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MRMP: Multi-Rate Magnitude Pruning of Graph Convolutional Networks

Hichem Sahbi 1

Abstract

In this paper, we devise a novel lightweight Graph
Convolutional Network (GCN) design dubbed
as Multi-Rate Magnitude Pruning (MRMP) that
jointly trains network topology and weights. Our
method is variational and proceeds by aligning
the weight distribution of the learned networks
with an a priori distribution. In the one hand, this
allows implementing any fixed pruning rate, and
also enhancing the generalization performances
of the designed lightweight GCNs. In the other
hand, MRMP achieves a joint training of mul-
tiple GCNs, on top of shared weights, in order
to extrapolate accurate networks at any targeted
pruning rate without retraining their weights. Ex-
tensive experiments conducted on the challenging
task of skeleton-based recognition show a sub-
stantial gain of our lightweight GCNs particularly
at very high pruning regimes.

1. Introduction
With the resurgence of deep neural networks (Krizhevsky
et al., 2017), many computer vision tasks have been success-
fully revisited during the last decade (He et al., 2016; 2017;
Jian et al., 2020; Ronneberger et al., 2015; Jiu & Sahbi,
2017; 2019). These tasks have been approached with in-
creasingly accurate but oversized networks, and this makes
their deployment on cheap devices highly challenging. Par-
ticularly, in hand-gesture recognition and human computer
interaction, edge devices are endowed with limited compu-
tational resources. Therefore, fast and lightweight models
with high recognition performances are vital for skeleton-
based recognition. Recent learning models applying deep
networks have shown saturated recognition accuracy with-
out substantial improvement, while computational efficiency
still remains a serious issue. Among these learning mod-
els, graph convolutional networks (GCNs) are known to
be effective particularly on non-euclidean domains such as
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skeleton data (Zhu et al., 2016b; Zhang et al., 2020). At
least two categories of GCNs are known in the literature;
spatial and spectral. Spectral methods first project graph
signals from the input to the Fourier domain prior to achieve
convolution, and then back-project the convolved signals in
the input domain (Kipf & Welling, 2016; Levie et al., 2018;
Li et al., 2018b; Defferrard et al., 2016; Bruna et al., 2013;
Henaff et al., 2015; Chung, 1997; Sahbi, 2021c; Mazari
& Sahbi, 2019b). Spatial methods proceed differently by
aggregating node signals using multi-head attention (MHA)
prior to apply convolutions on the resulting node aggre-
gates (Gori et al., 2005; Micheli, 2009; Wu et al., 2020;
Hamilton et al., 2017; Knyazev et al., 2019; Sahbi et al.,
2011; Sahbi, 2021b;a). Spatial GCNs are deemed more
effective compared to spectral ones, however, their main
downside resides in their high computational complexity.
Hence, a major challenge is how to make these networks
lightweight while maintaining their high accuracy (Huang
et al., 2018a; Sandler et al., 2018; Howard et al., 2017; Tan &
Le, 2019; Cai et al., 2019; He et al., 2018a;b; Sahbi, 2021d;
2023).
Many existing works tackle the issue of lightweight net-
work design including tensor decomposition (Howard et al.,
2019), quantization (Han et al., 2015a), distillation (Hin-
ton et al., 2015; Mirzadeh et al., 2020; Zhang et al., 2018;
Ahn et al., 2019; Sahbi et al., 2006) and pruning (LeCun
et al., 1989; Hassibi & Stork, 1992; Han et al., 2015b; Sahbi,
2022). In particular, pruning methods are highly effective.
Their principle consists in removing connections whose
impact on the classification performances is the least no-
ticeable. Two major classes of pruning techniques exist in
the literature; structured (Li et al., 2016; Liu et al., 2017d)
and unstructured (Han et al., 2015b;a). The former consists
in zeroing-out weights of entire filters or channels whilst
the latter seeks to remove weights independently. Whereas
structured methods produce computationally more efficient
networks, they are less accurate compared to unstructured
techniques; indeed, the latter provide more flexible (and
thereby more accurate) networks which are computationally
still efficient. Magnitude pruning (MP) (Han et al., 2015a) is
one of the mainstream unstructured methods that proceeds
by removing the smallest weight connections prior to retrain
the resulting pruned (lightweight) network. While being
able to reach any targeted pruning rate exactly, MP is clearly
suboptimal as its design decouples the training of network
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topology from weights. Therefore, any removed connection
cannot be recovered when retraining the pruned networks,
and this usually leads to suboptimal performances. Besides,
the full retraining of the pruned networks (at multiple prun-
ing rates) makes MP highly intractable.
In this paper, we investigate a novel alternative for magni-
tude pruning referred to as MRMP (Multi-Rate Magnitude
Pruning) that allows (i) coupling the training of network
topology and weights, (ii) learning simultaneously multiple
network instances for different pruning rates, and (iii) ex-
trapolating accurate networks at any unseen pruning rate
without retraining. The proposed method constrains the
distribution of the learned weights to match a priori targeted
distributions and this allows, via a band-stop mechanism, to
dropout all the connections up to a given targeted pruning
rate. The advantage of the proposed contribution is twofold;
in the one hand, it constrains the learned weights to fit a
targeted distribution and this leads to better generalization.
In the other hand, it allows obtaining fully trained networks
at any unseen pruning rate instantaneously without weight
retraining.
Considering all the aforementioned issues, the main contri-
butions of our paper include

• A band-stop weight parametrization that achieves a
joint training of GCN topology and weights (see sec-
tion 4.1). This parametrization relies on shared latent
weights that reduce the number of training parameters
of the pruned GCNs.

• A KLD (Kullback Leibler Divergence) based regular-
izer that constrains the latent weights to fit an a priori
distribution, and this allows implementing any targeted
pruning rate almost exactly (see section 4.2).

• A multiple magnitude pruning that obtains optimal
GCNs at any targeted pruning rate thanks to the band-
stop parametrization and the KLD regularizer. The
latter defines a continuum of weight aggregates asso-
ciated to GCNs with increasing pruning rates. These
weight aggregates allow generalizing across unseen
pruning rates without retraining (see section 4.3).

• Extensive experiments conducted on the challenging
task of skeleton-based recognition corroborate all these
findings and show the outperformance of our method
against the related work (see section 5).

