) ; (4) 
L (⃗ x, α ⃗ y + β ⃗ w) = α L (⃗ x, ⃗ y) + β L (⃗ x, ⃗ w) ; (5) 
An example of bilinear operation is:

L (⃗ x, ⃗ y) = α ⃗ x + β ⃗ y (6) 
where α, β ∈ R.

As an example of binary operation which is not bilinear is the Euclidean distance between two vectors ⃗

x = [x 1 x 2 . . . , y N ] T and ⃗ y = [y 1 y 2 . . . y N ] T in R N , repre- sented in Cartesian coordinates: D E (⃗ x, ⃗ y) = N k=1 (x k -y k ) 2 (7) 
3 Inner Products

Given a VS with F = R, a respective inner product ⟨⃗ x, ⃗ y⟩ (in case it exists) is a bilinear operation satisfying the following properties:

I. Symmetry: ⟨⃗ x, ⃗ y⟩ = ⟨⃗ y, ⃗ x⟩ II. Positive-definiteness: For ⃗ x ̸ = ⃗ 0 : ⟨⃗ x, ⃗ x⟩ > 0
Interestingly, in general terms the inner product is not necessarily the same as the scalar product (also dot product). The identity between these two mathematic concepts takes place if and only the vectors of a specific VS are represented in terms of a Cartesian coordinate system, therefore involving an orthonormal basis.

A vector space provided with a respective inner product constitutes what is called a Hilbert space.

The Scalar Product

In R N with column vectors represented in terms of Cartesian coordinate systems, the scalar product between two respective vectors ⃗

x = [x 1 x 2 . . . x N ]
T and

⃗ y = [y 1 y 2 . . . y N ]
T can be expressed as:

⃗ x • ⃗ y = N i=1 x i y i (8) 
We also have that:

⃗ x • ⃗ y = |⃗ x| |⃗ y| cos(θ) ( 9 
)
where θ is the smallest angle between the two vectors and |⃗ x| stands for the magnitude or Euclidean norm of ⃗ x.

Figure 5 illustrates two generic vectors ⃗ x and ⃗ y and the smallest angle θ between them.

Still another way to define the scalar product is in terms of the following matrix equation: As an numeric example of scalar product, consider:

⃗ x • ⃗ y = ⃗ x T ⃗ y = x 1 x 2 . . . x N     y 1 y 2 . . . y N     (10)
⃗ x = -1 -1 2 2 T ⃗ y = 1 1 1 1 T We then have that ⃗ x • ⃗ y = 2.

Scalar Product and Linear Combinations

One of the simplest examples of relationship of the scalar product is with the concept of linear combination. Given a variable vector

⃗ x = [x 1 x 2 . . . x N ]
T and a vector of co-

efficients ⃗ c = [c 1 c 2 . . . c N ]
T , the quantity:

λ = ⃗ c • ⃗ x = c 1 x 1 + c 2 x 2 + . . . + c N x N (11) 
is said to be a linear combination of the variables x i . An example of linear combination is the weighted arithmetic average of the values of ⃗ x, which corresponds to the quantity:

λ = 1 N i=1 w i ⃗ w • ⃗ x (12) 
where ⃗ w is a vector of respective weights. Another interesting application of linear combinations takes place in artificial neuronal networks (e.g. [START_REF] Haykin | Neural Networks and Learning Machines[END_REF]), in which the scalar product can be used as a means to express the action of the synaptic weights ⃗ w onto the respective synaptic input values ⃗ x.

Scalar Product and Linear Transformations

As reviewed in Section 2, any linear transformation of any vector ⃗ x in any vector space can be expressed in terms of the following matrix product:

⃗ y = A ⃗ x ( 13 
)
where A is here taken to be a real-valued square matrix with dimension N × N . In the case of a vector ⃗ x in the vector space R N adopting Cartesian coordinates, we can write:

    y 1 y 2 . . . y N     =     a 1,1 a 1,2 . . . a 1,N a 2,1 a 2,2 . . . a 2,N . . . . . . . . . . . . a N,1 a N,2 . . . a N,N         x 1 x 2 . . . x N     (14) 
Interestingly, this matrix product can therefore be understood in terms of N scalar products between each successive line i of A and the vector ⃗ x, i.e.:

y i = [a i,1 a i,2 . . . a i,N ] T • ⃗ x (15) 
7 Scalar Product, Norm, and Distance

A norm is a mapping (functional) from a vector of a VS into a scalar value in the respective field F that satisfies certain properties. A same VS can have many norms. Given a vector ⃗ x ∈ R N , represented in terms of a Cartesian coordinate system, a respective norm, called Euclidian, can be expressed as:

|⃗ x| = N k=1 x 2 k (16)
A VS provided with a respective norm is called a Banach space. Every Hilbert space is a Banach space, but not vice-versa. Banach spaces are necessarily metric, but the opposite is not verified. In the case of a Hilbert space, we can write:

