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Abstract: Our work aims to estimate the camera motion mounted on the head of a mobile robot or a moving object from RGB-D images 

in a static scene. The problem of motion estimation is transformed into a nonlinear least squares function. Methods for solving such 

problems are iterative. Various classic methods gave an iterative solution by linearizing this function. We can also use the metaheuristic 

optimization method to solve this problem and improve results. In this paper, a new algorithm is developed for visual odometry using a 

sequence of RGB-D images. This algorithm is based on a genetic algorithm. The proposed iterative genetic algorithm searches using 

particles to estimate the optimal motion and then compares it to the traditional methods. To evaluate our method, we use the root mean 

square error to compare it with the based energy method and another metaheuristic method. We prove the efficiency of our innovative 

algorithm on a large set of images. 
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1. Introduction 

In navigation, odometry is the use of information coming 

from sensors such as rotary encoders placed in actuators to 

estimate the position of a moving vehicle. This method has 

limited use because the wheels can slide on smooth surfaces 

or spin motionless in the sand, causing an error in the 

calculation of the movement.  This error will accumulate 

over time and create an increased divergence between the 

real and estimated positions during the motion. 

Visual odometry is the operation of estimating the position 

using sequential frames coming from an onboard camera 

analyzed by different algorithms. Visual odometry enhances 

navigation accuracy in mobile objects using any type of 

locomotion, such as robots with legs or wheels, on a sticky 

or sandy surface or drones. This operation improves the 

performance of the robot for the tasks assigned to it. 

In our case, we exploited the dense method, which uses the 

entire RGB-D image provided by a Microsoft Kinect sensor. 

RGB-D cameras refer to digital cameras that provide the 

colors red, green and blue (RGB) and depth (D) as 

information for every pixel in the image. The website [1] 

gives RGBD images and provide associated information as 

truth trajectory and camera calibration. 

In this work, we propose an algorithm for visual odometry 

that uses a genetic algorithm (GA). This algorithm is 

presented in Section 3, where we will talk first about 

modeling the deduction of motion from the vision by a 

minimization error equation, and then we will explain how 

to construct the warping image that is used to calculate the 

error equation. After that, we will talk in detail about the 

genetic algorithm. In section 4, we present how we compute 

the relative pose error used to evaluate methods, and in this 

section, the accuracy of our algorithm is validated with a 

large set of experiments. The conclusion of our work is 

given in Section 5. 

2. Related Work 

Visual odometry calculates the object motion using images 

captured while the robot is moving. Diffirent approaches for 

visual odometry were distinguished, Among them dense and 

sparse approaches.  

The sparse approach uses feature extraction from the image 

as noted in [2], [3] or [4] and [5].  

A dense approach uses the entire information in the image 

for motion estimation as in [6]. The first dense approach was 

presented by [7] which uses image alignment and 

minimization of geometrical error distance as described in 

[8] and [9]. 

Lately, after the discovery of the RGB-D image, the uses of 

this format have become wide in visual odometry, as given 

by [10], [11], [12] or [13]. 

In the literature, there are many optimization methods using 

metaheuristic approaches explored for the problem of 

motion estimation by vision using sparse methods such as 

[14], [15], [16], in addition  [17], and  [18], [19], or dense 

methods as in [20] and [21].  

In our approach, we estimate the motion by a dense visual 

odometry method using a metaheuristic algorithm and 

RGBD images as a data set. 
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3. Method 

In this part, we explain in a simplified and integrated way the 

framework for motion estimation between two RGB-D 

images in a static scene as described in [8] using a genetic 

algorithm.  

3.1. System modeling 

Visual odometry aims to calculate the motion estimated 

between two successive frames (It , It+1)   captured by a 

camera mounted on the head of a mobile robot or a moving 

object. We will show how this problem has been modeled as 

a mathematical equation.  