2. Related work
We review and discuss subsequently the related work in
variational pruning and skeleton-based recognition, and the
limitations that motivate our contributions.
Variational Pruning. The general recipe of variational
pruning consists in learning both weights and binary masks

that capture topology of pruned networks. This is achieved
by minimizing a loss that combines (via a mixing hyperpa-
rameter) a classification error and a regularizer which con-
trols the sparsity of the resulting masks (Liu et al., 2017d;
Wen et al., 2016; Louizos et al., 2017). However, these meth-
ods are powerless to implement any given targeted pruning
rate (cost) without overtrying multiple settings of the mix-
ing hyperparameters. Alternative methods explicitly model
the cost, using `0-based criteria (Louizos et al., 2017; Pan
et al., 2016), in order to minimize the discrepancy between
the observed cost and the targeted one. Nonetheless, the
underlying optimization problems are highly combinatorial
and existing solutions usually rely on sampling heuristics
or relaxation, such as `1/`2-based, entropy, etc. (Gordon
et al., 2018; Carreira-Perpinán & Idelbayev, 2018; Koneru
& Vasudevan, 2019; Wiedemann et al., 2019); the latter
promote sparsity, but are powerless to implement any given
target cost exactly, and also result into overpruning effects
leading to disconnected subnetworks, with weak generaliza-
tion, especially at very high pruning regimes. Besides, most
of the existing solutions, including magnitude pruning (Han
et al., 2015a), decouple the training of network topology
(masks) from weights, and this makes the learning of pruned
networks clearly suboptimal.
Skeleton-based Recognition. With the emergence of sen-
sors, including Intel RealSense (Keselman et al., 2017) and
Microsoft Kinect (Zhang et al., 2017a), interest in skeleton-
based recognition is increasingly growing (Cao et al., 2017).
Hand-gesture and action recognition are two neighboring
tasks which have initially been tackled using RGB (Liu &
Yuan, 2018; Hu et al., 2015; Wang & Sahbi, 2013; Yuan
et al., 2012; Wang & Sahbi, 2014), depth (Ohn-Bar &
Trivedi, 2014; Wang et al., 2015), shape/normals (Oreifej &
Liu, 2013; Rahmani & Mian, 2016; Yun et al., 2012; Ji et al.,
2014; Li et al., 2015; Zanfir et al., 2013; Sahbi, 2007; Sahbi
& Fleuret, 2004) and also skeleton-based techniques (Wang
et al., 2018). In particular, early skeleton-based methods are
based on modeling human motions using handcrafted fea-
tures (Xia et al., 2012; Yang & Tian, 2014), dynamic time
warping (Vemulapalli et al., 2014), temporal information
(Zhang et al., 2016; Garcia-Hernando & Kim, 2017) as well
as temporal pyramids (Zhu et al., 2016a; Q. De Smedt &
Vandeborre, 2016). With the resurgence of deep learning, all
these methods have been quickly overtaken by 2D/3D Con-
volutional Neural Networks (CNNs) (Feichtenhofer et al.,
2016; Nunez et al., 2018a; Mazari & Sahbi, 2019a) that
capture global skeleton posture together with local joint
motion (Hou et al., 2018; Liu et al., 2020), by Recurrent
Neural Networks (RNNs) which capture motion dynamics
(Zhu et al., 2016b; Chen et al., 2017; Ke et al., 2017; Liu
et al., 2017c; Liu & Yuan, 2018; Wang et al., 2016; Du et al.,
2015; Wang & Wang, 2017; Liu et al., 2017b; Nunez et al.,
2018b; Shahroudy et al., 2016; Zhang et al., 2017b; Lee
et al., 2017; Liu et al., 2016; Maghoumi & LaViola, 2019;
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Zhang et al., 2017a; Liu et al., 2017a), and manifold learn-
ing (Huang & Van Gool, 2017; Huang et al., 2018b; Nguyen
et al., 2019; Liu et al., 2021; Kacem et al., 2018) as well
as attention-based networks (Weng et al., 2018; Hou et al.,
2018; Chen et al., 2019; Song et al., 2017). With the recent
emergence of GCNs, the latter have been increasingly used
in skeleton-based recognition (Huang & Van Gool, 2017;
Huang et al., 2017; Li et al., 2018a; Yan et al., 2018; Wen
et al., 2019; Shi et al., 2018; Nguyen et al., 2019; Li et al.,
2019; 2020). These models explicitly capture, with a better
interpretability, spatial and temporal attention among skele-
ton joints (Li et al., 2018b). However, on tasks involving
large input graphs (such skeleton-based recognition), GCNs
become computationally inefficient and require lightweight
design techniques.

3. Graph convnets at a glance
Let S = {Gi = (Vi, Ei)}i denote a collection of graphs
with Vi, Ei being respectively the nodes and the edges of
Gi. Each graph Gi (denoted for short as G = (V, E)) is en-
dowed with a signal {φ(u) ∈ Rs : u ∈ V} and associated
with an adjacency matrix A. GCNs aim at learning a set of
C filters F that define convolution on n nodes of G (with
n = |V|) as (G ? F)V = f

(
A U> W

)
, here > stands for

transpose, U ∈ Rs×n is the graph signal, W ∈ Rs×C is
the matrix of convolutional parameters corresponding to the
C filters and f(.) is a nonlinear activation applied entry-
wise. In (G ? F)V , the input signal U is projected using A
and this provides for each node u, the aggregate set of its
neighbors. Entries of A could be handcrafted or learned
so (G ? F)V corresponds to a convolutional block with two
layers; the first one aggregates signals inN (V) (sets of node
neighbors) by multiplying U with A while the second layer
achieves convolution by multiplying the resulting aggregates
with the C filters in W. Learning multiple adjacency (also
referred to as attention) matrices (denoted as {Ak}Kk=1) al-
lows us to capture different contexts and graph topologies
when achieving aggregation and convolution. With multiple
matrices {Ak}k (and associated convolutional filter parame-
ters {Wk}k), (G?F)V is updated as f

(∑K
k=1 A

kU>Wk
)
.

Stacking aggregation and convolutional layers, with multi-
ple matrices {Ak}k, makes GCNs accurate but heavy. We
propose, in what follows, a method that makes our networks
lightweight and still effective.

