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Abstract

The quest for primordial B-modes in the cosmic microwave background has emphasized the need for refined
models of the Galactic dust foreground. Here we aim at building a realistic statistical model of the multifrequency
dust emission from a single example. We introduce a generic methodology relying on microcanonical gradient
descent models conditioned by an extended family of wavelet phase harmonic (WPH) statistics. To tackle the
multichannel aspect of the data, we define cross-WPH statistics, quantifying non-Gaussian correlations between
maps. Our data-driven methodology could apply to various contexts, and we have updated the software PyWPH, on
which this work relies, accordingly. Applying this to dust emission maps built from a magnetohydrodynamics
simulation, we construct and assess two generative models: (1) a (I, E, B) multi-observable input, and (2) a I{ }n n
multifrequency input. The samples exhibit consistent features compared to the original maps. A statistical analysis
of model 1 shows that the power spectra, distributions of pixels, and Minkowski functionals are captured to a good
extent. We analyze model 2 by fitting the spectral energy distribution (SED) of both the synthetic and original
maps with a modified blackbody (MBB) law. The maps are equally well fitted, and a comparison of the MBB
parameters shows that our model succeeds in capturing the spatial variations of the SED from the data. Besides the
perspectives of this work for dust emission modeling, the introduction of cross-WPH statistics opens a new avenue
to characterize non-Gaussian interactions across different maps, which we believe will be fruitful for astrophysics.

Unified Astronomy Thesaurus concepts: Astrostatistics (1882); Interstellar dust (836); Cosmic microwave
background radiation (322)

1. Introduction

Since the Planck mission (Planck Collaboration I 2020), the
observation of the cosmic microwave background (CMB) has
become closely entwined with the physics of the interstellar
medium (ISM). On the one hand, the thermal emission of our
own Galaxy severely contaminates the CMB signal, acting as a
foreground to the primordial signal. On the other hand, CMB
experiments provide unique data for interstellar astrophysics.
Component separation methods (see, e.g., Planck Collaboration
IV 2020), which aim at recovering the accurate CMB maps,
have to deal with the non-Gaussian5 structure of the dust
emission and the spatial variations of the spectral energy
distribution (SED). In the quest for primordial B-modes
(Kamionkowski & Kovetz 2016) in the CMB polarization
signal, which is one of the main targets of the new generation
of CMB experiments such as ACTPol (Naess et al. 2014),
SPIDER (Fraisse et al. 2013), LiteBIRD (Ishino et al. 2016),
the Simons Observatory (Simons Observatory Collaboration
2019), and CMB-S4 (Abazajian et al. 2019), high-precision
models of the multifrequency polarized dust foreground have

become crucial (BICEP2/Keck Array & Planck Collaborations
2015).
In this paper, we address the problem of building a statistical

model of multifrequency dust emission maps by introducing a
generic methodology that does not rely on any prior
phenomenological model (i.e., a purely data-driven approach).
We aim at taking into account the highly non-Gaussian
properties of the data and modeling the correlations between
the frequency channels and between the polarization and total-
intensity observables. Because, from an observational point of
view, we only have a single sky, we also choose to build our
model from a single multichannel input. In other words, if we
call this input x, the goal is to approximate the distribution of the
underlying random field X based on the single realization x.
Approximating a high-dimensional distribution is always a
daunting task, and with this additional constraint, this becomes
even harder if not intractable. To partially alleviate this difficulty,
we will thus assume (spatial) statistical homogeneity for X.
Finally, we want our model to be generative, in the sense that
drawing new samples of the model should be doable in a
reasonable amount of time. This might be a crucial constraint for
component separation methods requiring an important amount of
simulated maps of dust emission, such as methods adopting a
simulation-based inference approach as in Jeffrey et al. (2021).
Various models of the polarized emission of dust have been

developed in the literature (for an extensive discussion, see
Régaldo-Saint Blancard 2021, Chapter 2), some of them being
packed in CMB sky simulator softwares (e.g., Delabrouille et al.
2013; Thorne et al. 2017). Among these models, we make a
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5 We call “non-Gaussian” any statistical feature that is not characterized by
the power spectrum (or cross spectrum, when considering a pair of fields).
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distinction between deterministic approaches, designed to
retrieve the true emission of the sky (e.g., Planck Collaboration
XI 2014; Planck Collaboration X 2016; Planck Collaboration
Int. XLVIII 2016; Planck Collaboration IV 2020), and statistical
approaches, focusing on its statistical properties (e.g., Vansyngel
et al. 2017; Hervias-Caimapo & Huffenberger 2022). We also
distinguish phenomenological approaches, making use of
phenomenological priors (e.g., modified blackbody (MBB)
SED), from data-driven approaches. Our approach stands in
the class of statistical and data-driven models. In this category,
Aylor et al. (2021) and then Thorne et al. (2021) employed a
generative adversarial network (GAN) and a variational
autoencoder (VAE), respectively, to model the total intensity
of monofrequency dust emission maps. Krachmalnicoff &
Puglisi (2021) made use of a GAN to generate subdegree
angular scales in monofrequency dust polarization maps. These
approaches, which involve techniques from the emerging field of
deep generative modeling, rely on convolutional neural networks
(CNNs) that need to be trained. Such training steps require at
least hundreds if not thousands of observations, which obviously
bind the models to their respective training sets. On the other
hand, Allys et al. (2019) and then Regaldo-Saint Blancard et al.
(2020) introduced generative models of dust emission maps in
total intensity and polarization, respectively, that do not
necessitate any training and can be built from a single input
map. These models are approximate maximum entropy models,
called microcanonical gradient descent models, that are
conditioned by wavelet scattering transform (WST)
moments (Mallat 2012; Bruna & Mallat 2013,2019). Jeffrey
et al. (2021) made use of a similar kind of model for dust
polarization data but using wavelet phase harmonic (WPH)
moments (Mallat et al. 2020; Allys et al. 2020; Zhang &
Mallat 2021). Note that although the WST and WPH statistics
share many similarities with the representations learned by
CNNs (Mallat 2016; Mallat et al. 2020), they avoid some of their
drawbacks, namely the lack of interpretability and the necessity
of training. However, until now, none of these existing
generative models have tackled the multichannel aspect of dust
emission data (besides the joint modeling of the linear
polarization variables; see, e.g., Regaldo-Saint Blancard
et al. 2020). We propose to bridge this gap by incorporating a
modeling of correlations between maps at different frequency
channels, as well as correlations between total-intensity and
polarization maps.

Observations of dust polarized emission at a given frequency
channel ν take the form of a triplet of two-dimensional Stokes
parameter maps (Iν, Qν, Uν), with Iν the total intensity of the
emission and (Qν, Uν) describing the linear polarization signal.
For CMB science, the polarization maps (Qν, Uν) are usually
transformed into (Eν, Bν) maps (Zaldarriaga 2001). In order to
make the present work more readily usable in this cosmological
context, we adopt the same polarization variables in the
following.

In the continuity of the above series of works, we introduce
microcanonical gradient descent models of multichannel
dust emission maps I E B, ,{( )}n n n n conditioned by a new
family of WPH statistics. In particular, we introduce cross-
WPH statistics, allowing us to combine multiple maps and
characterize their non-Gaussian correlations. This paper
focuses on the methodology and the validation of such models.
We build two models demonstrating the capabilities of our
approach: the first one is a monofrequency model based on a

triplet of simulated dust maps I E B, ,0 0 0( )n n n , and the second one
is a multifrequency model of a set of total-intensity simulated
maps I{ }n n . Finally, let us emphasize that, although the focus here
is on dust emission maps, our approach does not involve any
prior model that is specific to dust data. As a consequence, our
methodology could be applied in a very similar way to other
astrophysical contexts, and more generally to other scientific
contexts. All the necessary material to do so is publicly available
within the Python package PyWPH6 (Regaldo-Saint Blancard
et al. 2021).
This paper is organized as follows. In Section 2, we

introduce the simulated multichannel data that will be the target
of our models. Then, in Section 3, we explain the underlying
formalism of our approach. We introduce microcanonical
gradient descent models and the family of WPH statistics that
we will employ. In Section 4, we present and validate our
models. Finally, Section 5 summarizes our conclusions. This
paper also includes three appendices. Appendix A presents
maximum entropy microcanonical models, which underlie the
definition of microcanonical gradient descent models.
Appendix B gives additional details on our family of
WPH statistics. Appendix C properly defines the Gaussian
model that we will use as a baseline in Section 4.1.
The data and codes to reproduce the models are provided in

Régaldo-Saint Blancard (2022).7

2. Presentation of the Data

In this section, we build a set of simulated multifrequency
maps I E B, ,{( )}n n n n of dust emission by proceeding as follows:

1. In Section 2.1, we extract a statistically homogeneous 3D
gas density field and magnetic field from a magnetohy-
drodynamics (MHD) simulation designed to reproduce
typical conditions of the diffuse ISM.

