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ABSTRACT

Scattering transforms have been successfully used to describe dust polarisation for flat-sky images. This paper expands this framework
to noisy observations on the sphere with the aim of obtaining denoised Stokes Q and U all-sky maps at 353 GHz, as well as a
non-Gaussian model of dust polarisation, from the Planck data. To achieve this goal, we extended the computation of scattering
coefficients to the HEALPix pixelation and introduced cross-statistics that allowed us to make use of half-mission maps as well as
the correlation between dust temperature and polarisation. Introducing a general framework, we developed an algorithm that uses the
scattering statistics to separate dust polarisation from data noise. The separation was validated on mock data before it was applied
to the SRoll2Planck maps at Nside = 256. The validation shows that the statistics of the dust emission, including its non-Gaussian
properties, are recovered until ℓmax ∼ 700, where, at high Galactic latitudes, the dust power is weaker than that of the dust by two
orders of magnitude. On scales where the dust power is weaker than one-tenth of the power of the noise, structures in the output maps
have comparable statistics, but are not spatially coincident with those of the input maps. Our results on Planck data are significant
milestones opening new perspectives for statistical studies of dust polarisation and for the simulation of Galactic polarised foregrounds.
The Planck denoised maps are available (see http://sroll20.ias.u-psud.fr/sroll40_353_data.html) together with results
from our validation on mock data, which may be used to quantify uncertainties.
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1. Introduction

The cosmic microwave background (CMB) is a prime obser-
vational probe for constraining cosmological models (Durrer
2015). Today, with the uncertainties in the CMB temperature
spectrum essentially reduced to the cosmic variance (Planck
Collaboration V 2020; Planck Collaboration XI 2020), the CMB
experiments have shifted their focus to polarisation. In particu-
lar, accurate measurements of the tensor component (B-modes)
of the polarised signal could provide direct evidence of the
inflation period (Guth 1981; Linde 1982). This paramount goal
of cosmology is driving the development of ambitious CMB
experiments (Abazajian et al. 2016; Ade et al. 2019; LiteBIRD
Collaboration 2022), but the potential detection of primordial B-
modes does not only depend on increasing the signal-to-noise
ratio on CMB polarisation.

The quest for CMB B-modes is also hampered by instru-
mental systematic effects (Planck Collaboration III 2020)
and polarised foregrounds dominated by Galactic dust emis-
sion (BICEP2/Keck Array and Planck Collaborations 2015;
Planck Collaboration XI 2020). In this context, the modelling
of systematic effects and Galactic foregrounds must advance
alongside the sensitivity of the measurements. This is a major
challenge because instrumental systematics and Galactic emis-
sion are non-Gaussian signals, which in essence are difficult to
model. To address this difficulty, the CMB community has been
investing much effort in the development of Galactic emission

models (Delabrouille et al. 2013; Thorne et al. 2017; Vansyngel
et al. 2017; Martínez-Solaeche et al. 2018; Zonca et al. 2021;
Hervías-Caimapo & Huffenberger 2022) combined with instru-
ments models to produce end-to-end simulations of the data, as
was done for instance for Planck (Planck Collaboration III 2020).
Data simulations are essential to marginalise the inference of
cosmological parameters on the nuisance signals and correct for
bias (e.g. Vacher et al. 2022) and to perform likelihood-free infer-
ence methods (Planck Collaboration Int. XLVI 2016; Alsing et al.
2019; Jeffrey et al. 2022).

Non-Gaussianity is an important characteristic of Galactic
foregrounds. To account for it, several authors have introduced
machine-learning algorithms (Aylor et al. 2020; Krachmalnicoff
& Puglisi 2021; Petroff et al. 2020; Thorne et al. 2021), but these
methods need to be trained. Thereby, their use is hindered by
the difficulty of building relevant training sets. Magnetohydrody-
namics (MHD) simulations of the interstellar medium (Kritsuk
et al. 2018; Kim et al. 2019; Pelgrims et al. 2022) are useful to
develop the method, but they are far from reproducing the statis-
tics of dust polarisation with the accuracy required for CMB
component separation.

Another approach to modelling Galactic foregrounds is to
rely on scattering transform statistics. These statistics were
introduced in data science to discriminate non-Gaussian tex-
tures (Mallat 2012; Bruna & Mallat 2013; Cheng & Ménard
2021a), and they have since be applied to dust emission
maps computed from MHD simulations (Allys et al. 2019;
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Regaldo-Saint Blancard et al. 2020; Saydjari et al. 2021).
Promising results have also been obtained on various astro-
physical processes such as large-scale structure density field
and galaxy surveys (Allys et al. 2020; Eickenberg et al. 2022;
Valogiannis & Dvorkin 2022b,a), weak-lensing convergence
maps (Cheng et al. 2020; Cheng & Ménard 2021b), and 21cm
data of the epoch of reionisation (Greig et al. 2022). To construct
these statistics, convolutions of the input image with wavelets
over multiple oriented scales are combined with non-linear oper-
ators that allow efficiently characterising interactions between
scales.

One notable advantage of the scattering transforms is
that generative models that quantitatively reproduce the non-
Gaussian structures of a given process can be constructed from
a small number of realisations of this process, which can be
even a single image (Bruna & Mallat 2019; Allys et al. 2020).
This could allow constructing Galactic dust models directly from
observational data. For this purpose, the Planck data are a key
observational input. They have been used both as a template
of the dust sky and to model the spectral energy distribution
of dust emission (Thorne et al. 2017; Zonca et al. 2021). How-
ever, for polarisation, data noise is a severe limitation that must
be circumvented. A new direction was opened by Regaldo-Saint
Blancard et al. (2021), who introduced an algorithm that suc-
cessfully uses scattering statistics to separate dust emission from
data noise. They applied it to flat-sky Planck Stokes images at
353 GHz. Their method exploits the very different non-Gaussian
structure on the sky of dust emission compared to the data noise.
An iterative optimisation on sky pixels yields denoised maps and
a generative model of dust polarisation.

This paper aims to extend the innovative component sepa-
ration approach of Regaldo-Saint Blancard et al. (2021) to the
sphere and to apply it to all-sky Planck polarisation maps. Our
scientific motivation is to obtain denoised Planck Stokes maps
that may be used to model the dust foreground to CMB polarisa-
tion. For the astrophysics of dust polarisation, the signal-to-noise
ratio limits the range of angular scales that is accessible to
study (Planck Collaboration XII 2020). Thus, our work is also
a valuable contribution to statistical studies of dust polarisation
at high Galactic latitudes.

While our scientific objective is the statistical denoising of
dust-polarised emission, we treat this problem as the separa-
tion between two components. This differs from usual denoising
algorithms that rely for instance on filtering (Wiener 1949;
Zaroubi et al. 1994) or sparsity (Starck et al. 2002). In compari-
son to these usual algorithms, our objective is to recover a map
with the correct statistics, even if it differs from the true map
at the smallest scales. We also emphasise that the method we
present in this paper can be similarly applied to the separation of
two components of interest, and not only for denoising.

