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Finite-size scaling above the upper critical dimension is a long-standing puzzle in the field of statistical
physics. Even for pure systems various scaling theories have been suggested, partially corroborated by numerical
simulations. In the present manuscript we address this problem in the even more complicated case of disordered
systems. In particular, we investigate the scaling behavior of the random-field Ising model at dimension D = 7,
i.e., above its upper critical dimension Du = 6, by employing extensive ground-state numerical simulations. Our
results confirm the hypothesis that at dimensions D > Du, linear length scale L should be replaced in finite-size
scaling expressions by the effective scale Leff = LD/Du . Via a fitted version of the quotients method that takes this
modification, but also subleading scaling corrections into account, we compute the critical point of the transition
for Gaussian random fields and provide estimates for the full set of critical exponents. Thus, our analysis indicates
that this modified version of finite-size scaling is successful also in the context of the random-field problem.

DOI: 10.1103/PhysRevE.108.044146

I. INTRODUCTION

The random-field Ising model (RFIM) represents one of
the simplest models of cooperative behavior with quenched
disorder [1–16]. Despite being seemingly simple in terms
of definition, the combined presence of random fields and
the standard Ising behavior accounts for a vast range of
new physical phenomena; many of them remain unresolved
even after 50 years of extensive research. Additionally, its
direct relevance to two- and three-dimensional experimental
analogs in condensed-matter physics, such as diluted antifer-
romagnets in a field, colloid-polymer mixtures, and others
[14,17–19] establishes the RFIM as one of the most promi-
nent platform models for the designing and/or deciphering of
experiments. Another asset is that a vast majority of nonequi-
librium phenomena including critical hysteresis, avalanches,
and the Barkhausen noise [20–23] can be studied through the
RFIM. For a review but also a summary of most recent results
we refer to Ref. [24].

It is well established that the physically relevant dimen-
sions of the RFIM lay between 2 < D < 6, where Dl = 2 and
Du = 6 are the lower and upper critical dimensions of the
model, respectively [1]. Although the critical behavior of the
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RFIM at these dimensions has been scrutinized by a variety
of methods, a consensus has not been reached for decades.
Fortunately, over the last few years several ambiguities have
been put at ease due to the development of a powerful panoply
of simulation and statistical analysis methods, that have set the
basis for a fresh revision of the problem [25]. In fact, some of
the main controversies have been resolved, the most notable
being the illustration of critical universality in terms of dif-
ferent random-field distributions [26–28]—see also Ref. [29]
where it was shown that the diluted Ising model in a field
belongs also to the same universality class with the RFIM
as predicted by the perturbative renormalization group—and
the restoration of supersymmetry and dimensional reduction
at D = 5 [28,30–33]. We refer the reader to Refs. [34–39] for
additional evidence supporting this latter respect. Furthermore
the large-scale numerical simulations of Refs. [26–28,30,33]
have provided high-accuracy estimates for the full spectrum
of critical exponents, putting at rest previous fears of possible
violations of fundamental scaling relations.

On the other hand for D � Du the RFIM is expected to
show dimension-independent mean-field behavior [1], with
the critical exponents holding the mean-field values of the
pure Ising ferromagnet (exactly at D = Du the well-known
logarithmic corrections appear [40–42]). At this point we
should emphasize that although the method of finite-size scal-
ing has been successfully applied to the analysis of results by
numerous numerical simulations for spin models at D < Du,
the situation becomes more complicated when one considers
the system above its Du, as discussed extensively for the 5D
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Ising model (note that Du = 4 for the pure Ising ferromagnet)
[43–52].

For periodic boundary conditions a possible solution has
been proposed. The key point in these studies [43–52] is that
at dimensions D > Du the linear length scale L of the system
should be replaced in finite-size scaling expressions by a new
effective length scale of the form Leff = LD/Du , an ansatz
originally proposed by Kenna and Lang in the framework of
the φ4 theory [40]. In fact, the ratio D/Du is the so-called
exponent introduced by Kenna and Berche in Ref. [50] and
elaborated in several subsequent works—see Ref. [52] where
an overview of the renormalization group as a successful
framework to understand critical phenomena above the upper
critical dimension is provided. The proposed scaling theory
not only concerns the Ising model but it is believed to be more
general. In particular, the finite-size scaling of percolation
above its upper critical dimension has also been successfully
analyzed in the same framework [53]. However, we should
point out that the problem is highly nontrivial as the selection
of boundary conditions qualitatively changes the scaling [54],
so that the case of free (or other type of) boundary conditions
is not yet completely settled [49,52].