4. Our Lightweight GCN Design
In the remainder of this paper, we formally subsume a given
GCN as a multi-layered neural network gθ whose weights
are defined as θ =

{
W1, . . . ,WL

}
, with L being its depth,

W` ∈ Rd`−1×d` its `th layer weight tensor, and d` the di-
mension of `. The output of a given layer ` is defined as
φ` = f`(W

`> φ`−1), ` ∈ {2, . . . , L}, being f` an activa-

tion function; without a loss of generality, we omit the bias
in the definition of φ`.
Pruning consists in zeroing-out a subset of weights in θ by
multiplying W` with a binary mask M` ∈ {0, 1}d`−1×d` .
The binary entries of M` are set depending on whether
the underlying layer connections are kept or removed, so
φ` = f`((M

`�W`)> φ`−1), here� stands for the element-
wise matrix product. In this definition, entries of the tensor
{M`}` are set depending on the prominence of the underly-
ing connections in gθ. However, such pruning suffers from
several drawbacks. In the one hand, optimizing the discrete
set of variables {M`}` is known to be highly combinatorial
and intractable especially on large networks. In the other
hand, the total number of parameters {M`}`, {W`}` is
twice the number of connections in gθ and this increases
training complexity and may also lead to overfitting.

4.1. Band-stop Weight Parametrization

In order to circumvent the above issues, we consider an
alternative parametrization, related to magnitude pruning,
that allows finding both the topology of the pruned networks
together with their weights, without doubling the size of the
training parameters, while making learning still effective.
This parametrization corresponds to the Hadamard product
involving a weight tensor and a function applied entry-wise
to the same tensor as

W` = Ŵ` � ψ(Ŵ`), (1)

here Ŵ` is a latent tensor and ψ(Ŵ`) is a continuous relax-
ation of M` which enforces the prior that smallest weights
should be removed from the network. In order to achieve
this goal, ψ must be (i) bounded in [0, 1], (ii) differentiable,
(iii) symmetric, and (iv) ψ(ω) 1 when |ω| is sufficiently
large and ψ(ω)  0 otherwise. The first and the fourth
properties ensure that the parametrization is neither acting
as a scaling factor greater than one nor changing the sign
of the latent weight, and also acts as the identity for suffi-
ciently large weights, and as a contraction factor for small
ones. The second property is necessary to ensure that ψ has
computable gradient while the third condition guarantees
that only the magnitudes of the latent weights matter. A
choice, used in practice, that satisfies these four conditions
is ψa,σ(ŵ) = (1 + σ exp(a2− ŵ2))−1 with σ being a scal-
ing factor and “a” threshold. As shown in Fig. 1, σ controls
the smoothness of ψa,σ around the support Ω ⊆ R of the
latent weights. This allows implementing an annealed (soft)
thresholding function that cuts-off all the connections in
smooth and differentiable manner as training of the latent
parameters evolves. Put differently, the asymptotic behavior
of ψa,σ — that allows selecting the topology of the pruned
subnetworks — is obtained as training reaches the latest
epochs.
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Figure 1. This illustration shows a Band-stop function ψa,σ and its application to a given (gaussian) weight distribution. Depending on
the setting of a, only large magnitude weights are kept and correspond to the fixed pruning rate. (Better to zoom the file).

4.2. SRMP: Single-Rate Magnitude Pruning

The aforementioned parameterization — while being
effective (see later experiments) — it does not allow
to implement any targeted pruning rate as the dynamic
of learned latent weights {Ŵ`}` is not known a priori.
Hence, pruning rates could only be observed a posteriori or
implemented, for instance, after training using a two stage
process (such as magnitude pruning + retraining). In order
to implement any a priori targeted pruning rate as a part of
a single training process, we constrain the distribution of
latent weights to fit an arbitrary probability distribution,
so one may fix a in ψa,σ and thereby achieve the targeted
pruning rate. Let Ŵ ∈ Ω denote a random variable
standing for the latent weights in the pruned network gθ;
Ŵ is assumed drawn from any arbitrary distribution P
(uniform, gaussian, laplace, etc). Fixing appropriately the
distribution P not only allows implementing any targeted
pruning rate, but has also a regularization effect which
controls the dynamic of the learned weights and thereby the
generalization properties of gθ as shown subsequently and
later in experiments.

Fitting a targeted distribution. Considering Q as the ob-
served distribution of the latent weights {Ŵ`}`, and P the
targeted one, our goal is to reduce the discrepancy between
P and Q using a Kullback-Leibler Divergence (KLD) loss

DKL(P ||Q) =

∫
Ω

P (Ŵ )(logP (Ŵ )− logQ(Ŵ )) dŴ . (2)

Note that the analytic form of the above equation is known
on the widely used probability density functions (PDFs),
whilst for general (arbitrary) probability distributions, the ex-
act form is not always known and requires sampling. Hence,
we consider instead a discrete variant of this loss as well as
P and Q; examples of targeted distributions P are given in
Fig. 2 while the observed (and also differentiable) one Q
is based on a relaxed variant of histogram estimation. Let
{q1, . . . , qK} denote a K-bin quantization of Ω (in practice
K = 100), the k-th entry of Q is defined as

Q(Ŵ = qk) ∝
L−1∑
`=1

n∑̀
i=1

n`+1∑
j=1

exp

{
− (Ŵ`

i,j − qk)2/β2
k

}
, (3)

here βk is a scaling factor that controls the smoothness of
the exponential function; larger values of βk result into
oversmoothed histogram estimation while a sufficiently (not
very) small βk leads to a surrogate histogram estimation
close to the actual discrete distribution of Q. In practice, βk
is set to (qk+1 − qk)/2; with this setting, one may replace
∝ (in Eq. 3) with an equality as the partition function of Q
— i.e.,

∑K
k=1Q(Ŵ = qk) — reaches almost one in practice.

Budget-aware pruning. Let FŴ (a) = P (Ŵ ≤ a) be the
cumulative distribution function (CDF) of P (Ŵ ). For any
given pruning rate r, one may find the threshold a of the
parametrization ψa,σ as

a(r) = F−1

Ŵ
(r). (4)

The above function, known as the quantile, defines the prun-
ing threshold a on the targeted distribution P (and equiv-
alently on the observed one Q thanks to the KLD loss)
which guarantees that only a fraction (1 − r) of the total
weights are kept (i.e, nonzero) when applying the band-stop
parametrization in Eq. 1. Note that the quantile at any given
pruning rate r, can either be empirically evaluated on dis-
crete random variables or can be analytically derived on the
widely used PDFs (see table. 1).

