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Abstract
This paper aims to provide an overview of tungsten (W) tailings properties, detrimental impacts of these tailings,
approaches to mitigate these impacts, and a presentation of methods to reprocess them to capture their economic
value. Since W is widely used in a variety of industries, it has been extensively mined since the 19th century, and
the mining continues to generate significant volumes of tailings. Recent data show that global W production stands
at 84 kt per year, and more than 100 Mt of W tailings exist containing over 100 kt of WO3. The tailings contain
variable amounts of valuable products and deleterious environmental substances. Some of the contained metals
are in great demand for the energy transition. However, these tailings usually contain FeS2/Pyrrhotite and FeAsS
minerals, which, when exposed to air and water, can produce acid mine drainage. As such, W tailings may pose
environmental and human health risks. Globally, the reprocessing of W tailings presents a potential resource that
can be regarded as a paradigm of sustainability and circular economy. Flotation, enhanced gravity separation, and
wet high-intensity magnetic separation have been reported to be the common approaches to reprocessing W
tailings. However, W processing presents particular difficulties owing to complex material properties, such as fine
particle size, surface weathering, similarity in surface properties exhibited by gangue materials (fluorite, apatite,
calcite), low concentrations of the elements of interest, and poor mineral liberation.

Keywords: Tungsten tailings, flotation, enhanced gravity separation, wet high-intensity magnetic separation, 
detrimental impacts, W reprocessing
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INTRODUCTION
Following an increasing global population, digitalization, or technological evolution (industry 4.0
revolution, including the internet of things and artificial intelligence), industrialization, and growing
demand from developing countries, pressure on resources is increasing[1-9]. Tungsten (W), a specialty metal
with exceptional properties, is utilized in aerospace, construction, mining, automotive, military,
ammunition, electronics, and many other industries. The latter properties make the replacement of W by
other metals difficult for many industrial applications[10-12]. Concerns about W supply security have been
discussed by different studies[13]. According to Graedel et al., a critical raw material (CRM) is defined as a
material in which its supply shortage would result in a large negative economic impact[14]. The element is
categorized as a CRM in the European Union (EU) and other countries, including the United States of
America (US) and Japan. Tungsten has an economic importance (EI) of almost 9 out of a 10-index
scale, which has increased from 8.1 in 2020[13,15]. Thus, W is a CRM due to its EI and the potential for
supply disruption[16].

In 2021, the worldwide W production was around 83.8 kt; this figure changed by 0.24% in 2022 as the
production reached 84 kt. The later production is expected to rise in 2023 due to the reopening of mines in
the United Kingdom, South Korea, and Australia[1]. In 2022, the consumption of W in China by vehicle and
other manufacturing industries was adversely affected by COVID-19 pandemic health measures such as
lockdowns. In the US, a recovery of the aerospace industry and the expansion of oil and gas drilling led to
an estimated increase in W consumption. Electric vehicle (EV) and smartphone industries are also
interested in tungsten; for instance, the iPhone 12 is an Apple product that uses recycled tungsten[17]. Future
growth in W consumption encompasses new industrial applications, such as the use of W in Li-ion batteries
(LIBs) and tungsten powders for additive manufacturing.

China remains the largest tungsten producer and plays a pivotal role in the global W market[18-21]. It accounts
for more than 84% of the world’s production (~71 kt)[1]. Various investigators predict worldwide tungsten
consumption will increase with the reopening of the global economy and industrial production following
the stagnation in 2020 as a result of the global COVID-19 pandemic[22]. In 2021, the prices of tungsten
concentrates, downstream tungsten materials, and scrap shifted upward due to low inventory levels,
reduced scrap availability, strong demand, and constrained spot supplies of ammonium paratungstate and
concentrates[23]. The global market supply for tungsten is forecasted to reach a revised quantity of 113.2 kt by
2026, growing at a compound annual growth rate (CAGR) of 3.9% over the analysis period[24]. Technavio, a
market search and advisory company, has predicted growth of 28.14 million tonnes per annum (MTPA) for
2022-2026, growing at a CAGR of 4.44% during the analysis or forecast period[25]. As per the 2022 USGS
commodity report, the March 2022 monthly average price for ammonium paratungstate in the EU market
was 3% higher than the one in February 2022 and 30% higher than that in March 2021. This W price spike
could be linked to the rise in demand for tungsten and the post-pandemic outcome[23]. The future global
demand for tungsten will be high as the innovation in technology develops and the fact that there is a
growth of emerging economies, which involve manufacturing industries that depend on W[26,27]. Overall,
there is a growing demand for tungsten and a dependence on China, which has raised concerns among
academia, industries, and governments[2,21].

As tungsten mine tailings have extended storage requirements, they may have substantial environmental
footprints affecting nearby rivers, the environment, and ground waters. Exposure of these tailings to both
oxygen and water facilitates the oxidative dissolution of the contained sulfide minerals (arsenopyrite,
pyrrhotite, and pyrite), generating acidic wastewaters that may contain appreciable concentrations of
dissolved metals and sulfate[27]. Acid mine drainage (AMD) is a widely reported polluting mechanism
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through drainage of low-pH effluents with potentially high concentrations of hazardous and toxic 
elements[28].

W tailings from mining sites must be appropriately managed or treated in order to ensure the extended 
stability of disposal facilities and to prevent or mitigate any water and soil pollution arising from AMD and 
leaching of metals[29]. Unlike other mine tailings, studies on the possible utilization of W tailings at an 
industrial level are scarce. Recent work shows that W tailings could be used as raw materials by vitrification 
technology[30]. Provided that the major components of W tailings are SiO2 and Al, tailings could be used in 
glass-ceramics, cement (as a raw material for cement clinker), bioceramics, and mineral polymeric 
materials[31]. Castro-Gomes et al. highlighted the reuse of W mining waste rock in technical-related artistic 
value-added products[32]. Other researchers have found that modified W tailings could be used as fillers in 
the manufacture of high polymer rubber[33]. Figure 1 illustrates the possible utilization of mine tailings as 
raw materials in different industrial sectors. Industrial sectors where W tailings could be used are also 
included.

