
HAL Id: hal-04274482
https://hal.science/hal-04274482v1

Submitted on 13 Nov 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial - NoDerivatives 4.0
International License

Dense Visual Odometry Using Genetic Algorithm
Slimane Djema, Zoubir Abdeslem Benselama, Ramdane Hedjar, Krabi

Abdallah

To cite this version:
Slimane Djema, Zoubir Abdeslem Benselama, Ramdane Hedjar, Krabi Abdallah. Dense Visual Odom-
etry Using Genetic Algorithm. International Journal of Intelligent Systems and Applications in En-
gineering, 2023, 11 (3), pp.611-619. �10.48550/arXiv.2311.06149�. �hal-04274482�

https://hal.science/hal-04274482v1
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://hal.archives-ouvertes.fr

International Journal of

INTELLIGENT SYSTEMS AND APPLICATIONS IN

ENGINEERING
ISSN:2147-67992147-6799 www.ijisae.org Original Research Paper

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(3), 611–619 | 611

Dense Visual Odometry Using Genetic Algorithm

Slimane Djema*1, Zoubir Abdeslem Benselama2, Ramdane Hedjar3
, Krabi Abdallah4

Submitted: 25/04/2023 Revised: 29/06/2023 Accepted: 08/07/2023

Abstract: Our work aims to estimate the camera motion mounted on the head of a mobile robot or a moving object from RGB-D images

in a static scene. The problem of motion estimation is transformed into a nonlinear least squares function. Methods for solving such

problems are iterative. Various classic methods gave an iterative solution by linearizing this function. We can also use the metaheuristic

optimization method to solve this problem and improve results. In this paper, a new algorithm is developed for visual odometry using a

sequence of RGB-D images. This algorithm is based on a genetic algorithm. The proposed iterative genetic algorithm searches using

particles to estimate the optimal motion and then compares it to the traditional methods. To evaluate our method, we use the root mean

square error to compare it with the based energy method and another metaheuristic method. We prove the efficiency of our innovative

algorithm on a large set of images.

Keywords: camera motion, genetic Algorithm, RGB-D images, static scene, visual odometry

1. Introduction

In navigation, odometry is the use of information coming

from sensors such as rotary encoders placed in actuators to

estimate the position of a moving vehicle. This method has

limited use because the wheels can slide on smooth surfaces

or spin motionless in the sand, causing an error in the

calculation of the movement. This error will accumulate

over time and create an increased divergence between the

real and estimated positions during the motion.

Visual odometry is the operation of estimating the position

using sequential frames coming from an onboard camera

analyzed by different algorithms. Visual odometry enhances

navigation accuracy in mobile objects using any type of

locomotion, such as robots with legs or wheels, on a sticky

or sandy surface or drones. This operation improves the

performance of the robot for the tasks assigned to it.

In our case, we exploited the dense method, which uses the

entire RGB-D image provided by a Microsoft Kinect sensor.

RGB-D cameras refer to digital cameras that provide the

colors red, green and blue (RGB) and depth (D) as

information for every pixel in the image. The website [1]

gives RGBD images and provide associated information as

truth trajectory and camera calibration.

In this work, we propose an algorithm for visual odometry

that uses a genetic algorithm (GA). This algorithm is

presented in Section 3, where we will talk first about

modeling the deduction of motion from the vision by a

minimization error equation, and then we will explain how

to construct the warping image that is used to calculate the

error equation. After that, we will talk in detail about the

genetic algorithm. In section 4, we present how we compute

the relative pose error used to evaluate methods, and in this

section, the accuracy of our algorithm is validated with a

large set of experiments. The conclusion of our work is

given in Section 5.

2. Related Work

Visual odometry calculates the object motion using images

captured while the robot is moving. Diffirent approaches for

visual odometry were distinguished, Among them dense and

sparse approaches.

The sparse approach uses feature extraction from the image

as noted in [2], [3] or [4] and [5].

A dense approach uses the entire information in the image

for motion estimation as in [6]. The first dense approach was

presented by [7] which uses image alignment and

minimization of geometrical error distance as described in

[8] and [9].

Lately, after the discovery of the RGB-D image, the uses of

this format have become wide in visual odometry, as given

by [10], [11], [12] or [13].

In the literature, there are many optimization methods using

metaheuristic approaches explored for the problem of

motion estimation by vision using sparse methods such as

[14], [15], [16], in addition [17], and [18], [19], or dense

methods as in [20] and [21].