Our data objective involves several challenges. The scatter-
ing coefficients must be computed on all-sky maps in HEALPix
format. The algorithm used to separate dust and data noise
must accommodate variations in the dust statistics over the sky.
The computing time required to compute the scattering coef-
ficients and the map optimisation must be kept manageable.
Within this framework, we developed cross-scattering coeffi-
cients to make optimal use of the available data, especially
complementary half-mission maps. Cross-scattering coefficients
have also been introduced by Régaldo-Saint Blancard et al.
(2022) to model multi-channel dust data. In doing this, the
two papers extended the common use of cross-power spec-
tra to statistics that encode non-Gaussianity. For our project,
the cross-correlation of Planck maps with independent noise

realisations facilitates the denoising. It also allows us to take
into account the T E and T B correlation of dust polarisation
(Planck Collaboration XI 2020).

The paper is organised as follows. Section 2 introduces the
cross-scattering statistics, the algorithm, and the loss functions
from a generic starting-point. Our method is validated on mock
data (Sect. 3) before it is applied to the Planck maps (Sect. 4).
Applications and perspectives for future work are discussed in
Sect. 5. The paper results are summarised in Sect. 6. Additional
figures are presented in Appendix A.

2. CWST and separation of the dust and noise
components

We introduce our method in Sect. 2.1 before we present the cross-
scattering transform on the sphere in Sect. 2.2. Next, we describe
the algorithm we used to perform the component separation
between dust polarisation and data noise (Sect. 2.3).

2.1. Introduction

We aim to characterise the statistical properties of the
polarised dust emission from noisy Planck all-sky maps in
HEALPix (Górski et al. 2005). We ignored the CMB, which
can be either removed or neglected, and address this problem
as a separation between two components: dust emission and data
noise. We chose to work with SRoll2Planck polarisation maps
at 353 GHz (Delouis et al. 2019). We converted the all-sky Stokes
Q and U maps into E and B maps and applied our method to the
latter because they are independent scalars that do not depend on
the chosen reference frame. This transformation being non-local,
signal from the brightest areas in the Galactic plane contami-
nates the E and B maps at high Galactic latitude. Thus, to display
the results, we transformed the denoised E and B maps back to
Q and U. In doing so, we also conformed to the standard way of
representing the polarised sky. In practice, we found that the use
of E and B is better for the present work.

Our data-processing was the same for E and B maps. In
each case, we had access to a full-mission map d and two half-
missions d1 and d2. The half-mission maps were computed from
the first and second part of the mission, respectively, making
their noises and time-variable instrumental systematics mostly
independent. These maps can be written as the sum of the dust
emission s and three different noise realisations that we call n,
n1, and n2. For instance,

d = s + n (1)

for the full mission, and

d1 = s + n1 (2)

for the first half mission. We assumed that the noises for the two
half-missions can be considered to be statistically independent,
at least for ℓ > 30 (see e.g. Delouis et al. 2019). Based on a sim-
ulation effort, we also assumed that we have access to a large
number of realistic noise maps. The SRoll2 dataset contains
for instance an ensemble of 500 (ñ, ñ1, ñ2) associated triplets
of maps (Delouis et al. 2019) that can be used to simulate the
noises of the full mission and of the two half-missions of the E,
B, and T maps. Finally, we also had access to an intensity map
that we labelled T , which we used to characterise the statistical
dependence between polarised and total intensity dust emission.
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The details of the different data we used and the associated
assumptions are discussed in Sects. 3 and 4.

To obtain the statistical properties of the polarised dust emis-
sion, we performed a component separation of the dust and
noise maps, using their different non-Gaussian characterisa-
tion as a lever arm (Regaldo-Saint Blancard et al. 2020). This
component separation generates a new dust maps s̃ from a gra-
dient descent with an ensemble of statistical constraints built
from cross wavelet scattering transforms (CWST) between dif-
ferent maps. The statistics of the polarised dust map s was then
estimated from this s̃ map. In the following, we call this com-
ponent separation method function of cleaning using statistics,
FoCUS.

2.2. Cross wavelet scattering transform

Scattering transforms (ST) are a recently developed type of
non-Gaussian summary statistics (Mallat 2012; Bruna & Mallat
2013). The inspiration for them comes from convolutional neural
networks, but they do not need any training stage to be computed
(i.e. the function for computing the statistics from a set of data
can be written explicitly and does not need to be learnt). They
thus benefit from the low-variance efficient characterisation typ-
ical of neural networks, but give some level of interpretability
through their explicit mathematical form. Several sets of ST
statistics have been constructed, such as the wavelet scattering
transform (WST; Allys et al. 2019; Regaldo-Saint Blancard et al.
2020) or the wavelet phase harmonics (WPH; Mallat et al. 2018;
Allys et al. 2020). The construction of the ST statistics relies
on two main features: scale separation (through wavelet trans-
forms), and characterisation of the interaction between scales
using non-linearity (e.g. modulus, ReLU, or phase acceleration).
The CWST introduced in this paper is a new type of ST cross-
statistics constructed for data defined on the sphere. It is an
extension of the WST, to which it is reduced when it is used
as auto-statistics.

The first building block of the CWST transform is a wavelet
transform allowing fast computation directly on HEALPix data.
For this purpose, we introduced a very simple multi-resolution
wavelet transform defined from four 3 × 3 complex kernels,
which are used to compute convolutions with HEALPix maps at
different resolutions. These kernels, which are called ψ̃ j,θ with
θ between 1 and 4, are plotted in Fig. 1. With respect to the
HEALPix conventions, θ = 1 refers to a north-south brightness
oscillation associated with an east-west elongated structure. The
convolution is computed by multiplying the weights of Fig. 1 to
the eight neighbours of each pixel in such way that the top left
value is related to the north-west HEALPix pixel. In the particu-
lar case when a pixel has only seven neighbours, the value taken
for the eighth missing pixel corresponds to the value of the clos-
est anti-clockwise pixel (e.g. north-west to replace north). With
a resolution Nside, one pixel occurs every Nside

2 pixels.
The different wavelets ψ j,θ are labelled on a integer scale j

going from 0 to J − 1 and by an integer angle θ going from 1 to
L (associated with a (θ − 1) · π/L) for a total of J · L wavelets.
On an Nside = 256 map, we used J = 8 and L = 4 (since the
four ψ̃ j,θ kernels define four orientations). The wavelet trans-
form for j = 0 was obtained through the convolution of the
input map in HEALPix with the ψ̃0,θ kernels. The wavelet trans-
form for j = 1 was then obtained by first sub-sampling the input
map by computing 2 × 2 mean through the HEALPix nested
indexing property, and by then computing the convolutions again
with the ψ̃0,θ kernels. By repeating this process, we can compute
convolutions up to scales j = J−1.
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Fig. 1. Representation of the four ψ̃0,θ 3 × 3 kernels. First row: real part
of the kernel coefficients. Second row: there imaginary parts. The right
labels show how the coefficients are applied to the HEALPix neigh-
bours. In this figure, north (as defined by HEALPix) is up, west is left,
and so on.