2. In Section 2.2, we build Stokes maps Iν, Qν, and Uν based
on the previous simulation and a phenomenological
model of the SED of dust grains.

3. In Section 2.3, we transform the Q U,{( )}n n n maps into
E B,{( )}n n n maps and show the resulting data in Figure 1.

2.1. MHD Simulation

In order to consider a realistic gas density field n and
magnetic field B, we make use of an MHD simulation designed
to reproduce typical conditions of the diffuse ISM. This
simulation is the same as the one used in Regaldo-Saint
Blancard et al. (2020). We briefly summarize its main
characteristics in the following; refer to that paper for
additional details.
The simulation was run in the context of Bellomi et al.

(2020) to study the biphasic nature of the diffuse ISM. It
employs the adaptive mesh refinement code RAMSES
(Teyssier 2002; Fromang et al. 2006) to solve the equations
of ideal MHD. The volume of the simulation is (50 pc)3, and it
is ultimately discretized on a 5123 mesh with periodic boundary
conditions. Heating and cooling processes of the gas are taken
into account, whereas self-gravity is neglected. An isotropic
Habing radiation field with G0= 1 is applied at the boundaries
of the box. An isotropic turbulent forcing is also applied,

6 https://github.com/bregaldo/pywph/
7 https://doi.org/10.5281/zenodo.7342682
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leading to a statistical steady state after a few turnover times. In
this stationary regime, the velocity dispersion is
σv∼ 2.6 km s−1, and the magnetic field has a mean component
B eB z0¯ = with B0∼ 3.8 μG and a dispersion σB∼ 3.1 μG.
Finally, the mean and dispersion of the gas density field n are
n 1.5 cm 3¯ = - and σn∼ 4.7 cm−3, respectively.

We extract a snapshot in this stationary regime, which thus
provides the gas density field n and magnetic field B we were
looking for.

Note that for the quest of primordial B-modes, CMB
experiments tend to focus on measurements at high Galactic
latitude on degree angular scales. If this cube were to describe
the structure of the Local Bubble that is responsible for most of
the dust emission on Planck data at high Galactic latitudes
(|b|>= 60°, 353 GHz; Skalidis & Pelgrims 2019; Pelgrims
et al. 2020), and which extends between 200 and 300 pc away
from the Sun, it would project onto the sky on a surface of
about ∼200 deg2 at a distance of 200 pc.

2.2. Stokes Emission Maps

For a given frequency ν and line of sight, and in the optically
thin limit, the Stokes parameters Iν, Qν, and Uν can be
expressed as follows (see, e.g., Planck Collaboration Int.
XX 2015, and references therein):

I S p d1 cos
2

3
, 10

2⎡
⎣

⎛
⎝

⎞
⎠

⎤
⎦

( )ò g t= - -n n n

Q p S dcos 2 cos , 20
2( ) ( )ò f g t=n n n

U p S dsin 2 cos , 30
2( ) ( )ò f g t=n n n

where Sν is the source function of the dust emission, τν is the
dust optical depth, p0 is an intrinsic polarization fraction
parameter, γ is the angle that the local magnetic field makes
with the plane of the sky, and f is the angle that the projection
of the local magnetic field on the plane of the sky makes with
some arbitrary reference axis in this plane. Note that the
particular choice of this reference axis does not impact the (Eν,
Bν) maps that will be derived in Section 2.3. The infinitesimal
dust optical depth reads dτν= σνndl, where σν is the dust cross
section per H at frequency ν, n is the hydrogen density, and dl
is the infinitesimal element of length along the line of sight. All
these quantities are a priori functions of the position on the line
of sight.

We make the following simplifying assumptions. We
assume that the polarization fraction parameter p0, which is
related to cross-section parameters of the grains and their
degree of alignment with the magnetic field (for more details,
see Planck Collaboration Int. XX 2015), is uniform (for a
discussion, see Reissl et al. 2020). Similarly to Planck
Collaboration Int. XX (2015), we choose a typical value of
p0= 0.2. We choose the source function of the grains Sν to be
that of a blackbody radiation Bν(T), thus depending on the dust
temperature T. We assume that the frequency dependence of
the dust cross section follows a power law 0 0( )s s n n=n

b,
where σ0 is the dust cross section at the reference frequency ν0
and β is the spectral index. This assumption is quite usual in the
literature (see, e.g., Planck Collaboration XI 2014, and
references therein). We assume a uniform σ0, whose precise
value only affects the global normalization of the maps and has

no impact on the rest of this paper. Finally, we arbitrarily
choose the z-axis of the simulation as the line of sight. Note that
this axis corresponds to the direction of the mean magnetic field
of the simulation, so that we expect statistical isotropy in the
resulting 2D maps (Regaldo-Saint Blancard et al. 2020).
The fields T and β are defined with respect to the local values

of the density field n using the following simple phenomen-
ological model. The voxels of T and β are both exactly
Gaussian distributed in a way that is consistent with the two
following observational facts: (1) temperature is usually lower
(higher) in higher-density (lower-density) regions, and (2)
MBB fits of observational maps of the dust emission show that
the fitted T and β parameters tend to be anticorrelated (Planck
Collaboration XI 2014). Means and standard deviations of T
and β are chosen to be [15 K, 1 K] and [1.5, 0.2], respectively.
Formally, calling rn( ( )) the rank of a particular value n(r) of
the simulated density field, we thus define T(r) and β(r) as
follows:

r
r

F
n

N1
, 41.5,0.2

1
32

⎛
⎝

⎞
⎠

( ) ( ( )) ( )( )b =
+
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T F
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N
1

1
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+

- 


where F m,
1

2( )s
-


is the inverse cumulative distribution function of
a Gaussian distribution of mean m and standard deviation σ,
and N= 512 is the resolution of the simulation. Note that
although this 3D phenomenological model of the emission of
dust grains takes inspiration from MBB analyses of dust
emission maps, there is a priori no reason for the SED of the
projected maps Iν, Qν, and Uν to be amenable to an MBB (see,
e.g., Chluba et al. 2017; McBride et al. 2022).

2.3. (E, B) Transform and Resulting Maps

In a cosmological context, linear polarization is not often
studied straight from the Q and U observables, but rather in
terms of E- and B-modes (Zaldarriaga 2001). E- and B-modes
are linear transforms of Q and U defined as follows in Fourier
space and in the flat-sky approximation (see, e.g., Kamionkowski
& Kovetz 2016):

k

k

k

k

E

B

Q

U

1

2

cos 2 sin 2
sin 2 cos 2

, 6k k

k k
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⎛

⎝

⎞

⎠
⎛
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⎠

⎛

⎝

⎞
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ˆ ( )
ˆ ( )

ˆ ( )
ˆ ( )

( )a a
a a

=
-

where αk is the angle that k makes with the x-axis of the maps.
The motivation for this transformation is twofold. First, for
CMB science, these variables disentangle scalar primordial
fluctuations from vectorial and tensorial ones (Kamionkowski
et al. 1997). Indeed, vectorial and tensorial fluctuations in the
primordial plasma before the decoupling would give rise to a
nonzero B-mode signal in the CMB, while scalar fluctuations
cannot source any B-mode signal. Second, contrary to the
complex Q+ iU variable, which is a spin-2 variable, E and B
variables are scalar and pseudo-scalar8 variables, respectively,
which means in particular that these variables are invariant
under any rotation of the initial basis chosen for the

8 Contrary to scalar quantities, the sign of pseudo-scalar quantities is changed
under a parity inversion.
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measurement of the polarization signal. This explains why the
choice of the axis with respect to which the f angle introduced
in Equations (2) and (3) is defined has no impact on these
variables.

Following the procedure explained in this section, we thus
compute (Iν, Eν, Bν) maps for five different frequency channels:
ν= 300, 500, 800, 1500, 3000 GHz. This choice of channels is
inspired by the analysis of Planck Collaboration XI (2014) on
Planck and IRAS data over the 353–3000 GHz range. For this
range of frequencies, the effects of β and T are expected to be
disentangled. As an example, we display in Figure 1 the
resulting maps Iν, Eν, and Bν (from left to right) for the three
following channels: 300, 800, and 3000 GHz. The filamentary
structure of these maps underlines the non-Gaussianity of the
data. Moreover, at a given frequency, coherent structures
visible on the total-intensity map Iν have obvious counterparts
in the polarization maps Eν and Bν. Statistical correlations from
one observable to another are thus expected. Across the
frequency axis, maps of the same observable seem to be almost
structurally identical. Except for the important variation of the
standard deviation of the maps and the variation of the means
for total-intensity maps, the impact of frequency on the general
aspect of the maps appears to be very subtle. To better see these
subtle variations, we show in Figure 5 (top middle and top

right) examples of total-intensity ratio maps between con-
secutive frequency channels.

