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Noradrenergic alterations in Parkinson’s disease: a 1 

combined 11C-yohimbine PET/neuromelanin MRI study 2 

Chloé Laurencin,1,2 Sophie Lancelot,1,3 Sarah Brosse,1 Inés Mérida,3 Jérôme Redouté,3 Elise 3 

Greusard,3 Ludovic Lamberet,3 Véronique Liotier,3 Didier Le Bars,3 Nicolas Costes,3 Stéphane 4 

Thobois,2,4 Philippe Boulinguez1 and Bénédicte Ballanger1 5 

Abstract  6 

Degeneration of the noradrenergic system is now considered a pathological hallmark of 7 

Parkinson’s disease but little is known about its consequences in terms of parkinsonian 8 

manifestations. Here, we evaluate two aspects of the noradrenergic system using multimodal in 9 

vivo imaging in patients with Parkinson’s disease and healthy controls: the pigmented cell bodies 10 

of the locus coeruleus with neuromelanin sensitive MRI and the density of α2-adrenergic 11 

receptors (ARs) with PET using [11C]yohimbine. Thirty patients with Parkinson’s disease and 12 

thirty age- and sex-matched healthy control subjects were included. Patient’s symptoms 13 

characteristics were assessed using the MDS-UPDRS scale. Patients showed reduced 14 

neuromelanin signal intensity in the locus coeruleus compared to controls, and diminished 15 

[11C]yohimbine binding in widespread cortical regions including the motor cortex as well as in 16 

the insula, the thalamus and the putamen. Clinically, locus coeruleus neuronal loss was 17 

correlated with motor (bradykinesia, motor fluctuations, tremor) and non-motor (fatigue, apathy, 18 

constipation) symptoms. A reduction of α2-ARs availability in the thalamus was associated with 19 

tremor, while a reduction in the putamen, the insula and the superior temporal gyrus was 20 

associated with anxiety. These findings highlight a multifaceted alteration of the noradrenergic 21 

system in Parkinson’s disease since locus coeruleus and α2-ARs degenerations were found to be 22 

partly uncoupled. These findings raise important issues about noradrenergic dysfunctions that 23 

may encourage the search for new drugs targeting this system, including α2-ARs, for the 24 

treatment of Parkinson’s disease. 25 

 26 
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Introduction  1 

Parkinson’s disease is mostly characterized by the loss of dopaminergic neurons in the substantia 2 

nigra pars compacta. However, the neurodegenerative process also extends to other 3 

neurotransmission systems such as serotonin, or acetylcholine and noradrenaline, which 4 

contribute to motor and non-motor symptoms.1–4 The modulation and interactions of the complex 5 

interconnected non-dopaminergic networks with dopaminergic circuits are far from being fully 6 

understood, and the cascade of perturbations in these interconnected systems and associated 7 

circuits is still a central issue. Among these neurotransmitters, the norad renergic system is 8 

probably the most least well known.5,6–8  9 

Firstly, the direct role of the noradrenergic system in various cognitive functions is well 10 

documented.9 This includes specific functions like vigilance, attention and executive control, but 11 

also more transversal functions like learning, cognitive flexibility and working memory,8 or an 12 

even more general role in adaptive adjustments in gain that serve to optimize performance.10 It is 13 

important to point out that there is a major gap in our understanding of how these modulations 14 

apply to the motor circuits.11 The alteration of these functions might thus contribute to various 15 

parkinsonian manifestations.8 However, it is often under-recognized and its association with 16 

specific symptoms, in particular with the motor manifestations of the disease, is still unclear. 17 

Secondly, the effect of noradrenergic dysfunction in the manifestations of the disease might also 18 

be related to its antiparkinsonian and neuroprotective properties.12 The loss of noradrenergic 19 

neurons in the locus coeruleus (LC), the sole source of noradrenaline to the neocortex, 20 

hippocampus, cerebellum and thalamus (13 for review) which is estimated between 20 and 90%, 21 

precedes and exceeds the characteristic loss of dopaminergic neurons in the substantia nigra.14 22 

There is evidence mainly based on animal studies that noradrenergic loss may enhance 23 

neurotoxic damage to nigrostriatal dopaminergic neurons,15,16 and that, conversely, restoration of 24 

LC damaged system positively influences the recovery process of degenerated dopaminergic 25 

neurons.17,18 Taken together, these observations suggest that enhancing noradrenergic 26 

neurotransmission may facilitate both specific functions affected by the disease and the recovery 27 

process of dopaminergic neurons.19 Yet, therapeutic strategies targeting this system in 28 

Parkinson’s disease are still currently limited.7,20  29 
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The use of α2-adrenergic receptors (ARs) antagonists has recently been considered as a major 1 

possible target21 as it might potentiate noradrenaline availability by blocking presynaptic α2-ARs 2 

whose normal function is to regulate noradrenaline release.22–24 However, direct in vivo evidence 3 

of alteration of α2-ARs in parkinsonian manifestations is still lacking. This critical lack of 4 

knowledge, accompanied by substantial controversies on the neurofunctional bases of the 5 

noradrenergic system and its alteration in Parkinson’s disease,25,26 is mainly due to the lack of 6 

specific in vivo molecular imaging tools in humans. To date, in vivo imaging studies have only 7 

used presynaptic noradrenergic tracers of the noradrenergic transporter with [11C]MeNER. These 8 

studies have shown reduced tracer uptake, suggesting a diminished density of noradrenergic 9 

terminals, mainly in the thalamus, hypothalamus, LC and raphe nuclei.2,27 Regarding α2-ARs, 10 

most of our knowledge derives from animal studies or post-mortem samples of human brains.28,29 11 