Enhanced physicochemical and separation processes are required to ensure that the tailings can be 
considered in a circular economy, securing critical or valuable metals through reprocessing while reducing 
the deleterious impacts on the environment[35]. Efforts to find feasible reprocessing methods include the 
REMinE project (Improve Resource Efficiency and Minimize Environmental Footprint). This is an ERA-
Min project which involved Lulea University of Technology (Sweden), University of Porto (Portugal), and 
the Research and Development National Institute for Metals & Radioactive Resources (INCDMRR) in 
Romania and three mines as case studies, Sasca Romania (Cu, Au, Ag), Panasqueira in Portugal (W), and 
Yxsjöberg in Sweden (W, Cu, and Fluorite). The study investigated the feasibility of reprocessing historical 
tailings to recover valuable parts and produce compatible wastes in the nearby environment. The results 
that included historical W tailings are described in the reprocessing part[29]. It could also pave the way to a 
self-sufficiency strategy to reduce dependency on lead-producing countries[36,37]. Reprocessing of tailings 
aligns with the United Nations Sustainable Development Goals (SDGs) of 2022[38]. Increasingly strict 
environmental standards and legal measures with respect to the disposal of tailings are ensuring that mining 
companies control tailings meticulously.

In this review paper, we will mainly focus on W tailings and their management. The structure of our paper 
consists of an overview of W tailings, properties of W tailings, detrimental impacts of W tailings, 
approaches to mitigate these impacts, and reprocessing methods. Concomitant information was collected 
from the literature, including scientific reports, journal manuscripts, books, and patents. A literature search 
was performed through several sources, including the Web of Science, an online database of peer-reviewed 
scientific publications, the Theses Fr website, conference proceedings, textbooks, the USGS website, and the 
EU Commission’s website. The keywords used in the bibliographic search included “tungsten tailings”, “W 
tailings recycling techniques”, “W tailings reprocessing”, “management of W tailings”, “W recovery from 
tailings”, and “detrimental/adverse effects of W tailings”. An emphasis was placed on searching for 
reprocessing tungsten tailings approaches and challenges thereof.

GLOBAL TUNGSTEN TAILINGS OVERVIEW
As per the 2022 report of USGS, tungsten resources are widely distributed globally in both active and 
abandoned tungsten mines. W resources have been identified on all continents except Antarctica[1]. Most of 
the non-producing tungsten mines ceased their operations concurrent with the fall of tungsten prices[39,40]. 
Processing technology has advanced since the construction of many of the mills, and reprocessing might 
extract more value from the older tailings[10,11,13]. Cantung, Salau, and Yxsjöberg mines are examples of the 
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Figure 1. Utilization of mine tailings as raw materials in various industrial sectors[7,34]. *Sectors where W tailings could be utilized.

mines that ceased operations due to low commodity prices and have abundant tailings containing relatively 
elevated tungsten values[13,39,41].

The rise in tungsten demand, particularly in the manufacturing industries (e.g., EV industry), may pave the 
way for various companies to consider W tailings as a source. As per the study of Sanchez et al., there were 
five W mining projects prepared for production, including two from Europe, namely the Barruecopardo 
open-cut project in Spain and Hemerdon open-cut project in the UK (Wolf Minerals)[42]. Other mines were 
the Kilba-open cut project in Australia, the Sangdong Underground project in South Korea, and the King 
Island Scheelite project in Tasmania. The number of prospective projects directly indicates the quantity of 
W tailings that can be expected in the future. As tailing accumulation is an ongoing process, recycling or 
reprocessing is required for an operation to align with the SDGs.

Based on the available data from the literature, for every one ton of produced tungsten concentrate, around 
7-10 tons of W tailings are produced, depending mainly on the tungsten ore grade and the dressing/
beneficiation level[43]. Studies have demonstrated that the remaining tungsten minerals in tailings are in fine 
or very fine fractions, which are challenging for conventional beneficiation methods. This issue is linked to 
the brittle mineral character of minerals such as scheelite (CaWO4), which generates fine and ultrafine 
particles during the size reduction (crushing or grinding) process. CaWO4 and Wolframite [(Fe, Mn)WO4] 
are primary tungsten minerals of EI. The remaining tungsten-bearing minerals are mostly present in trace 
amounts[12,20,44]. Secondary tungsten minerals include ferritungstite [(W, Fe)(O, OH)3], elsmoreite 
[WO3·0.5H2O], aluminotungstite [(W, Al)(O, OH)3], hydrotungstite [WO3·2H2O], jixianite [Pb(W, Fe)2(O, 
OH)7], tungstate [WO3·H2O], anthoinite [AlWO3(OH)3], and phyllotungstite [CaFe3H(WO4)6]. Supergene 
alteration of primary tungsten minerals has been reported as the main source of secondary tungsten 
minerals rather than atmospheric weathering[45,46].

CaWO4 is the most abundant tungsten mineral and is present in approximately 0.67-fold of known W 
deposits, but (Fe, Mn) WO4 is also commonly mined[12]. Individual deposits may have quite diverse origins. 
Scheelite mineralization is predominantly associated with skarnization, whilst wolframite mostly occurs in 
veins[12]. Generally, the beneficiation approach for scheelite and wolframite ores consists of pre-
concentration after crushing and grinding, followed by roughing, cleaning, and final purification stages to 
produce a concentrate with 65%-75% WO3 to meet international trading requirements[47,48]. Scheelite is 
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diamagnetic, and therefore, magnetic separation is usually unsuitable for scheelite ores, which also generally 
display finer liberation sizes[20,49]. Scheelite is readily amenable to gravity concentration since it is very dense 
(specific gravity of around 6.1), but it is also amenable to flotation. Wolframite, in contrast to scheelite, is 
paramagnetic. Thus, beneficiation techniques of gravity concentration and flotation are applied to scheelite 
ore, and gravity and/or magnetic separation are applied to wolframite ore. Both primary tungsten minerals 
are brittle; therefore, the comminution stage must be carefully designed to avoid overgrinding (i.e., to 
minimize the formation of fines and subsequent loss of W). It is recommended to use appropriate size 
classification techniques at each comminution stage. Screens and hydrocyclones are generally used for 
hydro-classification purposes[20]. Overall, tungsten ores are processed via a combination of grinding, 
flotation, gravity separation, magnetic separation, and electrostatic separation[20,47,48]. Other challenges 
include the association of scheelite with calcium-bearing minerals that have similar properties and impede 
the flotation chemistry of CaWO4

[10].

Overall, research data about W tailings are scarce[13]. However, some available statistics on W tailings on a 
global scale show that more than 100 Mt of known W tailings containing above 100 kt of WO3 exist 
[Table 1].

