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Order conditions for languages

We define a condition on the resolution of bispecials in a language. A language satisfies this order condition if and only if it is the natural coding of a generalized interval exchange transformation, while the order condition plus some additional ones characterize the codings of various more classical interval exchange transformations. Also, a finite word clusters for the Burrows-Wheeler transform if and only if the language generated by its powers satisfies an order condition.

1 Languages satisfying an order condition

Usual definitions

Let A be a finite set called the alphabet, its elements being letters. A word w of length n = |w| is a 1 a 2 • • • a n , with a i ∈ A. The concatenation of two words w and w is denoted by ww . By a language L over A we mean a factorial extendable language: a collection of sets (L n ) n≥0 where the only element of L 0 is the empty word, and where each L n for n ≥ 1 consists of words of length n, such that for each v ∈ L n there exist a, b ∈ A with av, vb ∈ L n+1 , and each v ∈ L n+1 can be written in the form v = au = u b with a, b ∈ A and u, u ∈ L n .

The complexity function p : N → N is defined by p(n) = #L n .

A word v = v 1 ...v r is a factor of a word w = w 1 ...w s or an infinite sequence w = w 1 w 2 ... if for some i ≥ 1 v 1 = w i , ...v r = w i+r-1 .

The reverse of the word v = v 1 ...v r is the word v r ...v 1 . A word w is primitive if it is not equal to v n for any word v and integer n > 1.

Let W be a family of words or (one-or two-sided) infinite sequences. Whenever the set L of all the factors of the words or sequences in W is a language (namely, is factorial and extendable), we say that L is the language generated by W and denote it by L(W ).

A language L is recurrent if for each v ∈ L there exists a nonempty w such that vw is in L and ends with v.

A language L is uniformly recurrent if for each v ∈ L there exists n such that v is a factor of each word w ∈ L n .

A language L is aperiodic if for each nonempty word w in L, there exists n such that w n is not in L.

For a word w in L, we call arrival set of w, denoted by A(w), the set of all letters x such that xw is in L, and call departure set of w, denoted by D(w), the set of all letters x such that wx is in L.

A word w in L is called right special, resp. left special if #D(w) > 1, resp. #A(w) > 1. If w ∈ L is both right special and left special, then w is called bispecial. If #L 1 > 1, the empty word ε is bispecial, with A(ε) = D(ε) = L 1 .

A bispecial word w in L is a weak bispecial if #{awb ∈ L, a ∈ A(w), b ∈ D(w)} < #A(w) + #D(w) -1.

A bispecial word w in L is a strong bispecial if #{awb ∈ L, a ∈ A(w), b ∈ D(w)} > #A(w) + #D(w) -1.

To resolve a bispecial word w is to find all words in L of the form awb for letters a and b.

The symbolic dynamical system associated to a language L is the two-sided shift S acting on the subset X L of A Z consisting of all bi-infinite sequences x such that x r • • • x r+s-1 ∈ L s for each r and s, defined by (Sx) n = x n+1 for all n ∈ Z.

Thus in the present paper we use two-sided sequences x ∈ X L , but also their (infinite) suffixes (x n , n ≥ k) and (infinite) prefixes (x n , n ≤ k).

Order conditions: first properties

The order condition can be traced to [START_REF] Ferenczi | ZAMBONI: Languages of k-interval exchange transformations[END_REF], but its first explicit mention appears in [START_REF] De Luca | Extremal values of semi-regular continuants and codings of interval exchange transformations[END_REF] in the particular case of one order and its reverse. Definition 1. A language L on an alphabet A satisfies a local order condition if, for each bispecial word w, there exist two total orders on A, denoted by < A,w and < D,w , such that whenever awc and bwd are in L with letters a = b and c = d, then a < A,w b if and only if c < D,w d.

A language L on an alphabet A satisfies an order condition if it satisfies a local order condition where the orders < A,w and < D,w are the same for all bispecial words. The first notion in the following definition seems to be new, and its links with the order conditions will be studied below.

Definition 2. In a language L, a locally strong bispecial word is a bispecial word w such that there exist nonempty subsets

A ⊂ A(w), D ⊂ D(w) such that #{awb ∈ L, a ∈ A , b ∈ D } > #A + #D -1.
If a language L on an alphabet A satisfies a local order condition, a bispecial word w has a connection if there are letters a < A,w a , consecutive in the order < A,w , letters b < D,w b , consecutive in the order < D,w , such that awb and a wb are in L, and neither awb nor a wb is in L.

