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In this work, we study ergodic and dynamical properties of symbolic dynamical system associated to substitutions on an infinite countable alphabet. Specifically we consider shift dynamical systems associated to irreducible substitutions which have wellestablished properties in the case of finite alphabets. Based on dynamical properties of a countable integer matrix related to the substitution, we obtain results on existence and uniqueness of shift invariant measures.

Introduction

Let A be a countable set (called alphabet), A * be the set of finite words on A and A Z + be the set of infinite words on A, where Z + = {0, 1, 2, ...}. A substitution is a map σ : A → A * . We assume that for every letter a ∈ A, σ(a) is not empty. We extend σ to A * and A Z + by concatenation and, to simplify the notation, we also denote these extensions by σ. Hence σ(u 0 . . . u n ) = σ(u 0 ) . . . σ(u n ) for all u 0 . . . u n ∈ A * and σ(u 0 u 1 . . .) = σ(u 0 )σ(u 1 ) . . . for all u 0 u 1 . . . ∈ A Z + . We assume that there exists a letter a in A such that the length of the finite word σ n (a) converges to infinity as n goes to infinity.

To any substitution σ, we can associate a shift dynamical system (Ω σ , S), where Ω σ = {u ∈ A Z + : any finite factor of u occurs in σ n (a) for some n ∈ N and a ∈ A}, N = {1, 2, ...}, and S is the shift map given by S(u 0 u 1 . . .) = u 1 u 2 . . . for all u = u 0 u 1 . . . ∈ A Z + .

Shift dynamical systems associated to substitutions provide many important examples in ergodic theory and they have been well studied in the literature when the alphabet is finite (see for instance [START_REF] Fogg | Substitutions in dynamics, arithmetics and combinatorics[END_REF][START_REF] Queffélec | Substitution Dynamical systems-Spectral analysis[END_REF]). It is classical that if σ is a primitive substitution on A = {0, . . . , d -1}, d ≥ 2, i.e there exists k ∈ N such that for all a, b ∈ A the letter b occurs in the word σ k (a), then the dynamical system is minimal, uniquely ergodic with topological entropy 0 (see [START_REF] Michel | Stricte ergodicité d'ensembles minimaux de substitutions[END_REF] and [START_REF] Queffélec | Substitution Dynamical systems-Spectral analysis[END_REF]Chapter 5]). Moreover Ω σ is the closure of the orbit of any periodic point of σ.

The unique shift invariant probability measure µ is given on cylinders [w], where w = w 0 . . . w n , w i ∈ A for i = 0, ..., n, is a finite word that occurs in u and [w] = {u 0 u 1 . . . ∈ Ω σ , u i = w i , i = 0, . . . , n}, by µ[w] which is the frequency of occurrences of w in the periodic point u. Moreover the vector (µ[0], . . . , µ[d -1]) is the normalized left Perron eigenvector associated to the dominant Perron-Frobenius eigenvalue of the matrix M σ = (M ij ) 0≤i,j≤d-1 associated to σ, where M ij := |σ(i)| j is the number of occurrences of the letter j in the word σ(i). On the other hand, it is known (see [START_REF] Canterini | Geometric representation of substitutions of Pisot type[END_REF]) that if σ is of Pisot type, then the dynamical system (Ω σ , S) has good geometrical properties, in particular it is semi-conjugated to a translation on the torus T d-1 .

When the alphabet A is a topological compact set, many results are given in [START_REF] Durand | Self-induced systems[END_REF][START_REF] Manibo | Substitutions on compact alphabets[END_REF][START_REF] Queffélec | Substitution Dynamical systems-Spectral analysis[END_REF].

When A is countably infinite, the situation is more complicated and there are already some work on the subject, see for instance [START_REF] Bezugly | Measures and generalized Bratteli diagrams for dynamics of infinite alphabet-substitutions[END_REF][START_REF] Durand | Self-induced systems[END_REF][START_REF] Ferenczi | Substitution Dynamical Systems on infinite alphabets[END_REF][START_REF] Manibo | Substitutions on compact alphabets[END_REF]. One of the difficulties in studying ergodic properties of the dynamical system (Ω σ , S) in such case lies in the fact that the countably infinite matrix M σ may present a larger number of possible behaviors. Specifically consider an irreducible countably infinite matrix M = (M ij ) i,j∈Z + , that means for all i, j ∈ Z + , there exists an integer n ≥ 1 such that for all k ≥ n, M k ij > 0, where for the sake of simplicity we write (M n ) ij = M n ij . It is known that for all i, j ∈ Z + , lim n→∞ (M n ij ) 1/n = λ exists. We say that M is transient if and only if +∞ n=0 M n ij λ n < +∞, otherwise M is said to be recurrent. It is known that if M is recurrent there are left and right eigenvectors l and r associated to λ and when the scalar product l • r is finite, we say that M is positive recurrent, otherwise M is said to be null recurrent. Thus for instance if the countably infinite matrix M σ is irreducible then it could be either transient or null recurrent or positive recurrent and each of these cases may be associated to a distinct behavior of (Ω σ , S).

For substitutions on countably infinite alphabets an important study was initiated by Ferenczi in [START_REF] Ferenczi | Substitution Dynamical Systems on infinite alphabets[END_REF]. In that paper several results were proved, in particular it is considered the squared drunken substitution defined on A = 2Z by σ(n) = (n -2)nn(n + 2), n ∈ A and proved that the dynamical system (Ω σ , S) is not minimal and has non finite invariant measure. However it is also shown that (Ω σ , S) has an infinite invariant measure µ which is shift ergodic and has Krengel entropy equal to 0.

Let us recall that σ is called left determined or determined to order 1 if there exists a nonnegative integer N such that every w of length at least N which occurs on some element of Ω σ , has a unique decomposition w = w 1 . . . w s , where each w i = σ(a i ) for some a i ∈ A, except that w 1 may be only a suffix of σ(a 1 ) and w s may be only a prefix of σ(a s ), and the a i , 1 ≤ i ≤ s -1, are unique.

The definition of determined to order 1 was introduced in [START_REF] Martin | Minimal Flows Arising from Substitutions of Non-Constant Length[END_REF] (see also definition 1 in [START_REF] Mossé | Reconnaissabilité des substitutions et complexité des suites automatiques[END_REF] ). In [START_REF] Ferenczi | Substitution Dynamical Systems on infinite alphabets[END_REF], the author used the same definition and called it left determined. It is known that this condition is stronger than recognizability, see [START_REF] Mossé | Reconnaissabilité des substitutions et complexité des suites automatiques[END_REF].

In [START_REF] Ferenczi | Substitution Dynamical Systems on infinite alphabets[END_REF] it is also proved that if σ is of constant length, left determined and has an irreducible aperiodic positive recurrent matrix M σ , then the associated shift dynamical system admits an ergodic probability invariant measure.

In [START_REF] Bezugly | Measures and generalized Bratteli diagrams for dynamics of infinite alphabet-substitutions[END_REF], the authors constructed stationary and non-stationary generalized Bratteli-Vershik models for left determined, irreducible, aperiodic and recurrent substitutions on an infinite countable alphabet. As a consequence, they proved that for a left determined substitution σ : Z → Z with M σ irreducible, aperiodic and recurrent which is also of bounded size (the letters of all σ(n) belong to the set {n -t, n -t + 1, . . . , n + t} where t ∈ Z is independent of n), there exists a shift invariant measure µ on Ω σ .

It is also worth mentioning that an arithmetic study of substitutions on countably infinite alphabets was done in [START_REF] Mauduit | Propriétés arithmétiques des substitutions et automates infinis[END_REF].

In this paper, unless explicitly indicated we consider A = Z + and σ : A → A * a bounded length substitution (sup{|σ(a)|, a ∈ A} is finite) such that σ has a periodic point u and M = M σ is irreducible and aperiodic. We prove that if M σ satisfies

lim n→+∞ sup i∈A M n ij +∞ k=0 M n ik = 0 for all j ∈ A, (1.1) 
then the dynamical system (Ω σ , S) has no finite invariant measure. In particular, the last result holds for a subclass of substitutions σ such that M σ is transient and σ has constant length, or M σ is recurrent and has a left Perron eigenvector l = (l i ) i≥0 ̸ ∈ l 1 . We also prove that if M σ is positive recurrent, then the dynamical system (Ω σ , S) has a shift invariant measure µ which is finite if and only if M σ has a left Perron eigenvector l ∈ l 1 . Moreover, if σ has constant length and M σ has a power that is scrambling, then (Ω σ , S) has a unique shift invariant probability measure µ. Let us recall that a nonnegative matrix M = (M ij ) i,j≥0 is said to be scrambling if there exists a > 0 such that

+∞ j=0 min(M ij , M kj ) ≥ a for all i ̸ = k ∈ Z + .
Scrambling stochastic infinite countable matrices are very important, since a stochastic matrix P = (P ij ) i,j≥0 is strongly ergodic (see definition 2.12) if and only if a power of P is scrambling.

We also consider the case where σ is not a constant length substitution. We introduce the notions of strongly ergodic and ⋆-strongly ergodic matrices M σ related to the convergence of

M n ij +∞ k=0 M n ik , i, j ∈ A,
as n → ∞. Then we show that if M σ has a right Perron eigenvector in l ∞ and has a power that is scrambling ( M σ strongly ergodic), then (Ω σ , S) is minimal and has a unique shift invariant probability measure µ.

A difference concerning substitutions on countable infinite alphabets that we should point out is that substitutions may not have a periodic point. In this paper we consider M σ irreducible and suppose the existence of a periodic point u, thus Ω σ is the closure of the orbit of any periodic point of σ. However our results will remain valid for σ that have no periodic point, since instead of using the left determined condition, we use the true fact that any finite word V occurring in some element of Ω σ , has a decomposition (not necessarily unique) as V = v 0 σ(Z)w 0 where v 0 , w 0 and Z finite words occurring in some elements of Ω σ and max(|v 0 |, |w 0 |) ≤ sup{|σ(a)|, a ∈ A}, where for all finite word z ∈ A * , |z| denotes the length of z.

The paper is organized as follows. In section 2, we give notations, definitions and preliminary results. Section 3, is devoted to the main results of the paper.