What is even more, for disordered systems, and in particu-
lar for the RFIM, not much has been achieved in this direction,
with the exception of Ref. [42] where a qualitative picture
of the transition has been provided at high dimensions. In
the context of spin glasses, see Ref. [55]. To this end, we
present in the current work an extensive numerical study of
the RFIM at D = 7 using exact ground-state simulations and
a suitable finite-size scaling method based on phenomeno-
logical renormalization that takes into account the effective
length scale Leff . We locate the critical point of the transition
for Gaussian fields and monitor the size evolution of effective
critical exponents. Our final results are compatible up to a very
good numerical accuracy with their mean-field expectations.
Instrumental in our analysis is the use of a proper value for the
corrections-to-scaling exponent ω. In this respect, we provide
in Appendix a detailed derivation of ω for the large-N limit of
the O(N ) model, starting from Brézin’s analysis [56]. We find
that the exponent ω corresponding to the O(N ) model plays a
crucial role for a safe determination of the critical properties
in the 7D RFIM.

The remainder of this manuscript is as follows: In Sec. II
the model and methods employed are described shortly and
in Sec. III our main results on the scaling aspects of the 7D
RFIM are presented. We conclude in Sec. IV by providing a
summary and an outlook for future work in this direction.

II. MODEL AND METHODS

The Hamiltonian of the RFIM is

H = −J
∑
〈xy〉

SxSy −
∑

x

hxSx, (1)

with the spins Sx = ±1 on a D = 7 hypercubic lattice with
periodic boundary conditions and energy units J = 1, and
hx independent random magnetic fields with zero mean and
variance σ 2. Given our previous universality confirmations
[26–28], we have restricted ourselves to Gaussian normal-
distributed {hx}. We work directly at zero temperature [57–61]

because the relevant fixed point of the model lies there [8–10].
The system has a ferromagnetic phase at small σ that, upon
increasing the disorder, becomes paramagnetic at the critical
point σc. Obviously, the only relevant spin configurations
are ground states, which are nondegenerate for continuous
random-field distributions. An instance of random fields {hx}
is named a sample and thermal mean values are denoted as
〈· · · 〉. The subsequent average over samples is indicated by an
overline, (e.g., for the magnetization density m = ∑

x Sx/LD,
we consider both 〈m〉 and 〈m〉).

The scaling theory of the RFIM entails an analysis of two
correlation functions, namely the connected and disconnected
propagators C(con)

xy and C(dis)
xy [9,10]:

C(con)
xy ≡ ∂〈Sx〉

∂hy
, C(dis)

xy ≡ 〈Sx〉〈Sy〉. (2)

For each of these two propagators we scrutinize the second-
moment correlation lengths [62], denoted as ξ (con) and ξ (dis),
respectively. Hereafter, we shall indicate with the superscript
“(con)”, e.g., ξ (con), quantities computed from the connected
propagator. Similarly, the superscript “(dis)”, e.g., ξ (dis), will
refer to the propagator C(dis). We also compute the correspond-
ing connected susceptibility χ (con) to obtain the anomalous
dimension η, as well as the dimensionless Binder ratio U4 =
〈m4〉/〈m2〉2

.
As it is well known, the random field is a relevant per-

turbation at the pure fixed point, and the random-field fixed
point is at T = 0 [8–10]. The main assumption leading to this
result is that the scale of variation of the effective free energy
in a correlation volume scales as ξ θ , where θ is the so-called
violation of hyperscaling exponent [10]. This is a consequence
of the observation that the important competition yielding the
phase transition is between the exchange interactions and the
random field which implies that the controlling critical fixed
point is at zero temperature with the temperature irrelevant.
Hence, the critical behavior is the same everywhere along the
phase boundary and we can predict it simply by staying at
T = 0 and crossing the phase boundary at the critical field
point. This is a convenient approach because we can deter-
mine the ground states of the system exactly using efficient
optimization algorithms [16,26,42,57,59–61,63–73] through
an existing mapping of the ground state to the maximum-flow
optimization problem [58,74,75]. A clear advantage of this
approach is the ability to simulate large system sizes and
disorder ensembles in rather moderate computational times.
The application of maximum-flow algorithms to the RFIM
is nowadays well established [72]. One of the most efficient
network flow algorithms used to solve the RFIM is the push-
relabel algorithm of Tarjan and Goldberg [76]. In the present
study we prepared our own C version of the algorithm that
involves a modification proposed by Middleton et al. [59–61]
that removes the source and sink nodes, reducing memory
usage and also clarifying the physical connection [60,61].
Further details on the numerical implementation can be found
in Ref. [25].

