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Abstract. With the widespread use of embedded system devices, hard-
ware designers and software developers started paying more attention to
security issues in order to protect these devices from potential threats.
Physical attacks represent an important threat to these devices, and
fault injection is one of the major physical attacks. However, misunder-
standing the effects of the fault injection would lead to proposing either
over-protections or under-protections for these devices, thus affecting the
performance/cost ratio and/or the security of the device. In this article,
we provide a better representation of occurring fault, as a result of clock
glitch, through novel models, in order to better understand the effects of
fault injection. Also, we examine their dependencies with respect to the
target device and the target program. Finally, we make use of the pre-
sented fault models to break the control-flow integrity of a program by
altering the value of the program counter, in order to provide an actual
application example.

Keywords: Fault injection attacks · Clock glitch · Fault model.

1 Introduction

Given how frequently embedded systems are used in various spheres of life, secur-
ing them from malicious activities is fundamental. Sensitive data in embedded
systems can be efficiently protected using cryptographic algorithms, which are
frequently implemented in software on embedded microprocessors. However, such
solutions can be vulnerable to attacks that seek to gain access to this private
data. In particular, they might be vulnerable to physical attacks.

Fault injection is a major and powerful active physical attack. Since the
well-known Boneh et al. attack [7], where the authors were able to break an
implementation of CRT-RSA by inducing faults into the computations, it has
been an attractive research topic.

It is possible to perform the fault injection in a variety of ways: by exposing a
digital device to radiations [6], laser beams [11], or an electromagnetic pulse [13],
by causing perturbations in the power supply [20] or in the clock signal [2], by
altering the environment’s temperature [18], etc.
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1.1 Fault Injection Effects

Several works [10,13,15,22,19,8] claimed that the effect of a fault injection or the
success of a fault injection attack is somehow random. In some cases [10,19,8], the
corruption is expressed as random bit flips or random byte faults. On the other
hand, other works [13,15,22], described it as random data corruptions that are
applied at the instruction set architecture (ISA) level, either on the instruction
data or on the contents of the registers.

Based on such variety, analyzing the vulnerabilities that fault injection can
exploit is extremely challenging, and thus, developing countermeasures is sig-
nificantly more complex. This will definitely result in either over-protections,
which will affect the performance and the cost of the device, or conversely, in
under-protections too, which will affect the security of the device.

Recent studies [12,21,3,11,2] tried to explain the effects of the fault injection
by looking at the lower levels of abstraction of digital systems. In particular,
they focus on the register transfer level (RTL), microarchitectural level and/or
binary encoding level of the instructions. In some cases [12,21], however, the
authors only conducted simulations at ISA and RTL levels: they did not confirm
the realism of their analysis with physical fault injections. In contrast, [3,11]
performed physical fault injections, but they only focused on two kinds of faulty
behaviors: complete-instructions skip and complete-instructions replay faults.
In [2], authors offered a thorough analysis and justification of the experimental
findings that show how the alignment of the instructions in the flash memory
can affect the obtained faulty behaviors. Based on that, they proposed two fault
models at the binary encoding level: Skip a specific number of bits and Skip
and Repeat a specific number of bits, whose value is strictly related to the flash
memory access size. However, in their work, they explicitly said that these two
fault models explain many of the obtained faulty behaviors, but not all of them.

1.2 Contributions

In this article, we propose a new inferred fault model, the partial update fault
model, that is applied to the binary encoding of the instructions. This new fault
model aims at explaining different faulty behaviors that are obtained when per-
forming clock glitch fault injection campaigns on a 32-bit microcontroller. There-
fore, it improves the vulnerability analysis process against fault injection, and
hence, allows developers to design cost-effective countermeasures. We also show
how a subcase of the new fault model is instruction-independent with high prob-
ability, and its manifestation is highly device-dependent. We show how we can
execute new instructions even with a different length of encoding as a result
of a clock glitch, by exploiting the variable-length capabilities of the target mi-
crocontroller. Finally, we make use of the presented fault model to modify the
program counter to a chosen address, whose value is stored in a general-purpose
register.
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1.3 Outline

This article is organized as follows: Section 2 briefly describes the methodology
we followed to explain the obtained results. Section 3 presents the inferred bi-
nary encoding fault models. Section 4 describes the experimental setup, then
experimental results are reported and discussed in Section 5. Section 6 presents
different practical scenarios to modify the program counter, based on the pre-
sented fault models. The article is concluded along with future perspectives in
Section 7.