3. Formalism

This section introduces the formalism underlying the
definition of our generative models, namely microcanonical
gradient descent models conditioned by WPH statistics.
Samples of microcanonical gradient descent models are drawn
by iteratively deforming an initial Gaussian sample into a
signal with some prescribed statistics. Here we choose these
prescribed statistics to be WPH statistics, as these have been
proven efficient in characterizing coherent structures in a
variety of non-Gaussian random fields (Mallat et al. 2020;
Allys et al. 2020; Jeffrey et al. 2021; Regaldo-Saint Blancard
et al. 2021; Zhang & Mallat 2021; Brochard et al. 2022).
In Section 3.1, we briefly define microcanonical gradient

descent models. Then, in Section 3.2, we introduce the families
of moments on which the models of this paper rely. This
concise introduction is complemented by Appendix B, which
contains all the technical details needed to reproduce this work.

3.1. Microcanonical Gradient Descent Models

Microcanonical gradient descent models were introduced in
Bruna& Mallat (2019) as approximations of maximum

Figure 1. Ilog10( )n , Eν, and Bν (from left to right) simulated maps of dust emission at three different frequency channels: 300, 800, and 3000 GHz (from top to
bottom).
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entropy microcanonical models.9 With x the realization of the
random field X that we want to approximate and f(x) the vector
of statistics that is supposed to characterize the statistical
properties of X, these models are defined by transporting an
initial Gaussian distribution through gradient descent over

y y x , 72( ) ∣ ( ) ( )∣ ( )f f= -

where ∣·∣ is the Euclidean norm. The gradient descent algorithm
defines at each iteration k a mapping f y y yk k( ) ( )k= -  ,
with  the gradient of  and κk the gradient step at iteration
k. For a given number of iterations n, and with y0 a sample
drawn from our initial Gaussian distribution, the resulting
sample yn of our model reads yn= fn◦fn−1◦...◦f1(y0). In
practice, the number of iterations is empirically adapted to
reach an approximate convergence.

3.2. Wavelet Phase Harmonic Statistics

Originally introduced in Mallat et al. (2020), the
WPH statistics have been proven successful in characterizing
complex coherent structures arising from a variety of two-
dimensional non-Gaussian physical fields. In Zhang & Mallat
(2021), they have been applied to turbulent vorticity fields, in
Allys et al. (2020) to density fields of the large-scale structure
of the universe, and in Regaldo-Saint Blancard et al. (2021) and
Jeffrey et al. (2021) to Planck observations and simulated maps
of dust polarization data. In all of these fields, structures stem
from highly nonlinear physics. One of the main assets of the
WPH statistics is to characterize the resulting non-Gaussianity
through an efficient quantification of interactions between
scales.

The WPH statistics rely on a set of bandpass and low-pass
filters, allowing us to locally decompose the spectral content of
the input maps onto a tiling of Fourier space. These filters are
wavelets and Gaussian filters, respectively. In this section, we
introduce auto-WPH moments, defined as covariances of
nonlinear transformations of the wavelet transform of a given
random field X. The nonlinear transformation is a pointwise
operation called phase harmonic, which is defined below.
Then, we extend the definition of such moments to the case of a
pair of random fields (X, Y), introducing cross-WPH moments
designed to quantify interactions between scales across X and
Y. Finally, we introduce a new family of auto/cross-scaling
moments, defined in a similar fashion to the auto/cross-
WPH moments but involving Gaussian filters instead of
wavelets. These are designed to better constrain the large-scale
behavior of the input fields, as well as their (joint) one-point
distribution. The WPH statistics of a map x, or a pair of maps
(x, y), refer to the estimates of the auto/cross-WPH moments
and auto/cross-scaling moments.

3.2.1. Wavelet Transform

A wavelet is a spatially localized waveform with a zero mean
that acts as a bandpass filter. From an initial wavelet ψ, called
the mother wavelet, we build a bank of wavelets j j, ,{ }y q q by
dilation and rotation of ψ, where j is an index of dilation and θ
is an angle of rotation. Formally, we have

r rR2 2 . 8j
j j

,
2 1( ) ( ) ( )y y=q q

- - -

The numbers of dilations and rotations considered are J and L,
respectively, so that 0� j� J− 1 and θ ä {kπ/L, 0� k�
L− 1}. Consequently, our bank of wavelets is made of J× L
wavelets. In the following, we make use of bump-steerable
wavelets. These are complex-valued wavelets defined in
Appendix B.1.
The wavelet transform of X is finally defined as the set of

bandpass-filtered maps X j j, ,{ }y* q q, where ∗ denotes the
convolution operation. These convolutions correspond to local
bandpass filterings of X at spatial frequencies centered on
modes of the form kj,θ= k02

−juθ, with u ecos x( )q= +q
esin y( )q and k0 the central frequency of the mother wavelet ψ.

In this study, we work with 512× 512 maps and choose
J= 8 and L= 4. We show in Figure 8 one wavelet from
our bank.

3.2.2. WPH Moments

Auto-WPH moments.—The auto-WPH moments of X are
covariances of the phase harmonics of the wavelet transform of
X, i.e., these are defined as

r rC X XCov , , 9p p
p p

, , , ( ) ([ ( )] [ ( )] ) ( )t ty y= * * +l l l l¢ ¢ ¢ ¢

with λ and l¢ referring to two oriented scales ( j, θ) and j ,( )q¢ ¢
and the square brackets denoting the pointwise phase harmonic
operator z z z ep ip zarg[ ] ∣ ∣ · ( ) = .10,11 When applied to a
complex z, the phase harmonic operator preserves the modulus
of z but multiplies its phase by a factor p. Note that, for p= 0,
this operation simply consists in taking the modulus of z, and
for p= 1 it is the identity. This operator plays a key role in
capturing efficiently interactions between different scales in X.
For l l= ¢ and p p 1= ¢ = , the corresponding moments are
averages of the power spectrum over the bandpass of ψλ, so
that this class of moments does include the power-spectrum
information. We refer to Appendix B.2 for additional details on
these moments.
Cross-WPH moments.—The previous moments can be

extended to the characterization of interactions between the
scales of two different fields X and Y. We define such cross-
WPH moments as follows:

r rC X YCov , .

10
p p

p p
, , , ( ) ([ ( )] [ ( )] )

( )
t ty y= * * +l l l l¢ ¢

´
¢ ¢

Just like before, for l l= ¢ and p p 1= ¢ = , the corresponding
moments are averages of the cross spectrum over the bandpass
of ψλ, so that the cross-spectrum information is also captured
by this class of moments. Note that, in the field of texture
synthesis, a similar class of cross moments has been used to
characterize color channel interactions in RGB images (Vacher
& Briand 2021; Brochard et al. 2022).
Discretization of τ.—The previous moments all depend on

the relative shift τ between X ∗ ψλ and X y* l¢ (or Y y* l¢).
Inspired by Brochard et al. (2022), we discretize this variable as

9 We refer the reader to Appendix A for formal definitions of maximum
entropy microcanonical models.

10 We recall that X Y E X E X Y E YCov ,( ) (( ( ))( ( )) )= - - * .
11 These moments do not depend on the r variable because of the homogeneity
of X.
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follows:

u n
n0

2 for 1,
for 0,

11n

n

, ⎧
⎨⎩

( )t =
=a

a

with 0� n�Δn− 1 and  k A, 0 2 1k
k

A
{ }a aÎ = -p ,

where Δn and A are two integers playing similar roles to J and
L but for n and α variables instead of j and θ, respectively. In
this study, we choose Δn= 5 and A= 4.12

Choice of a subset of moments.—Estimating the auto/cross-
WPH moments for every possible value of λ, l¢, p, p¢, and τ is
not an option for several reasons. Besides the fact that this
would be computationally expensive, some moments may
vanish or be redundant by construction. Moreover, the number
of moments should be kept sufficiently low compared to the
dimension of the data to allow for statistical diversity in the
resulting generative model. Indeed, when based on a single
realization x, if the number of statistical constraints is too high,
samples of such models will tend to reproduce the specific
features of x instead of being representative of the variability of
X (for a discussion, see Brochard et al. 2022).

Therefore, we need to choose a reduced subset of moments
that will characterize the relevant statistical properties of our
data. This is a crucial and difficult modeling step. Although this
subset should be dependent on the nature of the data, here our
choice is mostly inspired by the literature on this subject (Allys
et al. 2020; Regaldo-Saint Blancard et al. 2021; Brochard et al.
2022), intending for it to be relevant for a reasonable variety of
non-Gaussian random fields. We refer to Appendix B.3 for a
detailed presentation of this subset.