Distributions PDF P (Ŵ ) Quantile a(r) = F−1
Ŵ

(r)

Uniform 1
T

r
T

Gaussian 1
σ
√
2π

exp
{
− 1

2

(
Ŵ−µ
σ

)2}
µ+ σ

√
2erf−1(2r − 1)

Laplace 1
2b exp

{
− |Ŵ−b|b

}  µ+ b log(2r) if r ≤ 1
2

µ− b log(2− 2r) otherwise

Table 1. Different standard PDFs and the underlying quantile func-
tions.

Considering the above budget implementation, pruning is
achieved using a global loss as a combination of a cross-
entropy term Le, and the KLD loss DKL (which controls
weight distribution and hence guarantees the targeted prun-
ing rate/budget depending on the setting of a in ψa,σ as
shown in Eq. 4) resulting into

min
{Ŵ`}`

Le
(
{Ŵ` � ψ(Ŵ`)}`

)
+ λ DKL(P ||Q), (5)
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Figure 2. The first 3 figures correspond to targeted (uniform, gaussian and laplace) distributions. The 4th figure shows the actual weight
distribution of the heavy/unpruned GCN which resembles to gaussian/laplacian. This may explain the good performances when the
gaussian target is used particularly at low/mid pruning rates where the unpruned and pruned networks are more similar. At high pruning
rates, laplace is better (see table 4).

here λ is sufficiently large (overestimated to λ = 10 in prac-
tice), so Eq. 5 focuses on implementing the budget and also
constraining the pruning rate to reach r. As training evolves,
DKL reaches its minimum and stabilizes while the gradient
of the global loss becomes dominated by the gradient of Le,
and this maximizes further the classification performances.
Note that the impact of DKL(P ||Q) in Eq. 5 has some
similarities and differences w.r.t. the usual regularizers par-
ticularly `0, `1 and `2. Whilst these three regularizers favor
respectively uniform, laplace and gaussian distributions in
Q, there is no guarantee that Q will exactly match an a
priori distribution, so implementing any targeted pruning
rate will require adding explicit (and difficult to solve) bud-
get criteria or overtrying different mixing hyperparameteres
on these regularizers. In contrast, as Q is constrained in
DKL(P ||Q), the Band-pass mechanism in Eq. 1 makes
reaching any targeted pruning rate easily feasible. Note
also that this Band-pass mechanism allows implementing
a partial weight ranking — through the K-bins of the dis-
tribution Q — in a differentiable manner. In other words,
as training evolves, this approach jointly trains network
topology ψa,σ(Ŵ`) and weights Ŵ` by (i) changing the
bin assignment of Ŵ` in Q, and by (ii) activating and de-
activating these weights through ψa,σ while maximizing
generalization and satisfying exactly the targeted budget.

4.3. MRMP: Multi-Rate Magnitude Pruning

The aforementioned formulation is already effective (see
later experiments), however, it requires rerunning a com-
plete optimization, for any update of the pruning rate which
is time and memory demanding. In what follows, we intro-
duce a framework that allows training GCN instances with
shared latent weights which achieve optimal performances
at multiple pruning rates without retraining.
The guiding principle of our method relies on sharing the
latent weights {Ŵ`}` through multiple GCN instances de-
fined by the hyperparameter {a(r)}r in ψa,σ. This makes
it possible to reduce not only training time (as a unique
training session is necessary for all the pruning rates) but
also the memory footprint as the number of latent weights

remains unchanged. Furthermore, training multiple GCN
instances on top of shared latent parameters makes each
instance as a proxy task to the other GCN learning tasks,
and this turns out to improve generalization as shown in
experiments. Last but not least, this also allows obtaining
optimal pruned networks (at unseen pruning rates) instanta-
neously without retraining. In order to achieve these goals,
we propose an updated loss as

min
{Ŵ`}`

∑
r

Le
(
{Ŵ` � ψa(r),σ(Ŵ

`)}`
)
+ λ DKL(P ||Q),

(6)
here the right-hand side term remains unchanged and it
again seeks to constrain the latent weights to fit a targeted
distribution. In contrast, the left-hand side (cross entropy)
term, is evaluated through multiple pruning rates using the
shared latent weights; hence only ψa(r),σ intervenes in order
to prune connections according to the targeted rates. Once
the optimization achieved, GCN instances may be obtained
at any fixed pruning rates (including unseen ones) by mul-
tiplying each weight tensor with the binary mask tensor as
{Ŵ`�ψa,σ(Ŵ`)}` here a is again obtained using Eq. 4 and
thanks to the KLD criterion in Eq.6. It’s worth noticing that
the computational complexity of the above formulation is
highly efficient (compared to running multiple independent
instances of pruning); indeed, the gradient of the KLD term
is exactly the same while all the gradients of the left-hand
side terms (w.r.t. the GCN output) have similar analytic
forms and their evaluation for different r (either during
forward and backward steps of backpropagation) could be
batched and efficiently vectorized. In practice, we observe
a slight overhead of MRMP against SRMP (Single Rate
Magnitude Pruning), in forward and backward steps, even
when one hundred pruning rates (r) are jointly considered
for MRMP.

5. Experiments
In this section, we evaluate the performance of our
baseline and pruned GCNs on the task of skeleton-based
recognition using two challenging skeleton datasets; SBU
Interaction (Yun et al., 2012) and First-Person Hand Action
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Figure 3. This figure shows original skeletons (left) on the SBU and (middle) the FPHA datasets. (Right) this figure shows the whole
keypoint tracking and description process.

(FPHA) (Garcia-Hernando et al., 2018). The goal is to
study the performance of our lightweight GCN design and
its comparison against staple pruning techniques as well as
the related work.

Dataset description. SBU is an interaction dataset acquired
(under relatively well controlled conditions) using the
Microsoft Kinect sensor; it includes in total 282 moving
skeleton sequences (performed by two interacting individu-
als) belonging to 8 categories: “approaching”, “departing”,
“pushing”, “kicking”, “punching”, “exchanging objects”,
“hugging”, and “hand shaking”. Each pair of interacting
individuals corresponds to two 15 joint skeletons and each
joint is encoded with a sequence of its 3D coordinates
across video frames. In this dataset, we consider the same
evaluation protocol as the one suggested in the original
dataset release (Yun et al., 2012) (i.e., train-test split).
The FPHA dataset includes 1175 skeletons belonging to
45 action categories which are performed by 6 different
individuals in 3 scenarios. In contrast to SBU, action
categories are highly variable with inter and intra subject
variability including style, speed, scale and viewpoint. Each
skeleton includes 21 hand joints and each joint is again
encoded with a sequence of its 3D coordinates across video
frames. We evaluate the performance of our method using
the 1:1 setting proposed in (Garcia-Hernando et al., 2018)
with 600 action sequences for training and 575 for testing.
In all these experiments, we report the average accuracy
over all the classes of actions.