Autoradiography studies suggest an alteration in α2-ARs in different brain regions (thalamus,30 12 

cerebellum,31 hypothalamus,32 and prefrontal cortex33). Here, we take advantage of recent 13 

methodological developments allowing in vivo imaging of the noradrenergic system in human 14 

with the novel PET radiotracer [11C]yohimbine,34–36 now available for use in large samples of 15 

human subjects to map differences in α2-ARs distribution between parkinsonian patients and 16 

matched controls. The [11C]yohimbine binds with high selectivity to all α2-ARs subtypes.37 It is 17 

displaced when there is competition at the receptor with endogenous noradrenaline, as shown by 18 

preclinical studies reporting reduced receptor binding by unlabeled yohimbine challenge, 19 

amphetamine administration or acute vagus nerve stimulation in preclinical studies37–39 and 20 

human studies reporting increased receptor binding after clonidine administration.34 21 

The objectives of the present study are to assess two aspects of noradrenergic neurodegeneration 22 

in Parkinson’s disease by means of hybrid MRI/PET imaging: lesions of pigmented cell bodies 23 

of the LC with neuromelanin-sensitive MRI and alterations of α2-ARs density with 24 

[11C]yohimbine PET. Assessing simultaneously noradrenergic terminals (with PET) and LC cell 25 

bodies (with MRI) is of primary importance given that their respective deficits may be 26 

uncoupled.40 To inform the disputed pathophysiological mechanisms of the disease, correlations 27 

between the observed noradrenergic dysfunctions and the standard clinical measures of 28 

Parkinson’s disease have been systematically tested. 29 

 30 
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Materials and methods  1 

Participants  2 

The demographics and clinical characteristics of the participants are listed in Table 1. We 3 

enrolled 30 Parkinson’s disease patients and 30 healthy controls matched for age, gender, and 4 

global cognitive functioning using the Montreal Cognitive Assessment (MoCA) score. Patients 5 

were diagnosed with Parkinson’s disease for at least 1 year in accordance with the Movement 6 

Disorder Society criteria.41 The Movement Disorder Society Revised Unified Parkinson’s 7 

Disease Rating Scale (MDS-UPDRS) was used to assess Parkinson’s disease symptoms, 8 

including separate assessments of non-motor symptoms (UPDRS-I), daily activity (UPDRS-II), 9 

motor symptoms (UPDRS-III), and motor complications (UPDRS-IV).42 In addition, the 39-item 10 

Parkinson’s Disease Questionnaire (PDQ-39) was used to evaluate quality of life.43 All patients 11 

were assessed in the “ON” state with their usual antiparkinsonian medication. Levodopa 12 

equivalent daily dose (LEDD) was calculated accord ing to previously published conversion 13 

rules.44 Most of the patients with PD were in the early and middle stage of their disease with a 14 

mean Hoehn & Yahr score of 1.8 and MDS-UPDRS-III score in the “on” state of 17.7 (±12.3). 15 

Exclusion criteria were medications that interfere with the noradrenergic system, a diagnosis of 16 

other neurological or psychiatric disorders, and the presence of major dyskinesia or tremor in the 17 

patients for technical imaging purposes. The study was conducted in accordance with the 18 

Declaration of Helsinki and approved by the local Ethical Committee in Biomedical Research 19 

(N◦ CPP 19_01_02/N◦EudraCT 2018-003999-13). Written informed consent was obtained from 20 

all the subjects before the study.  21 

Magnetic Resonance Imaging 22 

MRI data were acquired on a Biograph mMR (hybrid MRI/PET) including a whole brain high-23 

resolution anatomical 3D T1-weighted MPRAGE sequence in the sagittal plane (matrix size 256 24 

× 256 × 176, voxel size 1 × 1 × 1 mm3), and a 2D axial turbo spin-echo (TSE) sequence (in plane 25 

resolution 0.4 × 0.4 mm2, slice thickness 3 mm, matrix size 464 × 512 × 15) which provided a 26 

neuromelanin-sensitive MRI.  27 
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Voxel-based morphometry analysis  1 

To exclude the possibility that structural degeneration affects the results of [11C]yohimbine 2 

binding, voxel-based morphometry (VBM) analysis was conducted. Standard VBM 3 

preprocessing protocol of the Computational Anatomy Toolbox (CAT12, http://www.neuro.uni-4 

jena.de/cat/) running on Statistical Parametric Mapping (SPM12; Welcome Trust Centre for 5 

Neuroimaging, University College, London, UK) was employed. Briefly, each 3D T1-weighted 6 

image was bias-corrected and segmented into grey matter, white matter and cerebrospinal fluid 7 

tissue classes using SPM’s unified segmentation function. The grey matter segmentation 8 

probability maps were spatially transformed to the Montreal Neurological Institute (MNI) 9 

standard space using the ICBM-152 template according to the DARTEL approach with default 10 

settings in 1.5 mm cubic resolution, and then smoothed with a Gaussian kernel of 8 mm full-11 

width-at-half-maximum. Lastly, to correct for individual differences in brain size, the Total 12 