2 Fault model inference

The method we followed in this work to describe and characterize the fault
injection results is comparable to the methods used in [9,3,12,13]. The core of the
analysis consists in comparing the outcomes of executions, both the simulations
and the actual fault injections, at various levels of digital system abstraction. In
this work, we focus our analysis on two abstraction levels: ISA level and binary
encoding of the instructions. We also enrich these descriptions by providing
insights at the microarchitectural level.

On one side, physical fault injections are performed, with appropriate injec-
tion parameters, on a target device that is executing a simple target program,
which is formed of a sequence of assembly instructions (step 1 in Figure 1).
Then, from the physical fault injection results, we infer fault models at the binary
encoding level of the instructions (step 2 in Figure 1). Applying the inferred
binary fault models to the simulated execution of the same target program, that
was used in step 1 , is the next step (step 3 in Figure 1). The outcomes of the
physical fault injection and the software execution are then compared in order to
provide better characterization of the impact of the fault injection and validate
the inferred fault models (step 4 in Figure 1). The comparison is carried out
on the output values of the processor’s general-purpose registers. Each of these
registers has a known value at the beginning, and any change can be detected
after performing step 4 in Figure 1.

3 Partial update fault model

This section presents the inferred binary encoding fault models that are applied
to the target programs. These fault models seek to explain the faulty behav-
iors that have been observed after physical fault injection campaigns have been
carried out on the target device that is running these target programs.

It has been observed through these physical fault injection experiments that
not all of the observed faulty behaviors can be explained by the binary encoding
fault models described in [2]. There are in fact other faulty behaviors, which can
be explained with the new fault models described in this section.
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Fig. 1: Fault model inference methodology.

3.1 Partial update from the precharge value

This fault model corresponds to a fault that happens while the fetched data or
instruction is propagated between internal registers from the flash memory to
the core, as shown in Figure 2.

The hypothesis behind this fault model is based on the fact that not all bits
of the data are propagated at the same speed from an internal register to another
through a bus or combinational logic. Consequently, not all flip-flops within the
destination register will get the update at the same time at a rising edge of a
new clock cycle.

In nominal conditions, the clock period is defined such that all signals can be
correctly sampled (i.e., the critical path has a positive slack). In case of a clock
glitch, however, this behavior is disrupted by the fact the clock edge occurs
quite sooner than expected. Thus, with the suitable injection parameters, it
may happen that some flip-flops will receive the correct update, while some will
receive the precharge value of the bus. Assuming that the precharge value of a
bus or a wire between two registers is zero, then the correct update of a flip-flop
means receiving the correct logic one or zero, while not receiving the correct
update means capturing the precharge value of the bus, i.e. zero.

This model is observed as a reset on some bits while the instructions are
transferred through the fetch data path in Figure 2, as shown experimentally in
subsection 5.1.

It should be mentioned that in [13], the authors claimed that some of the
observed faults, as a result of electromagnetic fault injection, might be related

Flash
memory Interface Bus

matrix Core

Fig. 2: Fetch data path in a microcontroller.
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to the precharge value of the target microcontroller’s bus. However, they didn’t
have a clear model that could explain their observed faults.

3.2 Partial update from the previous value

This fault model is somehow similar to the previous one. It occurs on the same
path shown in Figure 2. However, instead of receiving the precharge value from
the bus, some flip-flops within a destination register will keep their old values,
either because the values have not been changed or because the corresponding
wire still keeps the old values, and hence, the updated values are similar to the
old ones. Conversely, and at the same time, other flip-flops in the destination
register will receive the correct updated value.

This model is formally described as a bitwise OR between the old value and
the new value of an internal register. This merge might be a full merge or a
partial merge, as shown experimentally in subsection 5.2. Thus, in each flip-flop,
the resulting value can be either the previous value or the correct value i.e. the
value that the flip-flop should receive under normal execution, without any fault
injection.

When looking at the instructions execution in this case, we observe the fol-
lowing behavior. The instruction(s) fetched at clock cycle i is executed normally.
However, the instruction(s) fetched at clock cycle i + 1 is not the one being ex-
ecuted. Instead, the observed instruction(s) is a full or partial merge between
the fetched data at clock cycle i and the fetched data at clock cycle i + 1. More
details about this behavior are provided in subsection 5.2.

3.3 Discussion

Exploiting the transition value of a wire or a bus from a precharge (or a previous)
value to a new value is a well-established modelling approach in power analy-
sis attacks [1,16,17], which employ the so-called Hamming weight (or distance)
leakage model. Likewise, our approach shows a similar pattern: depending on
the type of register transition occurring (from previous or precharge value), the
corresponding partial update fault model applies.