For our choice of J, L, Δn, and A values, the resulting
number of auto-WPH coefficients is 6940, which amounts to
2.6% of the number of pixels of a 512× 512 image. However,
most of these coefficients are complex-valued numbers, so that
the effective dimension of the description is ∼1.3× 104,
leading to a ratio of ∼5%. On the other hand, for a pair of
maps, we consider 1264 cross-WPH coefficients, with, again,
most of them being complex-valued numbers.

3.2.3. Scaling Moments

To better constrain the large scales, as well as the (joint) one-
point distribution of the input fields, we introduce a new class
of auto/cross-scaling moments relying on a family of isotropic
Gaussian filters j j{ }j . These filters are built by dilating an
initial Gaussian function j (defined in Appendix B.1) similarly
to what is done in Section 3.2.1 for wavelets. Assuming zero-
mean X and Y, our auto/cross-scaling moments are defined as
follows:

r rL X XCov , , 12j p p j
p

j
p

, , ([ ( )] [ ( )] ) ( )j j= * *¢
¢

r rL X YCov , . 13j p p j
p

j
p

, , ([ ( )] [ ( )] ) ( )j j= * *¢
´ ¢

In this work, we choose j ä {− 1, 0, 1, 2} and consider the
following set of values for p p,( )¢ : {(0, 0), (1, 1), (0, 1)} for
auto moments, and {(0, 0), (1, 1), (0, 1), (1, 0)} for cross
moments.13 These moments complement our description with a

very small number of coefficients: 12 and 16 in the auto and
cross cases, respectively.

3.2.4. Estimation and Computation

We estimate the previous moments from a given map x or
couple of maps (x, y) as explained in Appendix B.5. Note that
the resulting statistical coefficients include a normalization
designed to facilitate the gradient descent involved during the
sampling of our model (see Section 3.1). We denote by fauto(x)
and fcross(x, y) the corresponding vector of auto- and cross-
WPH statistics, respectively. Computations all employ the
GPU-accelerated Python package PyWPH (Regaldo-Saint
Blancard et al. 2021).

4. Models and Their Validation

This section presents the core results of this paper: the
construction and validation of two distinct generative models
built from the simulated data introduced in Section 2. These are
as follows:

1. A monofrequency model based on the joint observation
of (I300, E300, B300), introduced in Section 4.1.

2. A multifrequency model based on the joint observation of
(I300, I500, I800, I1500, I3000), introduced in Section 4.2.

For each of these models, we perform a visual and quantitative
assessment of their realism.
The data and codes to reproduce the models are provided in

Régaldo-Saint Blancard (2022).14

4.1. Monofrequency Model

4.1.1. Description of the Model

We build a generative model based on the joint observation
of (I300, E300, B300) as follows (referred to as “the WPH model”
hereafter). We define a microcanonical model of x =

I E Blog , ,300 300 300( ( ) ) conditioned by the following descriptive
statistics:

x I E B

I E I B

log

log , log , ,

14

auto 300 auto 300 auto 300

cross 300 300 cross 300 300

( ) ( ( )) ( ) ( )
( ( ) ) ( ( ) ))

( )

f f f f
f f

= Å Å
Å Å

where ⊕ denotes vector concatenation. We choose to model the
logarithm of the total-intensity map I300 for two main reasons: (1)
the logarithm tends to Gaussianize the data (analytical statistical
models of dust total-intensity maps are usually defined as
lognormal fields; see, e.g., Levrier et al. 2018) and thus to
simplify the modeling, and (2) pixels of I maps take positive
values, so that working with the logarithm avoids imposing
positive values on the synthetic I maps during the sampling
procedure. Also note that fcross is designed to be pseudo-
symmetric (see Appendix B.4), so that I Elog ,cross 300 300( ( ) )f and

E I, logcross 300 300( ( ))f are equally informative in characterizing the
couplings between Ilog 300( ) and E300 (and obviously this remains
true for I Blog ,300 300( ( ) )). Our choice to ignore the couplings
between E300 and B300 is motivated by observational measure-
ments indicating a null EB cross spectrum (Planck Collaboration
XI 2020). However, note that these measurements do not say

12 Since we deal with fields with periodic boundary conditions, in order to
avoid redundancy in the coefficients, Δn should verify Nlog 2 1n 2( )D < + ,
where N is the number of pixels along the smallest axis of our images. Our
choice meets this criterion.
13 Note that this choice of p p,( )¢ values for the cross moments makes the
resulting set of moments invariant under the exchange of X and Y. 14 https://doi.org/10.5281/zenodo.7342682
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anything on higher-order cross statistics, so that this modeling
choice remains partly arbitrary.

The effective dimension of f(x) is ∼4.4× 104, which
amounts to less than 6% of the total number of pixels of x.
Samples are drawn by minimizing the objective function
defined in Equation (7), starting from a triplet of realizations of
three independent Gaussian random fields having the same
power spectrum as the empirical power spectrum of Ilog 300( ),
E300, and B300, respectively.

15 To perform this optimization, we
use the L-BFGS algorithm that is implemented in SciPy
(Byrd et al. 1995; Zhu et al. 1997; Virtanen et al. 2020).16 This
necessitates the computation of the gradients of the objective
with respect to the pixels of the optimized maps at every
iteration. We compute such gradients using automatic differ-
entiation as implemented in PyTorch (Paszke et al. 2019).
The sampling takes ∼6 minutes for 200 iterations on an
NVIDIA A100-SXM4 GPU with 40 GB of memory.

In the following, we also make use of a Gaussian equivalent
of this previous model as a baseline (referred to as “the
Gaussian model”). It is a microcanonical model conditioned by
the auto- and cross-WPH statistics that only estimate the
power- and cross-spectrum information, respectively. As
before, we ignore the couplings between E300 and B300. We
refer to Appendix C for additional details on this model and to
Figure 10 for visual examples of its samples. The samples are
drawn as above.

4.1.2. Visual Assessment

We show in Figure 2 the original simulated maps
I E Blog , ,300 300 300( ( ) ) (first row, from left to right) next to

three different samples (also referred to as “syntheses”) of the
WPH model (second to fourth rows).

The synthetic Ilog 300( ) maps statistically reproduce the main
features of the original map. Given the important variability of
structures across samples and the difficulty in distinguishing
original from synthetic maps at first glance, this model seems to
provide a relevant approximation of the underlying probability
distribution of the original data. We emphasize that to achieve
similar results, deep generative models usually require
thousands of observations, whereas here our model is only
based on a single example. In Aylor et al. (2021) and Thorne
et al. (2021), slightly more than 1000 total-intensity maps were
used to train a GAN and a VAE, respectively. While the visual
quality of the GAN syntheses is roughly equivalent to ours, this
is not the case for that of the VAE model, which notably fails to
reproduce small-scale patterns of the maps.

For the polarization maps E300 and B300, there is also
qualitative visual agreement between the synthetic and original
maps, although close scrutiny reveals subtle artifacts compared
to the I case. The diversity of structures across samples is still
satisfactory in this case.

Finally, spatial correlations between the total-intensity maps
and the polarization maps are also well reproduced. Circles
in black dashed lines show examples of such correlations for

both the original and synthetic data. Taking into account these
correlations is a significant improvement over both previous
microcanonical models (Allys et al. 2019; Regaldo-Saint Blancard
et al. 2020; Jeffrey et al. 2021) and deep generative models of dust
emission maps (Aylor et al. 2021; Krachmalnicoff & Puglisi 2021;
Thorne et al. 2021).