Intracranial Volume (TIV) was estimated for each subject using CAT12 interface (Statistical 13 

Analyses – Estimate TIV), as the sum of the grey matter, white matter, and CSF volumes. 14 

Neuromelanin-sensitive MRI analysis  15 

To calculate signal intensity in the LC, an approach similar to that published by García-Lorenzo 16 

and colleagues6 was implemented. First, two regions were manually drawn on the T1 MRI high 17 

resolution MNI template using FSLeyes (FSL v5.0.11, FMRIB, Oxford, UK). These two regions 18 

(one for each side) were defined as large 3D bounding boxes and placed around the hyperintense 19 

voxels at the lateral border of the fourth ventricle so that they included the LC, but excluded the 20 

substantia nigra which also contains neuromelanin.45 In addition, we used the central reference 21 

mask freely available to normalize the intensity of the LC.46 These three regions were then 22 

wrapped and resampled onto the subject’s neuromelanin-sensitive T1 image using SPM12. Using 23 

FSL functions, the LC was defined as the area of the 10 voxels with the brightest intensity within 24 

each bounding box. We considered the intensity of the LC as the average of the intensities of  the 25 

10 voxel region (Fig. 1). The contrast-to-noise ratio (CNR) was calculated for each LC (right and 26 

left) as CNRLC=(SLC-SREF)/SREF where SLC and SREF correspond to the mean signal intensity of 27 

the LC and the reference region respectively. Normalization of the LC signal to a central 28 

reference region (pons) to calculate the CR by relative difference has been the most commonly 29 

used and recommended method in previous studies.47 30 
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[11C]yohimbine PET 1 

Radiosynthesis of [11C]yohimbine was performed as previously described.37 The radiochemical 2 

purities of syntheses used for the study were greater than 95%, with molar activities of 85 ± 30 3 

GBq/μmol at the end of synthesis. All subjects received an intravenous bolus injection of 370 4 

MBq ± 10% of [11C]yohimbine. List-mode PET data were acquired during the 90 min from the 5 

injection of the tracer. MRI data were acquired simultaneously.  6 

Raw PET data were corrected for motion,48 and then rebinned into 24 time frames (variable 7 

length frames, 8 × 15 s, 3 × 60 s, 5 × 120 s, 1 × 300 s, 7 × 600 s) sinograms for dynamic 8 

reconstruction. Sinograms were corrected for scatter, randoms, normalization, and attenuation.49 9 

Images were reconstructed using 3D ordinary Poisson-ordered subsets expectation maximization 10 

(OP-OSEM 3D), incorporating the system point spread function using 3 iterations of 21 subsets. 11 

Reconstructions were performed with a zoom of 2 in a matrix of 172 × 172 voxels, yielding a 12 

voxel size of 2.03 × 2.03 × 2.08 mm3, with a 4 mm 3D post-reconstruction Gaussian filtering. 13 

Regional time activity curves were extracted based on labelling of structural brain regions 14 

obtained with the multi-atlas propagation with enhanced registration methodology (MAPER)50 15 

and the 83-region Hammers atlas.51 [11C]yohimbine  non-displaceable binding potential (BPND) 16 

parametric maps were then generated using the simplified reference tissue model (SRTM), with 17 

the corpus callosum as reference region.34 PET parametric images were spatially normalized to 18 

the MNI space with parameters derived from the individual T1 MRI. 19 

Statistics 20 

Statistical analyses on demographic data were performed using Rstudio 21 

(https://github.com/rstudio/rstudio). All data were tested for normal distribution using the 22 

Shapiro-Wilk test and the Levene test for homogeneity of variance. Independent samples t -tests 23 

or Wilcoxon tests, as appropriate, were used to compare demographics group mean differences. 24 

We assessed group differences in the CNRLC with an analysis of covariance accounting for age 25 

and sex as covariates. A two-tailed t-test was generated in the SPM12 toolbox to assess between-26 

group differences on grey matter concentration using family-wise error (FWE) correction with p 27 

< 0.05 threshold. The extend threshold was set to 100 voxels and total intracranial volume was 28 

used as covariate of no interest. 29 
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SPM12 in Matlab2020a was used for between-group comparisons of [11C]yohimbine BPND at the 1 

voxel level (2-sample t-test) controlling for age and gender. Spatially normalized parametric 2 

images were smoothed with an 8-mm Gaussian filter, and an average cortical grey-matter mask 3 

was used for explicit masking within the SPM software. The voxel-level analysis threshold was p 4 

< 0.001 (uncorrected), and subsequently a FWE cluster-level correction at p < 0.05 was applied. 5 

We assessed the association of MRI  and PET signals and interrogated nonparametric (partial) 6 

correlations between CNRLC and [11C]yohimbine BPND values extracted from the ROIs, 7 

employing Spearman correlation test adjusted for age and sex. 8 

We assessed the links between both noradrenergic markers and specific clinical characteristics 9 

within our group of Parkinson’s disease patients by means of partial correlation coefficients 10 

adjusted for age and sex. Indeed, it is known that both variables influence the phenotypical 11 

expression of Parkinson’s disease,52 that healthy ageing influences neuromelanin accumulation 12 

in the LC,53 and that [11C]yohimbine BPND might be influenced by gender.36 All correlations 13 

were two-sided and significance was set at p < 0.05.  14 

 15 

Results  16 

Altered LC integrity in patients with Parkinson’s disease 17 

Parkinson’s disease patients had lower CNRLC than healthy controls (0.29 ± 0.04 vs 0.31 ± 0.04, 18 

respectively; F(1, 99) = 5.72, p = 0.019). CNR was higher in the left than the right LC (0.32 ± 19 