An image r called residue is calculated by subtracting the 

pixel intensity photometric, i.e., the pixel color code average, 

of each two pixels at the same position from these two 

images. The pixels in r are more enlightened, engendered a 

higher error. The following function, as described in [10], 

represents the intensity error between two consecutive RGB 

frames of N pixels: 

E(ξ)=
1

𝑁
 ∑  𝑁
𝑖= 1 |It+1(ω(ξ,pi))-It|²=

1

𝑁
∑  𝑁
𝑖=1 |ri(ξ)|²                           

(1)                           

Where ξ ϵ ℝ 6 is the motion that we seek to find, and ω(ξ, 

pi) is the warping function. 

The motion estimation of the camera consists of minimizing 

the error of the intensities (also called photometric error) of 

all pixels of the image. Theoretically, if the motion vector ξ 

of the camera between the two images is perfectly known, 

the error of the intensities on all the pixels is null; but in 

reality, this error is never null because of the noise of the 

sensor and the changes in the visibility angle of objects, etc. 

However, this error remains minimal knowing the true 

motion vector between the two images. The objective of 

these approaches is to find the camera motion estimated ξ 

between two images that minimizes the intensities of all the 

pixels of the image residual by minimizing the following 

function:  

        ξ=minξE(ξ)=minξ  
1

𝑁
∑  𝑁
𝑖=1 |ri (ξ)|².                                     

(2)                                                                                             

This equation is solved by a genetic algorithm in this work. 

The warp function is considered an essential part of creating 

the residual image ri (ξ). 

3.2. Building the Warp function 

The warp function ω(ξ, p) in equation (1) changes the 

position of pixels in It+1  to build a warped image, which we'll 

capture by a camera if we move on the inverse of the motion 

ξ. Then we subtract this new image from It and judge if the 

motion proposed ξ is optimal by calculating the error 

equation (1). 

The warp function is composed of a set of transformations 

shown in Figure 1 as noted in  [10], [22] and [23] . A pixel p 

of coordinates (u;v;d) of the image It+1 is projected at a point 

M in 3D of coordinates (X;Y;Z) or PM by the transformation 

P-1. Then M is transformed from the landmark attached to 

It+1 to a point M in 3D of coordinates  (X';Y';Z') or PM' in the 

landmark of  It+1(ω(ξ,pi)) by the transformation g(ξ) as shown 

in the following equation: 

                                PM '=g(ξ)×PM .                                              

(3)                                                                                    

Finally, M' is projected in the image plane of the warped 

image It+1(ω(ξ,pi)) by the transformation P. Thus, the 

function of warp is written in the following form: 

                             ω(ξ,p)=P(g(ξ)P-1(p)).                                     

(4)                                                                         

 

Fig 1. The warp function consists of a set of 

transformations that project each pixel in the image It+1 

into warped image It+1(ω(ξ,pi)).  

Let P be the transformation that makes it possible to go from 

a 3D point to a pixel in the image. Each 3D point of 

coordinates (X;Y;Z) in space is bound to its corresponding 

2D pixel  (u;v;d) by the following equation: 

𝑃:ℝ3 → ℝ2;     (𝑋; 𝑌; 𝑍 ) → (𝑢, 𝑣) 

   {
 𝑢 =

𝑋 × 𝑓𝑥

𝑍
+ 𝑐𝑥.    

𝑣 =
𝑌 × 𝑓𝑦

𝑍
+ 𝑐𝑦 .

 

                                                                       (5)   

 It is possible to rebuild the 3D point of the scene projected 

to a pixel thanks to the RGB image type. 

The projection P makes it possible to go from a 3D scene to 

a 2D frame. Each 3D point of coordinates (X;Y;Z) in space 

is bound to its corresponding 2D pixel (u;v;d) by the 

following equation: 

𝑃−1: ℝ2 → ℝ3;     (𝑢, 𝑣, 𝑑) → (𝑋; 𝑌; 𝑍) 

{
 
 

 
 𝑋 =

𝑢 − 𝑐𝑥
𝑓𝑥

× 𝑑

 𝑌 =
𝑣 − 𝑐𝑦

𝑓𝑦
× 𝑑 

  Z =  d .               

                                                                           (6)  
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With fx, fy, cx and cy are respectively the focal lengths and 

the optical centers of the camera.  d is the depth of the pixel 

returned by the camera. 