4.1.3. Quantitative Assessment

We choose to quantitatively assess the realism of the
WPH model by means of a statistical comparison. We build 10
independent samples of both the WPH and the Gaussian model,
following the same procedure as before. In Figure 3, we
compare the empirical power spectra, distribution of pixels
values, and the Minkowski functionals derived from the
samples of the WPH model, those of the Gaussian model,
and the original maps, for each of the observables I, E, and B
taken separately. For the WPH Gaussian models, we show
mean statistics across the 10 independent samples, and when
displayed, the error bars correspond to the standard deviations
across these samples. In Figure 4, we compare the joint
distributions of pixel values between all pairs of observables in
the original, WPH, and Gaussian cases. Contrary to Figure 3, in
the WPH and Gaussian cases, we show statistics estimated
from a single sample of the model. The results are discussed
below.
Power spectrum.—We first recall that our models directly

include power-spectrum constraints (see Appendix B.2 for
additional details), so that the power spectra of the synthetic
maps are expected to match those of the original maps very
well. We show the power-spectrum analysis in the top row of
Figure 3. While the power spectra of the E and B maps are
indeed very well reproduced, the agreement is slightly worse
for the I maps at small scales. The discrepancies take the form
of a very subtle excess of power in the synthetic maps. As
explained previously, we constrain the WPH statistics of Ilog( )
instead of I, so that these kinds of discrepancies are not
surprising. We have checked that the power spectrum of Ilog( )
is very well reproduced, as expected. These discrepancies thus
show that the WPH model does not perfectly capture the power
spectrum of the exponential of the constrained data. Similarly,
we observe comparable discrepancies between the power
spectrum of the Gaussian data and that of the original data.
Again, the Gaussian model applies to Ilog and not I, meaning
that I is modeled by a log-Gaussian model. Such discrepancies
thus underlie the limit of log-Gaussian models for dust
intensity maps.
Distribution of pixels.—We show the distributions of pixel

values in the second row of Figure 3. The bulks of these
distributions agree between the syntheses and the original maps
to a very good extent (three orders of magnitude on the y-axis).
Discrepancies appear in the tails of the distributions. These are
subtle for the polarization observables E and B but more
significant for the I maps. Note that Aylor et al. (2021) pointed
out similar difficulties in capturing the tails of these distribu-
tions with their GAN model. The quality of the constraints on
these statistics within the WPH model highly depends on our
choice of scaling moments. It is likely that we could improve
these results by taking into account more j values in the
definition of our subset of scaling moments (see Section 3.2.3).
Compared to the Gaussian model, the WPH model does much
better, showing its ability to capture non-Gaussian properties of
the data.

15 Note that the power spectrum of the maps is constrained during the
optimization; thus, we could have also started from independent realizations of
Gaussian white noises without impacting the results of this paper. Here, this
choice is only motivated by the numerical efficiency of the optimization.
16 The L-BFGS algorithm is a quasi-Newton method, which is not, properly
speaking, a gradient descent method. However, this algorithm has been shown
experimentally to be more suitable for solving this optimization problem
compared to standard gradient descent algorithms.
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Figure 2. Joint I E Blog , ,10 300 300 300( ( ) ) syntheses (from second to last rows) sampled from the generative model described in Section 4.1, and which only relies on the
statistics of the joint map shown in the top row (same joint map as the top row of Figure 1). Dashed circles show examples of spatial correlations across the
observables I, E, and B.
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Figure 3. Quantitative validation of the monofrequency model described in Section 4.1. We compare the empirical power spectra (first row), distributions of pixel
values (second row), and Minkowski functionals (third to fifth rows) computed separately for the I, E, and B maps (from left to right) of the original, WPH, and
Gaussian data. For the WPH and Gaussian models, we show mean statistics across 10 independent samples, and the errors are the standard deviations across these
samples. Vertical dashed lines on the power-spectrum plots mark the central frequencies of the wavelets used for this analysis.
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Minkowski functionals.—Minkowski functionals are often
used to characterize the morphological aspects of smooth
random fields. In cosmology, these have been used in various
contexts, such as the investigation of potential non-Gausianity
and anisotropy in the CMB (see, e.g., Planck Collaboration Int.
XXIII 2015; Planck Collaboration VII 2020), the characteriza-
tion of the large-scale structure (e.g., Codis et al. 2013), or that
of weak-lensing data (e.g., Parroni et al. 2020). In the ISM
community, these are, however, much less popular statistics,
although it has already been applied in the context of dust
modeling (Aylor et al. 2021; Burkhart 2021; Krachmalnicoff &
Puglisi 2021). In two dimensions, there are three Minkowski
functionals 0 , 1 , and 2 , which are defined as follows.
For a given map x and a Î , we define the excursion set
Γα= {r | x(r)� α}, which simply corresponds to the region
where the field is greater than a given threshold. The
Minkowski functionals associated with x are

A
da

1
, 150( ) ( )òa =

Ga


A
dl

1

2
, 161( ) ( )òa

p
=

¶Ga


A
dl

1

2
, 172 2

( ) ( )òa
p

k=
¶Ga



where A is the total area of the field; ∂Γα is the boundary of Γα;
da and dl are the surface and line elements associated with Γα

and ∂Γα, respectively; and κ is the curvature of ∂Γα. The
functionals 0 , 1 , and 2 are called the area, perimeter, and
genus (i.e., number of “holes”) characteristics, respectively.

We show in the third, fourth, and fifth rows of Figure 3 the
Minkowski functional statistics for our data. We compute these

statistics using the Python package QuantImPy (Boelens &
Tchelepi 2021). The area 0 just gives another perspective of
the previous distributions of pixels, as it directly relates to the
cumulative distribution of pixel values. Contrary to this, the
perimeter 1 and genus characteristics 2 provide new
insights on our models. We see that for the polarization
observables E and B, these statistics are very well reproduced
by the WPH model. In comparison, the Gaussian model
performs poorly. Comparable results on polarization data were
obtained in Krachmalnicoff & Puglisi (2021) using a GAN
(although in a slightly different context). Being able to
reproduce such results with a model based on a single
observation and without training is one of the successes of
our approach. On the other hand, for I, although the
WPH model seems to do slightly better than the Gaussian
model for 1 , this is less clear for 2 . This underlies the
higher difficulty of the WPH model to perfectly capture the
complexity of I maps. Note that we would get similar results
for Ilog( ) on 1 and 2 since applying a pointwise
monotonous function to our maps would not impact the level
sets involved in the derivation of these statistics.
Joint distribution of pixels.—Figure 4 shows the joint

distributions of pixel values of I Elog ,( ( ) ), I Blog ,( ( ) ), and
(E, B) (from top to bottom row) for our data. These statistics
are, again, mostly constrained by the scaling moments we have
introduced in the WPH model. The agreement of these
distributions between the WPH model and the original data is
satisfactory, and it is significantly better than the Gaussian case.
Note that no cross constraint between E and B was imposed, so
that it is not surprising to find a slightly worse agreement of the
contours. In order to make sure that this agreement is not a
mere consequence of the agreement of the marginal distribu-
tions of pixel values, we have estimated the mutual information
associated with each of these distributions.17 The results of this
analysis are shown in Table 1. These show a significant
dependence between all pairs of observables on the original
data, as well as a significantly better capture of these
dependencies in the WPH model compared to the Gaussian
model.

4.2. Multifrequency Model

4.2.1. Description of the Model

We now define a generative model of the multifrequency
simulated maps (I300, I500, I800, I1500, I3000) as follows. For the

Figure 4. Quantitative validation of the monofrequency model described in
Section 4.1. We compare the joint distributions of the pixel values of

I Elog ,( ( ) ), I Blog ,( ( ) ), and (E, B) (from top to bottom) in the original, WPH,
and Gaussian maps (from left to right). We add, for each of these plots,
contours at 0.5σ, 1σ, and 2σ. For the WPH and Gaussian models, statistics are
estimated from a single sample.

Table 1
Mutual Information (in Shannon Units) Associated with the Joint Distributions
of Pixel Values of I Elog ,10( ( ) ), I Blog ,10( ( ) ), and (E, B), Estimated for the

Original, WPH, and Gaussian Data

Original WPH Gaussian

I Elog ,10( ( ) ) 0.092 0.095 ± 0.006 0.033 ± 0.002

I Blog ,10( ( ) ) 0.122 0.101 ± 0.006 0.020 ± 0.003

(E, B) 0.059 0.054 ± 0.008 0.014 ± 0.002

Note. In the WPH and Gaussian cases, the values correspond to the means and
standard deviations of the mutual information across 10 independent samples.

17 The mutual information of two random variables X and Y quantifies the
mutual dependence between X and Y and is defined as the Kullback–Leibler
divergence of the joint distribution pX,Y from the product of the marginal
distributions pXpY.
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same reasons as before, we prefer to work with the logarithm of
these intensity maps. Since the maps from one frequency
channel to another look very similar (modulo a global scaling
or shift of the mean), we choose to impose statistical constraints
on the differences of the logarithms of these maps (which are
also the logarithms of the ratios of these maps) between
consecutive frequency channels. One of the maps also needs to
be constrained in absolute to serve as a reference. Conse-
quently, with ν1,...,ν5= 300,...,3000 GHz, we define a micro-
canonical model of  x I I Ilog log i1 4i i1 1( ( )) ( ( ))= Ån n n+

conditioned by

   x x x x, . 18i i i j i jauto 1 5 cross 1 5( ) ( ( )) ( ( )) ( )f f f= Å <

Contrary to the monofrequency case, we consider cross
constraints between all the possible pairs of maps. Although
this significantly increases the dimensionality of the statistical
description, as well as the computational cost of the sampling
procedure, this gives the best visual and quantitative results in
what follows. The effective dimension of f(x) is ∼8.9× 104,
which amounts to ∼7 % of the total number of pixels of x. The
sampling procedure takes ∼17 minutes for 200 iterations on an
NVIDIA A100-SXM4 GPU with 40 GB of memory. We make
use of a single sample of this model in the following.