One big advantage of our numerical toolkit is that it allows
us, from simulations at a given σ , to compute σ deriva-
tives and extrapolate to neighboring σ values by means of
a reweighting method—see Ref. [25] for full mathematical
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FIG. 1. Connected correlation length in units of the effective sys-
tem size as a function of the random-field strength σ . Lines join data
obtained from reweighting extrapolation. The inset presents typical
illustrations with respect to the sample-to-sample fluctuations and
the errors induced by the reweighting extrapolation for a size L = 5.
Nsamples denotes the number of disorder realizations and σ (sim) the
value of random field at which the simulation was performed. The
comparative data for the different values of Nsamples refer to the sim-
ulation value σ (sim) = 9.47716 and serve in favor of our numerical
scheme.

derivations of fluctuation-dissipation and reweighting formu-
las. In the present work we consider lattice sizes within the
range Lmin = 2 to Lmax = 10. For each pair of {L, σ } val-
ues we compute exact ground states for 106 samples (initial
exploratory runs were performed using 105 samples), outper-
forming previous studies. For comparison, 5 000 samples with
Lmax = 8 were used in Ref. [42].

We follow the quotients method for finite-size scaling
[62,77,78], taking into account the modification L → Leff =
L7/6, as we work above the upper critical dimension with
periodic boundary conditions. As mentioned above, Kenna
and Berche identify this ratio 7/6 as the new critical exponent

, giving extensive discussions in Refs. [50,52]. In practice,
we focus on three dimensionless quantities g(σ, Leff ) that,
barring correction to scaling, are independent of the system
size at the critical point, namely ξ (con)/Leff , ξ (dis)/Leff , and
U4. Given a dimensionless quantity g, we consider a pair of
lattices sizes (Leff , 2Leff ) and determine the crossing σc,Leff ,
where g(σc,Leff , Leff ) = g(σc,Leff , 2Leff ), see Fig. 1. This allows
us to compute three such σc,Leff , a first for ξ (con)/Leff , another
for ξ (dis)/Leff , and a third for U4.

Dimensionful quantities O scale with ξ in the thermody-
namic limit as ξ xO/ν , where xO is the scaling dimension of O
and ν the critical exponent of the correlation length. At finite
system sizes we consider the quotient QO,Leff = O2Leff /OLeff at
the crossing

Qcross
O,Leff

= 2
7
6

xO
ν + O

(
L−ω

eff

)
. (3)

Qcross
O,Leff

can be evaluated at the crossings of ξ (con)/Leff ,
ξ (dis)/Leff , and U4. Renormalization group tells us that xO,
ν, and the leading corrections-to-scaling exponent ω are
universal. Instances of dimensionful quantities used in this

FIG. 2. Crossing points σc,Leff vs 1/Leff .

work are the derivatives of correlation lengths ξ (con) and
ξ (dis) [xDσ ξ (con) = xDσ ξ (dis) = 1 + ν] and the connected suscepti-
bility [xχ (con) = ν(2 − η)]. Scaling corrections for the critical

point are of order L
−(ω+ 1

ν
)

eff , L
−(2ω+ 1

ν
)

eff , etc. Note that as we
applied the quotients method at the crossings of ξ (con)/Leff ,
ξ (dis)/Leff , and U4, the data sets of our simulations were tripled
for each pair of system sizes used and thus our practice was
to use joint fits imposing a common extrapolation to the ther-
modynamic limit. Finally, the exponent ω is fixed to the value
ω = 1/2 throughout the analysis below, see Appendix.