We recall a well-known result which can be deduced from [START_REF] Cassaigne | Complexité et facteurs spéciaux[END_REF] or [START_REF] Cassaigne | Factor complexity, Combinatorics, automata and number theory[END_REF]. Lemma 1. A language L which has no strong bispecial word has a finite number of weak bispecial words, and the left (resp. right) special words are the prefixes (resp. suffixes) af a finite number of infinite suffixes (resp. prefixes) of sequences of X L .

Proof

See the proof of Lemmas 2 and 5 in [START_REF] Ferenczi | ZAMBONI: Languages of general interval exchange transformations[END_REF].

We turn now to combinatorial consequences of order conditions. Lemma 2. A language L which satisfies a local order condition contains no locally strong bispecial word, and thus no strong bispecial word.

Proof

See the proof of Lemma 1 in [START_REF] Ferenczi | ZAMBONI: Languages of general interval exchange transformations[END_REF].

For languages where each word has at most two right (resp. left) extensions, the absence of strong bispecial words, the absence of locally strong bispecial words, and a local order condition are all equivalent. In the general case, it is easy to find bispecials which are locally strong but not strong (suppose for example that the possible xwy are awa, awb, bwa, bwb, cwc), and a local order condition is stricter than the absence of locally strong bispecials.

Example 1. Suppose L is a language whose words of length 2 are ac, ad, ba, bc, cb, cc, da. Then the empty word is not a locally strong bispecial, yet L does not satisfy any local order condition. We can then choose L 3 to be made with acc, ada, bac, bad, bcb, bcc, cba, cbc, ccb, dac, where each word has at most two left (resp. right) extensions, and continue by resolving the bispecials so that they are all neutral. We get a language without locally strong bispecials but not satisfying any local order condition.

A related notion is dendricity ([4] under the name of tree sets). This can be interpreted as the following. Definition 3. A language is dendric if it has neither locally strong bispecial words nor weak bispecial words. Thus, by Lemmas 1 and 2, a language satisfying a local order condition is ultimately dendric. But, because of Example 1 and the possibility of weak bispecials, there is no inclusion relation between dendric languages and languages satifying an order condition, local or not. Lemma 3. A language satisfying a local order condition has complexity p(n) = kn + l for all n large enough and with 0 ≤ k ≤ #A -1. Moreover, k = #A -1 if and only if L has no connection, and in that case l = 1.

Proof

See the proof of Lemma 3 and Corollary 4 in [START_REF] Ferenczi | ZAMBONI: Languages of general interval exchange transformations[END_REF].

Recurrence

We look at consequences of an order condition, or weaker properties, on the trajectories in X L . Definition 4. Let x be a bi-infinite sequence in A Z , or a suffix of such a sequence. x is right recurrent if any factor of x is a factor of each suffix of x.

Let x be a bi-infinite sequence in A Z , or a prefix of such a squence. x is left recurrent if any factor of x is a factor of each prefix of x.

A bi-infinite sequence x in A Z is recurrent if it is both left and right recurrent.

Lemma 4. Suppose L has no strong bispecial word.

If a suffix of a sequence in X L is right recurrent, it generates a uniformly recurrent language.

If a prefix of a sequence in X L is left recurrent, it generates a uniformly recurrent language.

If a sequence in X L is left or right recurrent, it is recurrent and generates a uniformly recurrent language.

Proof

See the proof of Lemma 9 in [START_REF] Ferenczi | ZAMBONI: Languages of general interval exchange transformations[END_REF].

Proposition 1. Suppose L has no strong bispecial word. Then there are at most a finite number of orbits {S n x, n ∈ Z}, x ∈ X L , with x not recurrent.

Proof

See the proof of Proposition 17 in [START_REF] Ferenczi | ZAMBONI: Languages of general interval exchange transformations[END_REF]. Proposition 2. Let L be a recurrent language satisfying a local order condition. Then L is a finite union of uniformly recurrent languages.

Proof

See the proof of Proposition 12 in [START_REF] Ferenczi | ZAMBONI: Languages of general interval exchange transformations[END_REF].