Preliminaries and notations

As in Section 1, let A be a countable set (called alphabet), A * be the set of finite words on A and A Z + the set of infinite words on A. We denote a finite word on A by u 0 . . . u n-1 for some n ≥ 1 and we call n = |u 0 • • • u n-1 | its length. An infinite word on A will be denoted by u = u 0 u 1 . . .. For U = u 0 . . . u n-1 and V = v 0 . . . v m-1 in A * , where n ≥ m are positive integers, we denote

|U | V = {0 ≤ k ≤ n -m, u k . . . u k+m-1 = v 0 . . . v m-1 }
which is the number of occurrences of V in U . Let u = u 0 u 1 . . . ∈ A Z + and V ∈ A * , we say that V occurs in u or V is a factor of u if V = u k . . . u l for some integers 0 ≤ k ≤ l. We denote by F u the set of all factors of u.

On A Z + we consider the discrete product topology, which is metrizable and generated by the metric d defined on A Z + by:

d(u 0 u 1 . . . , v 0 v 1 . . .) = 0 if u 0 u 1 . . . = v 0 v 1 . . . and d(u 0 u 1 . . . , v 0 v 1 . . .) = 1 2 k 0 where k 0 = min{i ≥ 0, u i ̸ = v i } otherwise.
A base for the discrete product topology is given by the cylinders

[w] = {u 0 u 1 . . . ∈ A Z + , u i = w i , ∀ 0 ≤ i ≤ k},
for w = w 0 . . . w k ∈ A * . The cylinders are clopen sets. When the alphabet A is finite, the set A Z + is compact and is homeomorphic to a Cantor set. If A is infinite, A Z + is closed but not compact.

Let σ : A → A * be a substitution. We will assume without loss of generality that A = Z + (and ocasionally A = Z in some examples). We define the infinite matrix

M σ = (M ij ) i,j∈Z + by M ij = |σ(i)| j .
Observe that M σ is the transpose of the substitution matrix given in [START_REF] Queffélec | Substitution Dynamical systems-Spectral analysis[END_REF]. It is easy to prove by induction that for all i, j ∈ A and for all integer n ∈ N,

|σ n (i)| j = M n ij , |σ n (i)| = ∞ j=1 M n ij .
For example, if σ(n) = 0(n + 1) for all n ∈ Z + , then

M σ =         . (2.1) 
We say that a substitution σ :

A → A * is of constant length (resp. bounded length) if there exists an integer L ≥ 1 such that |σ(a)| = L ( resp. |σ(a)| ≤ L) for all a ∈ A.
Observe that if σ has constant length L (resp. bounded length by L), then the sum of the coefficients of each line of the matrix M n σ , n ∈ N equals L n (resp. ≤ L n ). In this paper, we will assume that σ is a bounded length substitution and there exists a ∈ A such that |σ n (a)| tends to infinity as n converges to infinity.

We define the language of a substitution σ on a A as the set F σ of finite factors of σ n (a) for some integer n ≥ 0 and a ∈ A.

We will need some classical definitions from the theory of countable nonnegative matrices, see [START_REF] Kitchens | Symbolic Dynamics, one-sided, two-sided and countable state Markov shifts[END_REF][START_REF] Seneta | Non negative matrices an Markov chains[END_REF]. Definition 2.1. Let M = (M ij ) i,j∈Z + be an infinite nonnegative matrix (not necessarily a substitution matrix). We say that M is irreducible if for all i, j ∈ Z + , there exists an

integer k = k(i, j) ≥ 1 such that M k ij > 0. Let i ∈ Z + , the number p i = gcd{n ∈ N, M n
ii > 0} is called the period of the state i. If M is irreducible, then there exists p ≥ 1 such that p i = p for every i ∈ Z + and we say that M has period p ≥ 1. We say that an irreducible matrix M is aperiodic if p = 1 and periodic otherwise.

Observe that M σ in (2.1) is irreducible and aperiodic and σ is a constant length substitution which has a fixed point u = lim n→∞ σ n (0) since σ(0) = 01 begins with 0.

Remark 2.2. (see [START_REF] Kitchens | Symbolic Dynamics, one-sided, two-sided and countable state Markov shifts[END_REF]) If a matrix M = (M ij ) i,j∈Z + is irreducible and aperiodic, then for all i, j ∈ Z + , there exists an integer n = n(i, j) ≥ 1 such that for all k ≥ n, M k ij > 0. Remark 2.3. Let σ : A → A * be a substitution which has a fixed point and M σ is irreducible. Since there exists i ∈ Z + such that M ii > 0, we deduce that M σ is aperiodic.

Assume that M = (M ij ) i,j∈Z + is an irreducible and aperiodic nonnegative matrix until the end of this section. It is known (see [START_REF] Queffélec | Substitution Dynamical systems-Spectral analysis[END_REF][START_REF]Geometric ergodicity in denumbrable Markov chains[END_REF]) that there exists λ M ∈ [0, ∞], called the Perron value of M , such that for all i, j ∈ Z

+ lim n→∞ (M n ij ) 1/n = λ M . (2.2)
For all i, j ∈ Z + put as usual M 0 ij = δ ij , then consider the series

M ij (z) = +∞ n=0 M n ij z n , z ∈ C.
Observe that the convergence radius of the series M ij (z) is equal to λ -1 M . When there is no possibility of confusion we will omit the subscript in λ M and write simply λ.

Remark 2.4. Directly from the definition, if M = CM for some C > 0, then λ M = Cλ M . If σ is a substitution with constant length L, then P = M/L is a stochastic matrix and λ M = Lλ P . Moreover for the stochastic matrix P , clearly λ P ≤ 1 and if P ij (1) = +∞, then λ P = 1. Thus λ M ≤ L. Indeed it is enough to have σ with bounded length L, see Lemma 2.10.

We either have M ij (1/λ) < ∞ for every i, j ∈ Z + , in this case we say that M is transient, or M ij (1/λ) = ∞ for every i, j ∈ Z + , and we say that M is recurrent. The class of irreducible, aperiodic recurrent matrices can be divided into two classes: Positive recurrent matrices and null recurrent ones. To present the definitions, we need to introduce the series

L ij (M, z) = L ij (z) = +∞ n=0 l ij (M, n)z n ,
where l ij (M, n) = l i,j (n) is defined by: l ij (0) = 0, l ij (1) = M ij and

l ij (n + 1) = +∞ s̸ =i l is (n)M sj for all n ≥ 1.
The matrix M is said to be positive recurrent if

+∞ n=0 nl ii (n) λ n < +∞ ,
otherwise we say that M is null recurrent. An interesting result is that if M is an irreducible, aperiodic and recurrent matrix with finite Perron value λ > 0, then λ has strictly positive left and right eigenvectors l and r, unique up to multiples by a constant. Moreover the scalar product l • r is finite if and only if M is positive recurrent.

Remark 2.5. In Section 3.2 we will give examples of null recurrent nonnegative matrices with constant length L having Perron value strictly smaller than L. These cases are associated to stochastic matrices with Perron value strictly smaller than 1, so they are transient in probabilistic sense (see [START_REF] Durrett | Probability: Theory and Examples[END_REF]), but they might be null recurrent according to the above definition. This is not a novelty, see [START_REF] Kitchens | Symbolic Dynamics, one-sided, two-sided and countable state Markov shifts[END_REF]. What is important here is also that we provide substitution matrices in our examples.

To state the next result, we still need to introduce another important series

R ij (M, z) = R ij (z) = +∞ n=0 r ij (M, n)z n , where r ij (M, n) = r ij (n) is defined by: r ij (0) = 0, r ij (1) = M i,j and r ij (n + 1) = +∞ s̸ =j M is r sj (n) for all n ≥ 1.
Lemma 2.6. (see [START_REF] Vere-Jones | Ergodic properties of nonnegative matrices. I[END_REF] and [11, page 211]). Let M be a nonnegative, irreducible and aperiodic matrix, with finite Perron value λ > 0. Let i, j ∈ Z + .

(1) If M is positive recurrent, then

lim n→∞ M n ij λ n = L ij (1/λ) µ(i) = R ij (1/λ) µ(j) > 0,
where

µ(i) = +∞ n=1 nl ii (n)/λ n . (2) If M is transient or null recurrent, then lim n→∞ M n ij /λ n = 0.
For all i, j ∈ Z + , let

l (i) = (L ik (1/λ)) k≥0 and r (j) = (R sj (1/λ)) s≥0 .
Lemma 2.7. (see [11, page 203]). Let M be a nonnegative, irreducible, aperiodic matrix, with finite Perron value λ > 0.

(1) If M is recurrent, then for all i, j ∈ Z + , l (i) M = λl (i) and M r (j) = λr (j) .

(2) If M is transient then for all i, j ∈ Z + , l (i) M ≤ λl (i) and M r (j) ≤ λr (j) .

Remark 2.8. Let M = (M ij ) i,j≥0 be a nonnegative, irreducible, aperiodic positive recurrent matrix, with finite Perron value λ > 0. By item (1) of Lemma 2.6 and item (1) of Lemma 2.7, the vector

T i = (t ij ) j≥0 where t ij = lim n→∞ M n ij /λ n (2.3)
is a left eigenvector for λ associated to M . Moreover, we have

lim n→∞ M n i,j λ n = l j r i +∞ k=0 l k r k (2.4)
where l = (l k ) k≥0 and r = (r k ) k≥0 are respectively a left and a right Perron eigenvector of M (see [START_REF] Seneta | Non negative matrices an Markov chains[END_REF]).

Lemma 2.9. (see [START_REF] Kitchens | Symbolic Dynamics, one-sided, two-sided and countable state Markov shifts[END_REF]Proposition 7.1.11,page 204]). Let M = (M ij ) i,j≥0 be a nonnegative, irreducible, aperiodic and recurrent matrix with finite Perron value λ. Let Z = (z i ) i≥0 be a sub invariant nonnegative and non zero eigenvector of M σ associated to λ, that is (ZM ) i ≤ λz i for all i ≥ 0 and Z ̸ = 0, then Z is a left Perron eigenvector associated to M .

Lemma 2.10. Let M = (M ij ) i,j∈Z + be a nonnegative, irreducible and aperiodic matrix with finite Perron value λ. The following results hold:

(1) If M has line sums uniformly bounded by L > 0, then λ ≤ L.