Finally, some comments on the fitting procedure: We re-
strict ourselves to data with L � Lmin and to determine an
acceptable Lmin we employ the standard χ2/DOF test for
goodness of fit, where χ2 is computed using the complete
covariance matrix and DOF denotes the number of degrees
of freedom. Specifically, we consider a fit as being fair only if
10% < Q < 90%, where Q denotes the probability of finding
a χ2 value which is even larger than the one actually found
from our data [79].

III. RESULTS

We start the presentation of our results in Fig. 2 where a
joint fit of the form

σc,Leff = σc + b1L
−(ω+ 1

ν
)

eff + b2L
−(2ω+ 1

ν
)

eff + b3L
−(3ω+ 1

ν
)

eff (4)

provides the estimate σc = 9.48391(50) for the critical field,
in excellent agreement (but higher numerical accuracy) with
the earlier result 9.48(3) of Ref. [42]. The coefficients bk with
k = 1, 2, 3 are just scaling amplitudes and the quality is quite
good (Q ∼ 45%). Figures 3 and 4 document the infinite-limit
size extrapolations of the main critical exponents ν and η

using also joint fits of the form Eq. (3) in linear and quadratic
L−ω

eff order and with cutoff sizes Lmin = 2 and 3, respectively.
In both cases a fair fit quality is obtained, namely Q ∼ 25%
and 18%, respectively. Evidently, the obtained estimates ν =
0.516(18) and η = 0.014(23) are compatible to the mean-
field (MF) values ν (MF) = 1/2 and η(MF) = 0.

Obtaining the critical exponent α of the specific heat is
much trickier in most cases, and the random-field problem
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FIG. 3. Effective critical exponent ν (eff) vs L−ω
eff . Results are

shown obtained from the derivatives of ξ (con), ξ (dis), and U4 for all
data sets at hand.

is no exception [16,25,30,33]. The specific heat of the RFIM
can be computed via ground-state calculations and the bond-
energy density EJ [80]. This is the first derivative ∂E/∂J of the
ground-state energy with respect to the random-field strength
σ [16,59]. The σ derivative of the sample-averaged quantity
EJ then gives the second derivative with respect to σ of the
total energy and thus the sample-averaged specific heat C.
The singularities in C can also be studied by computing the
singular part of EJ , as EJ is just the integral of C over σ . Thus,
one may estimate α from EJ at σ = σc [80] via the scaling
form

EJ (σc, Leff ) = EJ,∞ + bL(α−1)/ν
eff

(
1 + b′L−ω

eff

)
, (5)

where EJ,∞, b, and b′ are nonuniversal constants. Since
α(MF) = 0 and ν (MF) = 1/2 above the upper critical dimension
as already noted above, it is expected that (α − 1)/ν = −2.

FIG. 4. Effective critical exponent η(eff) vs. L−ω
eff .

FIG. 5. Finite-size scaling behavior of the bond-energy density at
the critical random-field strength σc (main panel) and the “specific-
heatlike” quantity C (inset).

Obviously, the use of Eq. (5) for the application of standard
finite-size scaling methods requires an a priori knowledge
of the exact value of the critical random-field strength σc

[81]. Fortunately, we currently have at hand such a high-
accuracy estimate of the critical field, see Fig. 2. Thus, we
have performed additional simulations exactly at the critical
point σc = 9.48391 for all range of the accessible system sizes
using the standard averaging of 106 samples. Data for the
bond-energy density are shown in the main panel of Fig. 5 as a
function of 1/Leff . The solid line is a fair fit (Q ∼ 23%) of the
form Eq. (5) excluding the smaller system sizes (Lmin = 5)
while fixing the exponents α, ν, and ω to their expected
values.

As an additional consistency check we present in the inset
of Fig. 5 the scaling behavior of a “specific-heatlike” quantity
C obtained from the bond-energy density derivative with re-
spect to the random-field strength σ at the critical point σc =
9.48391 and using again 106 samples. For C the following
scaling ansatz is expected

C ∼ c1Lα/ν

eff

(
1 + c2L−ω

eff

) ∼ c1 + c′
2L−1/2

eff , (6)

since α/ν = 0 at the mean-field level. As it is evident from the
plot, the data become rather noisy with increasing system size.
This is typical of all derivatives obtained from a fluctuation-
dissipation formula. There is no bias, but errors are large
because the quantities involved in the fluctuation-dissipation
formula are not self-averaging themselves—see also the dis-
cussion in Ref. [33]. Therefore we exclude from our fitting
attempt the largest system size L = 10 where statistical errors
are larger than 30%. The solid line shows a simple linear fit of
the form Eq. (6) excluding the smaller sizes (Lmin = 4) with
an acceptable fitting quality (Q ∼ 89%).