(⃗ x -⃗ y) • (⃗ x -⃗ y) = |⃗ x -⃗ y| 2 = N k=1 (x k -y k ) 2 (17) 
A distance D(⃗ x, ⃗ y) between two vectors is a binary operator satisfying specific properties, including the distance from a vector to itself is null, the distance between two distinct vectors is greater than zero, it is symmetric ('commutative'), and it obeys the following triangular inequality:

D(⃗ x, ⃗ z) ≤ D(⃗ x, ⃗ y) + D(⃗ y, ⃗ z) (18) 
The Euclidean distance between two vectors ⃗ x and ⃗ y can then be expressed as:

D E (⃗ x, ⃗ y) = (⃗ x -⃗ y) • (⃗ x -⃗ y) = N k=1 (x k -y k ) 2 =⇒ . =⇒ D E (⃗ x, ⃗ y) = |⃗ x -⃗ y| (19)
8 Scalar Product and Projections

Equation 27 establishes an interesting relationship between the scalar product of two vectors and the two respective projections one into the other, as illustrated in Figure 3. More specifically, we can write:

|⃗ x| cos(θ) = ⃗ x • ⃗ y |⃗ y| (20) |⃗ y| cos(θ) = ⃗ x • ⃗ y |⃗ x| (21) 
Therefore, both projections can be readily obtained from the scalar product and magnitude of the vector receiving the projection of the other. This property is particularly useful in geometric situations such as when defining a straight line that is parallel to a given vector ⃗ x. The points along this line can be shown to correspond to the vectors ⃗ y such that:

|⃗ y| cos(θ) = ⃗ x • ⃗ y |⃗ x| = c 1 =⇒ =⇒ ⃗ x • ⃗ y = c 2 (22) 
where c 1 and c 2 are real-valued constants. 

Scalar Product and Similarity

We have from Equation 27, for |⃗ x| |⃗ y| constant, that the scalar product ⃗ x • ⃗ y can be understood to be proportional to cos(θ). This means that two co-aligned vectors (see Fig. 5) ⃗ x and ⃗ y = α ⃗ x, with α being a positive real value, will imply:

α (⃗ x • ⃗ x) = α |⃗ x| |⃗ x| cos(θ) =⇒ =⇒ N i=1 x 2 i = N i=1 x 2 i cos(θ) ( 23 
)
leading to cos(θ) = 1, defining the maximum value that this inner product can take as: Two anti-aligned vectors are similarly characterized by ⃗ x and ⃗ y = -α ⃗ x, α being a negative real value, leading to cos(θ) = -1, leading to the following minimum value that this inner product can take:

(⃗ x • ⃗ y) max = |⃗ x| |⃗ y| = α |⃗ x| 2 (24) 
(⃗ x • ⃗ y) min = -|⃗ x| |⃗ y| = -α |⃗ x| 2 (25)
Two orthogonal vectors have θ = π/2, implying ⃗ x • ⃗ y = 0, with cos(θ) = 0, thus determining the minimum absolute value that this inner product can take:

(⃗ x • ⃗ y) abs = 0 (26)
As such, the inner product between two vectors with constant magnitude can be understood as a quantification of the similarity between the angles of two vectors, reaching its maximum value for θ = 0, its minimum for θ = π and its minimum absolute value for θ = π/2. Because the magnitudes of the two vectors have been assumed to be kept constant, the inner product will actually provide a quantification of the similarity between the two vectors.

The case in which the magnitudes of the vectors ⃗ x and ⃗ y are not kept constant, or at least bounded, the inner product will no longer be upper or lower bounded. In these situations, it becomes particularly interesting to consider the quantity:

S c (⃗ x, ⃗ y) = cos(θ) = |⃗ x| |⃗ y| ⃗ x • ⃗ y (27) 
as an indication of the angular similarity between the two vectors. This similarity index is commonly known as the cosine similarity.

As it is often that case that high sensitivity be achieved when comparing similar vectors, it is often interesting to consider other similarity indices including the Jaccard and coincidence (e.g. [START_REF] Da | Further generalizations of the Jaccard index[END_REF][START_REF] Da | Coincidence complex networks[END_REF][START_REF] Da | On similarity[END_REF][START_REF] Da | Multiset neurons[END_REF]).

The Sensitivity of the Scalar Product

The relatively blunt shape of the inner product around the peak similarity in Figure 6 suggests that it is interesting to quantify in a more systematic and objective manner the way in which the scalar product changes with modfiications in any of the two vectors ⃗ x and ⃗ y in R N .