The motion of a rigid object in 3D space is perfectly 

described by its position relative to a fixed reference at all 

times. R and T can be grouped into a single rigid 

transformation matrix g as: 

           g=[
 𝑅     𝑇 
 0      1 

]   ϵℝ4×4.                                                               

(7)                                                                                                                         

Where R=[

𝑟11   𝑟12   𝑟13
𝑟21   𝑟22   𝑟23
𝑟31   𝑟32   𝑟33

]  is the rotation motion, and   

T=[

 𝑡𝑥
𝑡𝑦
𝑡𝑧

]is the translation motion. 

There is a useful minimalistic representation when, for 

example, one seeks to determine the parameters using a 

numerical optimization method. Indeed, each transformation 

matrix describing the motion of a rigid object has a 

representation by the vector ξ using six degrees of freedom: 

     ξ=[ 𝑣1 𝑣3 𝑣 2 𝑤1 𝑤2 𝑤3].                                                                                                                                           

With v = (v1; v2; v3)  the linear velocity and w = (w1;w2;w3) 

angular velocity. 

We use the Lie algebra given in [24] to represent the matrix 

g in the function of the twist coordinates ξ; the 

transformation g can be calculated from ξ using the 

exponential mapping from Lie Algebra to Lie Group as 

described in [10] and [25]:  

g(ξ)=eξ̂                                                        (8)                                                                                             

With 𝜉is the anti-symmetric matrix equal to: 

ξ̂=[

 0    − 𝑤3        𝑤2      𝑣1
𝑤3        0    − 𝑤1     𝑣2
−𝑤2    𝑤1       0         𝑣3
0           0          0          0

] 

Thus, we talked about all the components of equation (4) as 

ξ, g(ξ), P, and P-1, which build the warping of each pixel in 

the image It+1, and so we get It+1(ω(ξ,pi)), then we can 

calculate the residual image and photometric error using the 

equation (1). As for ξ, several values are proposed by GA 

as a motion for the particles, after that we calculate the 

corresponding error value for each particle, as we will 

explain in our proposed algorithm. 

3.3. Genetic Algorithm for motion estimation 

Genetic algorithms, a type of optimization algorithm, were 

developed in the 1970s to comprehend the reproduction field 

of living organisms and the behavior of their genes. Then, 

they have been applied as an algorithm in machine learning. 

The main role of the genetic algorithm is to generate several 

motions based on previously existing motions using their 

specified equations, and then we will choose the motions that 

result in less error using the function (1), repeat the same 

work in the next iterations until the stopping conditions are 

reached, and finally determine the best motion ever ξ using 

the function (2). 

The explanation of the genetic  algorithm (GA) design  as 

mentioned in [26] is the following: 

3.3.1. Representation 

The position ξ has been identified as a chromosome, and the 

decision variables in position ξ are genes with 6 alleles; the 

first three are reserved for the linear velocity and the last 

three are reserved for the angular velocity. 

3.3.2. Population initialization 

Each particle of the population must have an initial position 

ξ using an array of continuous uniform random numbers, 

each variable is limited by a lower and upper bound. 

3.3.3. Objective Function 

This function is a mathematical equation, and its maximum 

value corresponds to the best position estimated in the 

scene. The term fitness refers to equation (10). 

3.3.4. Selection strategy 

At this stage, particles are selected for reproduction, and 

several methods can be used for this. In our experience, we 

use the roulette wheel selection method, which will give each 

particle pi of the population a value of probability probi that 

is proportional to its fitness value, as mentioned in equation 

(10). We note that Ei is the error of individual pi and Emin is 

the minimum error, and in the following, the fitness fi of the 

particle pi  is 

             fi=exp(-8*Ei/Emin).                                                        

(8)                                                                                             

Its probability of being selected is   

              probi=fi /(∑   𝑛
 𝑖 = 1 fi) .                                                   

(9)                                                                                        

Then we apply the cumulative sum of elements to each 

selection probability  

              probci=cumsum(probi).                                             

(10)                                                                                     

The random choice of µ particles for mating is made through 

an indiscriminate variable as an independent spin of the 

roulette wheel. Better individuals, or the individuals that 

have the minimum error or the maximum fitness, have more 

chances to be chosen for the next stage thanks to equation 

(10). 