IV. SUMMARY

We have presented a finite-size scaling analysis of the 7D
random-field Ising model with a Gaussian field distribution
and periodic boundary conditions. Indeed, above the upper
critical dimension the choice of boundary conditions remains
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crucial [54]. Ground-state simulations in combination with
recent advancements in finite-size scaling and reweighting
methods for disordered systems [25] allowed us to provide
a high-accuracy confirmation of the mean-field behavior of
the model. A major point has been the numerical verification
for the use of an effective length-scale Leff = LD/Du (where
D/Du = in the formulation of Ref. [52]) in all finite-size
scaling relations as has been proposed for the pure Ising fer-
romagnet [40,48–52] and also the clarification with respect to
the corrections-to-scaling exponent ω in Ising systems above
the upper critical dimension. Currently, we are working ex-
actly at Du, where characteristic logarithmic scaling violations
have been reported [42] but still await a detailed confirmation.

ACKNOWLEDGMENTS

We would like to thank Jesús Salas for helping us to carry
out numerical checks of the results in Appendix. N.G. Fytas
is grateful to the colleagues in the Department of Theoretical
Physics I at Complutense University of Madrid for their warm
hospitality, during which part of this work was completed.
N.G. Fytas would like to acknowledge the support of EPSRC
Grant No. EP/X026116/1. This work was supported in part by
Grants No. PID2022-136374NB-C21, No. PGC2018-094684-
B-C21, funded by MCIN/AEI/10.13039/501100011033 by
“ERDF A way of making Europe” and by the European
Union. The research has received financial support from the
Simons Foundation (Grant No. 454949, G. Parisi).

APPENDIX: SCALING CORRECTIONS IN THE LARGE-N
LIMIT OF THE O(N) MODEL FOR D > 4

Benefiting from Brézin’s analysis in Ref. [56], we deduce
the corrections-to-scaling exponent ω for the large-N limit of
the O(N ) model.

1. General framework

Let us start by recalling the basic definitions from the orig-
inal work by Brézin [56]. We consider a ferromagnetic system
with an O(N )-symmetric, nearest-neighbor Hamiltonian on a
hypercybic lattice of linear size L

H = −JN
∑
〈x,y〉

	Sx · 	Sy, 	Sx · 	Sx = 1, (A1)

with periodic boundary conditions. From this point on
we shall be using the dimensionless inverse temperature
β = J/T .

The model greatly simplifies in the limit N → ∞. In
the paramagnetic phase β � βc, the propagator [G(r) = 〈	Sx ·
	Sx+r〉] is

G(r) = 1

β

1

LD

∑
q

eiqr

m2
L + λ(q)

, (A2)

where λ(q) = ∑D
i=1 2(1 − cos qi ), q = 2π

L (n1, n2, . . . , nD),
0 � ni � L − 1, and the mass term m2

L is the inverse-squared
correlation length m2

L = 1/ξ 2
L . One relates m2

L and β through
the gap equation which simply codes the constraint G(r =

0) = 1:

β = 1

LD

∑
q

1

m2
L + λ(q)

. (A3)

Note that the dispersion relation λ(q) depends crucially on
our choice of the nearest-neighbor lattice interaction. In fact,
the only feature shared by all local-interaction Hamiltonians
is λ(q → 0) = q2 + O(q4

i ).
As it is well known, the problem becomes much simpler

in the thermodynamic limit (where anyway the choice of
boundary conditions becomes inconsequential)

G(r) = 1

β

∫
B.Z.

dDq
(2π )D

eiqr

m2∞ + λ(q)
,

β =
∫

B.Z.

dDq
(2π )D

1

m2∞ + λ(q)
, (A4)

where B.Z. stands for the first Brillouin zone and −π < qi <

π for i = 1, 2, . . . , D. Note that the integral in Eq. (A4) is
convergent for D > 2 even if we plug m2

∞ = 0.
The problem we shall be dealing with here is the pre-

cise connection between Eqs. (A3) and (A4) as L grows, for
D > 4. The alert reader will note that this connection cannot
be smooth because of the singular behavior at m2

L = 0 and
q = 0 (the strong singularity is characteristic of the periodic
boundary conditions)

1

LD

∑
q

1

m2
L + λ(q)

= 1

LDm2
L

+ L2−D
(
regular term in the limit m2

L → 0
)
.