Lemma 5. Given a language L, we denote by L the sublanguage of L generated by all recurrent sequences in X L . Then L is a recurrent language over an alphabet A ⊂ A. Moreover, if L satisfies an order condition, so does L .

Proof

See the proof of Lemma 18 in [START_REF] Ferenczi | ZAMBONI: Languages of general interval exchange transformations[END_REF].

Interval exchange transformations

Definitions

Generalized interval exchange transformations are defined in [START_REF] Arnoux | Un invariant pour les échanges d'intervalles et les flots sur les surfaces[END_REF] and [START_REF] Marmi | Linearization of generalized interval exchange maps[END_REF] and do generalize the well-known classical, or standard, interval exchange transformations of [29] [22].

All intervals are open on the right, closed on the left. The I e , indexed in A, are called the defining intervals of T .

If the restriction of T to each I e is an affine map, T is an affine interval exchange transformation.

If the restriction of T to each I e is an affine map of slope 1, T is a standard interval exchange transformation.

The endpoints of the I e , resp. T I e , excluding 0 and 1, will be denoted by γ i , resp. β j , for i, resp. j, taking #A -1 values. Definition 6. T is minimal if every orbit is dense in [0, 1).

T satisfies the i.d.o.c. condition if there is at least one point γ i (of Definition 5), and there is no i, j, k ≥ 0, such that

T k β i = γ j .
A wandering interval is an interval J for which T n J is disjoint from J for all n > 0.

Note that our i.d.o.c. condition is a modified version of the one introduced by Keane [START_REF] Keane | Interval exchange transformations[END_REF]; our condition depends on the defining intervals, and is not intrinsic to T as the original Keane's condition. Definition 7. For a generalized interval exchange transformation T , its natural coding is the language L(T ) generated by all the trajectories, namely the sequences (x n , n ∈ Z) ∈ A Z where x n = e if T n x falls into I e , e ∈ A.

Thus we can look at the symbolic system associated to L(T ). Note that the set X L(T ) is the closure in A Z of the set of trajectories, for the product topology defined by the discrete topology on A.

Example 2. A Sturmian language [START_REF] Morse | Symbolic dynamics II. Sturmian trajectories[END_REF] is the natural coding of the standard interval exchange transformation T sending [0, 1 -α) to [α, 1) and [1 -α, 1) to [0, α) for α irrational; T is conjugate to a rotation of angle α on the 1-torus.

We shall also consider slightly more general codings, by merging into intervals Ĩe some adjacent intervals I e whose images by T are also adjacent. This is equivalent to taking the natural coding of another interval exchange transformation T , but when T is affine, if we define T by the intervals Ĩe it will not necessarily be affine by our definition, as the slope is not constant on its defining intervals, see Example 4 below. Thus we define Definition 8. A language L is a grouped coding of an affine interval exchange transformation T if there exist intervals Ĩe , e ∈ Ã such that each Ĩe is an interval, and a disjoint union of defining intervals of T , -T is a continuous monotone map on each Ĩe , -L is the coding of T by the Ĩe , that is the language generated by the trajectories (x n , n ∈ Z) ∈ ÃZ where x n = e if T n x falls into Ĩe , e ∈ Ã.

Interval exchanges satisfy order conditions

Definition 9. A generalized interval exchange transformation defines two orders on A:

e < D f whenever the interval I e is strictly to the left of the interval I f , e < A f whenever the interval T I e is strictly to the left of the interval T I f . These orders correspond to the two permutations used by Kerckhoff [START_REF] Kerckhoff | Simplicial systems for interval exchange maps and measured foliations[END_REF] to define standard interval exchange transformations: the unit interval is partitioned into semi-open intervals which are numbered from 1 to k, ordered according to a permutation π 0 and then rearranged according to another permutation π 1 ; in more classical definitions, there is only one permutation π, which corresponds to π 1 while π 0 = Id; note that in some papers the orderings are by π -1 0 and π -1

1 .

Proposition 3. Let T be a generalized interval exchange transformation. Then its natural coding L(T ) satisfies an order condition.

Proof

See the proof of Proposition 8 in [START_REF] Ferenczi | ZAMBONI: Languages of general interval exchange transformations[END_REF].