4.2.2. Visual Assessment

We show in Figure 5 a selection of maps derived from the
resulting multifrequency synthesis (bottom row) below the
corresponding original maps (top row). We show the Ilog 300( )
maps and the ratio maps I Ilog 800 300( ) and I Ilog 3000 1500( )
(from left to right). Visually, the synthetic maps are very
satisfactory, with a realistic filamentary structure. Moreover,
spatial correlations from one map to another are consistent with
those visible on the original maps. This shows that our
statistical description seems to properly capture interactions
between frequency channels.

4.2.3. Quantitative Assessment

We quantitatively assess the realism of such multifrequency
models by focusing on how well both the original and synthetic
multifrequency maps can be fitted by an MBB model and
comparing their respective parameters. MBB models are
ubiquitous in the interstellar dust literature and constitute the
standard means to model and parameterize the frequency
dependence of emission maps (see, e.g., Planck Collaboration
XI 2014). These are directly related to the model of the
emission and absorption properties of dust grains that was
employed in Section 2 to build our original simulated maps.
Indeed, an MBB model rĨ ( )n is defined as

r r rI B T , 19r˜ ( ) ( ) ( ( )) ( )( )t n=n
b

n

where, in addition to the spectral index map β(r) and
temperature map T(r), we also introduce the optical depth
map τ(r).
For each pixel of both the original and synthetic multi-

frequency data, we fit the parameters of this model to the data
by performing a nonlinear least-squares minimization. To do
that, we employ the SciPy implementation of the Levenberg–
Marquardt algorithm (Virtanen et al. 2020). We perform
the minimization on logarithmic values and initialize the
parameters with T0= 20 K, β0= 1.5, and rI0 300 ( )t =

B T300 00( ( ))b
n . We show in Figure 6 the resulting distribution

of r
2c values. The r

2c values are nowhere larger than
∼3× 10−4, showing that the fit performs very well on both
the simulated and synthetic data.18 This result is not
particularly surprising for the original data (albeit nontrivial),
given the fact that we had employed an MBB-like law of dust
grain emission at the voxel level. However, no prior
information on this MBB law was given in our model, which

Figure 5. Ilog10 300( ), I Ilog10 800 500( ), and I Ilog10 3000 1500( ) synthetic maps (bottom row, from left to right) sampled from the generative model described in Section 4.2,
and which is based on the maps shown in the top row.

18 Since we perform the fit on logarithmic values, r
2c roughly correspond to the

mean square relative error.
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shows that our statistical description has been somehow able to
capture this SED. Moreover, the agreement of the r

2c
distributions is a stronger result, as it shows that the MBB is
as well suited to model the SED of the synthetic maps as it is
for the original maps, which is the ideal behavior of such a
model.

We show in Figure 7(a) the resulting parameter maps τ, T,
and β for both the original (top row) and synthetic data (bottom
row), as well as their distributions in panel (b). Let us first
remark that the anticorrelation between β and T and the
anticorrelation between n and T that were instilled at the voxel
level when building the simulated data in Section 2.3 are
clearly reflected in the parameter maps of this (projected)
simulated data. Indeed, T clearly tends to be higher (lower) for
low (high) values of τ, and similarly, T and β appear to be
anticorrelated. The synthetic parameter maps exhibit the same
properties. Moreover, the consistency of the structures between
the synthetic and original parameter maps shows that our model
is able to capture the spatial variations of this frequency
dependence in a very satisfactory way. Comparisons of the
distributions of these parameter maps strengthen this
conclusion.

Note that, in real observational conditions, departures from
the MBB model are expected in the dust signal. Formalisms to
deal with them have been studied in the literature for both total-
intensity (see, e.g., Chluba et al. 2017; Hensley & Bull 2018;
Mangilli et al. 2021) and polarization data (Ichiki et al. 2019;
McBride et al. 2022; Vacher et al. 2023), and we expect such
more refined models to play a central role for high-precision
dust foreground modeling in the context of primordial B-mode
detection. In this context, we believe that learning such models
directly from the data, as shown here, constitutes a valuable
complementary approach to the accurate modeling of this
frequency dependence.

5. Conclusion

We have introduced a generic methodology using
WPH statistics to build generative models of multichannel
non-Gaussian data. Our approach is purely data driven, and the
models can be derived from a single example of simulated or
observational data. Models are microcanonical gradient descent
models conditioned by the set of WPH statistics of the target
data. We have reviewed the main ideas of the underlying

formalism and introduced an extended family of WPH statistics
enhancing previous works.
In order to characterize the couplings between two different

channels, we have introduced the cross-WPH moments. These
are key to this paper. They correspond to direct extensions of
the (auto-)WPH moments previously introduced in the
literature. They include the cross-spectrum information but
also quantify non-Gaussian interactions across channels. We
also have introduced a new family of moments, called auto/
cross-scaling moments, that is designed to probe the largest
scales and better constrain the single map or joint one-point
distribution. The Python package PyWPH,19 previously released
in Regaldo-Saint Blancard et al. (2021), has been updated to
easily build such multichannel generative models from two-
dimensional data.
Here we have applied this methodology to multichannel

simulated maps of the interstellar dust emission. The simulated
maps were built from an MHD simulation assuming a simple
phenomenological model of the multifrequency emission of
dust grains. We have constructed and studied two separate
generative models:

1. A model of a monofrequency (I, E, B) input taking into
account I− E and I− B correlations. Samples of this
model were shown to exhibit features statistically
consistent with those of the original maps, including
correlated structures across I, E, and B. A quantitative
assessment demonstrated that the empirical power
spectra, distributions of pixel values, and Minkowski
functionals of the I, E, and B synthetic maps match the
corresponding statistics of the original maps to a good
extent. However, slight discrepancies of these statistics
were found for the I maps. Finally, an analysis of the joint
distributions of pixel values has shown that our model
captures the dependencies between the observables to a
good extent.

2. A model of a multifrequency I( )n n input, for five
frequency channels, and taking into account the strong
correlations of the maps across the frequency axis.
Samples of the model exhibit features and correlations
consistent with those of the original maps. We have
quantitatively assessed this model by fitting the SED of
our data with an MBB law. This law fits very well and
consistently both the synthetic maps and the original
maps. The comparison of the parameter maps has shown
a very good agreement, underlining the success of our
approach in capturing the spatial variations of the SED
from the data.

The perspectives of this work are numerous.
First, we underline that the statistical validation of our

models could be improved. Indeed, a more rigorous approach
would be to compare the statistics of the samples of our model
to those of a large number of independent samples of the
random field X we wish to approximate. We have chosen here
to build our model from a single observation x, implicitly
assuming that the statistics of x are representative of those of X
(which relates to an “ergodic” assumption; see Bruna&
Mallat2019), and consequently, the validation of our models
was performed relatively to the statistics of x only. We could go
beyond this assumption by studying the variability of the

Figure 6. Distributions of r
2c values associated with the pixelwise MBB fits on

the original and synthetic multifrequency I maps.

19 https://github.com/bregaldo/pywph/
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statistics of a collection of samples {xi} of X in our analysis and
validating our model with respect to this variability. However,
let us mention that in our case the data rely on a costly MHD
simulation, which prevents the construction of an arbitrarily
large number of samples (for a discussion, see Regaldo-Saint
Blancard et al. 2020).

We will address the modeling of multifrequency polarization
maps in a follow-up paper. In the case of multifrequency I
maps, we have constructed a microcanonical model based on
the ratio maps between consecutive channels. Proceeding
similarly for E and B is not an option since these variables can
exhibit null values. Moreover, the nature of the linear
polarization observable is vectorial, which might require the
introduction of a complex variable E+ iB, or Q+ iU as in
Regaldo-Saint Blancard et al. (2020, 2021).20 These modeling
choices should take inspiration from the literature on analytical
models of the dust polarization SED (Ichiki et al. 2019;
McBride et al. 2022; Vacher et al. 2023).

From a more general perspective, the cross-WPH statistics
open a new way to analyze and combine multichannel data,
allowing us to efficiently describe and model non-Gaussian
correlations across different maps. Moreover, given a
WPH model of the interactions between two channels A and
B, and combined with the formalism of microcanonical models,
these statistics should allow for statistically relevant predictions
of B maps based on the observation of A maps. Such
“conditioned” models will be explored in further works.
In the context of dust modeling for CMB analysis, such

generative models are expected to improve forward models of
the CMB sky. In Jeffrey et al. (2021), a WPH model of dust
polarization maps played a crucial role for CMB foreground
marginalization in a likelihood-free inference framework. In
this work, the inference was performed on monofrequency
maps; the present paper now paves the way to an extension to
the multifrequency case.
Finally, this work is expected to improve statistical

denoising methods of dust polarization maps, such as
introduced in Regaldo-Saint Blancard et al. (2021). Taking
into account the multichannel aspect of the data should provide

Figure 7. (a)MBB parameter maps log10( )t , T, and β (from left to right) resulting from the pixelwise fits of an MBB model to both the original (top row) and synthetic
(bottom row) multifrequency I maps. (b) Resulting distributions of these parameters.