(A5)

The analysis by Brézin [56] puts the above observation in a
sound mathematical footing.

2. The (finite) Poisson summation formula

Let H (q) be a smooth, periodic function H (q) = H (q +
2π ). One starts by recalling the (finite) Poisson summation
formula

1

L

L−1∑
k=0

H (q = 2πk/L) =
∞∑

n=−∞

∫ π

−π

dq

2π
H (q)eiqnL. (A6)

If the function H depends on a D-dimensional argument
H (q), and if it is periodic (with period 2π ) along every one
of the D axes in the q space, then one can use Eq. (A6) in a
nested way

1

LD

L−1∑
k1=0

. . .

L−1∑
kD=0

H

[
q = 2π

L
(k1, k2, . . . , kD)

])

=
∞∑

n1=−∞
. . .

∞∑
nD=−∞

∫
B.Z.

dq
(2π )D

H (q)eiLq·(n1,n2,...,nD ).

(A7)

Let us now use the notation n = (n1, n2, ..., nD) and the
short hand

∑
n to refer to the multi-dimensional series in

the r.h.s. of Eq. (A7) [
∑′

n will be the series in which the
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term n = (0, . . . , 0) has been excluded]. Hence, the gap equa-
tion Eq. (A3) can be rewritten as

β = 1

LD

∑
q

1

m2
L + λ(q)

=
∫

B.Z.

dDq
(2π )D

1

m2
L + λ(q)

+
∑

n

′ ∫
B.Z.

dDq
(2π )D

eiLq·n

m2
L + λ(q)

. (A8)

Let us now introduce the notation

y2 = L2m2
L =

(
L

ξL

)2

, (A9)

and analyze the remainder term

R(y, L) ≡
∑

n

′ ∫
B.Z.

dDq
(2π )D

eiLq·n

m2
L + λ(q)

, mL = y/L.

(A10)
On the view of Eq. (A5), one may expect for small mL that

R(y, L) ∼ 1

LDm2
L

= L2−D

y2
. (A11)

Our analysis is based on the above asymptotic estimate (that
we shall now derive). However, because we are interested in
corrections to scaling, we shall need to extend this analysis by
obtaining as well the next-to-leading term in Eq. (A11).

Brézin did the following simplification that is only valid at
small q, and which is, fortunately, the regime of interest∫

B.Z.

dDq
(2π )D

eiLq·n

m2
L + λ(q)

≈
∫
RD

dDq
(2π )D

eiLq·n

m2
L + q2

=
∫ ∞

0
dt

∫
RD

dDq
(2π )D

e−t (m2
L+q2 )+iLq·n.

(A12)

In the above expression we used the identity

1

A
=

∫ ∞

0
dt e−tA, (A13)

which allows us to make explicit the integral over q (which is
now a Gaussian integral)∫

B.Z.

dDq
(2π )D

eiLq·n

m2
L + λ(q)

≈ L2−D

(4π )D/2

∫ ∞

0

dt

tD/2
e−ty2− n2

4t ,

(A14)
where y was defined in Eq. (A9). Plugging now Brézin’s
approximation (A14) into Eq. (A10), we obtain

R(y, L) ≈ L2−D

(4π )D/2

∫ ∞

0

dt

tD/2
e−ty2

g(t ),

g(t ) =
∑

n

′
e−n2/(4t ) =

[ ∞∑
n=−∞

e− n2

4t

]D

− 1. (A15)

Note that g(t ) behaves for small t as

g(t → 0) ∼ 2D e− 1
4t , (A16)

hence g(t ) regulates the divergence at small t in the integration
measure of Eq. (A15) (namely t−D/2).

