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ABSTRACT

Change detection in satellite imagery seeks to find occur-
rences of targeted changes in a given scene taken at different
instants. This task has several applications ranging from land-
cover mapping, to anthropogenic activity monitory as well as
climate change and natural hazard damage assessment. How-
ever, change detection is highly challenging due to the acqui-
sition conditions and also to the subjectivity of changes.
In this paper, we devise a novel algorithm for change detec-
tion based on active learning. The proposed method is based
on a question & answer model that probes an oracle (user)
about the relevance of changes only on a small set of crit-
ical images (referred to as virtual exemplars), and accord-
ing to oracle’s responses updates deep neural network (DNN)
classifiers. The main contribution resides in a novel adver-
sarial model that allows learning the most representative, di-
verse and uncertain virtual exemplars (as inverted preimages
of the trained DNNs) that challenge (the most) the trained
DNNs, and this leads to a better re-estimate of these networks
in the subsequent iterations of active learning. Experiments
show the out-performance of our proposed deep-net inversion
against the related work.

Index Terms— active learning, adversarial virtual exem-
plars, deep-net inversion, satellite image change detection

1. INTRODUCTION

Satellite image change detection aims at localizing instances
of targeted (relevant) changes in scenes acquired at different
instants. The wide interest of this task ranges from anthro-
pogenic activity monitoring, to phenology mapping, through
natural hazard damage assessment [2, 3]. This task is chal-
lenging as satellite images are subject to many pervasive
changes resulting from sensors and acquisition conditions
(occlusions, radiometric variations and shadows, weather
conditions as well as scene content). Early change detec-
tion work relies on comparisons of multi-temporal series,
via image differences and thresholding, vegetation indices,
principal component and change vector analyses [5–8]. Other
work either (i) requires a preliminary step that mitigates the
effect of pervasive changes using normalization techniques
including shadow removal, radiometric correction and by
estimating the parameters of sensors for registration, etc.

[10,11,13,14,38], or (ii) considers these irrelevant variations
as a part of scene appearance modeling using statistical ma-
chine learning [9, 12, 15–20, 39].
The success of machine learning models in particular, includ-
ing deep neural networks, is highly reliant on the availability
of large collections of hand-labeled reference images that cap-
ture the inherent variability of relevant and irrelevant changes
as well as the user’s targeted relevant changes [1,4]. However,
in practice, labeled data are scarce and their hand-labeling is
time and effort demanding, and even when available they
suffer from domain-shift as their labeling may not reflect the
user’s subjectivity and intention. Several solutions seek to
make machine learning methods frugal and less labeled-data
hungry [23, 34] including few shot [21] and self-supervised
learning [35]; however, these methods are agnostic to the
users’ intention. Hence, solutions based on active learning
[22, 24, 25, 27–29, 31–33] are rather more appropriate and
consist in frugally probing the user (a.k.a. oracle) about the
relevance of observed changes, and according to the oracle’s
responses, train decision criteria that best suit the user’s in-
tention and scene acquisition conditions.

In this paper, we devise a new satellite image change
detection algorithm based on frugal training of deep neu-
ral networks. Starting from a large unlabeled dataset, the
proposed model is interactive and consists in querying the
oracle about the labels of critical data whose positive im-
pact on the trained deep networks is the most important.
These critical data (also dubbed as virtual exemplars) are
obtained by deep-net inversion using an adversarial loss that
allows synthesizing representative and diverse exemplars
whose classification scores are also ambiguous. These vir-
tual exemplars are learned – instead of being sampled from
a fixed pool of unlabeled data – in order to challenge (the
most) the previously trained change detection criteria leading
to a better re-estimation of these criteria at the subsequent
iterations of change detection. Note that the formulation pre-
sented in this paper, while being adversarial, is conceptually
different from the ones widely used in generative adversar-
ial networks (GANs) [37]; indeed, whereas GANs seek to
generate fake exemplars that mislead the trained discrimi-
nators, our formulation aims instead at generating critical
exemplars — for further annotations — whose impact on
the subsequent learned deep network classifiers is the most
noticeable. Differently put, the proposed framework allows



to sparingly probe the oracle only on the most representative,
diverse and uncertain exemplars that challenge the current
deep network discriminator, and eventually lead to more ac-
curate ones in the following iterations of change detection.
Extensive change detection experiments corroborate these
claims and show the effectiveness of our deep-net inversion
and exemplar learning models against comparative methods.

2. PROPOSED METHOD

Let Ir = {p1, . . . , pn}, It = {q1, . . . , qn} denote two reg-
istered satellite images captured at two instants t0, t1, with
pi, qi ∈ Rd. Considering I = {x1, . . . ,xn}, with each
xi = (pi, qi), and Y = {y1, . . . ,yn} the underlying un-
known labels; our goal is to train a classifier f — as a deep
convolutional network — that predicts the unknown labels in
{yi}i with yi = 1 if the patch qi corresponds to a “change”
w.r.t. the underlying patch pi, and yi = 0 otherwise. Train-
ing f requires data hand-labeled by an oracle. Our goal is to
make the design of f label-frugal and as accurate as possible.