20 Note that this is not an obstacle to our methodology and that the
computation of WPH statistics on complex-valued maps is supported by
PyWPH.
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more accurate estimations of the statistics of the noise-free
emission since observations at different frequency bands are
usually affected by independent noise processes. Note that very
recently, and in parallel to this work, a significant step has been
taken in this direction by Delouis et al. (2022) employing WST
statistics. In that paper, the authors extended the WST to the
sphere and introduced cross-WST statistics to characterize
correlations across observables in order to statistically denoise
Planck all-sky maps of the dust emission.

We thank Michael O’Brien and Blakesley Burkhart for their
help in investigating a bispectrum validation of the models of
this paper. F.B. acknowledges support from the Agence
Nationale de la Recherche (project BxB: ANR-17-CE31-0022).

Software:NumPy (Harris et al. 2020), PyTorch (Paszke et al.
2019), PyWPH (Regaldo-Saint Blancard et al. 2021), Quan-
tImPy (Boelens & Tchelepi 2021), SciPy (Virtanen et al. 2020).

Appendix A
Maximum Entropy Microcanonical Models

In this appendix, we define maximum entropy microcano-
nical models, which underlie the microcanonical gradient
descent models introduced in Section 3.1. This presentation is
based on Bruna& Mallat (2019), and we refer to this paper for
additional details.

Microcanonical models are guided by the principle of
maximum entropy, which states that the probability distribution
that best represents our knowledge of some system is that with
the largest entropy (in the sense of information theory).

Let us consider a random field X, with x one of its
realizations. We want to approximate the distribution of X
based on this single realization x. In practice, we make some
statistical measurements on x that define a vector of statistics f
(x). We believe f(x) to be sufficiently “exhaustive” to describe
the statistical properties of X.21 Typically, the realization x lives
in m, while f(x) lives in n with n<m. We introduce
microcanonical sets as ensembles of vectors of m whose
statistics are “sufficiently close” to those of x. Formally, for a
given ò> 0, we define the microcanonical set Ωò as

 y y x , A1m{ ∣ ( ) ( )∣ } ( )f fW = Î - 

where ∣·∣ is the Euclidean norm on the statistical space n.
In this context, a maximum entropy microcanonical model

defined on Ωò is a probability distribution μò supported in Ωò

with maximal entropy. The entropy of a probability distribution
μ here refers to its differential entropy, called H(μ) and defined
as

H f y f y dylog , A2( ) ( ) ( ) ( )òm = - m m

where fμ is the probability density function associated with μ.
Assuming that the function f allows Ωò to be compact, this
maximum entropy distribution μò is simply the uniform
distribution on Ωò and is defined by its uniform density:

f y
y

dy

1
. A3( ) ( ) ( )

ò
=m

W

W






The relevance of this kind of model directly depends on our
choice of statistical measurements, represented by the function
f, as well as on the value of ò, which is a proxy of the volume
of the microcanonical set Ωò. Ideally, we want to choose f and
ò so that typical samples of X are contained in Ωò and,
conversely, typical samples of μò are representative of those
of X.
Even if we manage to define relevant f and ò so that the

corresponding maximum entropy microcanonical model cor-
rectly approximates the distribution of X on paper, we still need
to find an efficient way to draw samples from μò. Usual
strategies make use of Markov Chain Monte Carlo algorithms;
however, these algorithms reach computational limits when the
dimension of the samples m increases.22 For the applications of
this paper, these are not an option. Microcanonical gradient
descent models as defined in Section 3.1 allow us to
circumvent this sampling problem, although these are no
longer of maximum entropy in general.

Appendix B
Additional Details on the WPH Statistics

B.1. Filters

Bump-steerable mother wavelet.—The mother bump-steer-
able wavelet is defined in Fourier space as follows:

k

k k

k k

k k k
kexp 1

cos arg 1 arg , B1

k

L

0
2

0
2

0
2 0,2

1
0, 2

0⎜ ⎟
⎛
⎝

⎞
⎠

ˆ ( ) ( )
( )

· ( )

( ( )) · (∣ ( )∣) ( )

[ ]

[ ]

y =
- -
- -

´ p
-

with kk ∣ ∣= , 1A(x) the indicator function that returns 1 if x ä A
and 0 otherwise, and k0= 0.85π the central wavenumber of the
mother wavelet. In this paper, we work with 512× 512 maps
and L= 4. We show in Figure 8 one example wavelet from the
resulting bank in both physical and Fourier space.
Gaussian filter.—The Gaussian filters used in this paper are

dilated versions of a Gaussian function j, which is defined in
Fourier space by the following:

k
k

exp
2

, B2
2

2
⎜ ⎟
⎛
⎝

⎞
⎠

ˆ ( ) ∣∣ ∣∣ ( )j
s

= -

with σ= 0.496× 2−0.55k0 (following Zhang & Mallat 2021).

B.2. Properties of the WPH Moments

The auto-WPH moments are able to capture interactions
between different scales of X thanks to the phase harmonic
operator. Indeed, the covariance between X ∗ ψλ and X y* l¢
vanishes when the wavelets ψλ and yl¢ have nonintersecting
bandpasses, and it is otherwise a function of the power
spectrum of X and of the bandpasses of the wavelets (Allys
et al. 2020; Zhang & Mallat 2021). This is a consequence of the
following relation:

k k k kC S e d , B3k
X

i
,1, ,1( ) ( ) ˆ ( ) ˆ ( ) ( )·òt y y= t

l l l l
-*

with SX the power spectrum of X (for a proof, see Zhang &
Mallat 2021). With proper p and p¢ values, the phase harmonic
operator can make X p[ ]y* l and X p[ ]y* l¢

¢ comparable in
21 For the statistics of a realization x to be representative of the statistics of X,
we need to make an additional assumption of ergodicity (see Bruna&
Mallat2019).

22 In general, Markov chain mixing time depends on the exponential of m
(Levin & Peres 2017).
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the sense that they share common spatial frequencies, allowing
an extraction of high-order information through their covar-
iance. Conveniently, this operator is a Lipschitz continuous
operator, that is we have for all z z, 2¢ Î , z p∣[ ] -

z p z zmax , 1p[ ] ∣ (∣ ∣ )∣ ∣¢ - ¢ (Mallat et al. 2020). This prevents
uncontrolled amplifications and leads to estimators with
reduced variance compared to equivalent moments where the
phase harmonic operator would be replaced by a standard
exponentiation (Zhang & Mallat 2021).

To illustrate the importance of the phase harmonic operator
to measure phase alignment between scales, we show in
Figure 9 how the amplitude and phase maps of x ∗ ψλ and
x y* l¢ compare for two different oriented scales λ and l¢,
with x the I300 map built in Section 2.3. We choose λ= (3, 0)
and 4, 0( )l¢ = , so that ψλ and yl¢ probe similar orientations
but different scales, with yl¢ probing scales that are twice as
large as those probed by ψλ. The amplitude maps show local
variations of the signal x filtered at different scales, with
naturally coarser variations in x∣ ∣y* l¢ than in |x ∗ ψλ|. The
phase maps present almost periodic oscillations tending to be
vertically aligned. However, these maps are incoherent in the
sense that the average frequency of oscillation of the phase map

xarg( )y* l is approximately twice that of xarg( )y* l¢ . The
phase harmonic operator with k= 2 transforms xarg( )y* l¢
into a phase map (bottom right map) that is much more
coherent with xarg( )y* l . Consequently, the sample

covariance of these maps does not vanish and quantifies the
phase alignment between x ∗ ψλ and x y* l¢.

B.3. Subset of Auto-WPH Moments

Allys et al. (2020) identified a relevant set of auto-
WPH moments to build models of simulated data of the
large-scale structure of the universe. In the present work, we
define WPH statistics that are directly inspired by this work,
although they are made slightly more optimal by taking out
coefficients that were redundant. We will consider five
categories of moments defined as follows:

1. The S(1,1) moments, of the form C ,1, ,1( )t =l l
r rX XCov ,( ( ) ( ))ty y* * +l l , at every τn,α. They

measure weighted averages of the power spectrum over
the bandpass of ψλ (see Equation (B3)).

2. The S(0,0) moments, of the form C ,0, ,0 ( )t =l l
r rX XCov ,(∣ ( )∣ ∣ ( )∣)ty y* * +l l , at every τn,α. They

capture information related to the sparsity of the data in
the bandpass of ψλ.