Evidently, from the figures [Table 1], taking Dzhidinsky (Russia) as an example, the implementation of a 
circular economy with acceptable reprocessing practices will be needed to encourage the extraction of 
economic value while simultaneously achieving eco-friendly environmental goals. The most convenient way 
of dealing with tailings is to capitalize on reprocessing to recover valuable parts and determine if 
reprocessing tailings can be used as a raw material in the construction industry, such as aggregates and 
railway ballast or as a backfill material in the mining industry[7,34].

TUNGSTEN TAILINGS PROPERTIES
Ore geology and W tailings properties
W tailings are the residual products of W mining activities from both open pit and underground mining
approaches. There are two main types of W tailings reflecting the two geological sources of W deposits,
which together account for 76% of W deposits, namely skarn (41%) and stockwork or vein deposits (35%),
each requiring a distinct processing route[16]. Tungsten deposits are almost exclusively associated with
granitoid rock intrusions[12]. The main settings are wolframite quartz veins and stockworks, associated with
highly evolved leucogranites and spatially associated with cassiterite, or scheelite skarns, formed by
contact metamorphism of a granite in a limestone bedrock, in association with molybdenum
porphyries, or as scheelite stratiform-type deposits (regional metamorphism). Tungsten may also
be a by-product of molybdenum porphyries[40,62]. Table 2 presents the global geological distribution of
major tungsten deposit classes, size, and grades of major tungsten deposit types, respectively, and each
will have associated tailings even if they are not described in the literature[10,12,63].

W tailings are the repository of the crushed rock and the water or chemicals used during beneficiation.
These tailings differ in their physical and chemical properties depending on the nature of the ore being
processed. These properties include geochemical and mineralogical composition, specific gravity of tailings,
permeability, viscosity, strength properties, settling behavior, leaching behavior, and pore water chemistry.
The properties can be affected by the addition of reagents in mineral processing, the overall process of
beneficiation, and subsequent disposal, including surface weathering. Generally, tailings are heterogeneous
owing to different mineralogical compositions being processed and separation processes during the tailings
discharge and deposition and alteration processes following exposure to the atmosphere[64,65].
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Table 1. Some global repositories for W tailings and known examples of their reuse

W tailings deposit Amount 
(Mt) Category Grade (WO3), 

%
WO3

(kt) Familiar reuse examples  Ref.

Bom-Gorhon (Russia) 0.1 - 0.225 0.23 - [50]

La Parrila (Spain) 1.13 - 0.28 3.16 Tailing reprocessing plans [51]

Mount Carbine
(Australia)

2 Sn-W 0.1 2.00 Reprocessing for W recovery [52]

Cantung (Canada) 3.9 W-Cu 0.32 12.48 Reprocessing plan for W recovery [53]

Yxsjöberg (Sweden) 5.2 W-Cu-F 0.08 4.16 Nil [54,55]

Panasqueira (Portugal) 8 W-Sn 0.12 9.60 Reprocessing trials for W recovery [36,56-58]

Sangdong (South 
Korea)

12 W-Mo 0.1 12 Feasibility study for reuse in cement production [59]

Kaitashskoe 
(Uzbekistan)

12 W-Mo - - Flotation tailings reuse trials for ceramic tile 
production

[60]

Luanchuan (China) 20 W-Mo 0.14 28 Reprocessing for W recovery [57]

Dzhidinsky (Russia) 
Salau (France)

40 
0.25

Mo-W 
-

0.1 
0.19

40 
0.48

Nil 
-

[61] 
[39]

Aggregate 104.58 112.11

Table 2. Global geological distribution of major tungsten deposit classes with their size and grades

Deposit type Deposit 
size, t

Exploited 
mineral

Associated 
economic 
metals

Typical 
grade, 
WO3%

Estimated W 
content, 103 
tonnes

% of 
total

Some mines
(Active & 
Abandoned)

Skarn < 104-5 × 107 Scheelite Cu, Zn, Mo, and Bi 0.3-1.4 1,764 41 Vostok-2, Salau,
Cantung, Sang Dong

Vein/stockwork/Breccia < 105-108 Wolframite Mo, Sn, Cu, Au,
and Bi

Variable 1,475 35 Panasqueira, Negra, 
Chollja

Porphyry < 107-108 Wolframite 
or/and scheelite

Sn, Bi, and Mo 0.1-0.4 679 16 Climax, Yangchuling, 
Xingluokeng

Disseminated < 107-108 Scheelite and 
Wolframite

Sn, Mo, and Bi 0.1-0.5 217 5 Shizhuyuan, Lultin

Stratabound < 106-107 Scheelite Mo 0.2-1.0 118 3 Mount Mulgine, 
Mittersill

Total 4,253 100

Acosta et al. demonstrated the spatial heterogeneity of various factors, including total nitrogen, pH, organic 
carbon, electrical conductivity, cation exchange capacity, silt, clay, sand, and total and extractable Pb, Cd, 
Cu, and Zn on a tailing surface[66]. The differences could be linked to various factors, including the type of 
process streams, the composition of the primary ore, the mechanism of deposition (systematically or 
randomly), and the extent of weathering that could have occurred since their deposition[29].

The study of Kazamel et al. points out that the geochemical behavior of tungsten is not well studied, 
hindering the prediction of W leaching from ongoing and former mining operations[41]. Limited studies 
have examined the behavior of W in mine wastes[67]. Kazamel et al. concluded that the mobility of tungsten 
at low temperatures is primarily controlled by pH and its adsorption behavior[41].

An examination of the factors controlling tungsten mobility in W-Cu skarn tailings has been done by 
Kazamel et al.[68]. They point out that tungsten is transported as a dissolved species but is also adsorbed to 
suspended Fe-oxyhydroxide minerals under neutral pH conditions. Their research explains the limited 
solubility of CaWO4 in neutral or acidic mine waters, and the mobility of the small amount of W released is 
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governed by the presence of Fe-oxyhydroxide minerals, the stability of the depositional environment, and 
the transport of colloidal material in surface water. Few studies have addressed the mobility of W in mine 
waste[67].