T -r γj T -r γj+1 T -r γj+2 T -r γj+3 [wb1] [wb2] [wb3] [wb4] [wb5] βi βi+1 βi+2 βi+3 T [a1w] T [a2w] T [a3w] T [a4w] T [a5w]
Fig. 1. A bispecial interval Remark 1. The notion of interval exchange has been extended to interval exchanges with flips [START_REF] Nogueira | Nonorientable recurrence of flows and interval exchange transformations[END_REF] in the standard case, allowing the slope of T on some defining intervals to be -1. It can be further extended to generalized interval exchanges with flips, allowing T to be decreasing on some defining intervals.

The natural codings of such transformations satisfy a flipped order condition, which is a local order condition where the order < D,w is always the same order < D , while < A,w is allowed to be either an order < A or its reverse, according to the number of letters in w corresponding to flipped intervals. Indeed, all the results in Section 2.3 hold for (generalized) interval exchanges with flips, mutatis mutandis.

Remark 2. The language of an interval translation mapping [START_REF] Boshernitzan | KORNFELD: Interval translation mappings, Ergodic Theory Dynam[END_REF] does not necessarily satisfy a local order condition: it is possible that T I a intersects T I b for a = b, and, if T I a ∩ T I b intersects both I c and I d , c = d, then the empty word is a locally strong bispecial. For this family, not much is known; it is an open question, asked by Boshernitzan, whether all interval translation mappings have linear complexity. It is generalized to piecewise isometries [START_REF] Gaboriau | Pseudogroups of isometries of R and Rips' theorem on free actions on R-trees[END_REF] for which even less is known.

The converse

Theorem 1. A language L on at least two letters is the language of a standard interval exchange transformation satisfying the i.d.o.c. condition if and only if it satisfies an order condition, is aperiodic and uniformly recurrent, and has no connection.

Proof

See the proof of Theorem 15 in [START_REF] Ferenczi | ZAMBONI: Languages of general interval exchange transformations[END_REF].

Theorem 2. A language L is the language of a generalized, or equivalently of a standard, minimal interval exchange transformation if and only if it satisfies an order condition, is aperiodic and uniformly recurrent.

Proof

See the proof of Theorem 14 in [START_REF] Ferenczi | ZAMBONI: Languages of general interval exchange transformations[END_REF].

Theorem 1 is proved in [START_REF] Ferenczi | Clustering words and interval exchanges[END_REF], and Theorem 2 uses the same method. Some results similar both to Theorem 2 and Theorem 3 below are proved in [START_REF] Ya | EV: Describing the set of words generated by interval exchange transformations[END_REF], using a description of the evolution of Rauzy graphs which is somewhat cumbersome to state, but where an order condition seems to be hidden. Theorem 3. For a language L on an alphabet A, the following are equivalent:

-(i) L satisfies an order condition and is recurrent; -(ii) L is the language of a standard interval exchange transformation; -(iii) L is the language of a generalized interval exchange transformation without wandering intervals.

Proof

See the proof of Theorem 13 in [START_REF] Ferenczi | ZAMBONI: Languages of general interval exchange transformations[END_REF].

We want now to get rid of extra conditions besides the order condition; as the following chain of counter-examples shows, this obliges us to weaken the classical notion of standard interval exchange, thus the successive generalizations are indeed relevant.

Example 3 (Fake Sturmian). Let L be generated by the bi-infinite sequence . . . 111222 . . .. Note that it is of complexity n + 1 but not uniformly recurrent, and in the founding paper [START_REF] Morse | Symbolic dynamics II. Sturmian trajectories[END_REF] it is not included in Sturmian languges, hence we call it a fake Sturmian language.

It satisfies the order condition with 1 < D 2, 1 < A 2, but (unsurprisingly as it is not recurrent) is not the language of a standard interval exchange transformation as that could only be the identity on two disjoint open intervals I 1 and I 2 , and the only possible words are 1 n and 2 m . However, L is the natural coding of an affine interval exchange transformation: L 2 is the language of length 2 of any affine 2-interval exchange transformation, with the same orders, such that T I 1 is strictly longer than I 1 , and, as L is determined by L 2 because there is no bispecial word except the empty one, L is indeed the natural coding of any of these affine interval exchange transformations.

Example 4 (Skew Sturmian). Let L be the language generated by the bi-infinite sequence . . . 1112111 . . ., which is a skew Sturmian language as defined in [START_REF] Morse | Symbolic dynamics II. Sturmian trajectories[END_REF].