As the ψ̃0,θ kernels have a 2-pixel wavelength, the character-
istic pic multipole probed by the wavelet transform at scale j is
ℓ ≈ 512 · 2− j. Starting from an initial resolution of Nside = 256
at j = 0, the resolution on which the convolution is performed
at j > 0 is Nside = 256 · 2− j. Moreover, the initial value of
Nside obviously limits the number of scales that can be consid-
ered: here j = 7, which corresponds to a HEALPix map with
Nside = 2.

We are aware of the fact that a more refined way to com-
pute a wavelet transform on the sphere exists (see e.g. Leistedt
et al. 2013; McEwen et al. 2015, 2018) from which a first imple-
mentation of scattering transform on the sphere has already been
defined (McEwen et al. 2021). We have chosen to conduct this
project within our scheme because it is simple to use and because
of its computational efficiency for GPU-accelerated computa-
tions, especially for the implementation of new cross-statistics.
We would like to transition to better wavelets in the future,
however, for which we expect an improvement of the obtained
results.

In the following, we use the index λ = ( j, θ) to describe the
oriented scale associated with each ψλ, and we keep implicit the
fact that they are defined on HEALPix maps of different Nside.
The wavelet convolution of an image I with a ψλ wavelet then
reads I ⋆ ψλ(p), where p is the coordinate on the sphere at the
corresponding resolution.

The CWST cross-statistics are calculated on two maps Ia and
Ib. Similarly to the usual WST, the CWST contains two layers
of coefficients, which are characterised by one or two oriented
scales λi. The whole set of statistics, called S (Ia, Ib), is thus
decomposed into the S 1 coefficients at the first layer and the S 2
coefficients at the second layer. When Ia = Ib, these coefficients
are the usual WST coefficients (Bruna & Mallat 2013).

The coefficients at first order are called S 1(Ia, Ib)λ1 . They are
constructed from a product of convolutions of Ia and Ib at the
same λ1 scale,

C1(Ia, Ib)ℜλ1
= sign

(
ℜ
(
Ia ⋆ ψλ1 · Ib ⋆ ψλ1

∗))
·

√∣∣∣ℜ (Ia ⋆ ψλ1 · Ib ⋆ ψλ1
∗
)∣∣∣, (3)

and

C1(Ia, Ib)ℑλ1
= sign

(
ℑ
(
Ia ⋆ ψλ1 · Ib ⋆ ψλ1

∗))
·

√∣∣∣ℑ (Ia ⋆ ψλ1 · Ib ⋆ ψλ1
∗
)∣∣∣ , (4)
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where we independently considered the real and imaginary part
of the products of wavelet convolutions, and where ∗ and | · | stand
for the complex conjugate (acting here on the whole Ib ⋆ ψλ1

term) and absolute value, respectively. The square root allows us
to recover the L1-like norm, which is useful to decrease the vari-
ance of the estimators, but introduces a bias when the correlated
information between two noisy data sets is computed.

The S 1 coefficients are then computed from a spatial
integration,

S 1(Ia, Ib)λ1 =
〈
C1(Ia, Ib)ℜλ1

+ i ·C1(Ia, Ib)ℑλ1

〉
pixels

, (5)

where i is the imaginary unit, and where the brackets stand for
a spatial average on the sphere, which is multiplied by 2 j for a
uniform normalisation meaning that the S 1 coefficients of white
noise are constant across all scales. The S 1 coefficients can also
be used to compute the statistics of a single map Ia = Ib = I. In
this case, the Cℑλ1

term obviously vanishes, the Cℜλ1
terms are the

complex modulus of the I ⋆ ψλ1 convolution, and we recover the
standard WST definition S 1 = ⟨|I ⋆ ψλ1 |⟩pixel for S 1.

The coefficients at second order are called S 2(Ia, Ib)λ1,λ2 .
They are constructed from two positive and negative terms,

Cℜ2,+(Ia, Ib)λ1,λ2 =
∣∣∣∣ψλ2 ⋆ ReLU

(
Cℜ1 (Ia, Ib)λ1

)∣∣∣∣ ,
Cℜ2,−(Ia, Ib)λ1,λ2 =

∣∣∣∣ψλ2 ⋆ ReLU
(
−Cℜ1 (Ia, Ib)λ1

)∣∣∣∣ , (6)

and similarly for the imaginary terms Cℑ2,±. The S 2 terms are then
obtained through spatial integration,

S 2(Ia, Ib)λ1,λ2 =

〈 (
Cℜ2,+(Ia, Ib)λ1,λ2 −Cℜ2,−(Ia, Ib)λ1,λ2

)
+i ·
(
Cℑ2,+(Ia, Ib)λ1,λ2 −Cℑ2,−(Ia, Ib)λ1,λ2

) 〉
pixels

. (7)

For these coefficients, we also recover the standard WST defini-
tion S 2 = ⟨||I ⋆ ψλ1 | ⋆ ψλ2 |⟩pixel when Ia = Ib = I.

An algebraic sum in Eq. (7) allows us to easily identify sta-
tistical dependences between processes. When the two images
are correlated or anti-correlated, we expect the C1(Ia, Ib) to be
mostly positive or negative, respectively, leading to S 2 values
of the same sign. On the other hand, when the two images are
uncorrelated, we expect C1(Ia, Ib) to have similar positive and
negative patterns, thus leading to S 2 coefficients of much lower
values. In addition, using a convolution with a second wavelet
allows us to quantify at which scales this correlation appears, and
thus to characterise an interaction between two oriented scales.

2.3. Principle of the component separation

We present here the component separation method between
dust polarisation and the data noise, which we call FoCUS.
This method consists of generating a new dust map through a
gradient-descent in pixel space under several constraints con-
structed from CWST statistics. In this part, we call u the dust map
that is modified in the gradient descent. This map is initialised
by d, and we call s̃ its final value, which is the FoCUS dust map.
The scientific result of this paper is this dust map, as well as its
statistics. As we discuss in the validation performed in Sect. 3,
while the statistics of s̃ reproduce those of the unknown s dust
map very well, its deterministic structures are not reproduced at
the smallest scale.

The three constraints imposed on the u map are constructed
from the full and half-mission maps d, d1, d2, and T temper-
ature maps, as well as an ensemble of realisations of full and
half-mission noises {ñ, ñ1, ñ2}. These constraints, which are not
independent, are obtained from averages over the ensemble of
noise realisations.