W tailings may contain the following mineral phases, depending mainly on the type of primary processed 
ore and the degree of oxidation or reduction as a result of weathering. The mineral phases may include 
scheelite, wolframite, quartz, plagioclase, micas, chlorite-serpentinite, kaolinite, amphibole, calcite, 
dolomite, pyrrhotite, chalcopyrite, gypsum, pyrite, arsenopyrite, siderite, goethite, magnetite, jarosite, 
hubnerite, molybdenite, galena, fluorite, etc. The chemical formulas of the mentioned mineral phases are 
presented in Table 3[2,11,29,35,55]. Out of the mentioned mineral phases, the sulfide-bearing mineral phases are 
linked to the AMD[69]. The sulfide mineral phases include pyrite, arsenopyrite, and pyrrhotite.

Much of the available literature on tungsten minerals is focused on W processing, with little attention on 
the mobility and weathering of W in tailings. More data about the geochemical behavior of tungsten 
mobility in historical tailings is needed since its geochemical mobility is still not fully understood[70]. Not 
only is there a need to better understand tungsten, but the interrelation with other elements is also lacking. 
Most W tailings are rich in arsenopyrite, and thus, arsenic mobility should also be considered[68,71].

Arsenic is stable under reducing conditions; hence, tungsten mine tailings with arsenopyrite might remain 
chemically stable provided they are kept water-saturated. The oxidation of arsenopyrite by both Fe3+ and 
oxygen is easily promoted by microorganisms, such as acidophilic-Fe and S-oxidizing bacteria[72]. Scorodite 
(FeAsO4·2H2O), Pharmacosiderite [KFe4(AsO4)3(OH)4·6-7H2O], amorphous ferric arsenate (AFA), 
arsenolite (As2O3), and arseniosiderite [Ca2Fe3(AsO4)3O2·3H2O] are common products of arsenopyrite 
weathering, with scorodite being the most abundant[71,73,74]. The formation of scorodite is presented in 
Equation 1, and its dissolution is presented in Equations 2 and 3. A research study conducted by Murciego 
et al. on the determination of secondary phases formed under natural weathering of arsenopyrite from 
abandoned tungsten and tin exploitations in Spain (25 samples of weathered arsenopyrite) showed that 
AFA, scorodite, and pharmacosiderite with Fe/As molar ratios in the range of 1.2-2.5 were present as 
secondary arsenic products[71].

FeAsS + 14Fe3+ + 10H2O → 14Fe2+ + SO4
2- + FeAsO4·2H2O + 16H+   (1)

FeAsO4·2H2O + H2O → H2AsO4
- + Fe(OH)3 + H+  (2)

FeAsO4·2H2O + H2O → HAsO4
2- + Fe(OH)3 + 2H+  (3)

A review study conducted by Koutsospyros et al. showed that weathering of tungsten-rich rocks and soils is 
a reason for its mobility[75]. Incomplete dissolution of tungsten minerals, especially scheelite, releases some 
W to mine drainage[55,69,75]. The weathering process is supposed to be due to anion exchange with carbonate 
ions on the scheelite surfaces in unoxidized conditions where pH is above 7. The weathering process of 
scheelite in the tailings is presented in Equations 4 and 5.

CaCO3 + H+ ↔ Ca2+ + HCO3
-  (4)

CaWO4(s) + HCO3
- ↔ CaCO3 + WO4

2- + H+  (5)
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Table 3. Rough composition of tungsten tailings

Mineral Chemical formula

Scheelite CaWO4

Wolframite (Fe, Mn)WO4

Quartz SiO2

Plagioclase Na(K)AlSi3O8·CaAl2Si2O8

Micas (K, H3O)·(Al, Mg, Fe)2·(Si, Al)4O10[(OH)2, (H2O)]

Chlorite-serpentinite (Fe, Mg, Al)6·(Si, Al)4·O10·(OH)8

Amphibole Ca2[Mg4(Al, Fe)]Si7AlO22(OH)2

Calcite CaCO3

Dolomite CaMg·(CO3)2

Pyrrhotite Fe1-xS (x < 0.2)

Chalcopyrite CuFeS2

Gypsum CaSO4·2H2O

Pyrite FeS2

Arsenopyrite FeAsS

Siderite FeCO3

Goethite FeOOH

Magnetite Fe3O4

Jarosite KFe3(SO4)2(OH)6

Hubnerite MnWO4

Molybdenite MoS2

Fluorite CaF2

Galena PbS

Kaolinite Al2O3·(SiO2)2·(H2O)2

DETRIMENTAL IMPACTS AND ECONOMIC VALUE OF W TAILINGS
Detrimental impacts of W tailings
Social and health impacts
Since a number of W mining companies have been in operation since the 19th century, the generated 
tailings from the mining sites or processing factories may have an immense impact on human beings and 
biota. To ensure a sustainable society, responsible production, consumption, and recycling are essential. W 
was treated as an immobile element in the environment and considered to be a suitable substitute for Pb 
and U for the manufacture of “green bullets” in military and munition applications. Studies have suggested 
that detection of W in soil and potable water sources may represent mobility, which could result in the risk 
of human exposure. The pH and other factors, such as the type of minerals present, may also contribute to 
the solubility in soils[76]. Occupational tungsten exposure can also occur through inhalation of dust and 
during the preparation of tungsten carbide products that are significantly employed in making mining and 
cutting tools[77]. Population can be exposed via inhalation of W dust in the contaminated water or air. Water 
contamination comes from dissolved rocks or via effluent from mining sites and hard metal industry waste.

Several studies have been conducted to determine the extent of the impacts of W tailings on human health. 
Reutova et al. investigated a 170-hectare tailing pond of the Tyrnyauz tungsten-molybdenum mining, which 
contains over 113.4 million tonnes of waste with W, As, Mo, and other metals[78]. The factory has been in 
operation for more than six decades. The investigators examined the content of metal content in drinking 
water and in the hair of children. They also identified cytotoxic and genotoxic effects in children residing 
near the tailing ponds, which gave rise to an elevation of the number of children affiliated with the medium 
and high-risk groups. They concluded that despite the broad applications of tungsten in manufacturing and 
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other industries, the tailings may pose some potential social effects.

Another concrete example is that in the early 2000s, discussions about the toxicity of tungsten arose. This
was noted when groups of childhood leukemia cases in the western part of the US were provisionally linked
to elevated concentrations of W in groundwater that was in a range from 0.27 to 742 µg·L-1[79] and 
drinking water that was in a range from 0.25 to 337 µg·L-1[75]. The level of W was elevated but not causally 
related; i.e., there was a relationship, but it was not a direct causation.