In our approach, we estimate the motion by a dense visual

odometry method using a metaheuristic algorithm and

RGBD images as a data set.

1Department of Electronics, Saad Dahlab University, Blida, Algeria
2Department of Electronics, Saad Dahlab University, Blida, Algeria
3Department of Computer Engineering, King Saud University, Riyadh,

Saudi Arabia
4Department of Electronics, Saad Dahlab University, Blida, Algeria

* Corresponding Author Email: djema20132@gmail.com

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(3), 611–619 | 612

3. Method

In this part, we explain in a simplified and integrated way the

framework for motion estimation between two RGB-D

images in a static scene as described in [8] using a genetic

algorithm.

3.1. System modeling

Visual odometry aims to calculate the motion estimated

between two successive frames (It , It+1) captured by a

camera mounted on the head of a mobile robot or a moving

object. We will show how this problem has been modeled as

a mathematical equation.

An image r called residue is calculated by subtracting the

pixel intensity photometric, i.e., the pixel color code average,

of each two pixels at the same position from these two

images. The pixels in r are more enlightened, engendered a

higher error. The following function, as described in [10],

represents the intensity error between two consecutive RGB

frames of N pixels:

E(ξ)=
1

𝑁
 ∑ 𝑁
𝑖= 1 |It+1(ω(ξ,pi))-It|²=

1

𝑁
∑ 𝑁
𝑖=1 |ri(ξ)|²

(1)

Where ξ ϵ ℝ 6 is the motion that we seek to find, and ω(ξ,

pi) is the warping function.

The motion estimation of the camera consists of minimizing

the error of the intensities (also called photometric error) of

all pixels of the image. Theoretically, if the motion vector ξ

of the camera between the two images is perfectly known,

the error of the intensities on all the pixels is null; but in

reality, this error is never null because of the noise of the

sensor and the changes in the visibility angle of objects, etc.

However, this error remains minimal knowing the true

motion vector between the two images. The objective of

these approaches is to find the camera motion estimated ξ

between two images that minimizes the intensities of all the

pixels of the image residual by minimizing the following

function:

 ξ=minξE(ξ)=minξ
1

𝑁
∑ 𝑁
𝑖=1 |ri (ξ)|².

(2)

This equation is solved by a genetic algorithm in this work.

The warp function is considered an essential part of creating

the residual image ri (ξ).

3.2. Building the Warp function

The warp function ω(ξ, p) in equation (1) changes the

position of pixels in It+1 to build a warped image, which we'll

capture by a camera if we move on the inverse of the motion

ξ. Then we subtract this new image from It and judge if the

motion proposed ξ is optimal by calculating the error

equation (1).

The warp function is composed of a set of transformations

shown in Figure 1 as noted in [10], [22] and [23] . A pixel p

of coordinates (u;v;d) of the image It+1 is projected at a point

M in 3D of coordinates (X;Y;Z) or PM by the transformation

P-1. Then M is transformed from the landmark attached to

It+1 to a point M in 3D of coordinates (X';Y';Z') or PM' in the

landmark of It+1(ω(ξ,pi)) by the transformation g(ξ) as shown

in the following equation:

 PM '=g(ξ)×PM .

(3)

Finally, M' is projected in the image plane of the warped

image It+1(ω(ξ,pi)) by the transformation P. Thus, the

function of warp is written in the following form:

 ω(ξ,p)=P(g(ξ)P-1(p)).

(4)

Fig 1. The warp function consists of a set of

transformations that project each pixel in the image It+1

into warped image It+1(ω(ξ,pi)).

Let P be the transformation that makes it possible to go from

a 3D point to a pixel in the image. Each 3D point of

coordinates (X;Y;Z) in space is bound to its corresponding

2D pixel (u;v;d) by the following equation:

𝑃:ℝ3 → ℝ2; (𝑋; 𝑌; 𝑍) → (𝑢, 𝑣)

 {
 𝑢 =

𝑋 × 𝑓𝑥

𝑍
+ 𝑐𝑥.

𝑣 =
𝑌 × 𝑓𝑦

𝑍
+ 𝑐𝑦 .

 (5)

 It is possible to rebuild the 3D point of the scene projected

to a pixel thanks to the RGB image type.

The projection P makes it possible to go from a 3D scene to

a 2D frame. Each 3D point of coordinates (X;Y;Z) in space

is bound to its corresponding 2D pixel (u;v;d) by the

following equation:

𝑃−1: ℝ2 → ℝ3; (𝑢, 𝑣, 𝑑) → (𝑋; 𝑌; 𝑍)

{

 𝑋 =

𝑢 − 𝑐𝑥
𝑓𝑥

× 𝑑

 𝑌 =
𝑣 − 𝑐𝑦

𝑓𝑦
× 𝑑

 Z = d .