Skeleton normalization. Let St = {pt1, . . . , ptn} denote
the 3D skeleton coordinates at frame t. Without a loss
of generality, we consider a particular order so that pt1,
pt2 and pt3 correspond to three reference joints (e.g., neck,
left shoulder and right shoulder); as shown in Fig. 3,
this corresponds to joints 2, 4 and 7 for SBU and 1, 3
and 5 for FPHA. As the relative distance between these
3 joints is stable w.r.t. any motion, these 3 joints are
used in order to estimate the rigid motion (similarity

transformation) for skeleton normalization; see also
(Meshry et al., 2016). Each graph sequence is processed
in order to normalize its 3D coordinates using a similarity
transformation; the translation parameters t = (tx, ty, tz)
of this transformation correspond to the shift that makes
the reference point (p02 + p03)/2 coincide with the origin
while the rotation parameters (θx, θy, θz) are chosen in
order to make the plane formed by p01, p02 and p03 coplanar
with the x-y plane and the vector p02 − p03 colinear with the
x-axis. Finally, the scaling γ of this similarity is chosen
to make the ‖p02 − p03‖2 constant through all the action
instances. Hence, each normalized joint is transformed
as p̂ti = γ(pti − t)Rx(θx)Ry(θy)Rz(θz) with Rx, Ry,
Rz being rotation matrices along the x, y and z axes
respectively.

Input graphs. Considering a sequence of normalized
skeletons {St}t, each joint sequence {p̂tj}t in these
skeletons defines a labeled trajectory through successive
frames (see Fig. 3-right). Given a finite collection of
trajectories, we consider the input graph G = (V, E) where
each node vj ∈ V corresponds to the labeled trajectory
{p̂tj}t and an edge (vj , vi) ∈ E exists between two nodes
iff the underlying trajectories are spatially neighbors. Each
trajectory (i.e., node in G) is processed using temporal
chunking: first, the total duration of a sequence (video) is
split into M equally-sized temporal chunks (M = 4 in
practice), then the normalized joint coordinates {p̂tj}t of
the trajectory vj are assigned to the M chunks (depending
on their time stamps) prior to concatenate the averages
of these chunks; this produces the description of vj
(again denoted as φ(vj) ∈ Rs with s = 3 × M ) and
{φ(vj)}j constitutes the raw signal of nodes in a given
sequence. Note that two trajectories vj and vi, with similar
joint coordinates but arranged differently in time, will
be considered as very different when using temporal
chunking. Note that temporal chunking produces discrimi-
nant raw descriptions that preserve the temporal structure
of trajectories while being frame-rate and duration agnostic.
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Method Accuracy (%)
Raw Position (Yun et al., 2012) 49.7

Joint feature (Ji et al., 2014) 86.9
CHARM (Li et al., 2015) 86.9
H-RNN (Du et al., 2015) 80.4

ST-LSTM (Liu et al., 2016) 88.6
Co-occurrence-LSTM (Zhu et al., 2016b) 90.4

STA-LSTM (Song et al., 2017) 91.5
ST-LSTM + Trust Gate (Liu et al., 2016) 93.3

VA-LSTM (Zhang et al., 2017a) 97.6
GCA-LSTM (Liu et al., 2017a) 94.9

Riemannian manifold. traj (Kacem et al., 2018) 93.7
DeepGRU (Maghoumi & LaViola, 2019) 95.7

RHCN + ACSC + STUFE (Li et al., 2020) 98.7
Our baseline GCN 98.4

Table 2. Comparison of our baseline GCN against related work on
the SBU database.

Implementation details & baseline GCNs. We trained
the GCN networks end-to-end using the Adam optimizer
(Kingma & Ba, 2014) for 2,700 epochs with a batch size
equal to 200 for SBU and 600 for FPHA, a momentum of
0.9 and a global learning rate (denoted as ν(t)) inversely
proportional to the speed of change of the loss used to train
our networks; when this speed increases (resp. decreases),
ν(t) decreases as ν(t)← ν(t− 1)× 0.99 (resp. increases
as ν(t) ← ν(t − 1)/0.99). All these experiments are run
on a GeForce GTX 1070 GPU device (with 8 GB memory)
and neither dropout nor data augmentation are used. The
architecture of our baseline GCN includes an attention layer
of 1 head on SBU (resp. 16 heads on FPHA) applied to
skeleton graphs whose nodes are encoded with 8-channels
(resp. 32 for FPHA), followed by a convolutional layer of
32 filters for SBU (resp. 128 filters for FPHA), and a dense
fully connected layer and a softmax layer. The initial net-
work for SBU is not very heavy, its number of parameters
does not exceed 15,320, and this makes its pruning challeng-
ing as many connections will be isolated (not contributing
in the evaluation of the network output). In contrast, the
initial network for FPHA is relatively heavy (for a GCN)
and its number of parameters reaches 2 millions. As shown
in tables. 2 and 3, both GCNs are accurate compared to
the related work on the SBU/FPHA benchmarks. Consider-
ing these GCN baselines, our goal is to make them highly
lightweight while making their accuracy as high as possible.

Performances, Comparison & Ablation. Tables 4-5 and
Fig. 4 show a comparison and an ablation study of our
method both on SBU and FPHA datasets. First, from the
results in Fig.4-top, we see the alignment between the tar-
geted pruning rates and the observed ones when using the
formulation in Eq. 5 for different PDFs; the quantile func-
tions of the gaussian and laplace PDFs allow implementing
fine-steps of the targeted pruning rates r particularly when
r is large. In contrast, the quantile functions of the gaussian
and laplace PDFs are coarse around mid r values (55%).