Overall, scientific research has focused on the toxicity of tungsten metal dust as a result of anthropogenic
activities[80-83]. Few studies investigate the toxicity of W tailings.

Environmental impacts
Environmental impacts related to W mining may include contamination, dam failure, AMD landslides, land
occupation, water pollution, and dust lifting.

Arsenic (As), Copper (Cu), and Cadmium (Cd) are regarded as the main contaminants of serious concern
in wolframite tailings[84]. Reports about the Panasqueira wolframite mine in Portugal show that AMD
mobilized and released Cu, As, and Cd into the nearby ecosystem[84]. Skarn tailings can present various
elements of potential concern, such as Be, Bi, Cu, W, and Zn, together with Fe-sulfides and carbonates[62].
The contained sulfides can promote the metal mobility in the tailings through the sulfide oxidation,
reducing the pH[85], which may be buffered by available carbonates that can neutralize mine drainage to the
extent that there is sufficient carbonate quantity to immobilize the metals.

Mining tailings of tungsten need vigilant management and handling practices to warrant long-term stability
of disposal and storage facilities and prevent pollution to the surrounding (air, soil, and water). Poor
management of wastes or tailings resulting from mining operations antagonizes the general public, local
communities, and NGOs and contributes to a pessimistic public attitude.

Some W-producing countries are enacting stringent measures for environmental protection; a concrete
example is that China initiated an environmental tax of $140 in 2016 per ton of residues. Moreover, they
closed many smelters and APT plants due to environmental pollution despite the ongoing high global
consumption. Research studies in the treatment of W tailings are strategic necessities to fulfill the
sustainable development of the tungsten industry[86].

Economic value of W tailings
Since W tailings contain valuable elements in appreciable concentrations, there is a need to unlock the
economic value contained in the tailings, including gold and silver. W tailings often contain notable
quantities of potentially valuable metals, specifically in historical operations, where processing technologies
employed to beneficiate target minerals were not as efficient as those presently available[11,13]. However, in
some cases, treatment and valorization of the tailings could also be combined with an efficient ground
depollution, and such tailings could be upgraded as secondary mines of strategic metals, with easier access
to the ore compared to primary mines and lower energy consumption since already milled.
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REMEDIATION AND REPROCESSING FOR MITIGATING DETRIMENTAL IMPACTS AND
HARNESSING ITS ECONOMIC VALUE
Phytoremediation
Generally, phytoremediation involves the use of green plants to clean up, sequester, or extract pollutants
from soil and groundwater. The development of a vegetal cover in the mine waste deposits and mining
areas is known as phytocap or phytocapping. The most salient characteristics that plants suitable for
phytoremediation must have include the ability to adopt metals in large-scale shoots and the ability to
swiftly create large biomass[87]. The primary or first step is the effective growing of species of plants while
ensuring the sensitivity of plants to the behavior of mine tailings, climatic conditions, and topography[88,89]. It
is a socially accepted technology to remediate polluted soils, effective, inexpensive, non-intrusive, and
aesthetically pleasing[90-92]. As per Lamb et al., phytocaps prevent infiltration of rainwater and, therefore, do
not allow leaching of metals[88]. Phytocapping reduces the penetration of rainwater by the following
mechanisms: canopy interception of rainfall, evapotranspiration of interstitial water, and storage of
moisture in the soil layers. Phytoremediation is solar-powered; hence, as far as operating costs are
concerned, it is an economical & environmentally friendly route for remediation. The treatment of soils by
phytoremediation involves the interaction of microflora in the rhizosphere (the layer of soil occupied by the
roots), contaminants, and roots[93-96].

Despite the fact that the phytoremediation route is categorized as environmentally friendly, it has some
drawbacks or limitations, as presented in Table 4[94,97,98].

Limited studies have been conducted to investigate the phytoremediation of soils affected by the W tailings.
In the study conducted by Favas et al., investigating the phytoremediation of soils contaminated with metals
and metalloids at Sarzedas and Vale das Gatas mining areas, it was identified that some tungsten
hyperaccumulating plants were present[99]. The areas examined included abandoned Sn/W mines (Tarouca
mine, Sarzedas mine, Fragas do Cavalo mine, Adoria mine, Vale das Gatas mine, Ervedosa mine, Regoufe
mine, and Rio de Frades mine). Tungsten-related results obtained from Sarzedas (Central Portugal) and
Vale das Gatas mines (Northern Portugal) are presented in Table 5[99]. They found that elevated levels of
sulfides, especially arsenopyrite and pyrite, favored the dissolution of deleterious elements, allowing elevated
bioavailability and dispersion.

Reprocessing W tailings
Reprocessing of abandoned W tailings can offer value for both the neighboring communities and the
mining company as valuable minerals are recovered from legacy tailing storage facilities, and the
reprocessed tailings are placed in engineered and modern facilities amenable to today’s environmental
regulations.

In addition to tungsten, tailings may contain valuable metals, such as copper, gold, silver, molybdenum,
bismuth, cobalt, and others, depending on the composition of the deposit, the metal of interest that was
extracted, and the processing route that was employed. Details about the tailings’ material and even the
deposits are frequently limited[11,13,27]. For the case of tungsten, the type of extraction technology employed
during historical operations can also contribute to concentrations in old W tailings. Technologies for the
metal recovery from W mining tailings include but are not limited to gravity separation, magnetic
separation, leaching, bioleaching, and flotation[100,101]. The amount/content of metals and or minerals present
in tailings depends mainly on the processing efficiencies and separation and extraction methods employed.
According to a study done by Petruk[102] and Tungpalan et al.[103], in the selection of processing methods, the
following mineralogical characteristics of ores must be considered as they have a link to the metallurgical
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Table 4. Advantages and limitations of phytoremediation

Advantages Drawbacks/Limitations

In situ and passive technique Limited to shallow soils or where contamination is localized to the surface
(< 5 m)

Highly accepted by the public Metal concentrations in the soil can be lethal and toxic to plants

Reduction in the dispersal of dust and contaminants by wind Slower treatment than the traditional physicochemical techniques

Low cost (uses solar energy, i.e., photosynthesis) Still under development and, therefore, not accepted by many regulatory
agencies

Provides shelter/habitat for animal life Mostly, plants are selective in metal remediation