(2) If M is positive recurrent and has constant line sums equal to L, then λ = L. Moreover L is the unique eigenvalue of M having nonnegative probability left eigenvector.

Proof.

(1) Suppose that M has line sums bounded by L, then for all integers j ≥ 0 and n ≥ 1, we have

M n jj ≤ +∞ k=0 M n jk ≤ L n .
We deduce by (2.2), that λ ≤ L.

(2) If M is positive recurrent and has constant line sums equal to L, then there exists

l = (l i ) i≥0 ∈ l 1 such that ∞ i=0 l i = 1 and lM = λl, then ∞ j=0 ∞ i=0 l i M ij = λ, then L = λ.
Using the same idea, we obtain that L is the unique eigenvalue of M having nonnegative probability left eigenvector. □ Definition 2.11. Let M = (M ij ) i,j≥0 be a nonnegative matrix. We say that M is scrambling if there exists a > 0 such that

+∞ j=0 min(M ij , M kj ) ≥ a for all i ̸ = k ∈ Z + .
Note that a substitution matrix M σ has a power that is scrambling, if and only if for some n ≥ 1 ∀i, k ∈ A, ∃j ∈ A which occurs in σ n (i) and σ n (k).

(2.5) Definition 2.12. Let P = (P ij ) i,j≥0 be a nonnegative stochastic matrix. We say that P is • ergodic if lim n→∞ P n ij = π j > 0 for all i, j ∈ N, where (π j ) j≥0 is a probability vector; • strongly ergodic if P is ergodic and if there exists a probability vector (π i ) i≥0 of nonnegative real numbers such that lim n→∞ ∥P n -Q∥ s = 0 where Q is the infinite stochastic matrix with rows equal to (π j ) j≥0 and

∥N ∥ s = sup i≥0 +∞ j=0 |N ij | for any infinite complex matrix N = (N ij ) i,j≥0 . In other words lim n→∞ sup i≥0 ∞ j=0 |P n ij -π j | = 0.
Remark 2.13. It was proved in [START_REF] Huang | The rate of convergence of certain non-homogeneous Markov chains[END_REF] that if P is strongly ergodic, then P is uniformly geometrically ergodic, i.e., there exist β ∈ (0, 1) and a constant C > 0 such that

|P n ij -π j | ≤ Cβ n , ∀ i, j, n ∈ Z + .
The converse is proved in [START_REF] Luecke | Strongly ergodic Markov chains and rates of convergence using spectral condtions[END_REF]. In particular it is showed that P is strongly ergodic if and only if for some j ≥ 0 with π j ≥ 0, we have

lim n→∞ sup i≥0 |P n ij -π j | = 0. (2.6)
There is a nice characterisation of the strong ergodicity (see [START_REF] Isaacson | Markov Chains[END_REF]). It is defined as follows.

If P = (P ij ) i,j∈N is a stochastic nonnegative countable matrix, then P is strongly ergodic if and only if there exists an integer n ≥ 1, such that δ(P n ) < 1, where the δ coefficient of any nonnegative countable stochastic matrix

N = (N ij ) i,j∈N is δ(N ) = 1 2 sup i,k∈N +∞ j=0 |N ij -N kj |. (2.7)
The number δ(N ) is called Dobrushin coefficient of N or coefficient of ergodicity of N (see for instance [START_REF] Dobrushin | Central limit theorem for non-stationary Markov chains[END_REF], [START_REF] Huang | The rate of convergence of certain non-homogeneous Markov chains[END_REF], [START_REF] Levin | Markov chains and mixing times[END_REF], [START_REF] Luecke | Strongly ergodic Markov chains and rates of convergence using spectral condtions[END_REF]). It's not difficult to show that

δ(N ) = 1 -inf i̸ =k +∞ j=0 min(N ij , N kj ). (2.8)
Observe that δ(N ) < 1 if and only if N is scrambling. Hence P is strongly ergodic if and only if there exists an integer n ≥ 1, such that P n is scrambling.

Irreducible aperiodic substitutions

3.1. Nonexistence of finite invariant measure. In [START_REF] Ferenczi | Substitution Dynamical Systems on infinite alphabets[END_REF], the author proved that if A = Z and σ(n) = (n -1)nn(n + 1), n ∈ A, then the dynamical system (Ω σ , S) has no finite invariant measure. We will extend this result in the next theorem.

Theorem 3.1. Let σ : Z + → Z * + be a bounded length substitution such that σ has a periodic point u and M = M σ is irreducible and aperiodic. If M satisfies

lim n→+∞ sup i∈Z + M n ij +∞ k=0 M n ik = 0 for all j ∈ Z + , (3.1) 
then the dynamical system (Ω σ , S) has no finite invariant measure.

Remark 3.2. One natural question is if condition (3.1) can be replaced by the weaker condition

lim n→+∞ M n ij +∞ k=0 M n ik = 0 for all i, j ∈ Z + . (3.2)
This last condition is more natural and holds for a large class of substitutions σ such that M σ is transient or null recurrent and σ has constant length, or M σ is positive recurrent with left Perron eigenvector l = (l k ) k≥0 ̸ ∈ l 1 , see Lemma 3.4 at the end of this section and also Remark 3.3 just below. Now, assume that (Ω σ , S) has a finite invariant measure, then there exists a finite ergodic invariant measure µ. By Birkhoff's ergodic theorem, we deduce that for µ almost all x ∈ Ω u lim

N →∞ 1 N card{0 ≤ k ≤ N -1 : S k (x) ∈ [j]} = µ[j] ∀ j ∈ Z + . (3.4) Now, let x ∈ Ω σ satisfying (3.4) and N ∈ N. Let V = u m . . . u m+N -1 , m ∈ N be a prefix of x.
The word V can be written as

V = v 0 σ(v 1 ) . . . σ n-1 (v n-1 )σ n (v n )σ n-1 (w n-1 ) . . . σ(w 1 )w 0 , (3.5) 
where n ≥ 1 is an integer and v i , i ∈ {0, . . . , n}, w j , j ∈ {0, . . . , n -1}, are elements of F u possibly empty words of lengths smaller or equal to K = max{|σ(b)|, b ∈ A} and v n is not empty. Equality (3.5) comes from the fact that since u = σ(u), there exists a ∈ A and n ∈ N such that V is a factor of σ n+1 (a) and V is not a factor of σ n (a). Hence there exist

v 0 , w 0 , V 1 in F u such that V = v 0 σ(V 1 )w 0 and |v 0 |, |w 0 | ≤ K.
We proceed analogously with V 1 , continuing by induction until the process stops and we obtain (3.5).

With our choice of x and its prefix V , from (3.4) and (3.5) we have that

1 N card{0 ≤ k ≤ N -1, S k (x) ∈ [j]} = |V | j |V | = |σ n (v n )| j + n-1 k=0 (|σ k (v k )| j + |σ k (w k )| j ) |σ n (v n )| + n-1 k=0 (|σ k (v k )| + |σ k (w k )|)
.

By (3.3), we deduce that lim k→∞ sup |σ k (v)| j |σ k (v)| , v ∈ F u , |v| ≤ K = 0. (3.6)
Using (3.6), and the Stolz-Cesaro Theorem, we deduce that

lim n→∞ |σ n (v n )| j + n-1 k=0 (|σ k (v k )| j + |σ k (w k )| j ) |σ n (v n )| + n-1 k=0 (|σ k (v k )| + |σ k (w k )|) = 0.
Therefore lim

N →∞ 1 N card{0 ≤ k ≤ N -1, S k (x) ∈ [j]} = µ[j] = 0.
Since j is arbitrary µ(Ω) = 0 which yields a contradiction. □ Remark 3. 

P n ij = 0 for all j ∈ A. (3.7)
It is simple to find examples of stochastic matrices for which (3.7) does not hold. So we start with a first example that can be adapted to both transient and recurrent cases. Consider A = Z and set P -n,-n-1 = q n = 1 -P -n,-n+1 for n ≥ 1, where q n ∈ (0, 1) and +∞ n=1 q n < ∞. Also put P 0,-1 = P 0,1 = 1/2 and P m,-n = 0 for m, n ≥ 1. No matter how we complete the definition of P to obtain a irreducible and aperiodic matrix which may be recurrent or transient, we have that

sup a∈A P n a,0 ≥ P n -n,0 ≥ +∞ k=1 (1 -q k ) > 0, for every n ≥ 1.
Thus (3.7) does not hold. However, since lim n→∞ q n = 0, there is no multiple of P which is a matrix M associated to a substitution. Thus we will provide another example. Again we consider A = Z and set P -2 n ,0 = 1/2 = P -2 n ,-2 n -1 and P -2 n -j,-2 n -j-1 = 1 for j = 1, ..., 2 n -1 and n ≥ 1. We can check that P 2 n -2 n-1 -1,0 = 1/2. Again, no matter how we complete the definition of P , which may be recurrent or transient, we have that lim sup n→∞ sup a∈A P n a,0 ≥ 1/2 > 0, thus (3.7) does not hold. In this case, we could define M -2 n ,0 = 1 = M -2 n ,-2 n -1 and M -2 n -j,-2 n -j-1 = 2 and complete the definition for the other entries for M in order to have an irreducible and aperiodic matrix associated to a substitution of constant length equal to two. We have that P = M/2, thus (3.1) does not hold.