We also need a strong command on the behavior of g(t →
∞). Let f (x) be an (aperiodic) smooth function and F (q) its
Fourier transform

F (k) =
∫ ∞

−∞
d x f (x) e−i2πkx,

then, the Poisson summation formula tells us that

∞∑
n=−∞

f (n) =
∞∑

k=−∞
F (k). (A17)

Using the above identity for f (x) = exp(−x2/4t ), one obtains

∞∑
n=−∞

e− n2

4t =
√

4πt

[
1 + 2

∞∑
k=1

e−4π2k2t

]
, (A18)

so that one finds for large t

g(t )

(4πt )D/2
∼ 1 − 1

(4πt )D/2
+ 2D

e−4π2t

√
4πt

. . . .. (A19)

Plugging this expansion into Eq. (A15), we see that disregard-
ing the leading term, namely 1, one would find a convergent
integral even for y = 0. Hence, we conclude that

β = 1

LD

∑
q

1

m2
L + λ(q)

=
∫

B.Z.

dDq
(2π )D

1

m2
L + λ(q)

+ R(y = LmL, L), (A20)

with an asymptotic behavior for the remainder term
(as y → 0)

R(y, L) = L2−D

[
1

y2
+ A + . . .

]
, (A21)

where A is some constant. The interested reader is invited to
compare Eqs. (A20) and (A21) with Eq. (A5).

3. Scaling at the critical point

Let us consider the gap equation at β = βc for an infinite
and a finite system

βc =
∫

B.Z.

dDq
(2π )D

1

λ(q)
, (A22)

βc =
∫

B.Z.

dDq
(2π )D

1

m2
L + λ(q)

+ R(y = LmL, L). (A23)

Taking the difference of the above two equations (and multi-
plying both sides of the resulting equation by L2) one obtains

y2
∫

B.Z.

dDq
(2π )D

1[
m2

L + λ(q)
]
λ(q)

= L2R(y, L). (A24)

Now, for D < 6 one gets (B is some constant)∫
B.Z.

dDq
(2π )D

1[
m2

L + λ(q)
]
λ(q)

=
∫

B.Z.

dDq
(2π )D

1

λ2(q)
+ BmD−4

L + O
(
m2

L

)
, (A25)
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[for D > 6 the leading correction is of the order of m2
L and at

D = 6 one expects something like m2
L log(1/m2

L )]. Reference
[56] introduces the notation

σ (D) =
∫

B.Z.

dDq
(2π )D

1

λ2(q)
. (A26)

So, collecting everything and recalling Eq. (A21), we get at
the critical point and D < 6

y2

[
σ (D) + B yD−4

LD−4
+ . . .

]
= L2R(y, L)

= L4−D

[
1

y2
+ A + ...

]
.

(A27)

Note here that Brézin considered only the case without any
corrections to scaling (i.e., A = B = 0). In such a case, one
gets

y[σ (D)]1/4 = L
4−D

4 or ξL(βc) = LD/4[σ (D)]1/4. (A28)

For the needs of the present work we need to also consider the
corrections-to-scaling terms. Equation (A27) can be rewritten

as

y[σ (D)]1/4 = L
4−D

4

⎡
⎣ 1 + Ay2 + . . .

1 + B
σ (D)

yD−4

LD−4 + . . .

⎤
⎦

1/4

. (A29)

It is maybe even better to write this in terms of ξL,

ξL(βc)

LD/4
= [σ (D)]1/4

⎡
⎣1 + B

σ (D)
yD−4

LD−4 + . . .

1 + Ay2 + . . .

⎤
⎦

1/4

. (A30)

(Note that for D > 6, corrections of the order of yD−4/LD−4

become corrections of order y2/L2).
Now, recalling Eq. (A28), we see that y2 ∼ L(D−4)/2. On the

other hand, (y/L)D−4 ∼ 1/L[(D−4)D]/4 (that becomes 1/L(D/2)

for D > 6). Therefore, in the regime 4 < D < 6 we identify a
dominant exponent ω1 and a subleading one ω2, as follows

ω1 = D − 4

2
, ω2 = (D − 4)D

4
. (A31)

And, of course, one should expect all kinds of sub-leading
corrections terms, such as L−2ω1 , L−(ω1+ω2 ), etc. Relating the
result of Eq. (A31) to the random-field problem (where Du =
6 rather than 4) leads to our main result

ω1 = D − 6

2
. (A32)

Hence, for the present case of D = 7 we obtain ω = 1/2.
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