 (6)

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(3), 611–619 | 613

With fx, fy, cx and cy are respectively the focal lengths and

the optical centers of the camera. d is the depth of the pixel

returned by the camera.

The motion of a rigid object in 3D space is perfectly

described by its position relative to a fixed reference at all

times. R and T can be grouped into a single rigid

transformation matrix g as:

 g=[
 𝑅 𝑇
 0 1

] ϵℝ4×4.

(7)

Where R=[

𝑟11 𝑟12 𝑟13
𝑟21 𝑟22 𝑟23
𝑟31 𝑟32 𝑟33

] is the rotation motion, and

T=[

 𝑡𝑥
𝑡𝑦
𝑡𝑧

]is the translation motion.

There is a useful minimalistic representation when, for

example, one seeks to determine the parameters using a

numerical optimization method. Indeed, each transformation

matrix describing the motion of a rigid object has a

representation by the vector ξ using six degrees of freedom:

 ξ=[𝑣1 𝑣3 𝑣 2 𝑤1 𝑤2 𝑤3].

With v = (v1; v2; v3) the linear velocity and w = (w1;w2;w3)

angular velocity.

We use the Lie algebra given in [24] to represent the matrix

g in the function of the twist coordinates ξ; the

transformation g can be calculated from ξ using the

exponential mapping from Lie Algebra to Lie Group as

described in [10] and [25]:

g(ξ)=eξ̂ (8)

With 𝜉is the anti-symmetric matrix equal to:

ξ̂=[

 0 − 𝑤3 𝑤2 𝑣1
𝑤3 0 − 𝑤1 𝑣2
−𝑤2 𝑤1 0 𝑣3
0 0 0 0

]

Thus, we talked about all the components of equation (4) as

ξ, g(ξ), P, and P-1, which build the warping of each pixel in

the image It+1, and so we get It+1(ω(ξ,pi)), then we can

calculate the residual image and photometric error using the

equation (1). As for ξ, several values are proposed by GA

as a motion for the particles, after that we calculate the

corresponding error value for each particle, as we will

explain in our proposed algorithm.

3.3. Genetic Algorithm for motion estimation

Genetic algorithms, a type of optimization algorithm, were

developed in the 1970s to comprehend the reproduction field

of living organisms and the behavior of their genes. Then,

they have been applied as an algorithm in machine learning.

The main role of the genetic algorithm is to generate several

motions based on previously existing motions using their

specified equations, and then we will choose the motions that

result in less error using the function (1), repeat the same

work in the next iterations until the stopping conditions are

reached, and finally determine the best motion ever ξ using

the function (2).

The explanation of the genetic algorithm (GA) design as

mentioned in [26] is the following:

3.3.1. Representation

The position ξ has been identified as a chromosome, and the

decision variables in position ξ are genes with 6 alleles; the

first three are reserved for the linear velocity and the last

three are reserved for the angular velocity.

3.3.2. Population initialization

Each particle of the population must have an initial position

ξ using an array of continuous uniform random numbers,

each variable is limited by a lower and upper bound.

3.3.3. Objective Function

This function is a mathematical equation, and its maximum

value corresponds to the best position estimated in the

scene. The term fitness refers to equation (10).

3.3.4. Selection strategy

At this stage, particles are selected for reproduction, and

several methods can be used for this. In our experience, we

use the roulette wheel selection method, which will give each

particle pi of the population a value of probability probi that

is proportional to its fitness value, as mentioned in equation

(10). We note that Ei is the error of individual pi and Emin is

the minimum error, and in the following, the fitness fi of the

particle pi is

 fi=exp(-8*Ei/Emin).

(8)

Its probability of being selected is

 probi=fi /(∑ 𝑛
 𝑖 = 1 fi) .

(9)

Then we apply the cumulative sum of elements to each

selection probability

 probci=cumsum(probi).

(10)

The random choice of µ particles for mating is made through

an indiscriminate variable as an independent spin of the

roulette wheel. Better individuals, or the individuals that

have the minimum error or the maximum fitness, have more

chances to be chosen for the next stage thanks to equation

(10).

3.3.5. Reproduction strategy

In our implementation code in Matlab, this strategy consists

of two processes to create new particles.