As a third example we consider P as the transition matrix of a simple random walk on Z, i.e., we fix p ∈ (0, 1) and set P n,n+1 = p = 1-P n,n-1 for every n ∈ Z (for basic properties of random walks, the reader can check [START_REF] Durrett | Probability: Theory and Examples[END_REF]). Notice that this Markov chain is irreducible with period two which is null recurrent if p = 1/2 and transient otherwise. The stochastic matrix P is irreducible and we can use P 2 instead of P for an example with an aperiodic chain. A standard computation using the binomial distribution and Stirling formula shows that sup w∈Z P n w, w = sup

w∈Z P n 0, w-w ≤ max 0≤k≤n n k p k (1 -p) n-k = O(n -1 2 ).
Thus (3.7) holds. Here, we also have P = M/2, where M is a substitution matrix of constant length equals to 2 defined as

M n,n+1 = M n,n-1 = 1 ∀ n ∈ Z.
Thus M satisfies (3.1). Note that the answer is affirmative if

= (l k ) k≥0 ̸ ∈ l 1 , then lim n→+∞ M n ij +∞ k=0 M n ik = 0 for all i, j ∈ Z + . Proof. Assume that M is transient with constant line sums equal to L. Let i, j ∈ Z + . Since λ ≤ L and lim n→+∞ M n ij /λ n = 0, then M n ij +∞ k=0 M n ik = M n ij L n ≤ M n ij λ n → 0, as n → ∞. Now, let us suppose that M is positive recurrent and l = (l k ) k≥0 ̸ ∈ l 1 is a left Perron eigenvector. Let i, j ∈ Z + . Since M is
lim inf n→+∞ M n 1 λ n > 0,
which is simple to verify in the finite dimensional case from linear algebra arguments. It is also true to check in the infinite dimensional case when M is transient and has a right Perron eigenvector r = (r i ) i≥0 ∈ l ∞ such that inf{r j , j ≥ 0} > 0, since for all j ≥ 0,

inf j r j sup j r j ≤ 1 λ n +∞ k=0 M n ik ≤ sup j r j inf j r j . (3.8) 2. Assume that M is recurrent with a left Perron eigenvector l = (l k ) k≥0 ∈ l 1 . Does there exist i, j ∈ A such that lim n→+∞ M n ij +∞ k=0 M n ik > 0?
Again, from (2) in Lemma 2.6, (2) in Lemma 2.10 and (3.8), it is simple to check that this holds when M is positive recurrent and has a right Perron eigenvector r = (r i ) i≥0 ∈ l ∞ such that inf{r j , j ≥ 0} > 0. In particular in the case of lines with constant sums.

A class of examples:

Let σ := σ a,b,c defined by

σ(0) = 0 a+b 1 c and σ(n) = (n -1) a n b (n + 1) c for all n ≥ 1
where a, b, c are nonnegative integers such that a > 0, c > 0 and i k = ii . . . i (k times). The matrix M σ is irreducible and aperiodic. We have

M σ =         a + b c 0 0 0 0 0 • • • a b c 0 0 0 0 • • • 0 a b c 0 0 0 • • • 0 0 a b c 0 0 • • • 0 0 0 a b c 0 • • • . . . . . . . . . . . . . . . . . . . . . . . .        
.

Note that σ is a substitution of constant length L = a + b + c. The stochastic matrix P = M σ /L is the transition matrix of a homogeneous nearest-neighbor random walk in {0, 1, 2, ...} partially reflected at the boundary, see also the last example in Remark 3.3.

It is well known, see [START_REF] Durrett | Probability: Theory and Examples[END_REF], that the random walk is (in the probabilistic sense) positive recurrent if c < a, null recurrent if c = a and transient if c > a. The difference for the matrix theoretical definition is that we also have null recurrence in the case c > a, see also [START_REF] Kitchens | Symbolic Dynamics, one-sided, two-sided and countable state Markov shifts[END_REF]Example 7.1.28] for the case b = 0 and a = c.

Proposition 3.5. The following properties hold:

• If c < a, then M σ is positive recurrent.

• If c ≥ a, then M σ is null recurrent and (Ω σ , S) has no finite invariant measure.

Proof. For the cases c < a and c = a, we have λ P = 1, thus λ Mσ = L. From the probabilistic results on transience/recurrence of random walks, we have that M σ is positive recurrent for c < a and null recurrent for c = a. Before we deal with the case c > a, let us point out that we can prove the result in the cases c < a and c = a by directly computing the Perron eigenvectors.

Let λ be the Perron value of M σ , then by Lemma 2.10, we have λ ≤ L = a + b + c. Let l = (l i ) i≥0 be a left eigenvector of M σ associated to L. A simple computations implies that l 1 = c a l 0 and cl n + al n+2 = (a + c)l n+1 for all n ≥ 0.

Hence

l n = ( c a ) n l 0 for all n ≥ 1.
Assume that M σ is positive recurrent, then by Lemma 2.10, we deduce that λ = L. Thus l ∈ l 1 (since a right Perron eigenvector of M σ has constant entries) and we deduce that c < a. Now assume that c ≤ a. If λ = L, then l is a left Perron eigenvector, hence M σ is positive recurrent if c < a and null recurrent if c = a. Now suppose that λ < L and let u = (u i ) i≥0 be a non zero nonnegative left Perron sub-invariant eigenvector of M σ associated to λ. Thus uM < LM. Hence u n+1 ≤ c a u n for all n ≥ 0 and there exists a real number s > 0 and an integer k ≥ 1 such that

u k = c a u k-1 -s, Since cu k-1 + au k+1 ≤ (a + c)u k , we deduce that u k+1 ≤ c a u k -s. Thus u n+1 ≤ c a u n -s for all n ≥ k. (3.9) Therefore u n ≤ c a n-k u k -s for all n ≥ k + 1.
If c < a, we deduce that there exists a positive integer N such that u n < 0 for all integer n ≥ N . This is absurd, then u = u 0 l. Therefore λ = L and hence M σ is positive recurrent.

If c = a, we deduce by (3.9) that

u n ≤ u k -(n -k)s for all n ≥ k + 1.
Then λ = L and M σ is null recurrent. Now consider the case c > a. We will consider a probabilistic approach to show that λ P < 1 and that P 00 (1/λ P ) = ∞, this implies null recurrence. Let (X n ) n≥0 be a Markov chain with transition matrix P and P x the distribution of (X n ) n≥0 , when X 0 = x for x ∈ Z + . Set p = c/(a + c), which is the conditional probability that the random walk jumps to the right, when it necessarily leaves its current position and this is not 0, i.e.,

p = P x X n+1 = X n + 1 X n+1 ̸ = X n ∀ x ̸ = 0.
We want to estimate P n 00 , i.e., the probability that the random walk is visiting state 0 at time n given that it has also started at 0. For this last event to happen, necessarily we must have a number of jumps to the right equal to the number of jumps to the left. Here we need to important observations:

(i) Note that #{1 ≤ j ≤ n : X n+1 ̸ = X n } counts the total number of jumps to the right or to the left. There exist strictly positive constants c, δ ∈ (0, 1) such that

P 0 #{1 ≤ j ≤ n : X n+1 ̸ = X n } ≥ cn > 1 -(δq) n .
(ii) In 2k transitions to the left or to the right, the number of transitions to the right is distributed as a binomial random variable with parameters 2k and p. Thus the probability of having an equal number of jumps to the left or to the right is

P Bin(2k, p) = k = 2k k p k (1 -p) k ≈ C √ k 4p(1 -p) k .
(the approximation could be appropriately described using Stirling's formula). Note that q = 4p(1 -p) < 1. Using (i) and (ii) we are able to show that P n 00 is of order O(q n / √ n). This implies that λ P = q and P 00 (1/λ P ) = P 00 (1/q) = ∞. Therefore P and M σ are null recurrent matrices.

It is worth mentioning that M σ satisfies (3.1) for every a ≤ c and b. This follows as in the last example in Remark 3.3 in the case a = c and from computation as in the proof of Proposition 3.5. Indeed one can prove that sup i∈Z + P n i,j is of order O(1/ √ n), which implies that M σ satisfies (3.1). This can also be proved using the Local Central Limit Theorem for simple random walks [12, Theorem 1. Remark 3.7. We consider the substitution σ of [START_REF] Ferenczi | Substitution Dynamical Systems on infinite alphabets[END_REF] defined on A = Z by σ(n) = (n -1)nn(n + 1). The associated matrix is null recurrent and satisfies condition (3.1). Hence by using Theorem 3.1, we deduce that the dynamical system (Ω σ , S) associated to σ has non finite invariant measure.

Let σ := σ an,bn,cn defined by σ(0) = 0 a 0 +b 0 1 c 0 and σ(n) = (n -1) an n bn (n + 1) cn for all n ≥ 1 where a n , b n , c n are nonnegative integers such that a n > 0, c n > 0 for every n ≥ 1 and

L = sup{a n + b n + c n : n ≥ 1} < ∞.
The matrix M σ is irreducible and aperiodic with bounded length L and can be represented as

M σ =         a 0 + b 0 c 0 0 0 0 0 0 • • • a 1 b 1 c 1 0 0 0 0 • • • 0 a 2 b 2 c 2 0 0 0 • • • 0 0 a 3 b 3 c 3 0 0 • • • 0 0 0 a 4 b 4 c 4 0 • • • . . . . . . . . . . . . . . . . . . . . . . . .        
We will see in Proposition 3.8 below that (Ω σ , S) is not minimal for these substitutions. We does not discuss the transience/recurrence in this general case, but we discuss an example. Consider (a n , b n , c n ) = (2, 1, 1) for n even and (a n , b n , c n ) = (1, 1, 1) otherwise. Our first step is to compute the Perron value λ. For this we will estimate (M n σ ) 0,0 . Consider a matrix M n σ which has the form above but with (a n , b n , c n ) = (2, 1, 1) for every n. The Perron eigenvalue of M n σ is 4, since it has constant row sums equal to 4. Now for each path of length n leaving and returning to n, we will have the number of jumps to the left equal to the number of jumps to the right. So for a total of 2m ≤ n jumps with m jumps to the left and m jumps to right (neglecting jumps from 0 to 1 and jumps from an state to itself), m/2 jumps to the left are made from an odd position and these jumps contributes with a factor of ( 4√ 2) 2m = 2 m 2 to the product of weights ( M n σ ) 0,0 . This shows that Proposition 3.8. Let (Ω σ , S) be the shift dynamical system associated to σ an,bn,cn , then it is not minimal.

4 √ 2 4 n (M n σ ) 0,0 ≥ ( M n σ ) 0,0 4 
Proof. For all n ≥ 2, we have

σ k-1 (k) = (σ k-2 (k -1)) an (σ k-2 (k)) bn (σ k-2 (k + 1)) cn .
Hence the infinite word w beginning with σ k-1 (k) for all k ≥ 2 is well defined and belongs to Ω σ . Moreover the letter 0 does not occur in w. Thus the orbit of w does not visit the cylinder [0], hence (Ω σ , S) is not minimal. □ Remark 3.9. The last proposition gives examples of positive or null recurrent, aperiodic irreducible substitutions such that its shift dynamical systems are not minimal. The first example was given by Ferenczi in [START_REF] Ferenczi | Substitution Dynamical Systems on infinite alphabets[END_REF] by considering σ(n) = (n -1)nn(n + 1), n ∈ Z.