0.03 versus 0.28 ± 0.04, respectively; F(1,99) = 22.02, p < 0.001). No significant effect of 20 

gender and no interaction were found (p > 0.3). Because of the side effect, all other analyses 21 

have been conducted for both sides separately. 22 

Reduced [11C]yohimbine binding in Parkinson’s disease patients 23 

Reduced binding of [11C]yohimbine was observed in the Parkinson’s disease group compared to 24 

healthy controls in four significant clusters including mainly cortical regions across all lobes and 25 

the insula, the putamen and the thalamus (Table 2, Fig. 2). VBM was additionally employed to 26 

assess grey matter volume loss in Parkinson’s disease patients compared to controls as a 27 
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9 

potential confounding factor within the ROI. No significant effect was found between the two 1 

groups using FWE with corrected p value < 0.05 in the t-test.  2 

Correlation between α2-ARs availability and LC MRI data 3 

No significant correlation was found between regional [11C]yohimbine BPND values and CNRLC 4 

(all p > 0.1). 5 

Correlation of neuromelanin MRI data with clinical scores in Parkinson’s 6 

disease 7 

Clinical characteristics 8 

CNRLC correlated negatively with LEDD (right: r = -0.52, p = 0.011 and left: r = -0.49, p = 9 

0.017). 10 

Non-motor scores 11 

CNRLC correlated negatively with UPDRS-I total score (right: r = -0.43, p = 0.035 and left: r = -12 

0.47, p = 0.02). We explored within this scale which items mostly driven this effect and found 13 

that apathy sub-score was negatively correlated with the right and left CNRLC (r = -0.48, p = 14 

0.018 and r = -0.46, p = 0.025 respectively), constipation and light headedness on standing sub-15 

scores correlated negatively with the left CNRLC (r = -0.52, p = 0.008 and r = -0.47, p = 0.02 16 

respectively), while the fatigue sub-score showed significant negative correlation with the right 17 

CNRLC (r = -0.48, p = 0.017).  18 

Motor scores 19 

Although we did not observe any significant correlation between CNRLC and UPDRS-II and -III 20 

total scores (all p > 0.1), we also specifically explored the relationship between CNRLC and rest 21 

tremor, rigidity and bradykinesia. Those were calculated using the following items for MDS-22 

UPDRS-III: rest tremor - 3.17, rigidity - 3.3, bradykinesia - 3.4-3.8. Interestingly, the left CNRLC 23 

correlated negatively with the bradykinesia sub-score (r = -0.42, p = 0.043) while a trend in the 24 

right side was also observed (r = -0.39, p = 0.056), and the right CNRLC correlated positively 25 

with the tremor sub-score (r = 0.45, p = 0.026). Finally, we also found that the left CNRLC 26 

correlated negatively with the UPDRS-IV score (r = -0.44, p = 0.03) with a trend in the right side 27 

(r = -0.38, p = 0.069). Interestingly, this effect was mostly driven by the motor fluctuation sub-28 
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10 

score (sum of items 4.3 and 4.4) which showed significant negative correlation with the left and 1 

right CNRLC (r = -0.43, p = 0.035 and r = -0.41, p = 0.044 respectively) while such correlations 2 

were not observed for the dyskinesia sub-score (sum of items 4.1 and 4.2) (all p > 0.1). 3 

Correlation of α2-ARs PET data with clinical scores in Parkinson’s disease 4 

We found no correlation between [11C]yohimbine BPND values in the ROI derived from the 5 

between-group SPM contrast and the total scores of the MDS-UPDRS scales. However, 6 

significant correlations were found with sub-scores within the different sections of the scale. 7 

Non-motor scores 8 

The item assessing anxiety in the UPDRS-I part correlated negatively with [11C]yohimbine BPND 9 

values in three regions within the right hemisphere : the putamen (r = -0.50, p = 0.008), the 10 

insula (r = -0.44, p = 0.02) and the superior temporal gyrus (r = -0.41, p = 0.034).  11 

Motor scores 12 

The item assessing rest tremor in the UPDRS-III part correlated negatively with [11C]yohimbine 13 

BPND values in the right thalamus (r = -0.46, p = 0.015). In other words, the lower the binding in 14 

the thalamus, the more the patients suffered from tremor. 15 

Discussion  16 

In the present study, we investigated two aspects of the noradrenergic system using multimodal 17 

in vivo imaging in Parkinson’s disease patients and healthy controls with hybrid MRI/PET: the 18 

density of pigmented cell bodies of the LC with neuromelanin sensitive MRI and the availability 19 

of the α2-ARs with [11C]yohimbine PET. Both show marked reductions in signal intensity in 20 

patients, confirming that noradrenergic damage is profound and widespread in Parkinson’s 21 

disease. Clinical, behavioral and anatomical data suggest, however, that noradrenergic 22 

dysfunction is multifaceted and may involve different circuits underlying specific motor and 23 

non-motor symptoms. 24 

Noradrenergic system integrity in Parkinson’s disease 25 

The reduction in signal intensity within the LC in Parkinson’s disease patients confirms previous 26 