• Mutation: this process is done on each particle separately.

Thirty percent of the population are selected at random to

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(3), 611–619 | 614

undergo the mutation. The mutation rate (pm=0.1) is the

probability of a change in particle motion selected for

mutation.

The formula for mutation is:

 ξ′=ξ+M.

(11)

and M is a random vector of mutation computed from:

 M=δi*randn(size_ξ)

(12)

where δi is calculated by the formula:

 δi= pm *(ξi
U-ξi

L)

(13)

where ξi
U(resp.ξi

L) represents the upper bound (resp. lower

bound) for ξi.

• Crossover: the resulting parents using the roulette wheel

selection method will be used in recombination (The

crossover process). The goal of recombination is to create

offspring that carry genes from both parents.

Among the crossover processes most commonly used are the

intermediate crossover processes. The intermediate

crossover attempts to average the positions corresponding to

the two parents. The equations of crossover create two

individuals O1 and O2 using the weighted average:

 {
𝑂1𝑖 = 𝛼𝜉1𝑖 + (1–𝛼)𝜉2𝑖
𝑂2𝑖 = 𝛼𝜉2𝑖 + (1–𝛼)𝜉1𝑖

(14)

The extra range factor for crossover α represents the

proportion of parent choice as random arrays from the

continuous uniform distribution. Then, the new and old

particles will create the future population.

3.3.6. Replacement strategy

The new offspring and the old particles compete for

existence in the future population. We do this by creating a

merged population made up of the previous elements and the

offspring resulting from crossover and mutation strategies,

then we sort order the population using errors calculated by

the function (1) and choosing the ones that have the

minimum errors according to the required number of

particles. Then updating the minimum error ever found.

3.4. Pyramid Multi-resolution

Equation (2) is solved by minimizing the intensities of all

the pixels of the image residual, and its solution is closer to

the truth for tiny motion ξ or small image resolution. To

improve the final motion estimation, we present a pyramid

as mentioned in [22], [27] and [28], where the down-

sampled resolution (DSR) of each image is performed by a

factor of 2 (see Figure 2). In the first, we calculate ξ with the

image corresponding to high-level DSR (level 4) and this

motion will be used as initialization for the next low level in

the pyramid up to the initial resolution of the image, where

we deduce the optimal motion ξ.

Fig 2. Visual representation of an image pyramid with 5

levels.

3.5. Stopping criteria

There are a lot of stopping criteria during the execution of

code metaheuristics. We used two procedures for stopping

below:

• Static procedure: the stopping of the execution must

be known a priori using a maximum value of iterations

for each DSR level of image resolution.

• Diversity procedure: the end of the execution of code

must be when the best particle error stagnates within a

specified number of iterations, keeping the execution

of the algorithm useless.

3.6. Overall algorithm

In the following, we present the most important step that GA

goes through to reach the best motion.

1. Initialization

 a. Set the number of particles as N.

 b. Set the number of GA iterations as M.

 c. Set the variables bound

 d. Set crossover and mutation percentage

 e. For i=1,…,N, set ξ0
i=rand(1).

 f. Set initial parameters camera intrinsic

 2. Main Loop

for j=1:M iterations.

 -Select parents using the roulette wheel selection

 for i=1:ns particles selected (also called Parents)

 -Update the particles via Crossover and Mutation

 end

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(3), 611–619 | 615

 -Evaluate f(Pj
i) and update Pi and get ξ of Pbest

 end

Retenuξ

The main role of this algorithm is to generate several

motions and calculate the errors produced by equation (1),

then deduce the best motion that corresponds to the

minimum error. After that, it repeats this operation several

iterations until it reaches an optimal motion.

First, this algorithm gives initial motion ξ for each item in

the group of particles, and then a specific number of

particles are selected and used to generate new particles.

After that, these new particles replace the old ones, which

corresponds to a greater value of error E(ξ). Thus, it has

completed one iteration. Then it selects a new group of

particles for the next iteration, and follows the same

previous steps. After the stopping criteria are met, the

motion of the best particle is determined.

We will evaluate this algorithm with several experiments.

4. Evaluation

In this section, we evaluate our method for motion

estimation on a static scene using RGB-D frames that are

available on [1]. For this, we use RPE, RMSE and 3D

trajectory to compare our method to particle swarm

optimization (PSO), and energy-based as a classic method,

which are mentioned respectively in [20] and [12].

4.1. Dataset

We get the RGB-D datasets existing on the website [1] from

the Kinect camera.