We will see in Theorem 3.33 that given a substitution σ on A = Z + , not necessarily with constant length, such that σ has a periodic point u and M σ is irreducible, aperiodic and has a scrambling positive power, then (Ω σ , S) is minimal. Observe that the matrices associated to substitutions σ an,bn,cn have not a scrambling power, since for any positive integer k, there is no letter occurring both in the words σ k an,bn,cn (k) and σ k an,bn,cn (4k). To end this section we describe an interesting substitution whose matrix is transient. The construction of the matrix is based on multidimensional random walks in dimension greater or equal to 3. Thus we set A = Z d , let {e j : 1 ≤ j ≤ d} and define the substitution

σ(x) = (x + e 1 )(x -e 1 )(x + e 2 )(x -e 2 )...(x + e d )(x -e d ).
We have that M σ is a matrix of length 2d. The stochastic matrix P = M σ /2d is transient with λ P = 1. Indeed from classical results in probability theory one has that P n 00 ∼ O(n -d/2 ) and P 00 (1) < ∞. Therefore, M σ is a transient matrix with λ M σ = 2d. Using again the Local Central Limit Theorem [12, Theorem 1.2.1], we have that M σ also satisfies (3.1).

Shift invariant measures and unique ergodicity.

In this subsection, we prove the following results. Theorem 3.10. Let σ be a bounded length substitution on A = Z + such that M σ is irreducible, aperiodic, positive recurrent, then the dynamical system (Ω σ , S) has a shift invariant measure µ which is finite if and only if any left Perron eigenvector l belongs to l 1 . Remark 3.11. Theorem 3.10 improves [1, Theorem 7.6], where it is assumed the additional hypothesis that σ is bounded size left determined substitution. Theorem 3.12. Let σ be a constant length substitution on A = Z + such that σ has a periodic point u and M σ is irreducible and aperiodic. If there exists a positive integer n such that M n σ is scrambling, then there exists a unique probability shift invariant measure of (Ω σ , S).

Remark 3.13. The same proof of Theorem 3.12 will show that if σ is a constant length substitution on A = Z + without periodic point such that M σ is irreducible, aperiodic and M n σ is scrambling positive integer n , then there exists a unique probability shift invariant measure of (Ω σ , S).

Before proving Theorems 3.10 and 3.12 we need to introduce some notation and state some preliminary results.

Let σ : A → A * be a bounded length substitution, not necessarily with constant length. Let t ≥ 2 be an integer and A t be the set of finite words of length t that occur in u. Now, consider a substitution σ t on the alphabet A t defined in the following way: If w = w 0 . . . t . The substitution σ t was defined in [START_REF] Queffélec | Substitution Dynamical systems-Spectral analysis[END_REF] (in the case of substitutions on finite alphabets).

For example, for A = {0, 1} and σ(0) = 01, σ(1) = 0. We have A 2 = {00, 01, 10} and σ 2 (00) = (01) [START_REF] Huang | The rate of convergence of certain non-homogeneous Markov chains[END_REF], σ 2 (01) = (01) [START_REF] Huang | The rate of convergence of certain non-homogeneous Markov chains[END_REF], σ 2 (10) = (00).

If A = Z + and τ (n) = 0(n + 1) for all n ∈ A, then A 2 = {0n, n0, n ≥ 1} and τ 2 (0n) = (01) [START_REF] Huang | The rate of convergence of certain non-homogeneous Markov chains[END_REF], τ 2 (n0) = (0(n + 1))((n + 1)0) for all n ≥ 1.

Lemma 3.14. The following results hold:

(1) For all integers n ≥ 1 and t ≥ 2, we have

(σ n ) t = (σ t ) n .
(2) Let u = u 0 u 1 . . . be a periodic point of σ, then for all integer t ≥ 2, the infinite word (u 0 . . . u t-1 ).(u 1 . . . u t ) . . . (u i . . . u t+i-1 ) . . . is a periodic point (with the same period) of σ t . (3) If M σ is irreducible and aperiodic, then so is M σt for all integers t ≥ 2.

Proof. The proof is analogous to that for the case of finite alphabet, which is given in [21, pages 138-139]. □ Lemma 3.15. Let A = Z + and σ : A → A * be a bounded length substitution such that M σ irreducible and aperiodic with Perron value λ, then for all integer t ≥ 2 the matrix M t = M σt associated to σ t also has Perron value λ. Moreover if M σ is positive recurrent (resp. null recurrent, transient), then M σt is also positive recurrent (resp. null recurrent, transient).

Proof. Let t ≥ 2 be an integer and denote by λ t the Perron value of M t . First observe that by (3) in Lemma 3.14, M t is irreducible and aperiodic. For i 1 . . . i t , j 1 . . . j t ∈ A t we have

|σ n t (i 1 . . . i t )| j 1 ...jt ≤ |σ n (i 1 )| j 1 ...jt + t ≤ |σ n (i 1 )| j 1 + t. Hence (M n t ) i 1 ...it,j 1 ...jt ≤ (M n ) i 1 ,j 1 + t, for all n ∈ N. (3.13)
We deduce by (2.2) that 1 ≤ λ t ≤ λ.

On the other hand, let k, m ∈ N such that j 1 . . . j t is a factor of σ m (k). Hence

|σ n+m (i 1 )| j 1 ...jt ≥ |σ n (i 1 )| k .
Thus for all n ∈ N, we have Hence M σt is transient. □

|σ n+m t (i 1 . . . i t )| j 1 ...jt ≥ |σ n (i 1 )| k . Therefore (M n+m t ) i 1 ...it,j 1 ...jt ≥ (M n ) i 1 ,k for all n ∈ N. ( 3 
Before proving Theorem 3.10, we need the following Lemma.

Lemma 3.16. Let σ be a bounded length substitution on A = Z + such that M σ is irreducible, aperiodic, recurrent and has finite Perron value λ. Let r = (r i ) i≥0 be a right Perron eigenvector of M σ . For all integer t ≥ 2, Let r (t) = (r I ) I∈At be an infinite vector defined by

r I = r i 0 for all I = i 0 . . . i t-1 ∈ A t , then r (t) is a right Perron eigenvector of M t = M σt associated to λ. Proof. Let I = i 0 . . . i t-1 ∈ A t , we have (M t r (t) ) I = J=j 0 ...j t-1 ∈At |σ t (I)| J r j 0 = j 0 ∈A r j 0 J * =j 1 ...j t-1 ,j 0 J * ∈At |σ t (I)| j 0 J * .
On the other hand, for all j 0 ∈ A, we have

J * =j 1 ...j t-1 ,j 0 J * ∈At |σ t (I)| j 0 J * ≤ |σ(i 0 )| j 0 = M i 0 j 0 . Thus (M t r (t) ) I ≤ j 0 ∈A M i 0 j 0 r j 0 = λr i 0 = λ(r (t) ) I .
Since M t is an aperiodic, irreducible and recurrent matrix, Lemma 2.9 implies that r (t) is a right eigenvector of M t associated to λ. □ Proof of Theorem 3.10. Let u = u 0 u 1 . . . = σ(u) be an element of Ω σ . For j ∈ A set

µ[j] := lim n→∞ |σ n (u 0 )| j λ n = lim n→∞ M n u 0 ,j
λ n . The last limit exists since M σ is positive recurrent with Perron eigenvalue λ. For t ≥ 2 integer and For the proof of (3.19), let l = (l i ) i≥0 and r = (r i ) i≥0 be respectively left and right Perron eigenvectors of M such that the scalar product l • r = 1. For all t ≥ 2, let l (t) = (l I ) I∈At and r (t) = (r I ) I∈At be left and right Perron eigenvectors of M t such that r i 1 ...it = r i 1 for all i 1 . . . i t ∈ A t and l (t) • r (t) = 1.

I t = i 1 . . . i t ∈ A t set µ[i 1 . . . i t ] = lim n→∞ |σ n (u 0 )| i 1 ...it λ n . ( 3 
We could choose r i 1 ...it = r i 1 because of Lemma 3.16. For all I = i 1 . . . i t , t ≥ 2, we have by (2.4) that

µ[I] = r Ut l I = r u 0 l I .
Hence (3.19) is equivalent to

l I = b∈A,Ib∈A t+1 l Ib . (3.21) 
On the other hand, for all

I = i 1 . . . i t ∈ A t , we have by Fatou's Lemma that b∈A,Ib∈A t+1 µ[Ib] ≤ lim n→∞ 1 λ n b∈A,Ib∈A t+1 |σ n t+1 (u 0 . . . u t )| Ib = lim n→∞ 1 λ n |σ n t (u 0 . . . u t-1 )| I . Hence b∈A,Ib∈A t+1 µ[Ib] ≤ µ[I],
i.e., Note that

β I := a∈A,aI∈A t+1 |σ n t+1 (u 0 . . . u t )| aI -|σ n t (u 0 . . . u t-1 )| I ∈ {-1, 0, 1},
indeed β I = -1 if the first letter of σ n t+1 (u 0 . . . u t ) begins with I and and the last letter of σ n t+1 (u 0 . . . u t ) does not end with I. The number β I = 1 if the first letter of σ n t+1 (u 0 . . . u t ) does not begin with I and and the last letter of σ n t+1 (u 0 . . . u t ) ends with I. In the complementary case, we have β I = 0. 

l aI ≤ l I . (3.24) 
On the other hand, by (3.21), we have

J∈A t+1 l J = I∈At ( b∈A,Ib∈A t+1 l Ib ) = I∈At l I . Thus I∈At ( a∈A,aI∈A t+1 l aI ) = I∈At l I .
By using (3.24), we obtain (3.20). Hence µ is an invariant measure for (Ω u , S). □ 3.3.1. Constant length substitution and unique ergodicity. Let σ be a substitution on A = Z + with constant length L > 0. By (2.8), the stochastic matrix M σ /L is strongly ergodic if and only if there exists a positive power of M σ which is scrambling.