The first constraint is

S (d1, d2) ≃ ⟨S (u + ñ1, u + ñ2)⟩ñ , (8)

where the bracket designs an average over the noise realisations,
here {ñ1, ñ2}. This constraint enforces the statistics of u to the
statistics of s estimated from the two half-mission maps. The
second constraint, which yields

S (d, u) ≃ ⟨S (u + ñ, u)⟩ñ , (9)

enforces the cross-statistics between u and d. We note the dif-
ference between the two constraints: the first constraint is only
statistical in nature because it contains no cross-term between the
denoised u map and observational data, while the second con-
straint includes a cross-term between u and d. This allows us to
use cross-statistics between half-mission data that have indepen-
dent noises for the first constraint, while we use the full-mission
map, which has the smallest amount of noise, for the second one.
This second term also constrains deterministic features. Simi-
larly to a cross-spectrum computation, S (d, u) characterises the
correlation between d and u (here a non-linear correlation), and
hence the correlation between s and u if n and u are indepen-
dent This term thus constrains the alignment of structures in u
with structures in s, which we call deterministic features. The
C1 terms for instance impose that local levels of oscillation at a
given scale are correlated.

Finally, the last loss constraint,

S (T, d) ≃ ⟨S (T, u + ñ)⟩ñ , (10)

imposes that we keep the same cross-statistics between T and u
as were estimated from the d map. For this last constraint, we
chose T to be the 857 GHz SRoll3 map, which was corrected for
large-scale systematics present in earlier data releases (Lopez-
Radcenco et al. 2021). The choice of 857 GHz instead of the
353 GHz maps avoids correlated noise between the polarisation
maps d and the T map (as they are computed using data from
the same detectors for intensity and polarisation). A drawback is
that the 857 GHz T map includes a significant contribution from
the cosmological infrared background at high Galactic latitudes,
but this emission is only very weakly polarised (Feng & Holder
2020; Lagache et al. 2020). Furthermore, the non-negligible spa-
tial variations of the spectral energy distribution of the Galactic
dust induce some decorrelation between the T maps at 857 and
353 GHz (Delouis et al. 2021). An advantage of our method is
that it is not hindered by these effects because we only impose
that the denoised map has the same statistical dependence as the
one estimated from the observational data.

We also tried to impose constraints that directly involved the
recovered noise map, d − u. We considered in particular a direct
constraint on its statistics, as well as on its independence of u.
Neither of these constraints particularly improved the results we
obtained. In particular, the independence of u and d−u is already
constrained from Eq. (9). It is possible, however, that these con-
straints would play a non-negligible role in separating other types
of astrophysical fields.

In practice, performing a gradient descent from these con-
straints would be computationally very costly, however, because
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it would require computing an average on a large number of noise
realisations (300) at each iteration. Five hundred noise realisa-
tions were available, but only 300 were used to limit memory and
computing usage. We also verified that adding noise apparently
does not improve the results. To avoid this, the noise-induced
biases of the CWST statistics were separated on a specific term
and estimated only after a certain batch of iterations. The loss
term related to the first constraint is thus written

Loss1 =

∣∣∣∣∣∣
∣∣∣∣∣∣S (d1, d2) − S (u, u) − B1

σS (u+ñ1,u+ñ2)

∣∣∣∣∣∣
∣∣∣∣∣∣2, (11)

with

B1 =
〈
S (u + ñ1, u + ñ2) − S (u, u)

〉
ñ, (12)

where ||.||2 stands for the square Euclidean norm over the whole
set of CWST statistics, and σ stands for the estimated stan-
dard deviation of ⟨S (u + ñ1, u + ñ2)⟩ñ. As discussed above, B1
gives an estimate of the noise-induced bias between S (d1, d2)
and S (s, s) that is more accurate the closer u becomes to s during
the optimisation.

Similarly, the loss terms related to the second constraint
yield

Loss2 =

∣∣∣∣∣∣
∣∣∣∣∣∣S (d, u) − S (u, u) − B2

σS (u+ñ,u)

∣∣∣∣∣∣
∣∣∣∣∣∣2, (13)

with

B2 =
〈
S (u + ñ, u) − S (u, u)

〉
ñ, (14)

In practice, the numerical experiments we performed showed
that it was difficult to use a loss term involving a difference
between two u terms, especially at the start of the optimisation
where u0 = d. To avoid this, we modified this loss term, replac-
ing S (u, u) by S (d1, d2) − B1, which proved to be much more
efficient. This led to the following loss term:

Loss2 =

∣∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣∣
S (d, u) − S (d1, d2) − B2 + B1√

σ2
S (u+ñ,u) + σ

2
S (u+ñ1,u+ñ2)

∣∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣∣
2

. (15)

And finally the term related to the third constraint yields

Loss3 =

∣∣∣∣∣∣
∣∣∣∣∣∣S (T, d) − S (T, u) − B3

σS (T,u+ñ)

∣∣∣∣∣∣
∣∣∣∣∣∣2, (16)

with

B3 =
〈
S (T, u + ñ) − S (T, u)

〉
ñ. (17)

These losses treat the Galactic signal as a homogeneous
process on the sky. However, it is clear that the dust emis-
sion has a strong variation in statistical properties with Galactic
latitude. To take this into account, the three losses described
previously were computed from statistics estimated on differ-
ent parts of sky, using five different standard Planck masks
with fsky ∈ [1.0, 0.73, 0.63, 0.43, 0.27] (Planck Collaboration Int.
XXX 2016). Dust statistics are dominated by the brightest emis-
sion within the unmasked sky. Therefore, as the amplitude of
the dust emission decreases steadily from the Galactic plane to
the poles, the masks allow us to progressively characterise dust
polarisation from bright to faint regions when fsky extends from

1.0 to 0.27. Because in contrast, the noise power is quite homo-
geneous in Galactic latitude, this also allows us to evaluate the
success of the FoCUS algorithm from a high to low signal-to-
noise ratio. In practical terms, the masks are taken into account
in the averages over sky pixels in Eqs. (5) and (6). Thus, the
FoCUS algorithm simultaneously optimises the three loss terms
for each of the five masks, that is, 15 constraints in total.

Numerically, the optimisation ran for 500 iterations between
each computation of the noise-induced biases. The minimisa-
tion did not improve much, and the change in s̃ was negligible
after this number of iterations. This step was repeated 12 times
(6000 iterations in total), at which point the modification of the
estimated biases was very small. The total iteration time rep-
resents 10 h on three nodes (processor=Intel Xeon E5-2680)
with 28 CPU cores, or 2 hours on three M100 GPUs. We also
note that the optimisation was made on d − u rather than u,
which was more stable and led to far fewer oscillations between
local minima. This probably arises because the d − u contamina-
tion is close to a Gaussian random field as scales where FoCUS
works, whose pixels values can be optimised in a much more
independent way.

3. Validation of the component separation

In this section, we apply the FoCUS component separation
method to mock data to assess its performance. We introduce
the mock data in Sect. 3.1 and present the results of the FoCUS
run in Sect. 3.2. In Sect. 3.3 we analyze the impact of each of the
three terms of the loss function on the FoCUS output maps.