In section 5, we show that both cases can occur for the same device. This is
not in contrast with our modeling, as depending on the actual element that is
affected by the fault injection (in our case, the clock glitch) and the fine-tuning of
the injection parameters, we may see different outcomes. Further details ahead.

4 Experimental setup

The target device and the fault injection method we employed are presented in
this section. Section 5 includes the target programs, the corresponding experi-
mental outcomes, and the discussion that follows.
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4.1 Clock glitch fault injection

An effective method of fault injection is to introduce perturbations on the clock
signal. Compared with other fault injection methods like laser or electromagnetic
pulses, clock glitch is known to be effective and the least expensive method. Also,
it can offer a respectable level of controllability thanks to its temporal accuracy
and, consequently, the location of the injection within the target program. In
clock glitch fault injection, the glitch interferes with the normal operation of
the clock signal, possibly causing a timing violation that results in a variety of
erroneous behaviors. Additionally, since the glitch is introduced into the global
clock, it is uncertain which microarchitectural component might be affected by
the fault injection.

The following settings, illustrated in Figure 3, are tuned when performing
clock glitch fault injection:

– Delay: the time between the rising edge of a trigger signal and the rising
edge of the target clock cycle.

– Shift: the time between the rising edge of the glitch and the rising edge of
the target clock cycle.

– Width: the duration of the glitch.

trigger

clk
width

shift

delay

Fig. 3: Clock glitch parameters

In this work, the clock glitch fault injection campaigns have been carried out
using the ChipWhisperer environment [14].

4.2 Target device

The target device is a 32-bit microcontroller that embeds an Arm Cortex-M4
processor. The Arm Cortex-M4 has a 3-stage pipeline: fetch, decode and execute.
It has 13 general-purpose 32-bit registers, R0 to R12. Arm Cortex-M4 is based
on ARMv7-M architecture [5] and supports the Thumb-2 instruction set [4].

Thumb-2 is a variable-length instruction set that offers two encoding lengths:
16 and 32 bits. The instruction has a 32-bit encoding if the most significant five



7

bits of a 32-bit word have one of the following values [5]: 0b11101, 0b11110 or
0b11111.

The flash memory access size in this microcontroller is 64 bits. Therefore,
up to two 32-bit or four 16-bit instructions can be fetched simultaneously. Ad-
ditionally, as the supported instruction set is a variable-length instruction set,
misaligned instructions can be fetched in several configurations as described
in [2]. For example, the first half of a 32-bit instruction may be fetched at a
given clock cycle, while the second half is fetched at the next clock cycle.

In the experiments, the processor is put in a known state before each fault
injection. This is done by initialization instructions, that are located before the
target instructions. After each execution, the values of the general purpose reg-
isters are transferred to a control computer via a serial communication in order
to analyze the results. The target programs are presented in the next section.

5 Experimental results

The result of any fault injection experiment is assigned to one of these classes:

– Crash: we obtain a crash, reset, or failure when attempting to read the target
final state via the serial communication,

– Silent: the final state of the target is the so-called golden state, i.e. as if no
fault was injected,

– Fault: the final state of the target is different from the golden state.

The results of the different clock glitch fault injection campaigns are discussed
separately with respect to each fault model in the following subsections.

5.1 Partial update from the precharge value

This section demonstrates how the partial update from the precharge value fault
model explains many of the faulty behaviors observed during the fault injection
campaigns. Also, it demonstrates the relation between this fault model and both
the target instruction and the target device. To put it another way, it determines
whether some bits in the fetched data are more sensitive to this fault model
than other bits and, if so, whether the target instruction or the target device
is to blame. The following subsections provide detailed results when targeting
different instructions, and also when targeting a new device, identical to the
already used one.

High-Hamming weight instruction Since the partial update from the precharge
value fault model causes some bits of the target instruction to be reset, it makes
sense to choose an instruction with a large Hamming Weight in order to max-
imize the occurrence of the considered fault model. Under this assumption, we
chose the instruction SUBS R6, 0xff, whose encoding in Thumb-2 is 0x3eff.
Our rationale is twofold: the instruction has a comparatively large Hamming
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Weight (13) given its size. Secondly, since the partial update from the precharge
value fault model causes some bits of the instruction to be reset, applying it on
0x3eff results in an instruction that can be discriminated with high probability.