Method Color Depth Pose Accuracy (%)
2-stream-color (Feichtenhofer et al., 2016) 3 7 7 61.56
2-stream-flow (Feichtenhofer et al., 2016) 3 7 7 69.91
2-stream-all (Feichtenhofer et al., 2016) 3 7 7 75.30
HOG2-dep (Ohn-Bar & Trivedi, 2014) 7 3 7 59.83

HOG2-dep+pose (Ohn-Bar & Trivedi, 2014) 7 3 3 66.78
HON4D (Oreifej & Liu, 2013) 7 3 7 70.61

Novel View (Rahmani & Mian, 2016) 7 3 7 69.21
1-layer LSTM (Zhu et al., 2016b) 7 7 3 78.73
2-layer LSTM (Zhu et al., 2016b) 7 7 3 80.14
Moving Pose (Zanfir et al., 2013) 7 7 3 56.34

Lie Group (Vemulapalli et al., 2014) 7 7 3 82.69
HBRNN (Du et al., 2015) 7 7 3 77.40

Gram Matrix (Zhang et al., 2016) 7 7 3 85.39
TF (Garcia-Hernando & Kim, 2017) 7 7 3 80.69

JOULE-color (Hu et al., 2015) 3 7 7 66.78
JOULE-depth (Hu et al., 2015) 7 3 7 60.17
JOULE-pose (Hu et al., 2015) 7 7 3 74.60
JOULE-all (Hu et al., 2015) 3 3 3 78.78

Huang et al. (Huang & Van Gool, 2017) 7 7 3 84.35
Huang et al. (Huang et al., 2018b) 7 7 3 77.57

HAN (Liu et al., 2021) 7 7 3 85.74
Our baseline GCN 7 7 3 86.43

Table 3. Comparison of our baseline GCN against related work on
the FPHA database.

Figure 4. Performances on the SBU dataset: (Top) Fixed and ob-
served pruning rates when different PDFs are used in the KLD
regularizer. (Bottom) Performances for different (seen and unseen)
pruning rates of MRMP; again seen pruning rates (during train-
ing) correspond to 50, 55, 60, 65, 70, 75, 80, 85, 90, 95 and 98%
while unseen ones correspond to all the remaining pruning rates in
[50, 100[. Better to zoom the file.
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Pruning rates Accuracy (%) Observation
0% 98.40 Baseline GCN

70% 93.84 Band-stop Weight Param.

55%

89.23 MP
83.07 SRMP: MP+KLD (Uniform)
93.84 MRMP: MP+KLD (Uniform)+MR
81.53 SRMP: MP+KLD (Gaussian)
90.76 MRMP: MP+KLD (Gaussian)+MR
80.00 SRMP: MP+KLD (Laplace)
89.23 MRMP: MP+KLD (Laplace)+MR

80%

87.69 MP
84.61 SRMP: MP+KLD (Uniform)
89.23 MRMP: MP+KLD (Uniform)+MR
78.46 SRMP: MP+KLD (Gaussian)
89.23 MRMP: MP+KLD (Gaussian)+MR
80.00 SRMP: MP+KLD (Laplace)
90.76 MRMP: MP+KLD (Laplace)+MR

98%

69.23 MP
78.46 SRMP: MP+KLD (Uniform)
86.15 MRMP: MP+KLD (Uniform)+MR
47.69 SRMP: MP+KLD (Gaussian)
86.15 MRMP: MP+KLD (Gaussian)+MR
60.00 SRMP: MP+KLD (Laplace)
80.00 MRMP: MP+KLD (Laplace)+MR

Comparative (regularization-based) pruning

98%

55.38 MP+`0-reg.
73.84 MP+`1-reg.
61.53 MP+Entropy-reg.
75.38 MP+Cost-aware-reg.

Table 4. Detailed performances and ablation study, for different
pruning rates, PDFs used for KLD and also MR; MR stands for
Multi-Rate pruning.

Second, according to tables 4-5, when training is achieved
with only the band-stop weight parametrization (i.e., λ = 0
in Eq. 5), performances are close to the initial heavy GCNs
(particularly on FPHA), with less parameters1 as this pro-
duces a regularization effect similar to (Wan et al., 2013).
Third, we observe a positive impact when the KLD term (in
Eq. 5) is used both with single and multi-rate magnitude
pruning (resp. SRMP and MRMP) with an extra-advantage
of MRMP against SRMP; again MP+KLD in tables 4-5
corresponds to SRMP and MP+KLD+MR refers to MRMP.
Extra comparison of KLD against other regularizers shows
the substantial gain of our method. Indeed, KLD is com-
pared against different alternatives plugged in Eq. 5 instead
of KLD, namely `0 (Louizos et al., 2017), `1 (Koneru &
Vasudevan, 2019), entropy (Wiedemann et al., 2019) and `2-
based cost (Lemaire et al., 2019). From the observed results,
the impact of KLD is substantial for different PDFs and
for equivalent pruning rate (namely 98%). Note that when
alternative regularizers are used, multiple settings (trials) of
the underlying hyperparameter λ (in Eq. 5) are considered
prior to reach the targeted pruning rate, and this makes the
whole training and pruning process overwhelming. While
cost-aware regularization makes training more tractable, its
downside resides in the observed collapse of trained masks;

1Pruning rate does not exceed 70% and no control on this rate
is achievable.

Pruning rates Accuracy (%) Observation
0% 86.43 Baseline GCN

50% 85.56 Band-stop Weight Param.

55%

87.82 MP
87.82 SRMP: MP+KLD (Uniform)
88.92 MRMP: MP+KLD (Uniform)+MR
88.52 SRMP: MP+KLD (Gaussian)
89.58 MRMP: MP+KLD (Gaussian)+MR
87.65 SRMP: MP+KLD (Laplace)
88.48 MRMP: MP+KLD (Laplace)+MR

80%

86.78 MP
85.91 SRMP: MP+KLD (Uniform)
86.43 MRMP: MP+KLD (Uniform)+MR
87.47 SRMP: MP+KLD (Gaussian)
88.93 MRMP: MP+KLD (Gaussian)+MR
86.95 SRMP: MP+KLD (Laplace)
87.89 MRMP: MP+KLD (Laplace)+MR

98%

60.34 MP
70.26 SRMP: MP+KLD (Uniform)
71.18 MRMP: MP+KLD (Uniform)+MR
70.60 SRMP: MP+KLD (Gaussian)
74.73 MRMP: MP+KLD (Gaussian)+MR
70.80 SRMP: MP+KLD (Laplace)
72.97 MRMP: MP+KLD (Laplace)+MR

Comparative (regularization-based) pruning

98%

64.69 MP+`0-reg.
70.78 MP+`1-reg.
67.47 MP+Entropy-reg.
69.91 MP+Cost-aware-reg.

Table 5. Same caption as tab 4 but for FPHA dataset.

this is a well known effect that affects performances at high
pruning rates. Finally, Fig.4-bottom shows the generaliza-
tion performance of MRMP from seen to unseen pruning
rates. In these results, only a few pruning rates are used
for MRMP (namely 50, 55, 60, 65, 70, 75, 80, 85, 90, 95
and 98%) and all the remaining rates in [50, 100[ are used
for instantaneous pruning without retraining. We observe
stable and high performances from seen to unseen pruning
rates and this shows that MRMP is able to extrapolate highly
accurate GCNs (even) on unseen pruning rates.