It satisfies the order condition with 1 < D 2, 2 < A 1, but is not the natural coding of any affine interval exchange transformation T : indeed, the sequence . . . 1111 . . . in X L would define a fixed point x for T , in the interior of I 1 , and, if 0 < y < x is the right endpoint of T I 2 , T would have to send [0, x) to [y, x) and [x, 1 -y) to [x, 1), thus having a slope < 1 on a part of I 1 and a slope > 1 on another part. However, if L is the language generated by the bi-infinite sequence . . . 3332111 . . ., as in Example 3 L is the natural coding of any affine interval exchange transformation T sending

I 1 = [0, x) to [y, x), I 3 = [x, 1 -y) to [x, 1), I 2 = [1 -y, 1
) to [0, y), with 0 < y < x < 1 -y. If we now code T by the intervals Ĩ1 = I 1 ∪ I 3 and Ĩ2 = I 2 , we see that L is a grouped coding of an affine interval exchange transformation as in Definition 8.

Example 5 (Episkew).

Let L be the Sturmian language which is the natural coding of the unflipped standard interval exchange transformation T sending

I 1 = [0, 1 -α) to [α, 1) and I 2 = [1 -α, 1) to [0, α) for an irrational α < 1/2. Let y n = i whenever T n α is in I i , n ≥ 0, and y n = i whenever T n (1 -2α) is in I i , n ≤ 0; when α = 3- √ 5 
2 , y is the so-called Fibonacci sequence on 1 and 2, and y is y written backwards. Let L be the language generated by the infinite sequence ...y -2 y -1 y 0 3y 0 y 1 y 2 ... Extending to languages the definition in [START_REF] Berstel | Sturmian and episturmian words (a survey of some recent results)[END_REF], we can call it an episkew language. It satisfies the order condition with 1 < D 3 < D 2, 2 < A 3 < A 1 (note that no other order is possible, because of the way the empty bispecial is resolved).

L is the natural coding of a generalized interval exchange transformation, by Theorem 4 below, but it is not the natural or grouped coding of any affine interval exchange transformation: this will be a straightforward consequence of either one of two independent results we show below, Theorems 6 and 7.

And finally

Theorem 4. A language L is a natural coding of a generalized interval exchange transformation if and only if L satisfies an order condition.

Proof

See the proof of Theorem 19 in [START_REF] Ferenczi | ZAMBONI: Languages of general interval exchange transformations[END_REF].

Examples and questions

We do not have a complete characterization of the codings of affine interval exchanges. The best we can do is Theorem 5. If L is a natural coding of an affine interval exchange transformation for which the absolute value of the slope is exp θ e on the defining interval I e , then L satisfies an order condition and for each non recurrent sequence z in X L , n≥0 exp n j=0 θ zj < +∞, and n>0 exp -

-1 j=-n θ zj < +∞.
If L satisfies an order condition and there exist real numbers θ e , e ∈ A, such that for each non recurrent sequence z in L, n≥0 exp n j=0 θ zj < +∞, and n>0 exp --1 j=-n θ zj < +∞, then L is a group coding of an affine interval exchange transformation.

Proof

See the proof of Theorem 20 in [START_REF] Ferenczi | ZAMBONI: Languages of general interval exchange transformations[END_REF].

The generalizations of standard interval exchanges have seen a recent surge in activity (see [START_REF] Marmi | Affine interval exchange maps with a wandering interval[END_REF] [26] [START_REF] Ghazouani | ULCIGRAI: A priori bounds for GIETS, affine shadows and rigidity of foliations in genus two[END_REF] and others) primarily centered on the conjugacy problem between these different classes of maps; in this context, standard and generalized interval exchange transformations are the extreme cases while affine interval exchange transformations constitute a fundamental middle step. The following questions and conjectures can be considered as related to this problem.

Conjecture 1. The conditions in Theorem 5 are necessary and sufficient for L to be a natural coding of an affine interval exchange transformation. Question 1. Does there exist an aperiodic language which is a grouped coding of an affine interval exchange transformation, but not a natural coding of any affine interval exchange transformation? Conjecture 1 and Question 1 suggest what we dare not call a conjecture.