(a)

(b)

Fig 3. RGB (a) and depth (b) image from “fr2/desk”

sequence.

Figure 3(a) represents an RGB frame and Figure 3(b) the

corresponding depth, using these two images we have data

of 3D scene that formulate an RGB-D image.

4.2. Relative pose error

Relative Pose Error (RPE) calculate the drift of the

trajectory estimated to the truth trajectory as described in

[29], [30] and [31] in time interval ∆ at step i as

 Ei=(Qi
− 1Qi+∆)−1(Pi

−1Pi+∆).

(15)

From a sequence of n images, m=n−∆ is individual relative

pose errors. We define the root mean squared error (RMSE)

as

 RMSE(E1:n ,∆)=(
1

𝑚
∑ ||𝑡𝑟𝑎𝑛𝑠(𝐸𝑖)||²𝑚
𝑖=1)1/2.

(16)

Where trans(Ei) is the translational component of RPE.

4.3. Real-time graphical user interfaces

Multicriteria optimization is the selection of the best

element from some set of available alternatives. The initial

parameters of a metaheuristic method like particles number,

probability value, and others are considered criteria and we

must manipulate them to achieve optimal results, this is

what prompted us to build a graphical user interfaces (GUI)

in MATLAB shown in Figure4 for various aspects of

execution code result in real time to follow the results and

choose the best value of criteria to get an optimal solution.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(3), 611–619 | 616

Fig 4. The real-time graphical user interfaces view code

execution in MATLAB

The graphical user interfaces represent in figure 4 contains

four windows, that’s On the right there is a three-

dimensional space in the form of a parallelogram with

dimensions representing the field of motion of the particles,

showing us how the particles behave in their search for the

value of motion by searching for the lowest error value in

equation (1), and in the center of the finite space we notice

a green disk representing the three-dimensional position In

which the previous image was taken, and the red star

represents the location where the next image was taken, and

it is the place where the colored particles are looking for, as

their color reflects the error value, as whenever the lowest

error value or BestCost is in blue, and this allows us to

observe the behavior of particles and evaluating the

proposed method. As for the red arrow, it represents the

direction of the error overlapping with the sequence of

images with a three-dimensional ray, and its length is

mentioned above. In addition, the number of particles is

mentioned and the Down Sampled Resolution DSR and

RMSE correspond to the best particle, and this image clearly

shows the behavior of the particles in finding the motion

between two consecutive photos. The final RMSE between

two consecutive images corresponding to the best particle is

represented in the form of impulses as shown in the upper

graphical example, and on the right is a graph corresponding

to camera trajectory RMSE, either at the bottom, a graph

represents the truth and estimated trajectory in the same 3D

scene.

4.4. Experimental setup

We evaluated our algorithm through various experiments in

a static environment using RGB-D images of dimension

640×480 with a frame rate of 30Hz. These images and their

corresponding ground truths are available on the website

[1].

In our first experiment, we used 90 consecutive frames of

rgbd_dataset_freiburg1_xyz. The function (17) gives the

distance error between estimated motion and ground truth.

Therefore, using this function, we compute the camera

trajectory error of different methods through 90 consecutive

images, and we represent these results in the same graph in

figure 5. The evolution of distance error indicates that the

accumulative error of 90 frames related to the classic

method is the least, but the quasi-stabilization of the error of

the PSO method in the last 60 frames allowed it to

outperform RMSE as we can see in table 1, which is

considered the most important evaluation criterion in visual

odometry. Although the final accumulation error of GA is

greater, the error almost preserved its value between the

beginning and the end of the last thirty frames, which helped

him improve the value of translational components of RPE

and thus outperform the RMSE of classic method.

Fig 5. Camera trajectory error of GA, PSO and classic

method using a part of fr1_xyz dataset.

The representation in the 3D scene of the truth and estimated

camera trajectory clearly shows the effectiveness of the

motion estimation methods. Figures 6, 7 and 8 show the

camera trajectory for fr1_xyz of ground truth and different

motion estimation methods; classic and metaheuristics

methods.

Fig 6. Truth camera trajectory and classic method using a

part of fr1_xyz dataset.

Through ninety RGBD frames and in a back and forth path,

the three methods gave very acceptable results, and this

confirms that the error of a representation in Figure 5 is very

small compared to the path traveled, and there was no

deviation away from the true trajectory.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(3), 611–619 | 617

Fig 7. Truth camera trajectory with GA method using a

part of fr1_xyz dataset.

Fig 8. Truth camera trajectory with PSO method using a

part of fr1_xyz dataset.