In the case all elements in the two vectors are kept constant, except for the element x i , we can readily write:

∂ (⃗ x • ⃗ y) ∂x i = x i N k=1 y k (28)
It follows that a local modification of ⃗ x in only one of its N elements will imply an overall change in the respective scalar product that is proportional to both x i and the sum of the values of the elements of the vector ⃗ y.

The incremental alterations of the inner product with small modifications of the magnitude of each of the two vectors can be expressed as:

∂ (⃗ x • ⃗ y) ∂|⃗ x| = |⃗ y| cos(θ) (29) ∂ (⃗ x • ⃗ y) ∂|⃗ y| = |⃗ x| cos(θ) (30) 
So that changes in the magnitude of one of the vectors induce variation of the inner product that is proportional to the magnitude of the other vector and to cos(θ). Therefore, these variations are larger when the two vectors are co-linear or anti-aligned.

The variations of the inner product respectively to modifications of θ can be expressed as:

∂ (⃗ x • ⃗ y) ∂θ = -|⃗ x| |⃗ y| sin(θ) (31) 
Figure 7 illustrates this partial derivative in terms of θ assuming both vectors to have unit magnitude, which confirms that the smallest absolute sensitivity of the inner product takes place precisely when the two compared vectors are nearly aligned. The maximum absolute sensitivity occur for nearly orthogonal vectors. 

The Scalar Product and Quadratic Forms

A polynomial on several variables x i , i = 1, 2, . . . , N , having all terms in the form x i x j , i, j = 1, 2, . . . , N , is said to be a quadratic form.

Examples of quadratic forms include:

x 2 + 3xy -2y 2 x 2 1 + 2x 1 x 2 + 2x 1 x 3 + x 2 3 x 1 x 2 + x 2 x 3 -x 3 x 4
The inner product of any two variable vectors ⃗ x and ⃗ y is, by construction, a quadratic form. In the particular case in which

⃗ x = ⃗ y = [x 1 x 2 ]
T , we have:

(⃗ x • ⃗ x) = x 2 1 + x 2 2 (32)
Let W be a real-valued square matrix. We can then write:

(⃗ x • ⃗ x) W = ⃗ x T W ⃗ x (33) 
Observe that the introduction of the matrix W allows terms corresponding to pairwise combinations between distinct elements of ⃗ x, therefore generalizing the representable quadratic forms. For instance, if we make:

W =   1 1 0 1 0 0 0 1   ( 34 
)
it follows that:

⃗ x T W ⃗ x = x 1 x 2 x 3   1 0 1 0 1 0 0 0 1     x 1 x 2 x 3   = = x 2 1 + x 1 x 3 + x 2 2 + x 2 3
As another example, consider ⃗ x = [x 1 x 2 x 3 ] and the specific situation in which the matrix W is diagonal:

W =   a 0 0 0 b 0 0 0 c   (35) 
It follows that:

(⃗ x • ⃗ x) W = ⃗ x T W ⃗ x = a x 2 1 + b x 2 2 + c x 2 3 ( 36 
)
An important application of the weighted scalar product in statistics takes place respectively to the multivariate normal density (e.g. [START_REF] Johnson | Applied multivariate analysis[END_REF]) respective to a random vectors ⃗ X in R N , which can be expressed as:

N ( ⃗ X, ⃗ µ, K) = exp -1 2 ( ⃗ X -⃗ µ) T K -1 ( ⃗ X -⃗ µ) (2π) N det K ( 37 
)
where µ is the average vector and K is the covariance matrix of the random vector ⃗ X.

12 Higher Order Scalar Products

Though the classic scalar product applies to a pair of vectors yielding quadratic forms, it can be readily extended to more vectors, yielding higher order forms. This can be done by composing the scalar product, such as:

⃗ x • (⃗ y • ⃗ z) = N i=1 x i y i z i (38) 
which yields third order terms. For simplicity's sake, we can write:

⃗ x • ⃗ y • ⃗ z = ⃗ x • (⃗ y • ⃗ z) = (⃗ x • ⃗ y) • ⃗ z (39) 
We also have from the commutativity of the scalar product that:

⃗ x • ⃗ y • ⃗ z = ⃗ x • ⃗ z • ⃗ y = ⃗ y • ⃗ x • ⃗ z = = ⃗ y • ⃗ z • ⃗ x = ⃗ z • ⃗ x • ⃗ y = ⃗ z • ⃗ y • ⃗ x (40)
13 Concluding Remarks

Several properties, interpretations, relationships, and applications of the bilinear operator known as the scalar product have been presented, illustrated, and discussed. The fact that this operation has so many associations substantiates its key importance, not only in the mathematical area of Linear Algebra, but in several other mathematical domains as well as in the physical sciences in general.