As an example, the dyadic substitution σ defined by σ(n) = 0(n + 1) has a strongly ergodic matrix M σ /2 since the matrix M σ is scrambling.

Another way to see that M σ /2 is strongly ergodic comes from the fact that for all i, j ∈ Z +

lim n→∞ sup i∈Z + +∞ j=0 |σ n (i)| j |σ n (i)| - 1 2 j+1 = 0. ( 3.25) 
Indeed, for all integers n ∈ N, i, j ∈ Z + , we have

|σ n (i)| j = |σ n-1 (i)| j-1 = 2 n-j-1 for all 0 ≤ j < n and |σ n (i)| j = |σ(i)| j+1-n for all j ≥ n, Thus for all j ≥ n, |σ n (i)| j = 1 if j = i + n and 0 otherwise. Hence +∞ j=0 |σ n (i)| j |σ n (i)| - 1 2 j+1 = +∞ j=n 1 2 j+1 + ( 1 2 n - 1 2 i+n ) for all i ≥ 0, which implies that sup i∈Z + +∞ j=0 | |σ n (i)| j |σ n (i)| - 1 2 j+1 | = 1 2 n-1
and we obtain (3.25).

Another example are the substitutions σ a,b,c , a, b, c ∈ N and a > c. We have seen in Proposition that for all positive integers a, b, c with a > c, the matrix M σ a,b,c is positive recurrent. Furthermore the stochastic matrix Mσ a,b,c a+b+c is not strongly ergodic since M σ a,b,c does not have a scrambling power (see Remark 3.9). Remark 3.17. Let σ be a substitution on A = Z + with constant length L > 0 and a periodic point u such that the stochastic matrix M σ /L is strongly ergodic, then M σ is positive recurrent and, by Theorems 3.10, Ω σ has a finite invariant measure. Lemma 3.18. Assume that σ is a constant length substitution on A = Z + and M σ is irreducible and aperiodic. If M σ is strongly ergodic, then for all integer t ≥ 2, M σt is also strongly ergodic.

Proof. Let L > 0 be the length of σ. Fix and interger t ≥ 2 and i 1 . . . i t , k 1 . . . k t ∈ A t . Since M σ is strongly ergodic, then (2.5) implies that there exists an integer n > 0 and j 1 ∈ N such that j 1 occurs in σ n (i 1 ) and σ n (k 1 ). Let m > 0 be an integer such that m = ln(2t) ln L + 1, then σ m (j 1 ) = a 1 . . . a s where s ≥ 2t. Hence a 1 . . . a 2t occurs in σ n+m (i 1 ) and σ n+m (k 1 ). Thus

a 1 . . . a t occurs in σ n+m t (i 1 . . . i t ) and σ n+m t (k 1 . . . k t )
and we are done again by (2.5). □

Proof of Theorem 3.12. Assume without loss of generality that σ has a fixed point u = σ(u) = u 0 u 1 . . . = lim n→∞ σ(u 0 ) and let L > 0 be the length of σ. Recall that for all i, j ∈ Z + and n ≥ 0

|σ n (i)| j |σ n (i)| = M n ij L n .
Since M σ is irreducible, aperiodic and strongly ergodic, we have that λ = L and

lim n→+∞ |σ n (i)| j |σ n (i)| = v j > 0
independently of i. Moreover strong ergodicity implies that there exist c > 0 and 0

< β < 1 such that sup i≥0 |σ n (i)| j |σ n (i)| -v j ≤ cβ n for all n ≥ 0.
To compute, lim n→+∞

|σ n (i)|w |σ n (i)|
where w is a word of length t ≥ 2, we will consider a substitution σ t on the alphabet A t . From Lemma 3.14 and Lemma 3.18 we deduce that M σt is irreducible, aperiodic and strongly ergodic. Thus if w = w 0 . . . w t-1 and B = b 0 . . . b t-1 ∈ A t , then there exists d B > 0 such that lim n→+∞

|σ n t (w)| B |σ n t (w)| = d B independently of w. Now, since |σ n t (w)| = |σ n (w 0 )| = L n and |σ n (w 0 )| B ≤ |σ n t (w)| B ≤ |σ n (w 0 )| B + t, we obtain lim n→+∞ |σ n (w 0 )| z |σ n (w 0 )| = d B . (3.26) 
Moreover there exists c t > 0 and 0 < β t < 1 such that sup

w 0 ≥0 |σ n (w 0 )| B |σ n (w 0 )| -d B ≤ c t β n t for all n ≥ 0. (3.27)
To finish the proof, we have to show the following claim:

Claim: Let t ≥ 2 and B = b 1 . . . b t ∈ F u , then lim N →∞ 1 N |u k . . . u k+N -1 | B = d B uni- formly on k.
The proof is the same as that for finite alphabet and σ primitive given in [21, Theorem 4.6, page 141-142]. Indeed, let V k = u k . . . u k+N -1 ∈ F u , k ∈ Z + , N ∈ N. As cited in the proof of Theorem 3.1, the word V k can be written as

V k = v 0 σ(v 1 ) . . . σ n-1 (v n-1 )σ n (v n )σ n-1 (w n-1 ) . . . σ(w 1 )w 0 (3.28)
where n ≥ 0 is an integer and v i , i ∈ {0, . . . , n}, w j , j ∈ {0, . . . , n -1}, are elements of F u possibly empty words of Lengths ≤ L and v n is not empty. Since L ≥ 2, there exist C > 0 and 1 < τ < L such that Cτ n ≥ c t (2n-1)((max(β t L, 1)) n for every n ≥ 1. Now for V k = u k . . . u k+N -1 , k ∈ Z + , for N ∈ N, and B ∈ F u such that |B| < N , we use (3.28) and (3.27) to obtain that

||V k | B -d B N | ≤ n j=0 |σ j (v j )| B -d B |σ j (v j )| + n-1 j=0 |σ j (w j )| B -d B |σ j (w j )| ≤ n j=0 c t (β t L) j + n-1 j=0 c t (β t L) j ≤ c t (2n -1)((max(β t L, 1)) n ≤ Cτ n . (3.29) Since N ≥ |σ n (v n )| = L n , we obtain that sup k≥0 |V k | B N -d B ≤ Cγ n , (3.30) 
for some γ < 1 and we obtain the claim. □ 3.3.2. Strong ergodicity for non constant bounded length substitution.

Definition 3.19. Let M = (M ij ) i,j≥0 be a nonnegative matrix such that M is irreducible, aperiodic and positive recurrent with finite Perron value λ > 0. Let P = (P ij ) i,j≥0 be the stochastic matrix defined by

P ij = M ij r j λr i for all i, j ≥ 0,
where r = (r k ) k≥0 is a right Perron eigenvector of M . We say that M is strongly ergodic if P = (P ij ) i,j≥0 is too.

Remark 3.20. (1) It's easy to see that the stochastic matrix P defined in the last definition satisfies P ij = M ji l j λl i for all i, j ≥ 0, where l = (l k ) k≥0 is a left Perron eigenvector of M . Furthermore we have that P n i,j =

M n ij r j λ n r i for all integer n ≥ 1.

(2) The Definition 3.19 appeared in [START_REF] Seneta | Non negative matrices an Markov chains[END_REF] in the case where M is a finite irreducible, aperiodic matrix, it is also an extension of the definition in the case where M has constant row sums L. This comes from the fact that r i = 1 for all i ≥ 0 and λ = L. Remark 3.21. Let M = (M ij ) i,j≥0 be a nonnegative, irreducible, aperiodic and positive recurrent matrix with finite Perron value λ > 0. Then M is strongly ergodic if and only if there exists positive integer n and a vector of probability (π j ) j≥0 such that

lim n→∞ sup i≥0 +∞ j=0 M n ij r j λ n r i -π j = 0, (3.31) 
furthermore π j = l j r j where l and r are respectively Perron left and right eigenvectors such that l • r = 1. By using Remark 2.13, we deduce that M is strongly ergodic if and only if there exists a positive integer n and a positive constant a such that for all integer i ̸ = k, we have

+∞ j=0 min M n ij r j λ n r i , M n kj r j λ n r k ≥ a.
(3.32) Remark 3.22. Let M = (M ij ) i,j≥0 be a nonnegative, irreducible, aperiodic and positive recurrent matrix with finite Perron value λ > 0. Assume that M has a right Perron eigenvector r = (r i ) i≥0 ∈ l ∞ which satisfies inf{r i : i ≥ 0} > 0, then by Remark 3.21, we deduce that M is strongly ergodic if and only if there exists a positive integer n such that M n is scrambling.

Theorem 3.23. Let σ be a non-constant bounded length substitution on A = Z + with a periodic point u and such that M = M σ is irreducible, aperiodic, positive recurrent and has a finite Perron value. Assume that M σ has a right Perron eigenvector r = (r i ) i≥0 ∈ l ∞ and there exists a positive integer such that M n σ is scrambling, then the dynamical system (Ω σ , S) has a unique invariant probability measure.

For the proof, we need the following results. Lemma 3.24. Let M = (M ij ) i,j∈Z + be an irreducible, aperiodic, positive recurrent nonnegative matrix such that

∥M ∥ = sup{ +∞ j=0 M ij , i ∈ Z + } < ∞ and inf{M ij : i, j ∈ Z + , M ij > 0} > 0.
Assume that there exists a positive integer such that M n is scrambling, then M has a right Perron eigenvector r = (r i ) i≥0 which satisfies inf{r i : i ≥ 0} > 0.