In the second experiment, we used 60 consecutive frames of

rgbd_dataset_freiburg2_desk. The distance error between

the ground truth and the trajectory of GA, PSO and the

classic method is represented in Figure 9. We notice that in

the first thirty frames, the GA method achieved the least

distance error compared to the other methods, and the

results were close compared to the classic method. This is

clearly shown in the Table I with the superiority of the GA.

Fig 9. Camera trajectory error of GA, PSO and Classic

method using a part of fr2_desk dataset.

The representation in the same 3D scene of the truth and the

estimated camera trajectory clearly shows the effectiveness

of the motion estimation method. Figure 10 shows the

camera trajectory for fr2_desk of ground truth and different

motion estimation methods; classic and meta-heuristics

methods. The three methods gave acceptable results, where

we notice the corresponding trajectories are very close to the

true trajectory, but for the trajectory corresponding to GA,

we notice that it is the closest to the truth trajectory, which

confirms through this experiment that this innovative

method competes with the previous methods; classic and

PSO or even better, and this confirms previously obtained

results from Figure 10 and Table 1.

Fig 10. Truth camera trajectory with GA, PSO and Classic

method using a part of fr2_desk dataset.

Table 1 shows the root mean square error (RMSE)

calculated using the function (18) for two previous methods

GA, PSO and the results of the methods classic tested in

[10].

Table 1. Root mean square error (RMSE) of drift in meters

per second for different methods for ground truth.

Dataset GA PSO Classic

fr1_xyz 0.04062 m 0.03598 m 0.04827 m

fr2_desk 0.01856 m 0.02836 m 0.02524 m

For the dataset (freiburg1_xyz) our method using GA has

proven its efficacy in comparison to the classic method.

Regarding the dataset (freiburg2_desk), our innovative

method using GA has successfully proven its efficiency

compared to both methods used in this experiment: PSO and

the classic method.

5. Conclusion and Future Work

We built a new algorithm to estimate the trajectory of a

camera in a static scene using a metaheuristic method. This

method is a genetic algorithm. After a large set of

experiments, we have demonstrated the efficacy of this

method and the improvement in results. Gradually, we

showed how to achieve the desired results. In the future, we

want to extend this work to estimate body motion in a

dynamic scene.

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(3), 611–619 | 618

References

[1] “RGB-D SLAM Dataset and Benchmark,” TUM

Department of Informatics, Technical University of

Munich, Germany, 2011. Accessed: Jan. 01, 2021.

[Online]. Available:

http://vision.in.tum.de/data/datasets/rgbd-dataset.

[2] F. Cheng, C. Liu, H. Wu, and M. Ai, “DIRECT

SPARSE VISUAL ODOMETRY WITH

STRUCTURAL REGULARITIES FOR LONG

CORRIDOR ENVIRONMENTS,” Int. Arch.

Photogramm. Remote Sens. Spatial Inf. Sci., vol.

XLIII-B2-2020, pp. 757–763, Aug. 2020, doi:

10.5194/isprs-archives-XLIII-B2-2020-757-2020.

[3] S. T. Khawase, S. D. Kamble, N. V. Thakur, and A. S.

Patharkar, “An Overview of Block Matching

Algorithms for Motion Vector Estimation,”

Gopeshwar, Uttrakhand, India, Jun. 2017, pp. 217–

222. doi: 10.15439/2017R85.

[4] M. Ghaffari, W. Clark, A. Bloch, R. M. Eustice, and J.

W. Grizzle, “Continuous Direct Sparse Visual

Odometry from RGB-D Images,” . In Proceedings of

the Robotics: Science and Systems Conference,

Freiburg, Germany, Jun. 2019, doi:

10.48550/ARXIV.1904.02266.

[5] N. Zhang and Y. Zhao, “Fast and Robust Monocular

Visua-Inertial Odometry Using Points and Lines,”

Sensors, vol. 19, no. 20, p. 4545, Oct. 2019, doi:

10.3390/s19204545.

[6] B. Canovas, M. Rombaut, A. Negre, D. Pellerin, and

S. Olympieff, “Speed and Memory Efficient Dense

RGB-D SLAM in Dynamic Scenes,” in 2020

IEEE/RSJ International Conference on Intelligent

Robots and Systems (IROS), Las Vegas, NV, USA,

Oct. 2020, pp. 4996–5001. doi:

10.1109/IROS45743.2020.9341542.