3.1. Mock data

To build our mock data set, we combine a model of dust
polarisation maps with noise simulations. We used the dust
model, hereafter the Vansyngel model, that was introduced in
Appendix A of Planck Collaboration III (2020). The Vansyn-
gel model was used by both Planck Collaboration III (2020)
and Delouis et al. (2019) to build end-to-end simulations of the
Planck polarisation data at 353 GHz. The total intensity maps
is the Planck map at 353 GHz obtained by applying the gen-
eralized needlet internal linear combination (GNILC) method
of Remazeilles et al. (2011) to the 2015 release of Planck HFI
maps (PR2). The Stokes Q and U maps were built from one
realisation of the statistical model of Vansyngel et al. (2017).
In the model of Planck Collaboration III (2020), the simula-
tion was replaced by the Planck PR2 353 GHz maps near the
Galactic plane, and the largest angular scales ℓ < 20 of the sim-
ulated maps were also replaced by the Planck data (see Planck
Collaboration III 2020 for more details).

Away from the Galactic plane and for multipoles ℓ > 20,
the statistical properties of the Q and U maps were those of the
Vansyngel et al. (2017) model. This model was built from a sim-
plified description of the magnetised interstellar medium where
the random component of the magnetic field is represented by
Gaussian fields. The T E correlation and E/B asymmetry corre-
lation are introduced in the model maps in spherical harmonics
with random phases. However, the model Q and U maps do have
some non-Gaussian characteristics that arise from the total inten-
sity map and the modelling of the line-of-sight integration with
a small number of independent emission layers. As explained in
Sect. 2.3, the temperature map we used in the third loss term is
the SRoll3 map at 857 GHz, even if the T map used to evaluate
the T E/T B correlations is the map from the Vansyngel model
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Fig. 2. Stokes Q maps illustrating the validation on mock data. Top row, left to right: one realisation of the noisy mock data, the noise-free
Vansyngel model, and the result of the FoCUS algorithm. Bottom row, left to right: noise map used in the data simulation, the correction found by
the FoCUS method, and the residual map, i.e. the difference between the Vansyngel model and the FoCUS map.

at 353 GHz. This allows us to remain consistent in testing the
FoCUS algorithm and in validating the obtained result.

We associated the dust model sm (here the m index is related
to modeling and simulation) with noise maps from the end-to-
end SRoll2 dataset (Delouis et al. 2019). Ten noise realisations
were added to the dust model to generate 10 mock dm maps, and
300 additional maps, all independent, were used for the FoCUS
optimisation. We applied the FoCUS method on the 10 dm and
obtained 10 denoised maps s̃m.

3.2. Validation of FoCUS on mock data

3.2.1. FoCUS maps

The top row of Fig. 2 presents three Q maps: from left to right,
the noisy mock data (dm), the input dust model (sm), and the
FoCUS output s̃m. The bottom row shows the noise map included
in nm, the noise estimate from FoCUS dm − s̃m, and the resid-
ual s̃m − sm. The FoCUS map s̃m is strikingly less noisy than dm.
Fig. 2 also clearly shows that the noise estimate dm − s̃m corre-
sponds to what we expect: a noisy map with large-scale patterns
close to the pattern of the true noise. To the eye, the residual
map appears noisier where the dust emission is the brightest.
Along the Galactic plane, the residuals are larger, but they rep-
resent a small fraction of the total dust signal. Away from the
Galactic plane, the residuals do not correspond to leftover noise,
but mainly result from small displacements of some structures
between s̃m and the true map sm.

In Fig. 3 we present EE power spectra of the maps in Fig. 2
for four masks with fsky from 0.27 to 0.73. The corresponding
BB spectra are shown in Fig A.1. In both figures, it is remarkable
that the power spectra of the FoCUS output s̃m in orange closely
follow the true dust spectrum in black in the four plots, down to
two orders of magnitude below the noise power for fsky = 0.27.
The success in reproducing deterministic dust structures is char-
acterised by the spectra of the residual map s̃m − sm in red. The
power of the residual map exceeds that of the dust model in
black, where the EE power of dust is one-tenth of the power
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Fig. 3. Power spectra of one realisation for the FoCUS validation on
mock data. The plots show EE spectra of the dust model (sm in black),
the noisy mock data (dm in blue), and the FoCUS output (s̃m in orange)
for four masks with fsky from 0.27 to 0.73. The red curve is the power
spectrum of the residual map s̃m − sm. The figure also presents the noise
spectrum (nm) and the noise estimate from FoCUS (dm − s̃m), as well as
cross spectra between half-mission mock maps (d1,m × d2,m logarithmic
binned) and between s̃m and dm. Other mock data realisations show very
consistent power spectra.

of noise. For lower signal-to-noise ratios, the amplitude of the
residual spectrum is about twice that of the dust power, which
indicates that structures in the FoCUS output map s̃m are not spa-
tially coincident with those in the input map sm. We show below
that this corresponds to a regime in which the recovered struc-
tures have the correct statistical properties, but do not reproduce
the input data from a deterministic point of view. The presence of
this regime has been identified in Regaldo-Saint Blancard et al.
(2020).
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Fig. 4. Comparison of CWST statistics. The CWST coefficients of the
FoCUS output map s̃m (solid red line) are compared to those of the
mock data d (solid blue line) and the noise-free dust model sm (dashed
black line). The thicker grey line represents the statistical variance of
the FoCUS output estimated from ten simulations. The top row shows
the coefficients S 1 plotted vs scale j1, and the bottom row shows the S 2
coefficients averaged over θ1 and θ2 plotted vs the ratio of the two scales
j2 − j1. The three columns correspond to different Galactic masks.

3.2.2. CWST statistics

One main objective of FoCUS is to derive a statistical model of
dust polarisation that is unbiased by data noise from an obser-
vation. The mock data allow us to assess the success of the
algorithm in this regard.

In Fig. 4 we compare the CWST coefficients of the FoCUS
output map s̃m to those of the mock data dm and the noise-free
dust model sm. As discussed in Sect. 2.2, the CWST coefficients
of a single map are the standard WST coefficients studied for
instance in Allys et al. (2019). The top row shows the coefficients
S 1 averaged over θ1 plotted versus scale j1, and the bottom row
shows the mean S 2 coefficients averaged over θ1 and θ2 plotted
versus the ratio of the two scales j2 − j1, for j1 = 0 to 6 from the
bottom right to the top left.

The statistics of dm clearly depart from those of sm. As
expected, the difference is most noticeable at small scales, as
well as for the area of the sky with the lowest signal-to-noise
ratio at high Galactic latitudes. For fsky = 0.27 and j1 = 0, the
mean S 2 coefficients for d depart from those of s for all j2 but
the largest scale. Extracting non-Gaussian statistics of sm from
the noisy dm data down to scale j1 = 0 is therefore a notable chal-
lenge at high Galactic latitudes, where the power ratio between
the dust signal and noise ratio is down to 1% (see Fig. 3). In this
challenging context, the excellent match between coefficients
for s̃m and sm for all masks demonstrates the remarkable suc-
cess of the FoCUS algorithm in synthesising maps with the same
statistics as the noise-free dust emission.