The objective behind these experiments is to show that several faulty be-
haviors can be explained using the partial update from the precharge value fault
model. In addition, we want to see if some bits are more vulnerable than others
to be reset within a target instruction. Finally, were it the case, we need to know
if this is because of the target instruction or of the target device. Since the fetch
size in the target device is 64 bits, a 16-bit instruction may reside in any of four
different positions within these 64 bits. Therefore, four injection campaigns have
been performed, where the position of 0x3eff is different from one campaign to
another. The main reason of changing the position of the target instruction is
to find out if the fault model depends on the target instruction, or it depends
on its position within the fetched 64 bits, and hence, depends on the physical
implementation of the target device. The remaining three positions are filled
with three instructions with the encoding 0x0000, in order to minimize possible
side effects from other instructions and make the analysis easier. This encoding
corresponds to the MOVS R0, R0 instruction, which is equivalent to a NOP.

Table 1 gives the target part code of each fault injection campaign. It also
shows the glitch parameters that are used. These parameters are chosen in or-
der to maximize the number of faults that can be classified under the partial
update from the precharge value fault model. Position refers to the location of
0x3eff within the fetched 64 bits. The values of shift and width are provided
as a percentage of a single clock cycle: the glitch is introduced before the ris-
ing edge of the target clock cycle if shift is negative. ChipWhisperer provides
an additional parameter, called fine-width, which is used to offer fine-tuning of
the width parameter. It has been noticed that fine-width provides better repro-
ducibility of the results when it is used. Repetitions is the number of executions
for each combination of parameters. For each fault injection campaign, the total
number of experiments corresponds therefore to more than 20 000 executions,
as summarized in the last row of the table. The same value of delay is used in
all the campaigns, and it depends on the number of initialization instructions
that precede the target part.

The results of the four injection campaigns on 0x3eff with respect to the
three classes (i.e., Crash, Silent and Fault) are presented in Table 2. All the
resulting faulty behaviors can be classified under two fault models: Skip (all the
general purpose registers keep their initial values), or partial update from the
precharge value . Table 2 also provides the number of observed behaviors linked
to each fault model among the faulty executions.

Figure 4 shows the encoding of the executed instructions for each injection
campaign, along with the number of times each of them is observed. All of
these faulty behaviors are classified under the partial update from the precharge
value fault model. This is because all of them can be seen as a reset on some
bits of the original instruction 0x3eff. It should be noticed that resetting all
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Table 1: Experimental parameters
Position 1st 2nd 3rd 4th

Target 0x3eff 0x0000 0x0000 0x0000
part 0x0000 0x3eff 0x0000 0x0000
code 0x0000 0x0000 0x3eff 0x0000

0x0000 0x0000 0x0000 0x3eff

Shift -13

Width {6, 10} {6, 10} {3, 4} {3, 4}

Fine width [-255, 255]

Repetitions 20

Total 20440

Table 2: Fault obtained when targetting the 0x3eff instruction at four
different positions

Class Position
1st 2nd 3rd 4th

Crash 0 0 23 1
Silent 33 1574 2273 158
Fault 20 407 18 866 18 144 20 281

Skip 11 523 8295 11 107 7901
Partial update from the precharge value 8884 10 571 7037 12 380

the bits of 0x3eff will result in executing 0x0000, which is an instruction with
no effect as mentioned earlier, and thus classified under the skip fault model.

Additionally, Table 2 and Figure 4 show that the number of faulty behaviors
and the observed executed instructions depend on the position of the instruction
in the fetched 64 bits. Thus, the results depend on the position rather than the
instruction. Furthermore, the results of each position show that some instructions
are more probable to be executed than others as a result of the fault injection.

To better understand the effect of the fault at each position, and hence, on
each bit in the position, we define a metric called bit sensitivity. It measures
the probability for a bit to be reset as a result of the clock glitch fault injection
over the faulty behaviors that are classified under the partial update from the
precharge value fault model at a specific position. The bit sensitivity Sp(f, b) of
bit b to a given fault model f at position p is defined in Equation (1).

Sp(f, b) = 1 − P (b = 1 | p)
P (fault model = f | p) (1)

Figure 5 presents the bit sensitivity values for the results obtained during the
fault injection campaigns on 0x3eff at all positions. Obviously, bits that are zero



10 I. Alshaer et al.

Number of occurences

0x0800*
0x3a1f 
0x3e9f 
0x3a1b 
0x0801*
0x3e1f 
0x3edf 
0x381b 
0x3813 

Bi
na

ry
 e

nc
od

in
g 2226

2116
1106

968
922

777
408

360
1

(a) 1st position

Number of occurences

0x0040 
0x3eee 
0x08c0 
0x00c0 
0x3efe 
0x0cc0 
0x0ec2 
0x2200*
0x3eea 
0x0ec0 
0x0cc2 
0x0ee2 