[7] A. I. Comport, E. Malis, and P. Rives, “Real-time

Quadrifocal Visual Odometry,” The International

Journal of Robotics Research, vol. 29, no. 2–3, pp.

245–266, Feb. 2010, doi:

10.1177/0278364909356601.

[8] B. D. Lucas and T. Kanade, “An Iterative Image

Registration Technique with an Application to Stereo

Vision,” Proceedings of the 7th International Joint

Conference on Artificial Intelligence (IJCAI-81),

Vancouver, BC, Canada, pp. 674–679, Aug. 1981.

[9] P. J. Besl and N. D. McKay, “Method for registration

of 3-D shapes,” in Sensor Fusion IV: Control

Paradigms and Data Structures, Boston, MA, USA,

Apr. 1992, vol. 1611, pp. 586–606. doi:

10.1117/12.57955.

[10] A. Dib and F. Charpillet, “Robust dense visual

odometry for RGB-D cameras in a dynamic

environment,” in 2015 International Conference on

Advanced Robotics (ICAR), Istanbul, Turkey, Jul.

2015, pp. 1–7. doi: 10.1109/ICAR.2015.7298210.

[11] T. Whelan, H. Johannsson, M. Kaess, J. J. Leonard,

and J. McDonald, “Robust real-time visual odometry

for dense RGB-D mapping,” in 2013 IEEE

International Conference on Robotics and

Automation, Karlsruhe, Germany, May 2013, pp.

5724–5731. doi: 10.1109/ICRA.2013.6631400.

[12] F. Steinbrucker, J. Sturm, and D. Cremers, “Real-time

visual odometry from dense RGB-D images,” in 2011

IEEE International Conference on Computer Vision

Workshops (ICCV Workshops), Barcelona, Spain,

Nov. 2011, pp. 719–722. doi:

10.1109/ICCVW.2011.6130321.

[13] C. Kerl, J. Sturm, and D. Cremers, “Robust odometry

estimation for RGB-D cameras,” in 2013 IEEE

International Conference on Robotics and

Automation, Karlsruhe, Germany, May 2013, pp.

3748–3754. doi: 10.1109/ICRA.2013.6631104.

[14] E. Cuevas, D. Zaldívar, M. Pérez-Cisneros, H. Sossa,

and V. Osuna, “Block matching algorithm for motion

estimation based on Artificial Bee Colony (ABC),”

Applied Soft Computing, vol. 13, no. 6, pp. 3047–3059,

Jun. 2013, doi: 10.1016/j.asoc.2012.09.020.

[15] M. Shahbazi, G. Sohn, J. Théau, and P. Ménard,

“ROBUST SPARSE MATCHING AND MOTION

ESTIMATION USING GENETIC ALGORITHMS,”

Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci.,

vol. XL-3/W2, pp. 197–204, Mar. 2015, doi:

10.5194/isprsarchives-XL-3-W2-197-2015.

[16] M. Tagliasacchi, “A genetic algorithm for optical flow

estimation,” Image and Vision Computing, vol. 25, no.

2, pp. 141–147, Feb. 2007, doi:

10.1016/j.imavis.2006.01.021.

[17] A. Sehgal, A. Singandhupe, H. M. La, A. Tavakkoli,

and S. J. Louis, “Lidar-Monocular Visual Odometry

with Genetic Algorithm for Parameter Optimization,”

in Advances in Visual Computing, Springer

International Publishing., vol. 11845, Cham, Suisse:

Springer International Publishing, 2019, pp. 358–370.

Accessed: Sep. 11, 2022. [Online]. Available:

http://link.springer.com/10.1007/978-3-030-33723-

0_29

[18] Y. K. Yu, K. H. Wong, and M. M. Y. Chang, “Pose

Estimation for Augmented Reality Applications Using

Genetic Algorithm,” IEEE Trans. Syst., Man, Cybern.

B, vol. 35, no. 6, pp. 1295–1301, Dec. 2005, doi:

10.1109/TSMCB.2005.850164.

[19] C.-F. Chao, M.-H. Horng, and Y.-C. Chen, “Motion

Estimation Using the Firefly Algorithm in Ultrasonic

Image Sequence of Soft Tissue,” Computational and

Mathematical Methods in Medicine, vol. 2015, pp. 1–

8, 2015, doi: 10.1155/2015/343217.