Question 2. Is it true that L is a group coding of an affine interval exchange transformation if and only if L satisfies an order condition and there exist real numbers θ e , e ∈ A, such that the two following conditions hold? -For each non recurrent sequence z in L which is not ultimately periodic to the left, n≥0 exp n j=0 θ zj < +∞. -For each non recurrent sequence z in L which is not ultimately periodic to the right,

n>0 exp - -1
j=-n θ zj < +∞. There are many examples of codings of affine interval exchange transformations which are not natural codings of standard ones; they can be built by using the methods of [8] [6] [25] and others. But codings of generalized interval exchange transformations which are not codings of affine ones seem to be completely new, and we know two combinatorial ways of building them, expressed in the two following theorems. Theorem 6. Let L be non recurrent, and a natural coding of a generalized interval exchange transformation T . Suppose the language L of Lemma 5 is aperiodic, uniformly recurrent, and its arrival and departure orders are conjugate by a circular permutation. Then T cannot be of class P, class P [START_REF] Herman | Sur la conjugaison différentiable des difféomorphsimes du cercle à des rotations[END_REF] meaning that, except on a countable set of points, its derivative DT exists and DT = h where h is a function with bounded variation, and |h| is bounded from below by a strictly positive number.

Proof

See the proof of Theorem 23 in [START_REF] Ferenczi | ZAMBONI: Languages of general interval exchange transformations[END_REF].

Theorem 7. Let L be a natural coding of a non purely periodic standard interval exchange transformation. Let w n = aw n b, a ∈ A, b ∈ A, be an infinite sequence of bispecial words in L . Let u be the left-sided infinite sequence ending with w n for all n, and v the right-sided infinite sequence beginning with w n for all n. Let ω be a symbol which is not a letter of L , and L be the language generated by the union of all words in L and the bi-infinite word uωv.

Then L is a natural coding of a generalized interval exchange transformation, but not a grouped coding of any affine interval exchange transformation.

Proof

See the proof of Theorem 24 in [START_REF] Ferenczi | ZAMBONI: Languages of general interval exchange transformations[END_REF].

Order conditions and the Burrows-Wheeler transform

Let A = {a 1 < a 2 < • • • < a r } be an ordered alphabet. For a permutation π on A, we define the order < π by x < π y if π -1 x < π -1 y.

Definition 10. The (cyclic) conjugates of w = w 1 • • • w n are the words

w i • • • w n w 1 • • • w i-1 , 1 ≤ i ≤ n.
If w is primitive, w has precisely n cyclic conjugates. Let w i,1 • • • w i,n denote the i-th conjugate of w where the n conjugates of w are ordered by ascending lexicographical order. Then the Burrows-Wheeler transform [START_REF] Burrows | A block-sorting lossless data compression algorithm[END_REF] of w, denoted by B(w), is the word w 1,n w 2,n • • • w n,n . It depends on the given order < on A. We say w is clustering for the order < and the permutation π [START_REF] Ferenczi | Clustering words and interval exchanges[END_REF] if B(w) = (πa 1 ) nπa 1 • • • (πa r ) nπa r , where π is a permutation on A and n a is the number of occurrences of a in w (we allow some of the n a to be 0, thus, given the order and w, there may be several possible π). We say w is perfectly clustering if it is clustering for the symmetric permutation πa i = a r+1-i , 1 ≤ i ≤ r ( [START_REF] Simpson | Words with simple Burrows-Wheeler transforms[END_REF] though it is not named).

Non-primitive words. As remarked in [START_REF] Ferenczi | Clustering words and interval exchanges[END_REF], the Burrows-Wheeler transform can be extended to a non-primitive word w 1 • • • w n , by ordering its n (non necessarily different) cyclic conjugates by non-strictly increasing lexicographical order and taking the word made by their last letters. Then B(v m ) is deduced from B(v) by replacing each of its letters x i by x m i , and v m is clustering for π if and only if v is clustering for π.

Theorem 8. For a given order < on the alphabet, a primitive word w is clustering for the order < and the permutation π if and only if every bispecial word v in the language L w generated by w n , n ∈ N, satisfies the order condition where the order < D is the order < and the order < A is < π . All bispecial words in L w are factors of length at most |w| -2 of ww.