3.3.5. Reproduction strategy 

In our implementation code in Matlab, this strategy consists 

of two processes to create new particles. 

• Mutation: this process is done on each particle separately. 

Thirty percent of the population are selected at random to 
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undergo the mutation. The mutation rate (pm=0.1) is the 

probability of a change in particle motion selected for 

mutation. 

The formula for mutation is: 

                          ξ′=ξ+M.                                                             

(11)                                                                        

and M is a random vector of mutation computed from: 

              M=δi*randn(size_ξ)                                                      

(12)                                                                                               

where δi is calculated by the formula: 

                 δi= pm *(ξi
U-ξi

L )                                                       

(13)                                                                                                   

where ξi
U(resp.ξi

L) represents the upper bound (resp. lower 

bound) for ξi. 

• Crossover: the resulting parents using the roulette wheel 

selection method will be used in recombination (The 

crossover process). The goal of recombination is to create 

offspring that carry genes from both parents. 

Among the crossover processes most commonly used are the 

intermediate crossover processes. The intermediate 

crossover attempts to average the positions corresponding to 

the two parents. The equations of crossover create two 

individuals O1 and O2 using the weighted average: 

      {
𝑂1𝑖 = 𝛼𝜉1𝑖 + (1–𝛼)𝜉2𝑖 
𝑂2𝑖 = 𝛼𝜉2𝑖 + (1–𝛼)𝜉1𝑖

                                                 

(14) 

             

The extra range factor for crossover α represents the 

proportion of parent choice as random arrays from the 

continuous uniform distribution. Then, the new and old 

particles will create the future population.  

3.3.6. Replacement strategy 

The new offspring and the old particles compete for 

existence in the future population. We do this by creating a 

merged population made up of the previous elements and the 

offspring resulting from crossover and mutation strategies, 

then we sort order the population using errors calculated by 

the function (1) and choosing the ones that have the 

minimum errors according to the required number of 

particles. Then updating the minimum error ever found. 

3.4. Pyramid Multi-resolution  

Equation (2) is solved by minimizing the intensities of all 

the pixels of the image residual, and its solution is closer to 

the truth for tiny motion ξ or small image resolution. To 

improve the final motion estimation, we present a pyramid 

as mentioned in [22], [27] and [28], where the down-

sampled resolution (DSR) of each image is performed by a 

factor of 2 (see Figure 2). In the first, we calculate ξ with the 

image corresponding to high-level DSR (level 4) and this 

motion will be used as initialization for the next low level in 

the pyramid up to the initial resolution of the image, where 

we deduce the optimal motion ξ. 

 

Fig 2. Visual representation of an image pyramid with 5 

levels. 

3.5. Stopping criteria 

There are a lot of stopping criteria during the execution of 

code metaheuristics. We used two procedures for stopping 

below: 

• Static procedure: the stopping of the execution must 

be known a priori using a maximum value of iterations 

for each DSR level of image resolution.  

• Diversity procedure: the end of the execution of code 

must be when the best particle error stagnates within a 

specified number of iterations, keeping the execution 

of the algorithm useless. 

3.6. Overall algorithm 

In the following, we present the most important step that GA 

goes through to reach the best motion. 

1. Initialization  

      a. Set the number of particles as N.  

      b. Set the number of GA iterations as M. 

      c. Set the variables bound 

     d. Set crossover and mutation percentage 

     e. For i=1,…,N, set ξ0
i=rand(1). 

     f. Set initial parameters camera intrinsic  

  2. Main Loop 

for j=1:M iterations.  

     -Select parents using the roulette wheel selection  

       for i=1:ns particles selected (also called Parents) 

       -Update the particles via Crossover and Mutation 

          end 
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       -Evaluate f(Pj
i) and update Pi  and get ξ  of Pbest 

     end 

Retenuξ  

The main role of this algorithm is to generate several 

motions and calculate the errors produced by equation (1), 

then deduce the best motion that corresponds to the 

minimum error. After that, it repeats this operation several 

iterations until it reaches an optimal motion. 