Bi
na

ry
 e

nc
od

in
g

2956
1813

1618
1228

983
694

509
425

163
125

51
6

(b) 2nd position

Number of occurences

0x3ef7 
0x0200 
0x0600 
0x3ef6 
0x0e82 
0x0680 
0x0681 
0x3686 
0x3eb6 
0x3682 
0x0e86 
0x3696 
0x36b6 
0x36a6 
0x3e96 
0x3e86 
0x3ea6 
0x3ed6 
0x0e80 
0x3ee6 
0x36c6 
0x36f6 
0x36e6 
0x36d6 
0x2679 
0x3ec6 
0x36a2 
0x0601 
0x3e82 

Bi
na

ry
 e

nc
od

in
g

2074
1323

1114
592

489
443

272
223

96
95
71

43
42
32
25
23
19
15
15
7
6
5
4
3
2
1
1
1
1

(c) 3rd position

Number of occurences

0x3490 
0x34fa 
0x3cfe 
0x3cfa 
0x0400 
0x2410 
0x34c0 
0x2490 
0x0410 
0x34da 
0x34d2 
0x2400*
0x3410 
0x3cff 
0x34f2 
0x34d8 
0x34f0 
0x34f8 

Bi
na

ry
 e

nc
od

in
g

2452
2357

2155
1450
1419

1295
474

149
116
105
90
83
71
55
41
39
21
8

(d) 4th position

Fig. 4: Encoding of the observed executed instructions when targeting
0x3eff at four different positions within the target programs.

in 0x3eff (bits 8, 14, and 15) have no corresponding bit sensitivity value. We
can see that the bit sensitivity is different from one position to another and from
one bit to another at the same position. Thus, under the partial update from the
precharge value fault model, some instructions are more probable than others.

Subsection 5.1 presents the results of targeting a different instruction, to
confirm that the partial update from the precharge value fault model depends on
the physical implementation of the device, and not on the target instruction.

It is important to note that whenever there is a doubt about the execution
of an instruction, results are confirmed using alternative initial register values.
Nonetheless, in rare circumstances, more than one instruction may produce the
same outcome, for instance, when the value of a register is zero. For example,
this might happen because of moving zero to the register, or by shifting its value
by 32 bits. In Figure 4, when the encoding is starred, it means that there is
an alternative instruction that could lead to the same outcome, and we selected
one based on other observed encoding at the same position. It is important to
stress that this is happening only in a few cases (4 times), and does not affect
the measurements or the general conclusion.
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Fig. 5: Bit sensitivity values obtained when targeting 0x3eff.

Confirming sensitive bits We carried out extra experiments with the value
0x3b7d, which is the encoding of the SUBS R3, 0x7d instruction. Again, we
chose this instruction since it has a relatively high Hamming weight, and allows
recognizing the encoding of the executed instructions as a result of the partial
update from the precharge value fault model with high probability. However, we
specifically took care to have ones in the most sensitive positions from Figure 5 to
see if these measurements are reproducible when targeting a different instruction.

The experimental parameters for the fault injection campaigns on 0x3b7d
are identical to that of 0x3eff, given in Table 1. The only difference is that
the target program has 0x3b7d instead of 0x3eff. The classification results are
presented in Table 3, while the bit sensitivity values are plotted in Figure 6.

Table 3: Fault obtained when targeting the 0x37bd instruction at four
different positions

Class Position
1st 2nd 3rd 4th

Crash 0 0 0 0
Silent 39 2304 2589 197
Fault 20 401 18 136 17 851 20 243

Skip 11 694 8386 10 528 7606
Partial update from the precharge value 8707 9750 7323 12 637
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It is clear that the classification results and the bit sensitivity values of
0x3b7d are very close to the corresponding results of 0x3eff. This leads us
to the conclusion that the partial update from the precharge value fault model is
instruction-independent with high probability. If it depended on the instruction,
then changing the position should not have an observable distinct effect on the
executed instructions and on the bit sensitivity of different positions. On the
other hand, the next subsection shows that bit sensitivity greatly depends on
the target device.
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Fig. 6: Bit sensitivity values obtained when targeting 0x3b7d.

0x3eff experiments on a new microcontroller In this section, we present
the results of targeting the 0x3eff instruction again while using a brand new
device, which we did not use to perform any experiment previously. In any other
means, it is identical to the one we used in the previous experiments. This is done
to better understand the dependency of the partial update from the precharge
value fault model on the target device. The experimental parameters of this
campaign are identical to those in Table 1.

For our purposes, it is enough to present the results on the 2nd and 4th

positions to see that they are very different between the two devices. The results
are presented in Table 4 and Figure 7.