3. The S(0,1) moments, of the form C ,0, ,1( )t =l l
r rX XCov ,(∣ ( )∣ ( ))ty y* * +l l , at τ= 0 only. They

capture information related to the couplings between the
scales included in the same bandpass.

4. The C(0,1) moments, of the form C ,0, ,1( )t =l l¢
r rX XCov ,(∣ ( )∣ ( ))ty y* * +l l¢ , considering  j0 <

j J 1¢ - , at every τn,α when q q= ¢ and at τ= 0 only

Figure 8. Bump-steerable wavelet ψ2,π/4 shown in physical space (real part on the left and imaginary part in the middle) and Fourier space (right).

Figure 9. Comparison of the amplitude and phase maps of x ∗ ψ2,0 and x ∗ ψ4,0, wherex is the map shown on the left. The action of the phase harmonic operator is
shown on the phase map of x ∗ ψ4,0. Figure inspired by Allys et al. (2020).
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when q q¹ ¢. They capture information related to the
correlation between local levels of oscillation for the
scales in the bandpasses associated with ψλ and yl¢.

5. The Cphase moments, of the form C p,1, , ( )t =¢ ¢l l

r rX XCov , p( ( ) [ ( )] )ty y* * +l l¢
¢ with p¢ =

2 1j j >¢- , considering  j j J0 1< ¢ - and q q= ¢, at
every τn,α. They capture information related to the
statistical phase alignment of oscillations between the
scales in the bandpasses associated with ψλ and yl¢.

Symmetries in the subset of moments.—We identify in the
following symmetries with respect to the angular variables that
will allow us to define optimal ranges for the angular variables,
avoiding redundancy in the statistical content of the
WPH statistics. We denote, e.g., by S(1,1)( j, θ, n, α) the moment
Cλ,1,λ,1(τn,α) with λ= ( j, θ), and we use similar notations for
the other categories of moments.

For a real-valued statistically homogeneous random field X,
and for a choice of wavelets satisfying the symmetry

j j, ,y y=q p q+ (valid when kˆ ( )y Î for all k, which is the
case of bump-steerable wavelets), we identify the following list
of symmetries:

S j n S j n, , , , , , , B41,1 1,1( ) ( ) ( )( ) ( )q p a q a+ =

S j n S j n, , , , , , , B51,1 1,1( ) ( ) ( )( ) ( )q a p q a+ =

S j n S j n, , , , , , , B60,0 0,0( ) ( ) ( )( ) ( )q p a q a+ =

S j n S j n, , , , , , , B70,0 0,0( ) ( ) ( )( ) ( )q a p q a+ =

S j S j, , , B80,1 0,1( ) ( ) ( )( ) ( )q p q+ =

C j j n C j j n, , , , , , , , , , ,

B9

0,1
1 1 2 2

0,1
1 1 2 2( ) ( )

( )

( ) ( )q p q a q q a+ =

C j j n C j j n, , , , , , , , , , ,

B10

0,1
1 1 2 2

0,1
1 1 2 2( ) ( )

( )

( ) ( )q q p a q q a+ =

C j j n

C j j n

, , , , ,

, , , , , . B11

phase
1 2

phase
1 2

( )

( ) ( )

q p q p a

q q a

+ +

=

Proofs of these relations essentially stem from the facts
that X Y Y XCov , Cov ,( ) ( )= and that X j

p
,[ ]y* =q p+

X j
p

,[ ]y* q for any p Î . The latter relation is a conse-
quence of the commutativity of the complex conjugation with
the phase harmonic and convolution operations.

Coefficients that are either equal or related by a complex
conjugation operation are said to be redundant. The previous
relations show that, in order to avoid redundancy, it is sufficient
to consider wavelets with θ ä [0, π). Moreover, to avoid further
redundancy, for the S(1,1) and S(0,0) moments, it is sufficient to
consider τn,α vectors with α ä [0, π) only. We show in Table 2
the resulting number of auto coefficients per class of moments
for the parameters used in this work.

B.4. Subset of Cross-WPH Moments

Just like before, we focus on a specific subset of cross-
WPH moments. We make sure that this subset is nonredundant
and pseudo-symmetric under the exchange of X and Y (modulo
complex conjugation). These moments are the following:

1. The S 1,1( )
´ moments, of the form C ,1, ,1( )t =l l

´

r rX YCov ,[ ( ) ( )]ty y* * +l l . Note that they mea-
sure weighted averages of the cross spectrum over the
bandpass of ψλ.

2. The S 0,0( )
´ moments, of the form C ,0, ,0( )t =l l

´

r rX YCov ,[∣ ( )∣ ∣ ( )∣]ty y* * +l l .
3. The S 0,1( )

´ moments, of the form C ,0, ,1( )t =l l
´

r rX YCov ,[∣ ( )∣ ( )]ty y* * +l l .
4. The S 1,0( )

´ moments, of the form C ,1, ,0( )t =l l
´

r rX YCov ,[ ( ) ∣ ( )∣]ty y* * +l l .
5. The C 0,1( )

´ moments, of the form C ,0, ,1( )t =l l¢
´

r rX YCov ,[∣ ( )∣ ( )]ty y* * +l l¢ , considering 0
j j J 1< ¢ - .

6. The C 1,0( )
´ moments, of the form C ,0, ,1( )t =l l¢

´

r rX YCov ,[ ( ) ∣ ( )∣]ty y* * +l l¢ , considering 0
j j J 1¢ < - .

7. The C phase
´ moments, of the form C p,1, , ( )t =¢ ¢l l

´

r rX YCov , p[ ( ) [ ( )] ]ty y* * +l l¢
¢ with p¢ =

2 1j j >¢- , considering  j j J0 1< ¢ - and q q= ¢.
8. The C inv,phase

´ moments, of the form C p, , ,1( )t =l l¢
´

r rX YCov ,p[[ ( )] ( )]ty y* * +l l¢ with p =
2 1j j >- ¢ , considering  j j J0 1¢ < - and q q= ¢.

Moreover, for this work, inspired by Brochard et al. (2022), we
only consider cross-WPH moments with τ= 0. We show in
Table 2 the resulting number of cross coefficients per class of
moments for the parameters used in this work.

B.5. Normalized Estimates

In practice, our statistical coefficients are all normalized
similarly to Zhang & Mallat (2021) and Allys et al. (2020).
This normalization has been shown to speed up the minimiza-
tion involved during the sampling process of microcanonical
gradient descent models (Zhang & Mallat 2021).
The normalization of the auto-WPH and scaling coefficients

depends on the target map x0 involved in this minimization.
Denoting by C p p, , ,˜ ( )tl l¢ ¢ and Lj p p, ,˜ ¢ the normalized estimates of
C p p, , , ( )tl l¢ ¢ and Lj p p, , ¢, respectively, we choose

r r
C

x x

x x
, B12p p

p p

p p
, , ,
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, 2
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t
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á + ñ
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Table 2
Number of Statistical Coefficients per Class of Moments for the Parameters Used in This Work

S(1,1) S(0,0) S(0,1) S(1,0) C(0,1) C(1,0) Cphase Cphase,inv L Total Ratio (%)

Auto 544 544 32 N/A 4032 N/A 1776 N/A 12 6940 ∼2.6
Cross 32 32 32 32 448 448 112 112 16 1264 ∼0.24

Note. The last column gives the ratio of the total number of coefficients to the number of pixels in one (or two, for the cross case) 512 × 512 image(s).
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where the angle brackets stand for a spatial mean on r, and
x x xp p p,

0[ ] [ )]( ) y y= * - á * ñx
x x . Note that this definition

of x( ξ, p) depends on x0.
For cross coefficients, we define similarly

r r
C

x y

x y
, B14p p

p p
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, , ,

, ,
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, 2
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, 2
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Appendix C
Gaussian Model

The Gaussian model of the data x I E Blog , ,300 300 300( ( ) )= ,
which is used as a baseline in Section 4.1, is defined as follows.
It is a microcanonical model conditioned by

C1

x I E B

I E I B

log

log , log , ,

G
auto
G

300 auto
G

300 auto
G

300

cross
G

300 300 cross
G

300 300 ( )
( ) ( ( )) ( ) ( )

( ( ) ) ( ( ) ))

f f f f

f f

= Å Å

Å Å

where auto
G (·)f and ,cross

G (· ·)f only include normalized estimates of

the S(1,1) and S 1,1( )
´ moments as introduced in Appendices B.3

and B.4, respectively. Such microcanonical models are rigor-
ously Gaussian (Bruna& Mallat2019). We show in Figure 10
three different samples of this model (from second to last row)
next to the original data x (first row).
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Figure 10. Same as Figure 2, but for the Gaussian model.
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