2.1. Interactive change detection at a glance

In order to design our change detection algorithm, we con-
sider a question & answer interactive process which first pro-
vides the oracle with very few critical patch pairs for label-
ing, and then updates change detection criteria accordingly.
In what follows, the subset of critical data, at any iteration t,
is referred to as display, and denoted as Dt ⊂ I, and Yt its
unknown labels. Starting from a random display D0, we train
change detection criteria f0, . . . , fT−1 iteratively according
to the subsequent steps
1/ Obtain Yt from the oracle, and train ft(.) on ∪tk=0(Dk,Yk)
using graph convolution networks (GCNs) [30].
2/ Find the next displayDt+1 ⊂ I\∪tk=0Dk. It is clear that a
strategy that considers all possible displaysD ⊂ I\∪tk=0Dk,
trains the underlying criteria ft+1(.) onD∪tk=0Dk, and keeps
the display with the highest performances is highly combina-
torial. Furthermore, it requires labeling each of these displays
and this is clearly intractable. In this paper, we rely on active
learning display selection strategies, which are rather more
appropriate; nevertheless, one should be cautious about these
strategies as many of them are shown to be equivalent to (or
even worse than) basic strategies that pick data uniformly ran-
domly (see for instance [24] and references within).
As the main contribution of this work, our proposed display
selection strategy is different from common ones (see e.g.
[36]) and relies on hallucinating virtual exemplars instead of
taking them from existing pools of data. This design allows
exploring more flexibly the uncharted parts of unlabeled data.
These exemplars are selected as the most diverse, representa-
tive and uncertain data so they challenge the most the current
change detection criteria, leading to better re-estimate of these
criteria in the subsequent iterations of active learning.

2.2. Virtual exemplars: column-stochastic model

As obtaining labels is usually highly expensive, we train a
deep network ft+1(.) on Dt+1 ∪ · · · ∪ D0 where Dt+1 is
a subset of critical virtual exemplars (denoted as {Dk}Kk=1)
whose labeling is frugally obtained from the oracle. In con-
trast to our previous work [26], we consider a variant which
defines for each virtual exemplar Dk a distribution {µik}ni=1
that measures the conditional probability of associating Dk

to the n-training samples. With this variant, the virtual exem-
plars together with their distributions {µik}i,k are obtained
by minimizing the following surrogate problem

min
D;µ∈Ωc

tr
(
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)
+ α
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]>
log
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]
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(
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)
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here Ωc = {µ : µ ≥ 0;µ>1n = 1K} guarantees the
column-stochasticity of the memberships {µik}i instead of
row-stochasticity in [26], and 1K , 1n denote two vectors of
K and n ones respectively. In Eq. 1 the symbol > stands
for the matrix transpose operator, D ∈ Rd×K is a matrix
whose k-th column represents the k-th learned virtual ex-
emplar, µ ∈ Rn×K is a learned matrix whose k-th column
corresponds to the conditional probability of assigning Dk

to each of the n input data, and log is applied entrywise.
In Eq. 1, d(D, I) ∈ RK×n is the matrix of the euclidean
distances between input data in I and the virtual exemplars
in D whereas f(D) ∈ R2×K is the softmax output of the
learned network f . The first term in Eq. 1 measures how
representative are {Dk}k w.r.t. the unlabeled samples in
I. This term, as defined, has a major advantage compared
to [26]; indeed, due to column-stochasticity of µ, the first
term in Eq. 1 reaches (more easily) smaller values than its
counterpart in [26] (whose µ is row-stochastic), and this al-
lows producing virtual exemplars closer to the input data and
thereby inheriting more accurate labels when the oracle an-
notates their closest input data. The second term in Eq. 1 also
captures diversity, not in the virtual exemplars themselves (as
in [26]), but instead in how training data polarize (or attract)
the virtual exemplars; this term reaches its minimum when all
the training samples evenly attract the virtual data. The third
and fourth terms are similar to [26]. The former measures the
ambiguity (or uncertainty) in D as the entropy of the scoring
function (it reaches its smallest value when virtual exemplars
in D are evenly scored w.r.t different classes) while the latter
acts as a regularizer which favors uniform conditional prob-
ability distribution {µik}i. Finally, all these terms are mixed
using the coefficients α, β, γ ≥ 0.

2.3. Optimization

In order to optimize Eq. 1, we consider, for each change de-
tection cycle t, an EM-like procedure that first fixes the dis-
play D and solves the optimization problem w.r.t. µ as shown
in the following proposition.



Proposition 1 The optimality conditions of Eq. (1) lead to

µ(τ+1) := µ̂(τ+1) diag
(
1>n µ̂

(τ+1))−1
, (2)

being µ̂(τ+1)

exp

{
− 1

γ
[d(I,D(τ)) + α

K
(1n + log 1

K
µ(τ)1K)1>K ]

}
, (3)

here diag(.) maps a vector to a diagonal matrix.