Reduction of leaching and mobilization of contaminants in soil Efficient phytoremediation plants may not adapt to climatic and
environmental conditions at contaminated sites

Reduction of surface runoff Contamination may spread through the food chain if accumulator plants
are ingested by animals

The harvested biomass can be economically valuable (may result in
the formation of biogas and biochar)

The area to be decontaminated must be large enough to allow application 
of cultivation techniques

Plant processes are more easily controlled than those of 
microorganisms

Toxicity and bioavailability of degradation products remain largely 
unknown

Has reduced environmental impact and contributes to the landscape 
improvement

There is little knowledge of farming, genetics, reproduction, and diseases 
of phytoremediation plants

Harvesting of the plants or organs that have accumulated metals is 
easy to accomplish with existing technology

If the plants release compounds to increase the mobility of the metals, 
these can be leached into groundwater

Table 5. Accumulation of W in different plant species of the Saredas and Vale das Gatas mine areas

Plant species with W @ Sarzedas mine area Plant species with W @ Vale das Gatas mine area

Digitalis purpurea subsp. purpurea Pteridium aquilinum

Cistus ladanifer subsp. ladanifer Agrostis Castellana

Pinus pinaster Holcus lanatus

Calluna vulgaris Pinus pinaster

Helichrysum Juncus effusus

Chamaespartinum tridentatum

Quercus ilex subsp. ballota

Erica umbellata

Eucalyptus globulus

Quercus suber

Genista triacanthos

Agrostis curtisii

Lavandula stoechas subsp. Stoechas

Halimium ocymoides

performance of process flowsheets to be developed[104,105]: (i) Compositions of minerals that bear on the 
process; (ii) Identification of major, minor, and trace minerals; (iii) surface coatings on minerals; (iv) 
Quantities of minerals; (v) Mineral liberations; (vi) Particle and grain size distributions and textures of the 
minerals. Normally, tungsten recovery rates from ores commonly range between 60% and 90%[47]; i.e., about 
0.1-0.4-fold of tungsten content of the ore is lost in the beneficiation.

Flotation is a physicochemical separation route for minerals. It utilizes surface properties to separate gangue 
minerals from valuable minerals[101]. Collectors, depressants, selective flocculants, and dispersants are 
reagents usually employed during flotation tests. Solution chemistry, mineral surface wettability, surface 
electrical properties, and surface lattice ion dissolution are primary controlling factors for flotation of 
tungsten minerals, particularly scheelite[49]. However, scheelite’s flotation presents challenges due to the 
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similarity of surface properties exhibited by gangue minerals to those of scheelite[10,16,21]. The gangue section 
of scheelite ore includes calcium silicates and calcium semi-soluble salts: fluorite (CaF2), apatite [Ca5(PO4)3

(OH, Cl, F)], and calcite (CaCO3)[10,16]. In flotation, depressants can be added to improve the separation 
differential between scheelite and gangue minerals. Despite the fact that silicates are fairly easily depressed, 
few depressants are selective between scheelite and gangue minerals. The flotation selectivity of the above-
mentioned calcium silicates and calcium semi-soluble salts can be improved by the use of collector mixtures 
(anionic/non-ionic or anionic/anionic)[10,11,21]. New developments are still needed to identify environment-
friendly and efficient depressing conditions and improve the understanding of the adsorption mechanisms 
of the selected depressants onto calcium minerals.

Magnetic separation is based on the use of magnetic forces to concentrate the particles that are susceptible 
to magnetism. It is commonly employed in wolframite beneficiation in a high-intensity magnetic separation 
system. In the magnetic separation process, the particle size of wolframite plays an important role, similar to 
gravity separation. The effect of magnetic forces acting on wolframite particles drops sharply with the 
decrease in wolframite size. This, unfortunately, results in an accumulation of the fine particle fraction of 
wolframite that is sent to tailings. A magnetic separation process is a semi-continuous procedure that 
involves low energy consumption; however, it offers low enrichment ratios[6].

Gravity separation is an approach that has been in application for more than 2,000 years[106]. A variety of 
minerals can be treated by gravity concentration, including scheelite and wolframite. The method separates 
different minerals and metals based on their specific gravity and relative motion under drag and gravity 
forces. The minerals commonly contained in tungsten skarns present a broad range of specific gravities 
(SGs): 3.2 for fluorite and apatite, 2.7 for calcite, and 6.1 for scheelite while silicates have SGs between 2.6 
and 3.7 based on the geological context. Thus, it allows the use of enhanced gravity separation approaches 
to remove the minerals that are troublesome in flotation with fatty acids, mainly the calcium-bearing semi-
soluble salts (fluorite, calcite, and apatite)[6]. The specific gravity of the particle, shape, weight, and size are 
important factors that determine gravity separation efficiency[10,106].

Since gravity concentration has been in applications for centuries in mineral processing, a large range of 
equipment is available. However, they do not share the same costs, throughputs, or performance measures, 
nor do they work with the same particle size[10,107]. Due to extended settling times, a lot of the classical gravity 
separation devices (spirals, jigs, shaking tables, etc.) exhibit a remarkable decrease in the separation 
performances as the particle size decreases[107]. Instead, centrifuge instruments are more promising and 
appropriate for fine particles. They can also be employed for moderately coarse particles[106,108]. Table 6 
presents the working particle size range (mm) of various gravity concentrators[10,106,109-111]. From the table, we 
find that W tailings, with their property of fine dissemination, may be appropriately concentrated by 
centrifuge devices (Knelson concentrator, Falcon concentrator, and Falcon ultrafine concentrator) as they 
have a broad particle size range (0.001-10 mm). In contrast to flotation and magnetic separation, gravity 
separation has some advantages, including its low operation and investment costs, less potential pollution to 
the environment, and high separation efficiency[110,111]. W tailings reprocessing can be difficult, depending on 
the abundances of garnet, topaz, iron oxide, and sulfides that may affect the gravity concentration step as 
they dilute the concentrate, presence of calcium-bearing salts that affect the scheelite flotation due to 
similarity in chemical/surface properties, and fragility making the comminution step problematic as slime 
production is greater.