6. Conclusion
We introduce in this paper a novel lightweight GCN de-
sign based on multi-rate magnitude pruning. The strength
of the proposed method resides in its ability to constrain
the probability distribution of the learned GCNs to match
an a priori distribution, and this allows implementing, via
a band-stop mechanism, any given targeted pruning rate
while also enhancing the generalization performances of the
resulting lightweight GCNs. Besides, our method allows
training multiple network instances simultaneously, on top
of shared latent weights, at different pruning rates and ex-
trapolating GCNs at unseen rates without retraining their
weights. Experiments conducted on the challenging task of
skeleton-based recognition shows a significant gain of our
method. As a future work, we are currently investigating
the extension of the current approach to other networks and
databases.
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Nguyen, X. S., Brun, L., Lézoray, O., and Bougleux, S.
A neural network based on spd manifold learning for
skeleton-based hand gesture recognition. In Proceedings
of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 12036–12045, 2019.

11



MRMP: Multi-Rate Magnitude Pruning of Graph Convolutional Networks for Skeleton-based Recognition

Nunez, J. C., Cabido, R., Pantrigo, J. J., Montemayor, A. S.,
and Velez, J. F. Convolutional neural networks and long
short-term memory for skeleton-based human activity
and hand gesture recognition. Pattern Recognition, 76:
80–94, 2018a.

Nunez, J. C., Cabido, R., Pantrigo, J. J., Montemayor, A. S.,
and Velez, J. F. Convolutional neural networks and long
short-term memory for skeleton-based human activity
and hand gesture recognition. Pattern Recognition, 76:
80–94, 2018b.

Ohn-Bar, E. and Trivedi, M. M. Hand gesture recognition in
real time for automotive interfaces: A multimodal vision-
based approach and evaluations. IEEE transactions on in-
telligent transportation systems, 15(6):2368–2377, 2014.

Oreifej, O. and Liu, Z. Hon4d: Histogram of oriented 4d
normals for activity recognition from depth sequences. In
Proceedings of the IEEE conference on computer vision
and pattern recognition, pp. 716–723, 2013.

Pan, W., Dong, H., and Guo, Y. Dropneuron: Simplifying
the structure of deep neural networks. arXiv preprint
arXiv:1606.07326, 2016.

Q. De Smedt, H. W. and Vandeborre, J.-P. Skeleton-based
dynamic hand gesture recognition. Proc. IEEE Comput.
Soc. Conf. Comput. Vis. Pattern Recognit. Workshops
(CVPRW), Las Vegas, NV, United states, june, pp 1206-
1214, 2016.

Rahmani, H. and Mian, A. 3d action recognition from
novel viewpoints. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pp. 1506–
1515, 2016.

Ronneberger, O., Fischer, P., and Brox, T. U-net: Con-
volutional networks for biomedical image segmentation.
In Medical Image Computing and Computer-Assisted
Intervention–MICCAI 2015: 18th International Confer-
ence, Munich, Germany, October 5-9, 2015, Proceedings,
Part III 18, pp. 234–241. Springer, 2015.

Sahbi, H. Kernel pca for similarity invariant shape recogni-
tion. Neurocomputing, 70(16-18):3034–3045, 2007.

Sahbi, H. Kernel-based graph convolutional networks. In
25th International Conference on Pattern Recognition
(ICPR), pp. 4887–4894. IEEE, 2021a.

Sahbi, H. Learning connectivity with graph convolutional
networks. In 25th International Conference on Pattern
Recognition (ICPR), pp. 9996–10003. IEEE, 2021b.

Sahbi, H. Learning laplacians in chebyshev graph convolu-
tional networks. In Proceedings of the IEEE/CVF Inter-
national Conference on Computer Vision, pp. 2064–2075,
2021c.

Sahbi, H. Lightweight connectivity in graph convolutional
networks for skeleton-based recognition. In IEEE In-
ternational Conference on Image Processing (ICIP), pp.
2329–2333. IEEE, 2021d.

Sahbi, H. Topologically-consistent magnitude pruning for
very lightweight graph convolutional networks. In IEEE
International Conference on Image Processing (ICIP),
pp. 3495–3499. IEEE, 2022.

Sahbi, H. Phase-field models for lightweight graph con-
volutional networks. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
pp. 4643–4649, 2023.

Sahbi, H. and Fleuret, F. Kernel methods and scale invari-
ance using the triangular kernel. Technical report, INRIA,
2004.

Sahbi, H., Geman, D., and Perona, P. A hierarchy of support
vector machines for pattern detection. Journal of Machine
Learning Research, 7(10), 2006.

Sahbi, H., Audibert, J.-Y., and Keriven, R. Context-
dependent kernels for object classification. IEEE trans-
actions on pattern analysis and machine intelligence, 33
(4):699–708, 2011.

Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., and
Chen, L.-C. Mobilenetv2: Inverted residuals and linear
bottlenecks. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pp. 4510–4520,
2018.

Shahroudy, A., Liu, J., Ng, T.-T., and Wang, G. Ntu rgb+ d:
A large scale dataset for 3d human activity analysis. In
Proceedings of the IEEE conference on computer vision
and pattern recognition, pp. 1010–1019, 2016.

Shi, L., Zhang, Y., Cheng, J., and Lu, H. Non-local graph
convolutional networks for skeleton-based action recog-
nition. arXiv preprint arXiv:1805.07694, 1(2):3, 2018.

Song, S., Lan, C., Xing, J., Zeng, W., and Liu, J. An end-
to-end spatio-temporal attention model for human action
recognition from skeleton data. In Proceedings of the
AAAI conference on artificial intelligence, volume 31,
2017.