[20] Y. K. Baik, J. Kwon, H. S. Lee, and K. M. Lee,

“Geometric particle swarm optimization for robust

International Journal of Intelligent Systems and Applications in Engineering IJISAE, 2023, 11(3), 611–619 | 619

visual ego-motion estimation via particle filtering,”

Image and Vision Computing, vol. 31, no. 8, pp. 565–

579, Aug. 2013, doi: 10.1016/j.imavis.2013.04.004.

[21] A. Kostusiak and P. Skrzypczyński, “On the

Efficiency of Population-Based Optimization in

Finding Best Parameters for RGB-D Visual

Odometry,” JAMRIS, vol. 13, no. 2, pp. 5–14, Jul.

2019, doi: 10.14313/JAMRIS/2-2019/13.

[22] A. Dib, “Vers un système de capture du mouvement

humain en 3D pour un robot mobile évoluant dans un

environnement encombré,” Doctorat en Intelligence

artificielle, Université de Lorraine, Nancy, France,

2016. [Online]. Available: https://hal.inria.fr/tel-

01333772

[23] Y. Ahmine, G. Caron, F. Chouireb, and E. M.

Mouaddib, “Continuous Scale-Space Direct Image

Alignment for Visual Odometry From RGB-D

Images,” IEEE Robot. Autom. Lett., vol. 6, no. 2, pp.

2264–2271, Apr. 2021, doi:

10.1109/LRA.2021.3061309.

[24] J. L. Blanco-Claraco, “A tutorial on SE (3)

transformation parameterizations and on-manifold

optimization,” Perception and Robotics Group,

University of Malaga, Spain, 2021, doi:

10.48550/ARXIV.2103.15980.

[25] S. Ahuja, “Lie Algebra to Lie Group Mapping,” 2015.

Accessed: Jan. 01, 2021. [Online]. Available:

https://math.stackexchange.com/questions/1312314/li

e-algebra-to-lie-group-mapping

[26] E.-G. Talbi, Metaheuristics, John Wiley&Sons., vol.

74. Hoboken, NJ, USA: John Wiley & Sons, Inc.,

2009. doi: 10.1002/9780470496916.

[27] E. H. Adelson, C. H. Anderson, J. R. Bergen, P. J. Burt,

and J. M. Ogden, “Pyramid methods in image

processing,” Radio Corporation of America Engineer

, Princeton, New Jersey, USA, vol. 29, no. 6, pp. 33–

41, 1984.

[28] E. N. Eriksen, “Monocular Visual Odometry for

Underwater Navigation,” TTK4900 – Master thesis,

Norwegian University of Science and Technology,

Trondheim, Norvège, 2020.

[29] J. Sturm, N. Engelhard, F. Endres, W. Burgard, and D.

Cremers, “A benchmark for the evaluation of RGB-D

SLAM systems,” in 2012 IEEE/RSJ International

Conference on Intelligent Robots and Systems,

Vilamoura-Algarve, Portugal, Oct. 2012, pp. 573–580.

doi: 10.1109/IROS.2012.6385773.

[30] W. Chen et al., “An Overview on Visual SLAM: From

Tradition to Semantic,” Remote Sensing, vol. 14, no.

13, p. 3010, Jun. 2022, doi: 10.3390/rs14133010.

[31] D. Prokhorov, D. Zhukov, O. Barinova, K. Anton, and

A. Vorontsova, “Measuring robustness of Visual

SLAM,” in 2019 16th International Conference on

Machine Vision Applications (MVA), Tokyo, Japan,

May 2019, pp. 1–6. doi:

10.23919/MVA.2019.8758020.

[32] Robert Roberts, Daniel Taylor, Juan Herrera, Juan

Castro, Mette Christensen. Integrating Virtual Reality

and Machine Learning in Education. Kuwait Journal

of Machine Learning, 2(1). Retrieved from

http://kuwaitjournals.com/index.php/kjml/article/view

/175
[33] Mr. Dharmesh Dhabliya, Dr.S.A.Sivakumar. (2019).

Analysis and Design of Universal Shift Register Using

Pulsed Latches . International Journal of New

Practices in Management and Engineering, 8(03), 10 -

16. https://doi.org/10.17762/ijnpme.v8i03.78

[34] Mandal, D., Shukla, A., Ghosh, A., Gupta, A., &

Dhabliya, D. (2022). Molecular dynamics simulation

for serial and parallel computation using leaf frog

algorithm. Paper presented at the PDGC 2022 - 2022

7th International Conference on Parallel, Distributed

and Grid Computing, 552-557.

doi:10.1109/PDGC56933.2022.10053161 Retrieved

from www.scopus.com

http://www.scopus.com/