The comprehensive size range to which gravity concentration is employed is larger than with any other 
concentration process since it can separate particles as coarse as one meter. However, 500 µm is generally 
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Table 6. Working particle size range of different gravity concentrators

Working particle size range (mm)
Concentrating device Category 0.001 to 0.01 0.01 to 0.1 0.1 to 1 1 to 10 > 10 Remark

Static * *

Dynamic * * *

Water only

Density

* * *

Jigging Stratification * * * *

Sluice box * * * *

Reichert cone * * *

Pinched sluice * * *

Spiral

Flowing film

* * *

Shaking table * * *

Bartles-mozley * *

Crossbelt

Shaking

* *

Pneumatic jig * * *

Air table

Air

* *

Centrifugal Miscellaneous * *

Knelson concentrator Centrifuge * * * * Promising

*Applicable. Promising: could be the best fit for a W reprocessing approach; UF: ultrafine. Modified from[10,106,109].

accepted as the largest size of material to be separated[108]. Practically, the lower cut-off size for fine gravity
concentration is about 6 µm[106,108].

Khavari[29] studied the feasibility of tungsten reprocessing from historical Swedish W tailings obtained from
Yxsjöberg (0.22% WO3). The main tungsten mineral was scheelite; however, other minerals included quartz,
chalcopyrite, fluorspar, pyrrhotite, cassiterite, and magnetite. Given that scheelite was their mineral of
interest, a Knelson-enhanced gravity separator was used for separation tests, as CaWO4 is a good candidate
for specific gravity-based tests. Magnetic separation tests were done to remove pyrrhotite and magnetite to
produce an environmentally stable tailing.

Das et al. studied the potential use of enhanced falcon gravity separators in recovering fine and ultrafine
CaWO4 values available in the Hutti gold mine tailings in India[112]. Several authors have reported W values
in the Hutti gold mine tailings, mainly in the form of CaWO4. The study aimed to investigate the
parameters that could influence concentrator efficiency. Using feed material sampled from the site, tests,
including segregation tests, separation tests, and saturation tests, were performed. ICP-OES tests
demonstrated ~0.03% CaWO4 (~300 ppm) in the feed. The feed material had a d80 = 37 µm and a d50 = 18 µm
and was found to be richer in quartz (44.7%) and Al2O3 by 14.3%. Overall, based on the X-ray Powder
Diffraction (XRD) pattern of the feed sample, the major identified minerals were quartz and plagioclase
feldspar (mainly albite). A low concentration of W in the feed material meant that XRD peaks of W
minerals could not be detected. An optimization study using Central Composite Design (CDD) aimed at
maximizing yield, recovery, and an enrichment ratio by variating feed rate (kg·min-1), bowl speed (Hz or G-
force), and wash water rate (L·min-1) was completed. The CDD consisted of 20 experiments with three
variables and six replicates. The model data showed that the wash water rate and bowl speed were of
paramount significance. The order of significance of the main variables on the recovery of CaWO4 follows
wash water rate > bowl speed > feed rate. They found that under optimum conditions such as a wash water
rate of 4 L·min-1 and a rotational speed of 70 Hz with an actual feed rate of 1 kg·min-1, a recovery of ~68%, a
yield of ~17% with a ~4.7% enrichment ratio was achieved demonstrating promise for tailings reprocessing.
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Clemente et al. investigated the reprocessing of slime tailings from a tungsten mine[56]. They described the
development of new process routes for ultrafine wolframite recovery to enhance the efficient reprocessing of
historical mine tailings and plant slime tailings. In their sample, much of the wolframite was < 25 µm,
associated with a complex mixture of Zn, Cu, tourmaline, and siderite, in addition to other sulfides,
ferromagnetic materials, and other strongly magnetic materials. The test work consisted of magnetic
separation, flotation, and gravity concentration conducted at both the pilot scale and in the laboratory on
the slime tailings of the plant and on the historical mine tailings. The results showed that a three-stage
gravity separation process with intermediate sulfide flotation could produce a wolframite concentrate of
50%-55% WO3, which is a reasonable recovery. Single froth flotation provided inconsistent results.

Rosario[35] applied the electrodialytic process for W recovery and arsenic removal from Panasqueira W mine
tailings (Covilhã, Portugal) using cells with 2C and 3C compartments in the presence of anion and 
cation exchange membranes. The results showed that the 2C cell unit with an anion exchange
membrane presented the highest tungsten recovery (0.15%) and Arsenic removal (23.51% ± 21.33%).
Additional preliminary tests were carried out by adding three adjuvants to the sample. A recovery of 0.64%
tungsten was achieved with the removal of 9.48% As when the adjuvant B was added. The lower recovery of
tungsten compared to arsenic was due to the availability of sulfates in the sample, which promoted the
formation of W complexes.

Figueiredo et al. investigated approaches to remine old W tailings from the Panasqueira Mine in
Portugal[100]. With an aggregate of 33 demarcated points, samples were collected for this investigation. In
their scheme, they targeted recovering Zn, obtaining Zn liquor, recovering W, and eliminating sulfides.
Tests, including stirred-tank leaching, flotation, and pressure leaching, were employed. The objective of the
stirred tank leaching was to extract Zn from the tailings into a soluble liquor. The one for flotation was to
recover arsenic as a sulfide reduction stage for the material to be sent to the pressure leaching, while the
objective of pressure leaching was to extract W from the tailings into a soluble liquor. Experimental data
analysis and modeling were used to evaluate the response of experimental conditions in various
experiments. Using a hydrometallurgical route to reprocess the tailings satisfied the two conditions of
environmental risk and metal demand, and the project represented a profitable investment.

Biohydrometallurgy has been reported to be the best technology for mine waste reprocessing. Unlike W
tailings, current/implemented operations are focused on the recovery of one or two metals. Some examples
of industrial case studies around the world include the Kasese (former copper mine in Uganda), Production
of Co from 2000 to 2014 and Vuonos (active talc mine in Finland), Production of nickel and cobalt from
high-grade sulfide flotation tail[113]. Ye et al. showed a successful application of a biohydrometallurgy
approach to remove heavy metals from lead-zinc mine tailings using bioleaching followed by sulfide
precipitation[114]. With the use of bacteria in a bioleaching reactor, metals were dissolved from the tailings.
More than 99% of the Zn and 75% of the Fe were precipitated using 25 g·L-1 Na2S in the bioleaching leachate.
Extreme thermoacidophile Metallosphaera sedula was demonstrated to grow on and directly extract W from
scheelite, a potential new approach for recovering W from tailings[115]. One bioleaching experiment on W
tailings was to remove Mn and As from W tailings. Using mixed cultures of Acidithiobacillus thiooxidans
and Acidithiobacillus ferrooxidans, recovery of Mn could almost reach 100% while the one for As could
reach about 97%[116]. Other researchers have shown that wolframite tailings could be processed by
acidophilic bioleaching[69].