MRI studies2,40,54–57 and provides a robust and replicable in vivo indication of the loss of 27 
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11 

pigmented LC neurons previously suggested in post-mortem histological studies.58–60 On the 1 

contrary, there was only very sparse evidence about the loss of α2-ARs in Parkinson’s disease 2 

patients, including only one in vitro autoradiography study reporting a decrease of density in the 3 

prefrontal cortex33 and one preliminary in vivo study using [11C]yohimbine in a small group of 4 

PD patients reporting a global reduction in [11C]yohimbine distribution volume in the temporal, 5 

parietal and occipital cortices, the insula and the cingulate gyrus.61 Our data provide a precise 6 

mapping of [11C]yohimbine binding reduction in Parkinson’s disease patients (Fig. 2). Within the 7 

parietal lobe, the angular gyrus, the superior parietal lobule and the postcentral gyrus are 8 

especially affected. The occipital cortex also shows multiple sources of binding differences both 9 

in the primary and associative visual cortices. In the frontal lobe, only motor structures (primary 10 

motor cortex, supplementary motor area and premotor cortex) and the inferior frontal gyrus 11 

reveal binding reduction in patients. The temporal lobe seems also relatively preserved since 12 

only one region in the superior temporal gyrus shows group differences. Medially, the posterior 13 

cingulate/precuneus region is particularly affected. Finally, binding reduction in Parkinson’s 14 

disease also concerns the insula, the putamen and the thalamus (Fig. 2). This latter observation is 15 

in good agreement with previous post-mortem and animal studies showing severe reductions of 16 

noradrenaline levels in almost all subregions of the thalamus.30,62  17 

Interpreting [11C]yohimbine binding reduction is not straightforward. Indeed, as α2-ARs are 18 

located both pre- and post-synaptically,63,64 the decrease in [11C]yohimbine binding could reflect 19 

both a reduction of presynaptic α2-ARs due to the diminished innervation caused by the 20 

degeneration of noradrenergic neurons, and/or a reduction in the availability of postsynaptic α2-21 

ARs which can be relatively independent of the degeneration of noradrenergic neurons (as 22 

observed for the dopaminergic system).65 The former hypothesis predicts strong correlations 23 

between neuromelanin MRI and [11C]yohimbine PET signals. Our results are not consistent with 24 

this prediction. They are rather reminiscent of the conclusion obtained from [11C]MeNER -a 25 

marker of noradrenaline transporter availability- PET studies that deficits in noradrenergic 26 

terminals and LC cell bodies are partly uncoupled.2,40 It seems that the number of noradrenergic 27 

cells in the LC would be a major determinant of α2-AR density only in the LC itself.66 Our data 28 

are in line with the overall hypothesis according to which monoaminergic receptors undergo 29 

adaptive changes in Parkinson’s disease that make the availability of their receptors non 30 

proportional to the extent of neuronal death of the corresponding cell bodies.65,67 It is therefore 31 
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essential to disentangle, within the global clinical picture, the symptoms that might be more 1 

related to the loss of α2-ARs and/or to the loss of noradrenergic cells in the LC. 2 

Non-motor symptoms 3 

Fatigue 4 

Fatigue was found to be associated with LC neuronal loss. This is in line with the idea that 5 

fatigue results from disruption of nondopaminergic pathways, including the noradrenergic 6 

system.68–70 This is not incompatible with the hypothesis that fatigue in Parkinson’s disease is 7 

also associated with serotoninergic dysfunction in prefrontal-basal ganglia and limbic circuits.71 8 

Indeed, it is well known that there are strong interactions between the noradrenergic and 9 

serotoninergic systems (mainly through the LC-dorsal raphe nucleus connection)72–74 suggesting 10 

that both are likely to contribute to the appearance of the symptom. However, the argument that 11 

fatigue characterizes a specific serotoninergic phenotype of Parkinson’s disease is based on 12 

associations between fatigue and other non-motor symptoms related to the degeneration of 13 

serotoninergic pathways (apathy, anxiety, sleep problems and daytime sleepiness)75 that are most 14 

often moderate69 and that are not all reported in the present study as only apathy was also found 15 

to be associated with LC neuronal loss. Anxiety was just associated with a reduction of α2-ARs 16 

availability in the putamen, the insula and the superior temporal gyrus, but not with a reduction 17 

in signal intensity within the LC. Yet, neither LC neuronal loss nor α2-ARs availability were 18 

found to account for sleep disorders. This observation is in line with several pharmacological 19 

studies of physical exercise in healthy humans suggesting that the role of the serotoninergic 20 

system in central fatigue might be overestimated76 while the role of the noradrenergic system 21 

might conversely be underestimated.77 In addition, given that fatigue is a non-dopaminergic 22 

symptom, the fact that Methylphenidate -a reuptake inhibitor of dopamine and noradrenaline- is 23 

proposed as a treatment against fatigue in Parkinson’s disease78,79 is also consistent with the idea 24 

that the pathophysiological mechanism leading to fatigue involves the degeneration of the 25 

noradrenergic system. Beyond Parkinson’s disease, the association of fatigue with a loss of 26 