Proof. Assume without loss of generality that M is scrambling. Let r = (r i ) i≥0 be a nonnegative right Perron eigenvector of M . Since M is irreducible, r i > 0 for every i ≥ 0. Moreover ∥M ∥ < ∞ and inf{M ij : i, j ∈ Z + , M ij > 0} > 0 imply that there exists L > 0 such that M 0k = 0 for all k > L. Since M is scrambling, then for all i ∈ Z + , there exists k i ∈ {0, . . . , L} such that M i,k i > 0. Since +∞ k=0 M ik r k = λr i , we deduce that

r i ≥ M i,k i r k i λ ≥ C inf{r k : 0 ≤ k ≤ L} λ > 0 for all i ∈ Z + ,
where C = inf{M ij : i, j ∈ Z + , M ij > 0}. □ Lemma 3.25. Let σ be a nonconstant bounded length substitution on A = Z + with a periodic point u such that M = M σ is irreducible, aperiodic and has a finite Perron value. Assume that M σ is strongly ergodic and has a right Perron eigenvector r = (r i ) i≥0 ∈ l ∞ which satisfies inf{r i : i ≥ 0} > 0, then for all integer t ≥ 2, M σt is strongly ergodic and has a right Perron eigenvector r (t) = (r I ) I∈A l ∈ l ∞ such that inf{r I :

I ∈ A t } > 0.
Proof. Using the same proof given in Lemma 3.18, we can show that M σ is strongly ergodic, then M σt is also strongly ergodic. Moreover since r = (r i ) i≥0 ∈ l ∞ and inf{r i : i ≥ 0} > 0, Lemma 3.16 implies that r (t) = (r I ) I∈At ∈ l ∞ and inf{r I : 

I ∈ A t } > 0. □ Lemma 3.26. Let M = (M ij ) i,
(r i ) i≥0 ∈ l ∞ which satisfies inf{r i : i ≥ 0} > 0, then lim n→∞ +∞ j=1 M n ij λ n = cr i ,
for some c > 0.

Proof of Theorem 3.23. Without loss of generality, assume that σ has a fixed point u = σ(u) = u 0 u 1 . . .. For all i, j ∈ Z + and n ∈ N, we have

|σ n (i)| j |σ n (i)| = M n ij +∞ k=0 M n ik .
Hence by Lemma 3.26, we have

lim n→+∞ sup i≥0 ∞ j=0 |σ n (i)| j |σ n (i)| - l j +∞ k=0 l k = 0. Let j ∈ Z + and put µ[j] = lim n→∞ |σ n (u 0 )| j |σ n (u 0 )| = l j +∞ k=0 l k .
Let t ≥ 2 be an integer and

I t = i 1 . . . i t ∈ A t and put µ[i 1 . . . i t ] = lim n→∞ |σ n (u 0 )| i 0 ...i t-1 |σ n (u 0 )| .
By (3.12) and the fact that λ > 1, we deduce that

µ[i 1 . . . i t ] = lim n→∞ |σ n t (u 0 . . . u t-1 )| i 1 ...it |σ n t (u 0 . . . u t-1 )| = lim n→∞ (M n t ) Ut,It J∈At M n Ut,J
, where U t = u 0 . . . u t-1 , I t = i 1 . . . i t . By the Proposition 3.25 and Lemma 3.26, we have

µ[i 1 . . . i t ] = l (t) It J∈At l (t) J , where (l (t) 
I ) I∈At is a left Perron eigenvector of M σt associated to its Perron value λ.

The measure µ is the same given in the proof of Theorem 3.10. Hence µ is a shift invariant measure. The uniqueness is a direct consequence of the following claim:

Claim: Let E be a measurable subset of Ω σ such that µ(E) > 0. For all x ∈ E we have lim

N →∞ 1 N card{0 ≤ k ≤ N -1, S k (x) ∈ E} = µ(E). (3.33) It remains to prove the claim. First assume that E = [i 0 ]. Suppose x = u = σ(u) = u 0 u 1 . . . and N = |σ n (u 0 )|, then lim n→∞ 1 N card{0 ≤ k ≤ N -1, S k (x) ∈ E} = lim n→∞ |σ n (u 0 )| i 0 |σ n (u 0 )| = µ(E). Now, let x ∈ Ω σ and N ∈ N. Let V = u k . . . u k+N -1 ∈ F u , k ∈ Z + , be a prefix of x.
As seen before, the word V can be written as a concatenation of at most 2n + 1 words v 0 , σ(v 1 ), . . . , σ n (v n ), σ n-1 (w n-1 ) . . . w 0 that is

V = v 0 σ(v 1 ) . . . σ n-1 (v n-1 )σ n (v n )σ n-1 (w n-1 ) . . . σ(w 1 )w 0
where n ≥ 1 is an integer and v i , i ∈ {0, . . . , n}, w j , j ∈ {0, . . . , n -1}, are elements of F u possibly empty words of lengths

≤ K = max{|σ(b)|, b ∈ A} and v n is not empty. Thus 1 N card{0 ≤ k ≤ N -1, S k (x) ∈ E} = |V | i 0 |V | = |σ n (v n )| i 0 + n-1 i=0 (|σ i (v i )| i 0 + |σ i (w i )| i 0 ) |σ n (v n )| + n-1 i=0 (|σ i (v i )| + |σ i (w i )|) . (3.34) 
Since M σ is strongly ergodic, we have 

lim k→∞ sup |σ k (j)| i 0 |σ k (j)| , j ∈ A = lim k→∞ sup M k j,i 0 +∞ i=0 M k j,i , j ∈ A = µ[i 0 ]. We deduce that lim k→∞ sup |σ k (v)| i 0 |σ k (v)| , v ∈ F u , |v| ≤ K = µ[i 0 ]. ( 3 
N →∞ 1 N card{0 ≤ k ≤ N -1, S k (x) ∈ E} = µ[i 0 ] = µ(E).
Hence we obtain the claim for E

= [i 0 ]. Now, suppose that I = i 0 . . . i t-1 and E = [I]. Proceeding as in the case E = [i 0 ], we have card{0 ≤ k ≤ N -1, S k (x) ∈ E} N = |σ n (v n )| I + n-1 i=0 (|σ i (v i )| I + |σ i (w i )| I ) + C n |σ n (v n )| + n-1 i=0 (|σ i (v i )| + |σ i (w i )|)
, where C n is the cardinality of times such that i 0 . . . i t-1 occurs in the concatenation of at least two consecutive words among the 2n+1 words forming V . Observe that 0 ≤ C n ≤ 2n. Now for all j ∈ A, we have

lim k→∞ |σ k (j)| i 0 ...i t-1 |σ k (j)| = lim k→∞ |σ k t (jz 1 . . . z t-1 )| i 0 ...i t-1 |σ k t (jz 1 . . . z t-1 )| = µ[i 0 . . . i t-1 ],
where jz 1 . . . z t-1 ∈ F u , we deduce by using the fact that σ t is strongly ergodic that 

lim k→∞ sup |σ k (j)| i 0 ...i t-1 |σ k (j)| , j ∈ Z + = µ[i 0 . . . i t-1 ]. Thus lim k→∞ sup |σ k (v)| i 0 ...i t-1 |σ k (v)| , v ∈ F u , |v| ≤ K = µ[i 0 . . . i t-1 ]. ( 3 
(v n )| I + n-1 i=0 (|σ i (v i )| I + |σ i (w i )| I ) |σ n (v n )| + n-1 i=0 (|σ i (v i )| + |σ i (w i )|) = µ[i 0 . . . i l-1 ]. Since 0 ≤ C n ≤ 2n, lim n→∞ |σ n (vn)| 0 λ n > 0 and λ > 1, we deduce that lim N →∞ 1 N card{0 ≤ k ≤ N -1, S k (x) ∈ E} = µ[i 0 . . . i t-1 ]
and this finishes the proof. □ Proposition 3.28. Let σ be a bounded length substitution on A = Z + such that σ has a periodic point u and M σ is irreducible and aperiodic. Assume that there exists an integer n such that M n σ is scrambling, then (Ω σ , S) is minimal. Proof. Assume without loss of generality that u = u 0 u 1 . . . is a fixed point and M σ is scrambling. Let V = u k . . . u k+N , k, N ∈ Z + be a factor of u. Let us prove that V occurs infinitely on u with bounded gaps. Indeed, let n 0 ∈ N such that V occurs in σ k (u 0 ) for all k ≥ n 0 and put σ(u 0 ) = t 0 . . . t s , s ∈ N. Let m 0 ∈ N such that u 0 occurs on σ k (t i ) for all k ≥ m 0 and i = 0, . . . , s. Hence V occurs in σ k (t i ) for all k ≥ n 0 + m 0 and i = 0, . . . , s. On the other hand, since M σ is scrambling, then for all i ∈ N, there exists j i ∈ {0, . . . , s} such that t j i occurs in σ(u i ). Hence V occurs in σ k (u i ) for all k ≥ n 0 + m 0 and i ∈ Z + . Since u = σ k (u) = σ k (u 0 )σ k (u 1 ) . . ., then we are done. □

Examples:

(1) Let σ (infinite Fibonacci) given by σ(2n) = 0(2n + 1), σ(2n + 1) = 2n + 2 for all n ≥ 0.

We can prove by induction that |σ n (0)| = F n and |σ n (0)| 0 = F n-1 for all n ≥ 1, where (F n ) n≥0 is the Fibonacci sequence defined by

F 0 = 1, F 1 = 2, F n = F n-1 + F n-2 for all n ≥ 2.
The substitution matrix is given by Hence M σ is positive recurrent. Furthermore M 2 σ is scrambling, r ∈ l ∞ and σ has a fixed point u = lim n→∞ σ n (0), thus Theorem 3.23 implies that the dynamical system (Ω σ , S) has a unique probability invariant measure.

M σ =         1 
(2) Let τ be given by τ (n) = 0 an (n + 1), for all n ≥ 0. where 0 ≤ a i ≤ C for all i ≥ 0 for some fixed C > 0 and a 0 > 0 and lim sup a n ≥ 1. The substitution matrix is given by Observe that

M τ =        
α n = +∞ i=1
a n+i-1 λ -i for all n ≥ 1.

Since l • r is finite, M σ is positive recurrent. If there exists k ≥ 1 such that a kn ≥ 1 for all n ∈ Z + , then inf{α n , n ∈ Z + } > 0.. Moreover M k τ is scrambling. Furthermore τ has a fixed point u = lim n→∞ τ n (0), thus Theorem 3.23 implies that the dynamical system (Ω u , S) has a unique probability invariant measure.

Question 3.4. It will be interesting to study dynamical properties of (Ω u , S) associated to τ in the case where inf{α n , n ∈ Z + } = 0. where the vector (z j ) j≥0 has 1 as coordinates sum and that M is ⋆ strongly ergodic if there exists a vector (z j ) j≥0 of positive real numbers such that +∞ j=0 z j = 1 and the left hand side above does not depend on j, thus l is a multiple of (z j ) j≥1 ∈ l 1 . Thus l ∈ l 1 and we also have (3.39), and (3.38) follows from the last equality and (3.40). □ Theorem 3.33. Let σ be a bounded length substitution on A = Z + with nonconstant length such σ has a periodic point u and M σ is irreducible, aperiodic. If M σ and M σt , t ≥ 2 are ⋆ strongly ergodic, then the dynamical system (Ω σ , S) has a unique probability shift invariant measure.