Among the several described concepts, we have seen that the scalar product is intrinsically related to the important concepts of linear combinations, averages, norms, distances, projections, similarities, and quadratic norms. Some of its several applications have been illustrated in terms of modeling the linear operation of neuronal cells, and as a central element in the definition of the multivariate normal density.

A large number of other relationships and applications of the scalar product exist, including the basic role played by this bilinear operation respectively to the important operations of correlation and convolution (e.g. [START_REF] Brigham | Fast Fourier Transform and its Applications[END_REF][START_REF] Da | Convolution! Researchgate[END_REF]), which are fundamental in the area of Deep Learning (e.g. [START_REF] Schmidhuber | Deep learning in neural networks:an overview[END_REF][START_REF] De Arruda | Learning deep learning. Researchgate[END_REF]). The scalar product also plays a key role in Analytic Geometry, as while defining a plan in terms of constant scalar products, as well as Multivariate Calculus (e.g. [START_REF] Edwards | Calculus with geometry analytic[END_REF][START_REF] Larson | Calculus with analytic geometry[END_REF]).

A number of additional properties and relationships of the scalar product arise respectively to the more general operation of inner product while considering more general vectors including functions and matrices. In the former case, it can be shown (e.g. [START_REF] Brigham | Fast Fourier Transform and its Applications[END_REF][START_REF] Da | Convolution! Researchgate[END_REF]) that the coefficients in Fourier series and Fourier transform can be understood as corresponding to the inner product between the signal under analysis and each of the Fourier basic functions. Similarly, multidimensional Fourier series and plane waves can also be understood in terms of inner products.

Another interesting subject to be studied concerns the concept of inner product in non-Cartesian coordinate systems as well as non-linear spaces, involving multivariate Taylor series and Gramian matrices (e.g. [START_REF] Da | A journey into the multifaceted universe of coordinates change, basis transformation, dual spaces, and invariance[END_REF][START_REF] Da | Nonlinear vector fields: An interconnected approach[END_REF]).

It is hoped that the present work may help and motivate the reader to pursue related studies and applications.
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 1 Figure 1: Two vectors ⃗ x and ⃗ y in R N and the smallest angle θ between them.

Figure 2 :

 2 Figure 2: The action of the synaptic efficiency on the synaptic input, leading to neuron depolarization can be represented, in a simplified manner, in terms of the scalar product between the synaptic input ⃗ x and the respective synaptic weights ⃗ w. Only the linear portion of the neuronal operation is represented, in simplified manner, in this figure.

Figure 3 :

 3 Figure 3: (a): The projection of vector ⃗ x onto vector ⃗ y can be expressed in terms of the respective scalar product given in Eq. 20. (b): A similar construction holds when projecting ⃗ y onto ⃗ x, respectively to Eq. 21.

Figure 4 :

 4 Figure4: Illustration of how the line (in magenta) that is orthogonal to a vector ⃗ x can be specified in terms of the geometrical positions of the vector ⃗ y so that ⃗ x • ⃗ y = constant.

Figure 5 :

 5 Figure 5: The three main situations regarding the relative orientation of two vectors ⃗ x and ⃗ y: (a) co-aligned, leading to cos(θ) = 1; (b) anti-aligned, leading to cos(θ) = -a; and orthogonal, implying cos(θ) = 0.

Figure 6 :

 6 Figure 6: The scalar product ⃗ x • ⃗ y between two vectors ⃗ x and ⃗ y with magnitudes equal to 1 in terms of the smallest angle θ between them. The values of this scalar product can be understood as providing a quantification of the similarity between the two vectors. In particular, observe that the similarity curve varies (magnitude of the first derivative) relatively little with θ around the peak of similarity (⃗ x • ⃗ y) max = 1.

Figure 7 :

 7 Figure 7: The sensitivity of the inner product between two vectors with unit magnitude in terms of θ. Null sensitivity is observed at the peak of similarity (θ = 0), while a paired extremes of sensitivity occur at θ = ±π/2.

Acknowledgments

Luciano da F. Costa thanks CNPq (grant 307085/2018-0) and FAPESP (grants 15/22308-2 and 2022/15304-4).

Observations

As all other preprints by the author, the present work contains preliminary work subject to further revision and validation. Respective modification, commercial use, or distribution of any of its parts are not possible, as this work has author copyright. Many of the preprints by the author are also available in Hal and/or arXiv. This work can also be cited by using the DOI number or article identification link. It is also interesting to check for new versions of this work, as they may become available. Thanks for reading.