noradrenergic cells in the LC but not with a loss of α2-ARs in other specific brain regions is not 27 

trivial. It relates the global perception of an internal state of energy to the general function of the 28 

noradrenergic system which is to mobilize the whole brain and body for action from a unique but 29 
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widely distributed source. This association is not put forward in current biological theories of 1 

fatigue.69 2 

Apathy 3 

Apathy is a complex and multifactorial alteration of the internal and external drives of goal-4 

directed behavior.80 It has been associated with dysfunctions of different neural networks 5 

supporting emotional/affective, cognitive and auto-activation circuits,3,81,82 for which meso-6 

cortico-limbic dopaminergic and serotoninergic lesions are thought to play a major role. The 7 

present study provides new insight into apathy pathophysiology and suggests that there is a role 8 

of noradrenergic alteration since we found a correlation between apathy and LC neuronal loss. 9 

This observation is reminiscent of a former recent study using pharmacological MRI and testing 10 

more specifically predictive processing (i.e., executive functions) of goal-directed behavior.83 11 

Although we cannot disentangle cognitive from motivational apathy in the present study, it is 12 

tempting to speculate that the noradrenergic dysfunction identified in our empirical observations 13 

may be more closely associated with cognitive apathy (which includes dysfunction of a set of 14 

executive mechanisms required for achieving a goal) than with motivational apathy.84 Our results 15 

also strengthen the idea that fatigue is associated with apathy (both relying on the general 16 

activation function of the LC-NA system, not on specific losses of α2-ARs) but not with 17 

anxiety85 (which does not involve LC neuronal loss in the present study). 18 

Anxiety 19 

Anxiety is commonly associated with apathy and depression to constitute a behavioral « non-20 

motor triad » in Parkinson’s disease governed by serotonergic and dopaminergic 21 

degeneration.3,86 However, while anxiety symptoms are clearly linked to alterations of limbic 22 

cortico-striato-thalamo-cortical circuits, several studies have proposed that basal ganglia and 23 

brainstem nuclei could be at the root of such disorders,87,88 including a loss of noradrenaline 24 

innervation in the locus coeruleus and the limbic system.87,89 Our data are consistent with the 25 

involvement of noradrenergic dysfunction in anxiety as its severity is associated with a reduction 26 

of α2-ARs availability in a brain network including the putamen, the insula and the superior 27 

temporal gyrus (but not with a loss of noradrenergic cells in the LC). However, we found no 28 

evidence for a common noradrenergic dysfunction of the “non-motor triad” as they all seem to 29 
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have different origins: anxiety was associated with alteration of noradrenergic terminals, apathy 1 

with alteration of LC cell bodies, while depression was not linked to any of these dysfunctions. 2 

Constipation 3 

Constipation is one of the most common nonmotor symptoms that emerge from the very early 4 

phase.90,91 The underlying mechanisms of constipation in Parkinson’s disease are still unknown, 5 

but neurodegeneration of autonomic centers of both the enteric and central nervous systems are 6 

likely.92 Our observation that constipation is associated with a reduction of signal intensity in the 7 

LC fits with the general idea that dysfunction of the noradrenergic system is closely linked to 8 

numerous premotor symptoms of Parkinson’s disease.93–96 But most importantly, it is also 9 

consistent with rodent studies providing specific evidence that: 1) the LC participates in the 10 

regulation of colorectal motility (via activation of α1-ARs in the lumbosacral defecation 11 

center),97 2) noradrenaline plays a major role in regulating colon immune homeostasis,98 and 3) 12 

the reduction of noradrenaline level in the intestine causes colon inflammation, α-synuclein 13 

pathology, neuronal loss and, in fine, constipation.98,99 14 

Motor symptoms 15 

LC neuronal loss in Parkinson’s disease has been associated with the disease, but not directly 16 

with motor symptoms.6,100 Here, we provide evidence for a direct link with bradykinesia, rest 17 

tremor, and motor fluctuations. By contrast, while noradrenergic denervation of the motor 18 

areas101 and noradrenergic transporters density decrease in the motor cortex102 have been 19 

associated with motor cortical dysfunction in Parkinson’s disease,103,104 the substantial reduction 20 

of α2-ARs availability in the motor cortices of Parkinson’s disease patients found in the present 21 

study revealed no direct relationship with a global motor dysfunction (i.e, neither with the 22 

UPDRS-II nor with the UPDRS-III scores). However, it is possible that the potential 23 

consequences of cortical α2-ARs loss are more indirect and more specific. Indeed, as α2-ARs 24 

would be located on inhibitory interneurons, a reduced availability could contribute to the broad 25 

reduction of intracortical inhibition at rest and to the increase in cortical excitation frequently 26 

observed in PD.105–107 Future studies are needed to clarify this possible masked relationship.  27 
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Bradykinesia 1 

Bradykinesia is a multifaceted concept including potentially distinct motor abnormalities with 2 

distinct pathophysiological backgrounds that are all mixed in one single clinical term.108 Here, 3 

we did not find specific correlates of bradykinesia as assessed by means of UPDRS-III in 4 

[11C]yohimbine binding data, but report a significant association with a global alteration of LC 5 

integrity. Although this observation does not address the problem of the “bradykinesia complex” 6 