A very interesting observation is that the number of faults and the bit sen-
sitivity were much higher when performing the fault injection campaigns on the
old device. This is clear for the bit sensitivity of the 4th position in Figure 7b, as
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Table 4: Fault obtained when targeting the 0x3eff instruction using
the new device

Class Position
2nd 4th

Crash 0 2
Silent 18 058 16 995
Fault 2382 3443

Skip 345 0
Partial update from the precharge value 2037 3443
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Fig. 7: Bit sensitivity values obtained when targeting 0x3eff on the
new device at the 2nd and the 4th positions.

we can see the distribution of the bit sensitivities is similar to that in Figures 5d
and 6d, however, on the old device, the sensitivity is much higher. This could be
explained as an aging effect, since the old device has been used for fault injec-
tion experiments for a few months. We speculate that the bit sensitivity could
increase over time (a common consequence of performance degradation due to
aging), but further research is needed to confirm this observation.

Conclusion on bit sensitivity To summarize, the bit sensitivity figures illus-
trate that, as a result of the partial update from the precharge value fault model,
the probability distribution of the corrupted instruction is not random, and it
depends on several features that are mostly device-dependent. The probability
of executing a given instruction differs from the probability of executing an-
other. This discrepancy is determined by both the instruction’s position inside
the target program and the target device itself. This is of prime importance if the
instruction results in a security vulnerability, as will be highlighted in section 6.

5.2 Partial update from the previous value

In this section, we focus on the occurrence of faulty behaviors that can be clas-
sified under the partial update from the previous value fault model. In this case,
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there is no precharge value and the transition occurs from the value that was
previously stored in the register. In the time while the register is updating its
value, a transient situation may occur when some bits already have the new
value, whereas others are still to be updated. This behavior can be seen a merge
between the previous and the new instruction. The following subsections give
examples of observed faulty behaviors that are classified as full or partial merge.

Full merge The merge is considered full if and only if the observed executed
instruction(s) can be expressed as a bitwise OR between the data fetched at clock
cycle i and the data fetched at clock cycle i + 1. In the following, an example
is provided, which illustrates how two new 32-bit instructions are executed as a
result of a full merge between eight different 16-bit instructions.

Listing 1.1 shows the target program and the encoding of each instruction
of this example. The observed execution as a result of the clock glitch fault
injection is given in Listing 1.2. The bitwise OR of the first two hexadecimal
digits at line 1 (0xa9) and the corresponding digits at line 5 (0x42) gives 0xeb.
Since the most significant five bits are 0b11101, this word is decoded as a 32-bit
instruction, as explained in subsection 4.2. The same holds for the merging of
instructions at lines 3 and 7.

Listing 1.2 is obtained by a full merge applied on Listing 1.1 as follows:

– Merging the 32 bits at lines 1 and 2 with the 32 bits at lines 5 and 6 respec-
tively: 0xa9000000 | 0x42000305 = 0xeb000305.

– Merging the 32 bits at lines 3 and 4 with the 32 bits at lines 7 and 8 respec-
tively: 0xa9000000 | 0x42020405 = 0xeb020405.

1 ADD R1, SP, 0x0 // 0xa900
2 MOVS R0, R0 // 0x0000
3 ADD R1, SP, 0x0 // 0xa900
4 MOVS R0, R0 // 0x0000
5 TST R0, R0 // 0x4200
6 LSLS R5, R0, 0xc // 0x0305
7 TST R2, R0 // 0x4202
8 LSLS R5, R0, 0x10 // 0x0405

Listing 1.1: Target program to execute two new 32-bit instructions as
a result of full merge.

1 ADD R1, SP, 0x0 // 0xa900
2 MOVS R0, R0 // 0x0000
3 ADD R1, SP, 0x0 // 0xa900
4 MOVS R0, R0 // 0x0000
5 ADD R3, R0, R5 // 0xeb000305
6 ADD R4, R2, R5 // 0xeb020405

Listing 1.2: Observed execution as a result of full merge on Listing 1.1.
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Partial merge In this case, only part of the fetched data at clock cycle i and
the data fetched at clock cycle i + 1 is merged. The target code that is used for
this example is shown in Listing 1.3.

1 ADD R1, R1, 0x4 // 0xf1010104
2 ANDS R2, R0 // 0x4002
3 MOVS R0, R0 // 0x0000
4 ADD R2, R2, 0xa // 0xf102020a
5 MOVS R4, R0 // 0x0004
6 MOVS R0, R0 // 0x0000

Listing 1.3: Target program for partial merge experiment.