Due to space limitation, details of the proof are omitted and
result from the optimality conditions of Eq. 1’s gradients.
Once µ optimized (and fixed) the problem is solved w.r.t. D
using stochastic gradient descent. A loss L(D) is composed
of the first and the third term of Eq. 1, then its gradient (w.r.t.
D) is back-propagated through the GCN layers till the input
(virtual data) of the learned GCNs using the chain rule. Note
that µ(0) and D(0) are initially set to random values and,
in practice, the procedure converges to an optimal solution
(denoted as µ̃, D̃) in few iterations. This solution defines the
most relevant virtual exemplars of Dt+1 (according to crite-
ria in Eq. 1) which are used to train the subsequent classifier
ft+1.

3. EXPERIMENTS

Change detection experiments are conducted on the Jefferson
dataset. The latter includes 2, 200 non-overlapping aligned
patch pairs (of 30 × 30 RGB pixels each) taken from bi-
temporal GeoEye-1 satellite images of 2, 400× 1, 652 pixels
with a spatial resolution of 1.65m/pixel. These images have
been taken from the area of Jefferson (Alabama) in 2010 and
2011 and correspond to many changes (building destruction,
etc.) due to tornadoes as well as no-changes (including ir-
relevant ones as clouds, occlusions, etc). The ground-truth
associated to this dataset includes 2,161 negative pairs (no
changes and irrelevant ones) and only 39 positive pairs (rel-
evant changes), so more than 98% of these data correspond
to irrelevant changes, and this makes localizing changes very
challenging. In all our experiments, we split the whole dataset
evenly; (i) for training (our display and learning models) and
(ii) for testing performances. As the two classes (changes/no-
changes) are highly imbalanced, we measure performances
using the equal error rate (EER) for different sampling per-
centages. At each iteration t, the sampling percentage corre-
sponds to (

∑t−1
k=0 |Dk|/(|I|/2))× 100 with |I| = 2, 200 and

|Dk| set to 16. Smaller EER implies better performances.

Performances & comparison. We compare our proposed
method against other related sampling strategies including
fixed-pool (random search, maxmin, uncertainty ...) [36]
as well as learned-pool methods [26]. Random consists in
selecting samples from the pool of unlabeled data while
uncertainty consists in collecting, from the same pool, the
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Fig. 1. Comparison of different sampling strategies w.r.t. different itera-
tions and the underlying sampling rates in figure 2. Here Uncer and Rand
stand for uncertainty and random sampling respectively. Note that fully-
supervised learning achieves an EER of 0.94%. Related works (fixed and
learned pools) stand respectively for the methods in [36] and [26].

display whose classifier scores are the most ambiguous (i.e.,
similar across different classes). Maxmin greedily samples
data in Dt+1; each sample in xi ∈ Dt+1 ⊂ I\ ∪tk=0 Dk is
taken by maximizing its minimum distance w.r.t. ∪tk=0Dk,
leading to the most different samples in Dt+1. We further
compare our display model against [36] which consists in
assigning marginal membership probabilities (instead of con-
ditional ones) to the whole unlabeled set and selecting the
display with the highest membership values. We also show
the performance of virtual exemplar learning model in [26]
which relies on support vector machines (SVMs) and row-
stochastic formulation as already discussed in section 2.2.
Finally, we show a lower bound on EER performances using
a fully supervised setting which builds a unique classifier on
top of the full training set whose annotation is taken from the
ground-truth. The EER performances of all these settings are
shown in Figure 1 through different iterations and sampling
rates, as well as the aforementioned display selection strate-
gies. From the EERs, most of the comparative methods are
powerless to spot the change class sufficiently well; indeed,
random and maxmim capture diversity during early change
detection iterations but they are less effective later, and uncer-
tainty lacks diversity. The comparative fixed-pool work [36]
(which mixes diversity, representativity and uncertainty on a
fixed pool) captures diversity and refines better change de-
tections, however, it suffers from the rigidity of the sampled
data (especially at the early iterations), while the comparative
learned-pool method [26] (which mixes the same terms, and
learns pools of data with SVMs and row-stochastic mem-
berships) is more flexible, but it is less effective than our
proposed deep-net inversion method particularly at highly
frugal regimes.
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Fig. 2. This figure shows sample rates for each iteration of active learning.

4. CONCLUSION

We introduce in this paper a satellite image change detec-
tion algorithm based on active learning. The particularity of
our contribution resides in a new adversarial learning model
based on deep neural network (DNN) inversion. The latter
allows to flexibly train small sets of critical data (dubbed as
virtual exemplar) whose labels are frugally obtained from the
oracle. These virtual exemplars correspond to the most di-
verse, representative and uncertain data that challenge (the
most) the current DNNs leading to better re-estimate of these
DNNs at the subsequent iterations of active learning. Exten-
sive experiments show the out-performance of our virtual ex-
emplar learning model against different baselines, including
fixed and learned pools, as well as the related work.
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