(ibid), it contributes to the debate about its incomplete response to dopaminergic drugs. Indeed, 7 

levodopa only improves overall bradykinesia but does not normalize all other abnormal 8 

movement parameters.109 Our data support the suggestions of several studies promoting the role 9 

of noradrenaline in the control of motor behavior11 and the fact that its depletion results in motor 10 

deterioration in Parkinson’s disease.16,19,30,102 It can be assumed that the role of noradrenaline is 11 

indirect. First because it would facilitate nigro-striatal dopamine transmission.110 Second because 12 

the noradrenergic system would play a major role in executive functions like response inhibition 13 

whose alteration might lead to movement control disorders.111–114 Future work on the 14 

noradrenergic bases of movement disorders in Parkinson’s disease should include a more 15 

detailed clinical evaluation of bradykinesia and its related features.108 16 

Motor fluctuations 17 

The present study pinpoints a correlation between the decrease in LC signal intensity and the 18 

severity of levodopa-induced motor complications (UPDRS-IV total score). However we did not 19 

find any relationship with α2-ARs availability change despite previous studies having reported a 20 

potent effect of α2-ARs antagonists on dyskinesia in a monkey model of Parkinson’s disease115–21 

118 as well as in patients with Parkinson’s disease when given in combination with levodopa.119 22 

In addition, although there are very few investigations of the role of the LC in motor fluctuations, 23 

LC denervation in rodents was not found to potentiate levodopa-induced motor complications.120 24 

These contradictions clearly require further investigations comparing notably Parkinson’s 25 

disease patients with and without motor fluctuations and dyskinesias. Nevertheless, the present 26 

data bring back to the forefront the issue of the links between motor and non-motor 27 

fluctuations,121 and suggest that alteration of LC integrity might be a common denominator. 28 
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Rest tremor 1 

Tremor in Parkinson’s disease does not closely correlate with nigrostriatal dopaminergic 2 

deficits122 and is not fully restored by dopaminergic medication.123 Increasing evidence also 3 

involves the noradrenergic system in the network dynamics of parkinsonian tremor.27,122,124 Our 4 

data are consistent with this view. Both the amount of neuronal loss in the LC inferred from 5 

neuromelanin MRI and α2-ARs availability in the thalamus inferred from [11C]yohimbine 6 

binding have been associated with tremor level in the present dataset. The direction of the 7 

relationship between neuromelanin MRI and clinical data indicates that tremor is higher in 8 

patients for whom LC integrity is better preserved, as previously observed in post -mortem 9 

analyses comparing tremor-dominant to akinetic-rigid patients125,126 or in in vivo investigations 10 

using [11C]MeNER PET.124 This relationship was also predicted by former observations linking 11 

the presence of tremor to a more benign course of disease127 or to a relatively preserved LC-NA 12 

system.27,124 Our data are in line with a group of studies implicating a cerebello-thalamo-cortical 13 

circuit in the genesis of tremor128–132 as they provide evidence that α2-ARs availability in the 14 

thalamus decreases with the severity of rest tremor. This is particularly consistent with the recent 15 

observation that distribution volume ratio of noradrenaline transporters in the thalamus correlates 16 

with resting tremor amplitude in patients with Parkinson’s disease, suggesting that noradrenaline 17 

transporters density is relatively preserved in this region for patients with tremor-dominant 18 

Parkinson’s disease.124  19 

Limitations 20 

There are some limitations to this study that should be acknowledged. First, due to ethical 21 

reasons and to the need to reduce movements within the scanner for imaging small brainstem 22 

structures like the LC, patients with Parkinson’s disease were scanned in the ON medication 23 

state. There is evidence from animal studies that administration of levodopa might foster the 24 

accumulation of neuromelanin.133 However, these effects are expected to be relatively long-25 

lasting rather than fluctuating between medication states. In the present study, LEDD in patients 26 

did correlate with CNRLC indicating that PD patients with higher dose of dopaminergic treatment 27 

were those with lower signal in the LC. This was observed for both sides of the LC. A second 28 

possible effect of the ON medication state is that postsynaptic α2-ARs may be 29 
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downregulated.134,135 However, we did not find any correlation between LEDD and 1 

[11C]yohimbine BPND, at least in the regions that have been sampled.  2 

Second, it is not possible to distinguish the pre- and post-synaptic locations of the α2-ARs with 3 

[11C]yohimbine. Future studies should consider multitracer approaches with specific presynaptic 4 

tracer (such as [11C]MeNER) in order to assess whether changes in α2-ARs with Parkinson’s 5 

disease mainly occur at the pre- or at the post-synaptic level (or both). Furthermore, it is also 6 

worth mentioning that [11C]yohimbine does not differentiate either between the different 7 

subtypes of α2-ARs that have been characterized pharmacology (α2A, α2B, α2C). 136 Therefore, 8 

there is still a strong need in the future to pursue the effort in developing specific radiotracers to 9 

further investigate this noradrenergic system in vivo. 10 

Conclusions  11 

In conclusion, the present work is the first multimodal comparative in vivo imaging study to 12 

assess the association between Parkinson’s disease symptoms and the integrity of two aspects of 13 

the noradrenergic system: the distribution of α2-ARs in the brain and the density of cell bodies in 14 

the LC. Our results highlight the substantial and multimodal alteration of the noradrenergic 15 

system in humans and its possible role in the pathophysiology of Parkinson’s disease, not only in 16 

terms of non-motor impairments (supporting the noradrenergic phenotype recently proposed by 17 