Thus, this literature search confirms that studies on W tailings reprocessing by mineral processing
approaches could address bottlenecks in traditional processing, including the fineness of the particles. Due
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to the fineness of tungsten materials, mineral processing methods may not always be efficient; therefore, the 
material may proceed directly to the extractive metallurgy step. Table 7 shows the global reprocessing trials 
for W recovery from tailings with their recovery rate and concentration grades obtained.

CONCLUSIONS
Tungsten, with one of the highest melting points among elements, is categorized as a critical element in 
many countries due to its broad applications across numerous industries. Due to its critical status and EI, W 
tailings, as a secondary source, have been increasingly receiving attention to ensure the stability of the 
supply chain. The reprocessing of W tailings does prove challenging due to the fineness of tungsten particles 
and the presence of gangue minerals that interfere with the physicochemical separation routes. Different 
research clusters are endeavoring to find suitable reprocessing approaches that could optimally recover W 
from their tailings and diminish deleterious environmental footprints that are formed because of W tailing 
accumulation. Lack of transparency and data availability across the supply chain of tungsten hinders the 
potential development of R&D. The challenge of tungsten data availability was evidenced by a study of mass 
flow analysis (MFA) regarding 21 raw materials that recognized tungsten as one of the five elements that 
have the least data in the literature[125].

W tailings, particularly old tailings, have an economic value as they contain other metals, such as Au, Ag, 
Co, Ni, Mo, Zn, etc., depending on the nature of the original mineralization and the ore processing route. 
Reprocessing tailings are practical as they contain relatively high metal content due to less efficient 
extraction or obsolete methods. The lives of biota and human beings could be vulnerable should these 
tailings remain abandoned; therefore, proper management of the latter tailings is a must-do thing to ensure 
that the United Nations SDGs are implemented exhaustively. W tailings may have adverse impacts on both 
the environment (air, water, soil) and human beings, mainly depending on the level of exposure. Out of all 
pollutants, most W tailings are associated with scorodite (FeAsO4·2H2O) at significant levels. Improper 
management of such tailings could result in a well-known AMD problem and other serious issues related to 
the direct contact of heavy elements with air, food, or water.

Proper management of W tailings is highly encouraged, with two primary goals. The first one is to extract 
valuable elements, particularly tungsten, and the second one is the conservation of the environment. Should 
proper mineral processing routes be implemented for W tailings, taking into consideration their primary 
and present geologies, acceptable values of tungsten could be obtained, and therefore, the production from 
secondary sources would be enhanced[126]. This would be an important step as the demand for this metal in 
the aforementioned industries is skyrocketing. Provided that most of tungsten is secured from China, as it 
accounts for more than 0.84 of the world’s production (about 71 kt) and ~0.50 of the world’s reserves, 
focusing on this secondary resource could automatically contribute to the reduction of dependency[1]. As for 
the second goal of ensuring the safety of the ecosystem, proper disposal of W tailings and the application of 
recycling techniques can help reduce toxic elements such as arsenic and other related substances to tolerable 
levels as per WHO standards and other health regulatory bodies. Besides, effective management of tailings 
could also contribute to the reduction of the “Not in My Backyard” (NIMBY) Syndrome, as tailings are one 
of the contributing factors.

It is, therefore, recommended to apply advanced technologies such as enhanced gravity separation systems, 
flotation reagents, or a combination of physical separators to old tailings with economic value to ensure the 
maximum recovery of targeted elements from tailings. Besides, it would be important to consider life cycle 
assessment (LCA) and life cycle inventory (LCI) to ensure the management of the environment while 
thinking of such a reprocessing project on an industrial scale. Current and/or future R&D works should 
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Table 7. Global list of tailing reprocessing tests for tungsten recovery from tailings

Deposit Country
Major 
tungsten 
mineral

Tungsten tailing 
type Reprocessing methods

Tailings 
grade, 
WO3%

WO3 
concentrate 
%

WO3 
recovery 
rate

Ref.

Tyrnyauz Russia Scheelite Old molybdenum 
mine tailings

Flotation 0.05 54-55 ~62 [117]

Hutti gold 
dumps

India Scheelite Old Au tailings 
dumps with 
scheelite

Enhanced gravity separation 
(Falcon concentrator)

0.024 17.16 67.5 [112]

Kolar dumps India Scheelite Old Au tailings 
dumps with 
scheelite

Tabling, flotation, and 
magnetic separation

0.01-0.53 65 - [118]

Guangdong China Scheelite Cu-S tailings Gravity separation, flotation 0.11 32.16 30.29 [119]

Shizhuyuan China Scheelite Scheelite 
concentrate tailings

Gravity process-shaking 
tables

- 25.45 44.83 [120]

Gansu China Scheelite Scheelite flotation 
tailings

Flotation - 56.86 51.93 [121]

Panasqueira Portugal Wolframite Historical W mine 
tailings

Flotation, magnetic 
separation, and gravity 
concentration

0.1 50-55 - [56]

Potosi Bolivia Wolframite Tin mine tailings Chlorination segregation, 
flotation, high-intensity 
magnetic separation, and 
gravity separation

0.64 60.22 ~64 [122]

Dajishan China Wolframite Fine tungsten 
tailings

Flotation 0.45 30.18 80 [123]

Rajasthan India Wolframite High-intensity 
magnetic separation 
tungsten ore slime

Polymeric dispersant with 
magnetic separation

2.87 and 
5.30

5.4-11 - [124]

Jiangxi China Wolframite Tungsten mine 
tailings

Shaking table-flotation 
process

0.32 55.64 75.28 [101]

Bom-Gohron Russia Wolframite Tungsten mine 
tailings

Enhanced magnetic 
separation using 
dispersant

0.1-0.35 - - [50]

consider using modeling tools at each step, whether it is in processing or life cycle analysis, to better 
understand the operating costs and profitability of the overall process. While considering reprocessing 
tailings, an ethical and responsible recycling approach, such as Environmental, Social and Governance 
(ESG), should be implemented to embrace the circular economy.
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