One of the observed executions that can be classified under Partial merge is
as the following: We observed that not all the 32 bits at lines 1 (0xf1010104) are
systematically merged with the corresponding 32 bits at line 4 (0xf102020a):
only the destination and source registers are merged. In addition to this behavior,
another partial merge occurred in the following instructions, only over the least
significant digit, between the 16 bits at line 2 (0x4002) and the 16 bits at line
5 (0x0004). As a consequence, only the destination register at line 5 is affected.
The observed execution of this example is shown in Listing 1.4. It should be
mentioned that we cannot discriminate on the opcode values (0xf1), as it is the
same in both ADD instructions. It is worth mentioning that a Full merge was also
observed for the target program in Listing 1.3

1 ADD R1, R1, 0x4 // 0xf1010104
2 ANDS R2, R0 // 0x4002
3 MOVS R0, R0 // 0x0000
4 ADD R3, R3, 0xa // 0xf103030a
5 MOVS R6, R0 // 0x0006
6 MOVS R0, R0 // 0x0000

Listing 1.4: Observed execution as a result of partial merge after
targeting Listing 1.3.

6 Program counter modification

In this section, we exploit the proposed fault models to change the value of the
program counter to an address stored in one of the general purpose registers. Be-
ing able to modify the program counter allows to break the control flow integrity
of a program. This is leveraged in various attacks, such as privilege escalation
or secure-boot violation [20].

In the following subsections, we measure the probability of modifying the
program counter under different scenarios for the target program in Listing 1.5.
The results of the different scenarios, along with the fault models that led to
the success of the attack, and the glitch parameters that allowed observing the
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results are summarized in Table 5. The success rate is computed over 10 000
executions for each clock glitch fault injection scenario. The glitch parameters
are tuned to maximize the success rate.

1 R8 = address of line 11
2 // series of 0x0000
3 ADD R6, R1, 0x4c7 // 0xf20146c7
4 ADD R3, R3, 0xa
5 ADD R4, R4, 0xb
6 ADD R5, R6, R3
7 ADD R3, R3, 0xf
8 // series of 0x0000
9 ADD R5, R5, 0x5

10 // series of 0x0000
11 ADD R1, R1, 0x3
12 ADD R9, R0, R6

Listing 1.5: Target program for PC modification experiments.

6.1 Misaligned code

In [2], the authors were able to modify the program counter to an address stored
in R8 as a result of the skip fault model in a misaligned code. This is done by
executing the least significant 16 bits of a misaligned 32-bit instruction. The
first half of the 32-bit instruction is fetched at clock cycle i and its second half is
fetched at clock cycle i + 1. Therefore, skipping the fetched data at clock cycle
i results in decoding the remaining half that is fetched at clock cycle i + 1, and
executing when it is a valid encoding for a 16-bit instruction. The same thing
can happen for the ADD R6, R1, 0x4c7 instruction shown in Listing 1.5. Its
least significant 16 bits (0x46c7) are the encoding of MOV PC, R8, which stores
the value of R8 into the program counter. Thus, executing MOV PC, R8 leads to
a jump from line 3 to line 11, since R8 stores the address of line 11.

We reproduced their attack on Listing 1.5. Many useful and dummy instruc-
tions are used in Listing 1.5 to make sure of detecting the execution of MOV PC,
R8. The success rate in this scenario was 100 %. We noticed that 9996 of the
executions can be classified under the skip fault model. However, four execu-
tions can be classified under the partial update from the precharge value fault
model. This is because resetting some bits of the most significant 16 bits of
ADD R6, R1, 0x4c7, will lead to execute two 16-bit instructions, as the most
significant five bits do not identify a valid encoding for a 32-bit instruction (as
detailed in 4.2). For these four executions, we confirmed this is happening by
observing the values of the registers that the MOVS R1, R0 instruction, of en-
coding 0x0001, had been executed. Thus, the instructions MOVS R1, R0 and
MOV PC, R8 are executed in sequence.
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6.2 Aligned code

The aforementioned attack relies on the misalignment of the code in memory,
as explained in [2]. We add a single MOVS R0, R0 (0x0000) to the target pro-
gram, just before ADD R6, R1, 0x4c7 instruction, to realign it. The code is now
aligned, all bits of 0xf20146c7 are fetched in a single clock cycle. In this case,
the fault model that we can rely on to create new instructions (and thus modify
the program counter) is the partial update from the precharge value fault model.
The aim is to reset bits over the most significant 16 bits while not touching
the least significant 16 bits, in order to keep the encoding of MOV PC, R8, i.e.,
0x46c7. The success rate of the clock glitch fault injection campaign in this case
was 0.71 %. However, no side effect is observed along with executing MOV PC,
R8, but this is normal as resetting some bits of the most significant 16 bits of
0xf20146c7 could lead to execute many 16-bit instructions with no observable
effect like MOVS R0, R0 (0x0000), or TST R0, R0 (0x4200) for example.