First, this algorithm gives initial motion ξ for each item in 

the group of particles, and then a specific number of 

particles are selected and used to generate new particles. 

After that, these new particles replace the old ones, which 

corresponds to a greater value of error E(ξ). Thus, it has 

completed one iteration. Then it selects a new group of 

particles for the next iteration, and follows the same 

previous steps. After the stopping criteria are met, the 

motion of the best particle is determined. 

We will evaluate this algorithm with several experiments. 

4. Evaluation 

In this section, we evaluate our method for motion 

estimation on a static scene using RGB-D frames that are 

available on [1]. For this, we use RPE, RMSE and 3D 

trajectory to compare our method to particle swarm 

optimization (PSO), and energy-based as a classic method, 

which are mentioned respectively in [20] and [12]. 

4.1. Dataset 

We get the RGB-D datasets existing on the website [1] from 

the Kinect camera.  

 

(a) 

 

(b) 

Fig 3. RGB (a) and depth (b) image from “fr2/desk” 

sequence. 

Figure 3(a) represents an RGB frame and Figure 3(b) the 

corresponding depth, using these two images we have data 

of 3D scene that formulate an RGB-D image.  

4.2. Relative pose error 

Relative Pose Error (RPE) calculate the drift of the 

trajectory estimated to the truth trajectory as described in 

[29], [30] and [31] in time interval ∆ at step i as  

               Ei=(Qi
− 1Qi+∆)−1(Pi

−1Pi+∆).                                           

(15)                                                                               

From a sequence of n images, m=n−∆  is individual relative 

pose errors. We define the root mean squared error (RMSE) 

as 

         RMSE(E1:n ,∆)=(
1

𝑚
∑ ||𝑡𝑟𝑎𝑛𝑠(𝐸𝑖)||²𝑚
𝑖=1 )1/2.                     

(16)                                                                    

Where trans(Ei) is the translational component of RPE. 

4.3. Real-time graphical user interfaces  

Multicriteria optimization is the selection of the best 

element from some set of available alternatives. The initial 

parameters of a metaheuristic method like particles number, 

probability value, and others are considered criteria and we 

must manipulate them to achieve optimal results, this is 

what prompted us to build a graphical user interfaces (GUI) 

in MATLAB shown in Figure4 for various aspects of 

execution code result in real time to follow the results and 

choose the best value of criteria to get an optimal solution. 
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Fig 4. The real-time graphical user interfaces view code 

execution in MATLAB 

The graphical user interfaces represent in figure 4 contains 

four windows, that’s On the right there is a three-

dimensional space in the form of a parallelogram with 

dimensions representing the field of motion of the particles, 

showing us how the particles behave in their search for the 

value of motion by searching for the lowest error value in 

equation (1), and in the center of the finite space we notice 

a green disk representing the three-dimensional position In 

which the previous image was taken, and the red star 

represents the location where the next image was taken, and 

it is the place where the colored particles are looking for, as 

their color reflects the error value, as whenever the lowest 

error value or BestCost is in blue, and this allows us to 

observe the behavior of particles and evaluating the 

proposed method. As for the red arrow, it represents the 

direction of the error overlapping with the sequence of 

images with a three-dimensional ray, and its length is 

mentioned above. In addition, the number of particles is 

mentioned and the Down Sampled Resolution DSR and 

RMSE correspond to the best particle, and this image clearly 

shows the behavior of the particles in finding the motion 

between two consecutive photos. The final RMSE between 

two consecutive images corresponding to the best particle is 

represented in the form of impulses as shown in the upper 

graphical example, and on the right is a graph corresponding 

to camera trajectory RMSE, either at the bottom, a graph 

represents the truth and estimated trajectory in the same 3D 

scene. 

4.4. Experimental setup  

We evaluated our algorithm through various experiments in 

a static environment using RGB-D images of dimension 

640×480 with a frame rate of 30Hz. These images and their 

corresponding ground truths are available on the website 

[1].  