Proof

We begin by the last assertion. Suppose v is a bispecial of L w . Then v must occur at two different positions in some word w k . If |w| = n and |v| ≥ |w| -1, this implies in particular w i ...w n w 1 ...w i-2 = w j ...w n w 1 ...w j-2 for 1 < j -i < n, and we notice that each w i is in at least one member of the equality, thus we get that w is a power of a word whose length is the GCD of n and j -i, which contradicts the primitivity. Thus the length of v is at most |w| -2, and v occurs in ww.

We prove now that our order condition is equivalent to the following modified order condition: whenever z = z 1 ...z n and z = z 1 ...z n are two different cyclic conjugates of w, z < z (lexicographically) if and only if z k < π z k for the largest k ≤ n such that z k = z k . Indeed, by definition z < z if and only if z j < z j for the smallest j ≥ 1 such that z j = z j . If w satifies the order condition, we apply it to the bispecial word z k+1 ...z n z 1 ...z j-1 , with k and j as defined, and get the modified order condition. Let v be a bispecial word in L w ; by the first paragraph of this proof it can be written as z 1 ...z k-1 for some 1 ≤ k ≤ n, with the convention that k = 1 whenever v is empty, and at least two different cyclic conjugates z of w, and its possible extensions are the corresponding z n z 1 ...z k , thus, if the modified order condition is satisfied, v does satisfy the requirement of the order condition.

The modified order condition implies clustering, as then if two cyclic conjugates of w satisfy z < z , their last letters z n and z n satisfy either z n = z n or z n < π z n . Suppose w = w 1 • • • w n is clustering for π. Suppose two cyclic conjugates of w are such that z k = z k , z j = z j for k + 1 ≤ j ≤ n. Then z < z is (by definition of the lexicographical order) equivalent to z k+1 ...z n z 1 ..z k < z k+1 ...z n z 1 ..z k , and, as these two words have different last letters, because of the clustering this is equivalent to z k < π z k , thus the modified order condition is satisfied.

Theorem 8 remains valid if w = v m is non-primitive (it can be slightly improved as there are less bispecial words to be considered, it is enough to look at factors of vv of length at most |v| -2). An immediate consequence is the following, which seems to be new. Proposition 4. If w clusters for the order < and the permutation π, its reverse clusters for the π-order, and the permutation π -1 .

Proof

This follows in a straightforward way from Theorem 8.

The order condition can be applied to get the clustering properties of classical families of words. Thus it can be used to reprove the result of [START_REF] Mantaci | SCIORTINO: Burrows-Wheeler transform and Sturmian words[END_REF]: a Sturmian language contains infinitely many clustering words.

Theorem 9. The natural coding of a standard k-interval exchange in the hyperelliptic class (this consists in all the symmetric ones, i.e. those for which the order < A is the reverse of < D , and all those which can be obtained from the symmetric ones by an induction process, see [START_REF] Ferenczi | Structure of K-interval exchange transformations: induction, trajectories, and distance theorems[END_REF]) satisfying the i.d.o.c. condition, or of any standard 3-or 4-interval exchange satisfying the i.d.o.c. condition, contains infinitely many clustering words.

Proof

By Theorem 8 and Proposition 3 (or by Theorem 4 of [START_REF] Ferenczi | Clustering words and interval exchanges[END_REF]), if L is the language of a standard interval exchange satisfying the i.d.o.c. condition, w clusters if ww is in L. The fact that L contains infinitely many squares is proved in [START_REF] Ferenczi | Structure of K-interval exchange transformations: induction, trajectories, and distance theorems[END_REF] for the hyperelliptic class, [START_REF] Ferenczi | A generalization of the self-dual induction to every interval exchange transformation[END_REF] for the other cases mentioned above.

Note that Theorem 9 has not yet been generalized to wider classes of interval exchanges. Also, in the forthcoming [START_REF] Ferenczi | Clustering of Arnoux-Rauzy words[END_REF], we shall prove that an Arnoux-Rauzy language [START_REF] Arnoux | Représentation géométrique de suites de complexité 2n + 1[END_REF] contains finitely many clustering words, while an episturmian language [START_REF] Berstel | Sturmian and episturmian words (a survey of some recent results)[END_REF] may contain finitely or infinitely many clustering words, with a full characterization of each case.

Definition 5 .

 5 A generalized interval exchange transformation is a map T defined on [0, 1) partitioned by intervals I e , e ∈ A, continuous and (strictly) increasing on each I e , and such that the T I e , e ∈ A, are intervals partitioning [0, 1).