This result is an improvement over the state of the art, since one could
imagine that making the code aligned will protect from the misaligned faulty
behaviors that are described in [2]. Thus, aligning the code cannot be consid-
ered a sufficient countermeasure against clock glitch attacks, that might focus
on misaligned codes. However, aligning the sensitive instructions can effectively
decrease the success rate, as demonstrated experimentally.

6.3 Countermeasure: register substitution

In this scenario the code is misaligned, but we changed the destination register
in ADD R6, R1, 0x4c7 from R6 to R2. Other occurrences of R6 are replaced
with R2 in the rest of the program. Now, the least significant 16-bit word for
ADD R2, R1, 0x4c7 is 0x42c7. The success rate in this scenario was zero: no
fault led to modify the program counter to the value in R8, even when we used
the same experimental parameters that previously led to a success rate of 100 %.
The R2 register was chosen because 2 in the encoding can not be turned into a
6 by resetting bits. Thus, we avoid obtaining the encoding of MOV PC, R8.

This scenario shows that a clear understanding of the fault effect led to the
design of a very simple and cost-effective countermeasure. This proposal clearly
has no overhead and is easily implemented by the compiler, except in rare cases
where registers might be under a lot of pressure.

6.4 Trojan

In this case, dummy code with no effect on the target program is added just
before ADD R2, R1, 0x4c7, where the code is protected against executing MOV
PC, R8. This dummy code is shown in Listing 1.6. It implements a Trojan that
can be activated by clock glitch fault injection in order to controllably execute
the MOV PC, R8 instruction. It is clear that the partial update from the previ-
ous value fault model in the full merge setting will lead to execute MOV PC,
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Table 5: Experimental results obtained, and fault injection parameters
used when attempting to modify the program counter.

Fault injection scenario
Misaligned Aligned Protected Trojan

Success rate 100 % 0.71 % 0.0 % 95.11 %

Fault models Skip [2] (99.96 %) partial update from - partial update from
partial update from the precharge value the previous value
the precharge value (sect. 5.1) (sect. 5.2)
(sect. 5.1) (0.04 %)

Shift -12 -13 - -9

Width 3 10 - 4

R8, since we have that 0x4281 | 0x0446 = 0x46c7 (MOV PC, R8). The exper-
imental success rate of this scenario was 95.11 %.

This scenario is possible if we assume that the attacker is the software de-
veloper himself. Alternatively, the compiler used to compile the code may be
untrusted and thus represent the attacker. As a countermeasure, a code review,
based on the presented fault models, should be able to detect such Trojans.

1 CMP R1, R0 // 0x4281
2 MOVS R0, R0 // 0x0000
3 MOVS R0, R0 // 0x0000
4 MOVS R0, R0 // 0x0000
5 LSLS R6, R0, 0x11 // 0x0446
6 MOVS R0, R0 // 0x0000
7 MOVS R0, R0 // 0x0000
8 MOVS R0, R0 // 0x0000

Listing 1.6: Dummy code implementing a Trojan.

7 Conclusion and future works

A new binary encoding fault model has been presented and defined: the partial
update fault model, which comes in two variations: the partial update from the
precharge value and the partial update from the previous value fault models.
These fault models allow explaining a wide range of the faulty behaviors that
are obtained when performing clock glitch fault injection campaigns. Therefore,
they can be used to perform vulnerability analysis of software codes against these
fault attacks, and help in better designing efficient and low-cost countermeasures.
We have also given an exploitation example: modifying the program counter
can be achieved and explained through these fault models. Following that, we
proposed a simple yet effective countermeasure against such vulnerability. We
also examined the dependency of partial update from the precharge value fault
model with respect to the target device and program.
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In terms of future works, proper formalization of protections against the
presented fault models will be very necessary. At software level, an automated
framework made of vulnerability assessment followed by automatic code protec-
tion would greatly improve the security of the targeted application. At a lower
level, several approaches might be envisioned at different abstraction levels, from
ISA down to transistor-level. Also, targeting other architectures will be impor-
tant to see if the proposed models can be generalized to various architectures.

Finally, although clock glitch has been used in this article to perform the
fault injection, the presented results may be generalized to other fault injection
techniques that rely on timing violations. This includes, for example, voltage
glitch and electromagnetic fault injection.
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