For the 353 GHz Planck data, we expect some non-negligible
bias to appear on the smallest scales probed with Nside > 256,
however, entering a regime in which even the statistical prop-
erties of the denoised map begin to differ from those of the
true map. This third regime, which has also been observed
in Regaldo-Saint Blancard et al. (2020), is indeed expected in
the limit in which the noise has a much higher level than the
signal. It might be possible to use an extrapolated model of the
CWST statistics of the dust to describe scales included in this
regime, however.
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Fig. 5. Power spectra of the FoCUS maps for different combinations of
the three loss terms Loss1, Loss2, and Loss3. Top plot: ratio of the EE
spectra of the residual map, s− s̃m, and the input dust model sm. Bottom
left plot: compares the T E spectra obtained with or without Loss3, in
red and grey, respectively. Bottom right plot: compares the cross spectra
between FoCUS map s̃m and the mock data d with or without Loss2, in
red and yellow, respectively. All of the spectra are binned in ℓ bins with
a width ∆ℓ = 10.

3.3. Impact of each loss term

Our loss functions comprise three terms: Loss1, Loss2 and Loss3.
They are defined in Eqs. (11), (13), and (16). The mock data
allow us to assess the impact of pairwise combinations excluding
one of the loss terms for all sky masks on the FoCUS output maps.

Figure 5 includes three plots in which the input dust model
sm is drawn in black. All plots are for fsky = 0.63. The top plot
presents the EE spectra of the residual maps s̃m − sm divided by
that of sm. This ratio quantifies the ability of the FoCUS algo-
rithm to reconstruct structures consistently with the noise-free
dust model. The bottom left plot compares the T E spectrum
obtained with or without the Loss3 term, in red and grey. The
bottom right plot compares the cross spectra between the FoCUS
map s̃m and the mock data dm with or without the Loss2 term in
red and yellow, respectively.

In the three plots, the FoCUS output maps s̃m obtained with
the complete loss function, drawn in red, is the best result, which
confirms our choice of combining the three terms of the loss
function. The top plot shows that both Loss1 and Loss2 are essen-
tial for minimising the power of the residual maps. We interpret
the effect of Loss2 as follows. At multipoles between 102 and
3 × 102, this loss allows recovering the deterministic structures,
which can be characterised by the cross-statistics with the noisy-
data. At higher multipoles, these cross-statistics progressively
become noise dominated, and the lever-arm of this loss term to
recover deterministic structures decreases. Loss2 also ensures a
faster convergence of the minimisation. Furthermore, the bottom
right plot shows that Loss2 is critical for matching the cross spec-
tra s̃m × dm. Loss3 has only a weak impact on the residual maps,
but the bottom left plot shows that it is essential for matching the
T E correlation of the dust model, which is expected because it
constrains the cross statistics between dust polarisation and total
intensity.

The top plot in Fig. 5 also shows the residual power for
s̃m maps obtained by discarding the S 2 coefficients in the loss
function in purple. A comparison the purple and red curves
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Fig. 6. Stokes Q and U maps at 353 GHz for Nside = 256. Top panels: input Planck SRoll2 maps, and the bottom panels show the corresponding
FoCUS maps.

shows that these coefficients only improve the residual power by
a few dozen percent. However, the yellow curve in Fig. 4 demon-
strates that the S 2 coefficients in the loss terms are important for
fully recovering the non-Gaussian properties of the dust map, as
expected.

4. Denoised Planck dust polarisation maps

In this section, we use the CWST and FoCUS to separate dust
polarisation and data noise in Planck data. The data we used
are introduced in Sect. 4.1, and the denoised Planck polarisation
maps are presented in Sect. 4.2.

4.1. Input data

We used the Planck Stokes Q and U maps at 353 GHz from
the SRoll2 processing, which corrects for the instrumental sys-
tematics present in the Planck Legacy polarisation maps of the
High Frequency Instrument1 (Delouis et al. 2019). To obtain
dust polarisation maps, we subtracted the CMB polarisation
using Q and U maps from the SMICA component separation
method (Planck Collaboration IV 2020). Over the multipole
range we considered, dust polarisation dominates the CMB
signal for all sky masks at 353 GHz, as shown in Fig. 3.
Uncertainties on the CMB correction are thus not an issue. As
explained in Sect. 2.3, the temperature map we used in the third
loss is the SRoll3 map at 857 GHz.

4.2. FoCUS maps

Figure 6 presents the SRoll2 Stokes Q and U maps at 353 GHz
(top images) and the result of the FoCUS algorithm (bottom

1 The SRoll2maps are available at http://sroll20.ias.u-psud.
fr/sroll22_files.html

images). The comparison by eye shows that noise has been sub-
tracted without smoothing the map. This is further illustrated
in Fig. 7, which zooms on one sky area to allow a detailed
comparison with other dust polarisation models. Even without
over-smoothing, the dust map has much less power at small
scales than the noise. The denoised map is therefore expected
to have a smoother texture.

The PySM d1 model map (Thorne et al. 2017; Zonca et al.
2021) includes small-scale structure that was derived from a ran-
dom Gaussian field, which appears unrealistic. The Vansyngel
maps are constructed from the dust total intensity map. Their tex-
tures appear to be closer to what is statistically expected, but the
small scales seem to lack elongated structures. The GNILC map
shows a lack of small scales. Finally, the FoCUS map shows non-
Gaussian elongated structures at all scales, which is a general
characteristic of the diffuse interstellar medium. Our algorithm
is able to capture this by using advanced statistical descriptors
and constraints.

Power spectra of the Planck data are compared with those
of the FoCUS, GNILC, PySM, and Vansyngel maps for four
Galactic masks defined by their corresponding fsky in Figs. 8
and A.2 for EE and BB, respectively. In each figure, the plots in
the left column present power spectra and the plots in the right
column show cross-spectra with the SRoll2 input maps. Each
plot includes the cross spectrum between the two SRoll2 half-
mission maps (d1 × d2) drawn in purple as the reference to match
because it is a noise-unbiased estimate from the Planck data of
the spectrum of Galactic dust emission.

In the left column of the two figures, the SRoll2 spectra
show the data noise bias over an increasing range of ℓ as fsky
decreases. It is remarkable that the power spectra of the FoCUS
map are consistent with the reference for the four masks, up
to multipoles where the signal power is two orders of mag-
nitude lower than that of the noise. The difference with the
GNILC method, which reduces the sky noise at the expense of
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Fig. 7. Zoom on a sky region of the Q map. From left to right panels: SRoll 2.0 data, the FoCUS map, the correction computed by FoCUS to be
applied to the SRoll2.0 map, the PySM d1 model, the Vansyngel et al. (2017) map, and the GNILC map.
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Fig. 8. EE power spectra (left column) and cross-power spectra (right
column) for Galactic masks with fsky=0.27 (bottom) to 0.73 (top). In
each plot, the cross spectrum of the two Planck half-mission maps is
drawn in purple. The blue, orange, and red curves represent the power
spectra of the SRoll2, GNILC, and FoCUS maps, respectively. All the
spectra are binned over ten multipoles and normalized by dividing the
power with the fsky value to keep the scales consistent between the plots.

small-scale smoothing, stands out in Fig. 8. The plots also show
that the power spectra of the Vansyngel maps deviate somewhat
from the Planck data, which is a known shortcoming of their
model.