Tan, M. and Le, Q. Efficientnet: Rethinking model scal-
ing for convolutional neural networks. In International
conference on machine learning, pp. 6105–6114. PMLR,
2019.

Vemulapalli, R., Arrate, F., and Chellappa, R. Human action
recognition by representing 3d skeletons as points in a
lie group. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pp. 588–595,
2014.

12



MRMP: Multi-Rate Magnitude Pruning of Graph Convolutional Networks for Skeleton-based Recognition

Wan, L., Zeiler, M., Zhang, S., Le Cun, Y., and Fergus, R.
Regularization of neural networks using dropconnect. In
International conference on machine learning, pp. 1058–
1066. PMLR, 2013.

Wang, H. and Wang, L. Modeling temporal dynamics and
spatial configurations of actions using two-stream recur-
rent neural networks. In Proceedings of the IEEE con-
ference on computer vision and pattern recognition, pp.
499–508, 2017.

Wang, L. and Sahbi, H. Directed acyclic graph kernels for
action recognition. In Proceedings of the IEEE Interna-
tional Conference on Computer Vision, pp. 3168–3175,
2013.

Wang, L. and Sahbi, H. Bags-of-daglets for action recog-
nition. In IEEE International Conference on Image Pro-
cessing (ICIP), pp. 1550–1554. IEEE, 2014.

Wang, P., Li, W., Gao, Z., Zhang, J., Tang, C., and Ogun-
bona, P. O. Action recognition from depth maps using
deep convolutional neural networks. IEEE Transactions
on Human-Machine Systems, 46(4):498–509, 2015.

Wang, P., Li, Z., Hou, Y., and Li, W. Action recognition
based on joint trajectory maps using convolutional neural
networks. In Proceedings of the 24th ACM international
conference on Multimedia, pp. 102–106, 2016.

Wang, P., Li, W., Ogunbona, P., Wan, J., and Escalera,
S. Rgb-d-based human motion recognition with deep
learning: A survey. Computer Vision and Image Under-
standing, 171:118–139, 2018.

Wen, W., Wu, C., Wang, Y., Chen, Y., and Li, H. Learning
structured sparsity in deep neural networks. Advances in
neural information processing systems, 29, 2016.

Wen, Y.-H., Gao, L., Fu, H., Zhang, F.-L., and Xia, S. Graph
cnns with motif and variable temporal block for skeleton-
based action recognition. In Proceedings of the AAAI
conference on artificial intelligence, volume 33, pp. 8989–
8996, 2019.

Weng, J., Liu, M., Jiang, X., and Yuan, J. Deformable pose
traversal convolution for 3d action and gesture recog-
nition. In Proceedings of the European conference on
computer vision (ECCV), pp. 136–152, 2018.

Wiedemann, S., Marban, A., Müller, K.-R., and Samek, W.
Entropy-constrained training of deep neural networks. In
2019 International Joint Conference on Neural Networks
(IJCNN), pp. 1–8. IEEE, 2019.

Wu, Z., Pan, S., Chen, F., Long, G., Zhang, C., and Philip,
S. Y. A comprehensive survey on graph neural networks.
IEEE transactions on neural networks and learning sys-
tems, 32(1):4–24, 2020.

Xia, L., Chen, C.-C., and Aggarwal, J. K. View invariant
human action recognition using histograms of 3d joints.
In 2012 IEEE computer society conference on computer
vision and pattern recognition workshops, pp. 20–27.
IEEE, 2012.

Yan, S., Xiong, Y., and Lin, D. Spatial temporal graph
convolutional networks for skeleton-based action recogni-
tion. In Proceedings of the AAAI conference on artificial
intelligence, volume 32, 2018.

Yang, X. and Tian, Y. Effective 3d action recognition using
eigenjoints. Journal of Visual Communication and Image
Representation, 25(1):2–11, 2014.

Yuan, F., Xia, G.-S., Sahbi, H., and Prinet, V. Mid-level fea-
tures and spatio-temporal context for activity recognition.
Pattern Recognition, 45(12):4182–4191, 2012.

Yun, K., Honorio, J., Chattopadhyay, D., Berg, T. L., and
Samaras, D. Two-person interaction detection using body-
pose features and multiple instance learning. In 2012
IEEE computer society conference on computer vision
and pattern recognition workshops, pp. 28–35. IEEE,
2012.

Zanfir, M., Leordeanu, M., and Sminchisescu, C. The mov-
ing pose: An efficient 3d kinematics descriptor for low-
latency action recognition and detection. In Proceedings
of the IEEE international conference on computer vision,
pp. 2752–2759, 2013.

Zhang, P., Lan, C., Xing, J., Zeng, W., Xue, J., and Zheng,
N. View adaptive recurrent neural networks for high
performance human action recognition from skeleton data.
In Proceedings of the IEEE international conference on
computer vision, pp. 2117–2126, 2017a.

Zhang, S., Liu, X., and Xiao, J. On geometric features
for skeleton-based action recognition using multilayer
lstm networks. In 2017 IEEE Winter Conference on
Applications of Computer Vision (WACV), pp. 148–157.
IEEE, 2017b.

Zhang, X., Wang, Y., Gou, M., Sznaier, M., and Camps,
O. Efficient temporal sequence comparison and classifi-
cation using gram matrix embeddings on a riemannian
manifold. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pp. 4498–4507,
2016.

Zhang, Y., Xiang, T., Hospedales, T. M., and Lu, H. Deep
mutual learning. In Proceedings of the IEEE conference
on computer vision and pattern recognition, pp. 4320–
4328, 2018.

Zhang, Z., Cui, P., and Zhu, W. Deep learning on graphs:
A survey. IEEE Transactions on Knowledge and Data
Engineering, 34(1):249–270, 2020.

13



MRMP: Multi-Rate Magnitude Pruning of Graph Convolutional Networks for Skeleton-based Recognition

Zhu, W., Lan, C., Xing, J., Zeng, W., Li, Y., Shen, L., and
Xie, X. Co-occurrence feature learning for skeleton based
action recognition using regularized deep lstm networks.
In Proceedings of the AAAI conference on artificial intel-
ligence, volume 30, 2016a.

Zhu, W., Lan, C., Xing, J., Zeng, W., Li, Y., Shen, L., and
Xie, X. Co-occurrence feature learning for skeleton based
action recognition using regularized deep lstm networks.
In Proceedings of the AAAI conference on artificial intel-
ligence, volume 30, 2016b.

14