Chaudhuri and colleagues)7 but also with regard to some motor aspects of the disease 18 

(bradykinesia, motor fluctuations and rest tremor). Overall, our findings may encourage the 19 

search for new drugs targeting the α2-ARs system for the treatment of Parkinson’s disease. 20 

However, future studies are warranted to shed more light on the specific role of the α2-ARs and 21 

their different subtypes in the pathophysiology of the disease. In particular, further research is 22 

needed to sharpen the clinical picture and better characterize the different phenotypes of this 23 

heterogeneous and multisystem disease. 24 

Data availability  25 

Data are available upon reasonable request. 26 

 27 
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 16 

  17 

Figure legends 18 

Figure 1 Data pipeline. [11C]yohimbine and LC Neuromelanin data were acquired 19 

simultaneously from hybrid PET/MRI. Left side: [11C]yohimbine BPND parametric maps were 20 

used for contrasting the healthy control and the Parkinson’s disease groups. The outcome of the 21 

voxel-based analysis allowed identification of four significant clusters that provided the ROI for 22 

the analysis of the links between [11C]yohimbine BPND and clinical scores in patients. Right side: 23 

LC identification was performed for each individual from neuromelanin sensitive T1 images 24 

with a three-steps procedure. First, the regions of interest were manually drawn as large 3D 25 

bounding boxes in the MNI space, then wrapped and resampled onto the subject’s native space. 26 

Finally, the clusters of connected voxels with the highest signal intensity were selected to define 27 

LC areas. The CNR between the LC and the reference region was calculated to estimate LC 28 
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signal intensity and these values were referred to the clinical scores of the Parkinson’s disease 1 

patients. 2 

 3 

Figure 2 Statistical parametric maps comparing Parkinson’s disease patients to control 4 

subjects. Decrease in [11C]yohimbine binding is observed in patients with Parkinson’s disease 5 

with regard to healthy control subjects. 6 

 7 

 8 

Table 1 Demographics and clinical characteristics of participants 9 

 Healthy Controls Parkinsonian patients Statistics 

N  30 30  

Sex (female/male) 12/18 12/18  

Age (years) 60.3 ± 8 60.1 ± 7.5 nsa 

MoCA 27.9 ± 1.5 27.9 ± 2 nsb 

Parkinson’s disease characteristics 

Disease duration (years)  6.5 ± 4  

LEDD (mg/day)  1006 ± 703  

Hoehn & Yahr  1.8 ± 0.4  

PDQ39  39.6 ± 22.1  

MDS-UPDRS I  8.5 ± 5.1  

MDS-UPDRS II  7.1 ± 4.3  

MDS-UPDRS III  17.7 ± 12.3  

MDS-UPDRS IV  2.3 ± 3  

Data are presented as mean ± standard deviation. 10 
aParametric test (Student’s t-test). 11 
bNon-parametric test (Wilcoxon test).  12 
  13 
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Table 2 SPM results of the two samples t test on [11C]yohimbine binding  1 

Areas BA Side MNI coordinates T value P corr 

cluster 

Cluster 

size x y z 

Reduced [11C]yohimbine binding in Parkinson’s disease versus healthy controls  

Angular Gyrus 40 R 46 −38 52 5.37 0.000 3775 

Superior Temporal Gyrus 22 R 52 −12 0 5.08   

Postcentral Gyrus (Opercular) 48 R 50 −8 16 5.06   

Inferior Frontal Gyrus (pars opercularis) 44 R 46 14 10 4.22   

Insula 13 R 36 −12 6 4.18   

Precentral gyrus 4 R 40 −26 58 3.97   

Putamen  – R 30 −10 6 3.90   

Postcentral gyrus 3 R 52 −14 30 3.73   

Thalamus (PuM) – R 6 −24 4 5.18 0.000 1354 

Insula 13 L −32 −6 16 4.59   

Precentral Gyrus (Premotor cortex) 6 L −48 −4 12 3.84   

Posterior Cingulate Cortex (Dorsal) 31 R 2 −36 40 4.95 0.000 3836 

Superior Parietal Cortex 7 R 18 −76 40 4.55   

Lateral Occipital Cortex  19 L −10 −82 36 4.43   

Cuneus  18 R 4 −80 34 4.41   

Posterior Cingulate Cortex (Ventral) 23 R 8 −52 10 4.37   

Posterior Cingulate Cortex (Mid Cingulate) 23 R 8 −20 46 4.28   

Lateral Occipital Cortex 19 R 32 −80 26 4.27   

Lingual Gyrus  18 L −6 −72 0 4.07   

Precentral Gyrus  6 R 4 −22 60 3.89   

Lingual Gyrus  17 R 4 −66 12 3.87   

Precuneus 31 L −6 −52 38 3.80   

Precuneus 31 R 2 −56 42 3.80   

Superior Parietal Cortex 7 L −32 −50 56 4.41 0.013 614 

Angular Gyrus 40 L −42 −52 46 4.23   

Postcentral Gyrus  3 L −50 −14 38 3.76   

Postcentral Gyrus 4 L −36 −28 56 3.66   

 2 
  3 
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 1 

Figure 1 2 
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Figure 2 2 
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