The plots in the right columns of Figs. 8 and A.2 present
cross-power spectra between models and the SRoll2 maps. Our
purpose is to quantify the correlation on the sky between the
data and model maps, but we note that our validation of the
FoCUS method has shown (see Sect. 2.2) that some correlation
may arise from data noise. On these plots, like for those in the
left columns, the d1×d2 cross-power spectra are the references to
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Fig. 9. T E (top row) and T B (bottom row) cross-power spectra of the
SRoll2 (blue curves) and FoCUS maps (red curves). The orange and
black curves show the same results for the GNILC and Vansyngel maps.
Each column corresponds to a different galactic mask. The cross-power
spectra are binned in bins of width ∆ℓ

ℓ
= 0.05 for T E and 0.2 for T B to

reduce the noise variance. Dotted lines represent negative values.

match. Thus, it is satisfactory to see that the cross-power spectra
between the FoCUS and SRoll2 maps is close to d1 × d2 for the
four masks. The match is excellent for fsky = 0.73. For the other
masks, we see some loss of correlation at high ℓ, which increases
for decreasing fsky, that is, for a decreasing signal-to-noise ratio.

The correlation is stronger for all masks than the correlation
measured for the PySM and Vansyngel models. This is expected
because these two models are constructed with an algorithm that
is not designed to preserve correlation with the input data.

4.3. TE and TB correlation

The T E and T B correlation are main statistical characteristics
of dust polarised emission, determined by the analysis of Planck
data (Planck Collaboration XI 2020). This important property is
difficult to match without learning the model statistics from data.

In Fig. 9 the T E and T B cross-power spectra for the SRoll2
and FoCUS maps are compared. The plots show that the two sets
of T E and T B cross-power spectra match and that the FoCUS
algorithm reduces the variance at the highest ℓ. This is a clear
success of the FoCUS algorithm. Figure 9 also shows that the
previous noise removal (see GNILC or Vansyngel et al. 2017 in
orange or black) do not reproduce these correlations.

5. Projected applications and perspectives

The Planck 353 GHz polarisation maps have been extensively
used for the astrophysics of dust polarisation and the modelling
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Fig. 10. Distribution of the polarisation angle dispersion S and the polarisation fraction p values for the SRoll2 (left panel) and FoCUS (right
panel) maps. The data points with error bars represent the mean value and 1σ dispersion of S within bins of p. The data binning and representation
follows that of Fig. 10 of Planck Collaboration XII (2020). The grey line shows the relation S× p = 0.24◦, which is expected based on the analytical
model of Planck Collaboration XII (2020) for the resolution FWHM = 40′ we used.

of the Galactic dust foreground to CMB. For both topics, the
FoCUS map represents a significant stepping-stone opening new
prospects. We illustrate and discuss these perspectives from the
points of view of astrophysics and foregrounds.

5.1. Astrophysics of dust polarisation

For astrophysics, the signal-to-noise ratio of the dust polarisa-
tion maps statistically conditions the range of angular scales
accessible for study. The polarised emission of the diffuse ISM
at high Galactic latitudes is too faint to be analysed at the
full 5′ angular resolution of Planck (see dust power spectra in
Planck Collaboration XI 2020). Most of the analysis of the dust
polarised emission in Planck Collaboration XII (2020) was per-
formed after smoothing the Planck maps to 80′ and even 160′
resolution. The FoCUS maps thus allow us to extend the range
of earlier studies. As our data denoising is statistical in nature at
scales at which the signal-to-noise ratio is low, the FoCUS maps
are most relevant for statistical studies, in particular those that
aim to statistically characterise the turbulent component of the
Galactic magnetic field.

To illustrate this perspective, we use the FoCUSmaps to com-
pare the polarisation angle dispersion, S, and the polarisation
fraction, p, as was done by Planck Collaboration XII (2020)
with the Planck Legacy maps. S, introduced by Hildebrand et al.
(2009) and Planck Collaboration Int. XIX (2015), quantifies the
local non-uniformity of the polarisation angle patterns on the
sky by means of the local variance of the polarisation angle map
on a scale defined by a lag δ. Regions in which the polarisa-
tion angle tends to be uniform exhibit low values of S, while
regions where the polarisation patterns change on the lag-scale
exhibit higher values. The polarisation fraction, p, depends on
both the orientation of the mean Galactic magnetic field in the
solar neighborhood and, statistically, on depolarisation resulting
from changes in the magnetic field orientation along the line of
sight (Planck Collaboration Int. XLIV 2016). The trend S ∝ 1/p
observed in the Planck data can be reproduced with the analyti-
cal model presented in Appendix A of Planck Collaboration XII
(2020). The product S× p scales with the degree of randomness

of the Galactic magnetic field: the ratio of the dispersion of the
turbulent component and the strength of the mean field.

Figure 10 presents plots of S versus p for both the SRoll2
and FoCUS maps with the same presentation as in the cor-
responding figure (also Fig. 10) in Planck Collaboration XII
(2020). Figure A.3 presents the corresponding plots for the Van-
syngel model. Our maps have a resolution of 40′ (full width at
half maximum, FWHM) to be compared with 160′ for the plot
in Planck Collaboration XII (2020). As in Planck Collaboration
Int. XIX (2015), we used a lag equal to one-fourth of the FWHM,
that is, δ = 10′. The model relation for our resolution and lag,
S × p = 0.24◦, is the line drawn in the two plots. Figure A.3
shows that the noise bias on the S and p relation is considerably
reduced by the FoCUS algorithm. Given the excellent debiasing
obtained on this validation dataset, the FoCUS plot in Fig. 10 sug-
gests that the analytical model of (Planck Collaboration Int. XIX
2015) only provides an approximate description of the data.

5.2. Galactic foreground modelling

The modelling of the dust foreground to CMB polarisation is the
primary motivation of our work. The approach we followed to
model dust polarisation is novel in some crucial aspects, which
we summarize here.

We learned our statistical model from the Planck data using
a set of summary statistics designed to perform an in-depth
characterisation of non-Gaussian structures (Bruna & Mallat
2013). The FoCUS maps include non-Gaussian features that are
missed by models making use of Gaussian random fields to
describe foregrounds on scales at which the Planck template
maps are noise dominated. This important difference is illus-
trated in Fig. 11, where ratios of the CWST coefficients S 2/S 1,
used as a measure of non-Gaussianity, are compared between the
FoCUS PySM and Vansyngel E maps.

We have applied a statistical component separation to all-sky
Planck maps that allowed us to extend our statistical model of
dust polarisation down to scales where the dust power is two
orders of magnitude smaller than the data noise. For the sky
at high Galactic latitudes that are best suited for deep CMB
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observations, we succeed in modelling the dust polarisation up
to Nside = 256. The resolution could be increased by modelling
and extrapolating the scale dependence of the CWST
break coefficients.