In our first experiment, we used 90 consecutive frames of 

rgbd_dataset_freiburg1_xyz. The function (17) gives the 

distance error between estimated motion and ground truth. 

Therefore, using this function, we compute the camera 

trajectory error of different methods through 90 consecutive 

images, and we represent these results in the same graph in 

figure 5. The evolution of distance error indicates that the 

accumulative error of 90 frames related to the classic 

method is the least, but the quasi-stabilization of the error of 

the PSO method in the last 60 frames allowed it to 

outperform RMSE as we can see in table 1, which is 

considered the most important evaluation criterion in visual 

odometry. Although the final accumulation error of GA is 

greater, the error almost preserved its value between the 

beginning and the end of the last thirty frames, which helped 

him improve the value of translational components of RPE 

and thus outperform the RMSE of classic method.

 

Fig 5. Camera trajectory error of GA, PSO and classic 

method using a part of fr1_xyz dataset. 

The representation in the 3D scene of the truth and estimated 

camera trajectory clearly shows the effectiveness of the 

motion estimation methods. Figures 6, 7 and 8 show the 

camera trajectory for fr1_xyz of ground truth and different 

motion estimation methods; classic and metaheuristics 

methods. 

 

Fig 6. Truth camera trajectory and classic method using a 

part of fr1_xyz dataset. 

Through ninety RGBD frames and in a back and forth path, 

the three methods gave very acceptable results, and this 

confirms that the error of a representation in Figure 5 is very 

small compared to the path traveled, and there was no 

deviation away from the true trajectory. 
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Fig 7. Truth camera trajectory with GA method using a 

part of fr1_xyz dataset. 

 

 

Fig 8. Truth camera trajectory with PSO method using a 

part of fr1_xyz dataset. 

In the second experiment, we used 60 consecutive frames of 

rgbd_dataset_freiburg2_desk. The distance error between 

the ground truth and the trajectory of GA, PSO and the 

classic method is represented in Figure 9. We notice that in 

the first thirty frames, the GA method achieved the least 

distance error compared to the other methods, and the 

results were close compared to the classic method. This is 

clearly shown in the Table I with the superiority of the GA. 

  

 

Fig 9. Camera trajectory error of GA, PSO and Classic 

method using a part of fr2_desk dataset. 

The representation in the same 3D scene of the truth and the 

estimated camera trajectory clearly shows the effectiveness 

of the motion estimation method. Figure 10 shows the 

camera trajectory for fr2_desk of ground truth and different 

motion estimation methods; classic and meta-heuristics 

methods. The three methods gave acceptable results, where 

we notice the corresponding trajectories are very close to the 

true trajectory, but for the trajectory corresponding to GA, 

we notice that it is the closest to the truth trajectory, which 

confirms through this experiment that this innovative 

method competes with the previous methods; classic and 

PSO or even better, and this confirms previously obtained 

results from Figure 10 and Table 1. 

 

Fig 10. Truth camera trajectory with GA, PSO and Classic 

method using a part of fr2_desk dataset. 

Table 1 shows the root mean square error (RMSE) 

calculated using the function (18) for two previous methods 

GA, PSO and the results of the methods classic tested in 

[10].  

Table 1. Root mean square error (RMSE) of drift in meters 

per second for different methods for ground truth. 

Dataset GA PSO Classic 

fr1_xyz 0.04062 m 0.03598 m 0.04827 m 

fr2_desk 0.01856 m 0.02836 m 0.02524 m 

 

For the dataset (freiburg1_xyz) our method using GA has 

proven its efficacy in comparison to the classic method. 

Regarding the dataset (freiburg2_desk), our innovative 

method using GA has successfully proven its efficiency 

compared to both methods used in this experiment: PSO and 

the classic method. 

5. Conclusion and Future Work 

We built a new algorithm to estimate the trajectory of a 

camera in a static scene using a metaheuristic method. This 

method is a genetic algorithm. After a large set of 

experiments, we have demonstrated the efficacy  of this 

method  and the improvement in results. Gradually, we 

showed how to achieve the desired results. In the future, we 

want to extend this work to estimate body motion in a 

dynamic scene.  
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