Proof of Theorem 3.33. Similar to the proof of Theorem 3.23. □

Proof of Theorem 3 . 1 .

 31 Assume without loss of generality that u = u 0 u 1 . . . is a fixed point of σ. By (3.1), we have that for all j ∈ Z +

  positive recurrent, we have by remark 2.8 that lim n→∞ M n ik λ n = cl k for all k ∈ Z , where c > 0. Using Fatou Lemma for series and the fact l = (l k ) k≥0 ̸ ∈ l 1 , we deduce that lim we are done. □ Question 3.3. 1. If M is transient with non constant line sums, Is lim n→+∞ M n ij +∞ k=0 M n ik = 0 for all i, j ∈ Z + ?

  2.1]. □ Remark 3.6. It is worth mentioning that apparently small modifications on the matrix can completely change its behavior. For instance, consider the case b = 0 and a = c which implies that M σ is null recurrent. Instead of σ(0) = 0 a 1 c , put σ(0) = 1 c , then, from[11, (i) in example 7.1.29], we have that M σ is transient. For the case b > 0, a ≤ c and σ(0) = 1 c , we also have transience as a consequence of our Proposition 3.5 and[START_REF] Kitchens | Symbolic Dynamics, one-sided, two-sided and countable state Markov shifts[END_REF] Lemma 7.1.23].

5 4

 5 < λ, then apply [11, Lemma 7.1.25] to conclude.

  w t-1 ∈ A t and σ(w) = y 0 . . . y |σ(w 0 )|-1 y |σ(w 0 )| . . . y |σ(w)|-1 , then σ t (w) = (y 0 . . . y t-1 )(y 1 . . . y t ) . . . (y |σ(w 0 )|-1 . . . y |σ(w 0 )|+t-2

b∈A,Ib∈A t+1 l

 t+1 Ib ≤ l I . (3.22) Since I∈At r I l I = J∈A t+1 r J l J = 1 and r(Ib) = r(I) for all I ∈ A t and Ib ∈ A t+1 , we deduce that I∈At r I l I = I∈At r I b∈A,Ib∈A t+1 l Ib = 1. Using this last equality and (3.22), we obtain (3.21) and hence we get (3.19). Analogously, (3.20) is equivalent to l I = a∈A,aI∈A t+1 l aI . (3.23) Using Fatou's Lemma, we have for all I ∈ A t , 0 . . . u t )| aI .

,

  j≥0 be a nonnegative strongly ergodic matrix with finite Perron value λ > 0. Assume that M has a right Perron eigenvector r = (r i ) i≥0 ∈ l ∞ which satisfies inf{ri : i ≥ 0} > 0, then lim n→+∞ sup i≥0 ∞ j=0 M n ij +∞ k=0 M n ik -z j = 0, where z j = l j +∞ k=0 l k and l = (l i ) i≥0 ∈ l 1 is a left Perron eigenvector of M .Proof. Since M is strongly ergodic, we deduce by(3.31) that for all i, j ∈ Z + , two limits are finite and uniform on i. for all j ≥ 0. □ Corollary 3.27. Let M = (M ij ) i,j≥0 be a nonnegative strongly ergodic matrix with finite Perron value λ > 0. Assume that M has a right Perron eigenvector r =

.

  It is irreducible, aperiodic and its Perron eigenvector is the Golden number β = 1+ √ 5 2 = lim n→∞ F n+1 Fn . A Perron right and a left eigenvectors are respectively l = (1, 1/β, . . . , 1/β n , . . .) and r = (1, 1/β, 1, 1/β, 1, 1/β, . . .).

. 1 i=0a

 1 The Perron eigenvalue of M τ is the unique real number λ > 1 satisfying1 = ∞ i=0 a i λ -i-1 .A right Perron and a left Perron eigenvector are respectively l = (1, 1/λ, . . . , 1/λ n , . . .) and r = (1, α 1 , . . . , α n , . . .), where α n = λ nni λ n-i-1 for all n ≥ 1.

3. 3 . 3 .

 33 ⋆ strong ergodicity for nonconstant bounded length substitution. Definition 3.29. Let M = (M ij ) i,j≥0 be a nonnegative matrix such that M is irreducible, aperiodic, positive recurrent and ∥M ∥ < +∞. We say that M is ⋆ ergodic if for all i, j ∈ Z + ,

-Question 3 . 6 .=

 36 z j = 0. Remark 3.30. If M is ⋆ strongly ergodic, then it is clear that M is ⋆ ergodic. Question 3.5. Is M = (M ij ) i,j≥0 ⋆ ergodic equivalent to M positive recurrent with right Perron eigenvector in l 1 ? The last question has a positive answer when M is a multiple of a stochastic matrix.An important result is the following: Proposition 3.31. Let M = (M ij ) i,j≥0 be an irreducible, aperiodic matrix with finite Perron value λ. Assume that M has a right Perron eigenvector r = (ri ) i≥0 ∈ l ∞ satisfying inf{r i , i ∈ Z + } > 0. If M is strongly ergodic, then M is ⋆ strongly ergodic.Proof. It is just the Lemma 3.26.□ Does there exist a nonnegative matrix M = (M ij ) i,j≥0 which is strongly ergodic (resp. ⋆ strongly ergodic), but not ⋆ strongly ergodic (resp. strongly ergodic)? Lemma 3.32. Let M = (M ij ) i,j≥0 be a ⋆ ergodic matrix with finite Perron value λ and with right Perron eigenvector r = (r i ) i≥0 , then any left Perron eigenvector of M belongs to l 1 c r i , ∀i ∈ Z + , z j .Moreover, since M is positive recurrence, we have that lim n→+∞ M n ij λ n = l j r i .(3.40)where l = (l j ) j≥1 is a left Perron eigenvector such that l • r = 1

  3. It is important to notice that condition (3.1) may or may not hold on both the transient and the null recurrent cases. To see this we consider examples where M is a multiple of an irreducible stochastic matrix P . In this situation (3.1) is equivalent to lim

n→+∞ sup i∈A

  Question 3.1. Under the hypothesis of Theorem 3.1, is the dynamical system (Ω σ , S) not minimal? Question 3.2. Is the result of Theorem 3.1 still true if M σ is transient, or recurrent with a left Perron eigenvector l = (l i ) i≥0 ̸ ∈ l 1 and without the condition (3.1)? Even in a little less general setting, is the result of Theorem 3.1 still true if M σ satisfies the weaker condition (3.2)? Lemma 3.4. Let M = (M ij ) i,j∈Z + be a nonnegative, irreducible and aperiodic matrix with finite Perron value λ. If M is transient with constant line sums, or M is positive recurrent with a left Perron eigenvector l

	We finish this section proving a result with conditions that imply condition (3.2).

  i 1 . . . i t ∈ A t , we have |σ(w 0 )| i 1 ...it ≤ |σ t (w 0 . . . w t-1 )| i 1 ...it ≤ |σ(w 0 )| i 1 ...it + t.(3.12)We extend σ t by concatenation to A * t and to A

	Z +

).

(3.10) 

Considering that |σ t (w)| counts letters in A t (not in A), note that

|σ t (w 0 . . . w t-1 )| = |σ(w 0 )|,

(3.11)

and for all

  By(3.16) and (3.17), we deduce that M σt is null recurrent.Finally if M σ is transient, we deduce by (3.13) that

	Hence by (3.13), we deduce that			
		lim n→∞	(M n t ) i 1 ...it,j 1 ...jt λ n	= 0.	(3.17)
		+∞ n=0	(M n t ) i 1 ...it,j 1 ...jt λ n	< +∞.
	Assume that M σ is positive recurrent. By (3.14), we have
	lim inf n→+∞	(M n+m t λ n+m ) i 1 ...it,j 1 ...jt	≥ λ -m lim n→+∞	(M n ) i 1 ,k λ n .	(3.15)
	Hence by (3.15) and Lemma 2.6, we deduce that lim n→+∞ positive recurrent.	(M n t ) i 1 ...i t ,j 1 ...j t λ n t	> 0. Thus M σt is
	Now suppose that M jt λ n	= +∞.	(3.16)

.14) Thus λ t ≥ λ and hence λ t = λ. σ is null recurrent, then we have by (3.14) that +∞ n=0 (M n t ) i 1 ...it,j 1 ...

  where U t = u 0 . . . u t-1 and I t = i 1 . . . i t . Observe that lim n→∞

	and				
	µ[I] =	µ[aI].		(3.20)
		a∈A,aI			
	n→∞	|σ n t (u 0 . . . u t-1 )| i 1 ...it λ n	= lim n→∞	(M n t ) Ut,It λ n	,
						(M n t ) U t ,I t λ n	exists since M t is
	positive recurrent with Perron value λ b∈A,Ib∈A t+1	µ[Ib].		(3.19)

.

[START_REF] Michel | Stricte ergodicité d'ensembles minimaux de substitutions[END_REF] 

Applying (3.12) for σ n in place of σ and the fact that λ > 1, we deduce that

µ[i 1 . . . i t ] = lim t = λ.

By Kolmogorov consistency Theorem, there exists a unique measure µ with cylinder specification (3.18) if for every integer t ≥ 1 and I = i 1 . . . i t ∈ A t we have

µ[I] =

  . . . u t )| aI = lim n→∞ 1 λ n |σ n t (u 0 . . . u t-1 )| I .

	Since λ > 1, we deduce that
	lim n→∞ t+1 (u 0 Hence 1 λ n a∈A,aI∈A t+1 |σ n
	µ[aI] ≤ µ(I),
	a∈A,Ia∈A t+1
	i.e,
	a∈A,Ia∈A t+1

1 0 0 0 0 0 • • • 1 0 1 0 0 0 0 • • • 1 0 0 1 0 0 0 • • • 1 0 0 0 1 0 0 • • • . . . . . . . . . . . . . . . . . . . . . . . .
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