The CWST statistics allow us to combine different maps. We
used this possibility to learnthe correlation between dust total
intensity and polarisation from the Planck data. Therefore, our
FoCUS map reproduces the E/B asymmetry, the T E, and also
T B correlations, which is a unique achievement among current
dust models, as illustrated in Fig. 9. This figure also shows that
denoising methods such as GNILC, which seek to minimise the
difference between the denoised map and the true signal, remove
power on scales that are dominated by the noise.

To proceed in the modelling of polarised Galactic fore-
grounds, one main objective will be to extend this analy-
sis to multi-frequency models that take the spatial variations
of the spectral energy distribution of dust polarisation into
account (Ritacco et al. 2022). For this purpose, it is necessary
to properly construct joint multi-channel scattering transform
statistics, as well as to extend the component separation algo-
rithm to this framework.

6. Conclusion

We have applied the scattering transform to Planck data in order
to derive a non-Gaussian model of dust polarisation and produce
denoised all-sky dust Stokes Q and U maps at 353 GHz. First,
we introduced the CWST statistics that we used to characterise
the non-Gaussian structure of dust polarisation. They extend the
computation of scattering coefficients to the HEALPix pixeli-
sation on the sphere and include cross-statistics that allow us
to combine images. Second, we devised the FoCUS algorithm,
which uses the CWST statistics to separate dust polarisation
from data noise. FoCUS was validated on simulations of the
Planck data before it was applied to the SRoll2 Planck maps
at 353 GHz. The main results of our work are described below.

The CWST statistics and the FoCUS algorithm allow us to
characterise dust polarisation down to angular scales at which

the EE dust power is two orders of magnitude smaller than that
of the data noise. The FoCUS Stokes maps reproduce Planck dust
polarisation power spectra estimated from cross-spectra of half-
mission maps over these scales.

Our validation on mock data allowed us to compare the
FoCUS output map s̃ with the noise-free input map s. The spec-
tra of the residual map s̃ − s become larger than the spectra of
s at scales at which the EE dust power is lower than one-tenth
of the noise power. On these scales, structures in the FoCUS out-
put maps s̃ have comparable non-Gaussian statistics, estimated
in terms of CWST, but are not spatially coincident with those
in s.

The FoCUS Stokes maps at 353 GHz2, with a set of residual
maps from our mock data analysis quantifying uncertainties, are
made available to the community. The FoCUS maps open new
prospects for astrophysics and the modelling of the Galactic dust
foreground to CMB polarisation.

For astrophysics, the signal-to-noise ratio of the dust polari-
sation maps limits the range of angular scales that are accessible
for study. Because our denoising of the data is statistical in
nature at scales where the signal-to-noise ratio is low, the gain
is in statistical studies. We illustrated this type of applications by
repeating the Planck studies of the anti-correlation between the
dispersion of polarisation angles and the polarisation fraction.

The FoCUS Stokes maps improve on current models of dust
polarisation in two main aspects. (1) The FoCUS maps include
non-Gaussian characteristics of dust polarisation, which are
missed by models making use of Gaussian random fields to
describe foregrounds on scales at which the Planck maps are
noise dominated. (2) The CWST cross-statistics allows us to
learn the correlation between dust total intensity and polarisa-
tion from the Planck data. Therefore, our FoCUSmap reproduces
the E/B asymmetry and the T E and T B correlations, which is
a unique achievement among current dust models used to assess
CMB component separation methods.

A clear path to improving our results would be to use the
most recent scattering transform statistics on the sphere. Fol-
lowing recent works, several improvements of the scattering
statistics might be made in the near future. On the one hand,
more refined wavelet transforms on the sphere could be used,
as discussed in Sect. 2.2. One the other hand, other successful
sets of scattering statistics, which give better syntheses on reg-
ular 2D grids, could be used. For instance, the wavelet phase
harmonics (Allys et al. 2020; Jeffrey et al. 2022) and their recent
multi-channel extensions (Régaldo-Saint Blancard et al. 2022),
or the more recent representations built from wavelet scattering
covariances (Morel et al. 2022; Cheng et al., in prep.). However,
the main challenge is to make these improvements feasible given
the computational and memory costs of the FoCUS algorithm.

The scattering coefficients derived from the Planck data
could also be used to generate a set of realistic synthetic non-
Gaussian foreground maps. Several ways to proceed might be
thought of, which would depend on the scientific objective of
such a generation. This is an open issue for future works.

On a more general aspect, the CWST statistics and the FoCUS
algorithm might be applied to many processes defined on the
sphere, including in other areas than astrophysics, to leverage and
analyse different types of correlated data. Its two main advan-
tages are its ability to efficiently combine different datasets and
the statistical constraints.

2 The FoCUS maps are available at http://sroll20.ias.u-psud.
fr/sroll40_353_data.html
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Appendix A: Additional figures

A.1. Power spectra for B-modes

Figure A.1 complements Fig. 3 by presenting BB power spec-
tra of the FoCUS validation for one realisation of the mock data.
The signal-to-noise ratio is lower for BB than EE as the E -
to- B power ratio for dust emission is about 2. Furthermore,
the T B/T E power ratio is about one-tenth, which decreases the
impact of the loss term (Loss3) based on this correlation. For
the mock data, Loss3 is fully ineffective because the Vansyn-
gel model does not include the T B correlation. These effects
combine to make FoCUS denoising more challenging. However,
Fig. 3 shows a good consistency of the BB power spectra of the
FoCUS and the input model maps for most multipoles. At very
high Galactic latitudes (bottom right panel), the noisier part of
the sky, the BB power spectrum of the FoCUS maps, shows a
small bias compared to that of the input maps, which reflects the
limitation of our method when the signal-to-noise ratio is very
low (< 1%).

Figure A.2 shows the same set of power spectra as in Fig. 8,
but for BB. These plots demonstrate that the FoCUS results are
consistent for BB and EE. The fact that both the EE and BB
power spectra are properly retrieved demonstrates that the FoCUS
maps keep the EE to BB power asymmetry.

A.2. S and p plot for the mock data

Figure A.3 complements Fig. 10 by presenting the joint distribu-
tion of S and p for the Vansyngel model. The comparison by eye
of the three plots show that FoCUS considerably reduces the noise
bias on the S − p relation. We note that the analytical model of
Planck Collaboration XII (2020) does not match the Vansyngel
model for high p values. A similar shift between the analytical
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Fig. A.1. Power spectra of one realisation for the FoCUS validation on
mock data. The plots are the same as in Fig.3, but for BB spectra.
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model and the data is observed for the Planck maps in the right
panel of Fig. 10.
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Fig. A.3. Same plot as in Fig. 10 for the Vansyngel model and the mock data. The figure shows the joint distribution of S and p for the Vansyngel
model (left panel), one realisation of the noisy mock data (middle panel), and the FoCUS denoised maps (right panel).
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