Ihab Alshaer

Brice Colombier

Christophe Deleuze

Vincent Beroulle

Paolo Maistri

Microarchitectural Insights into Unexplained Behaviors under Clock Glitch Fault Injection

Keywords: Fault injection attacks, Clock glitch, Fault model

de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Introduction

Given how frequently embedded systems are used in various spheres of life, securing them from malicious activities is fundamental. Sensitive data in embedded systems can be efficiently protected using cryptographic algorithms, which are frequently implemented in software on embedded microprocessors. However, such solutions can be vulnerable to attacks that seek to gain access to this private data. In particular, they might be vulnerable to physical attacks.

Fault injection is a major and powerful active physical attack. Since the well-known Boneh et al. attack [START_REF] Boneh | On the importance of eliminating errors in cryptographic computations[END_REF], where the authors were able to break an implementation of CRT-RSA by inducing faults into the computations, it has been an attractive research topic.

It is possible to perform the fault injection in a variety of ways: by exposing a digital device to radiations [START_REF] Baumann | Radiation-induced soft errors in advanced semiconductor technologies[END_REF], laser beams [START_REF] Khuat | Laser fault injection in a 32-bit microcontroller: from the flash interface to the execution pipeline[END_REF], or an electromagnetic pulse [START_REF] Moro | Electromagnetic fault injection: Towards a fault model on a 32-bit microcontroller[END_REF], by causing perturbations in the power supply [START_REF] Timmers | Controlling PC on ARM using fault injection[END_REF] or in the clock signal [START_REF] Alshaer | Variable-length instruction set: Feature or bug?[END_REF], by altering the environment's temperature [START_REF] Skorobogatov | Local heating attacks on flash memory devices[END_REF], etc.

Fault Injection Effects

Several works [START_REF] Khelil | Fault analysis attack on an FPGA AES implementation[END_REF][START_REF] Moro | Electromagnetic fault injection: Towards a fault model on a 32-bit microcontroller[END_REF][START_REF] Proy | A first isa-level characterization of EM pulse effects on superscalar microarchitectures: A secure software perspective[END_REF][START_REF] Trouchkine | EM fault model characterization on SoCs: From different architectures to the same fault model[END_REF][START_REF] Spensky | Glitching demystified: Analyzing control-flow-based glitching attacks and defenses[END_REF][START_REF] Buhren | One glitch to rule them all: Fault injection attacks against amd's secure encrypted virtualization[END_REF] claimed that the effect of a fault injection or the success of a fault injection attack is somehow random. In some cases [START_REF] Khelil | Fault analysis attack on an FPGA AES implementation[END_REF][START_REF] Spensky | Glitching demystified: Analyzing control-flow-based glitching attacks and defenses[END_REF][START_REF] Buhren | One glitch to rule them all: Fault injection attacks against amd's secure encrypted virtualization[END_REF], the corruption is expressed as random bit flips or random byte faults. On the other hand, other works [START_REF] Moro | Electromagnetic fault injection: Towards a fault model on a 32-bit microcontroller[END_REF][START_REF] Proy | A first isa-level characterization of EM pulse effects on superscalar microarchitectures: A secure software perspective[END_REF][START_REF] Trouchkine | EM fault model characterization on SoCs: From different architectures to the same fault model[END_REF], described it as random data corruptions that are applied at the instruction set architecture (ISA) level, either on the instruction data or on the contents of the registers.

Based on such variety, analyzing the vulnerabilities that fault injection can exploit is extremely challenging, and thus, developing countermeasures is significantly more complex. This will definitely result in either over-protections, which will affect the performance and the cost of the device, or conversely, in under-protections too, which will affect the security of the device.

Recent studies [START_REF] Laurent | Bridging the gap between RTL and software fault injection[END_REF][START_REF] Tollec | Exploration of fault effects on formal RISC-V microarchitecture models[END_REF][START_REF] Alshaer | Cross-layer inference methodology for microarchitecture-aware fault models[END_REF][START_REF] Khuat | Laser fault injection in a 32-bit microcontroller: from the flash interface to the execution pipeline[END_REF][START_REF] Alshaer | Variable-length instruction set: Feature or bug?[END_REF] tried to explain the effects of the fault injection by looking at the lower levels of abstraction of digital systems. In particular, they focus on the register transfer level (RTL), microarchitectural level and/or binary encoding level of the instructions. In some cases [START_REF] Laurent | Bridging the gap between RTL and software fault injection[END_REF][START_REF] Tollec | Exploration of fault effects on formal RISC-V microarchitecture models[END_REF], however, the authors only conducted simulations at ISA and RTL levels: they did not confirm the realism of their analysis with physical fault injections. In contrast, [START_REF] Alshaer | Cross-layer inference methodology for microarchitecture-aware fault models[END_REF][START_REF] Khuat | Laser fault injection in a 32-bit microcontroller: from the flash interface to the execution pipeline[END_REF] performed physical fault injections, but they only focused on two kinds of faulty behaviors: complete-instructions skip and complete-instructions replay faults. In [START_REF] Alshaer | Variable-length instruction set: Feature or bug?[END_REF], authors offered a thorough analysis and justification of the experimental findings that show how the alignment of the instructions in the flash memory can affect the obtained faulty behaviors. Based on that, they proposed two fault models at the binary encoding level: Skip a specific number of bits and Skip and Repeat a specific number of bits, whose value is strictly related to the flash memory access size. However, in their work, they explicitly said that these two fault models explain many of the obtained faulty behaviors, but not all of them.

Contributions

In this article, we propose a new inferred fault model, the partial update fault model, that is applied to the binary encoding of the instructions. This new fault model aims at explaining different faulty behaviors that are obtained when performing clock glitch fault injection campaigns on a 32-bit microcontroller. Therefore, it improves the vulnerability analysis process against fault injection, and hence, allows developers to design cost-effective countermeasures. We also show how a subcase of the new fault model is instruction-independent with high probability, and its manifestation is highly device-dependent. We show how we can execute new instructions even with a different length of encoding as a result of a clock glitch, by exploiting the variable-length capabilities of the target microcontroller. Finally, we make use of the presented fault model to modify the program counter to a chosen address, whose value is stored in a general-purpose register.

Outline

This article is organized as follows: Section 2 briefly describes the methodology we followed to explain the obtained results. Section 3 presents the inferred binary encoding fault models. Section 4 describes the experimental setup, then experimental results are reported and discussed in Section 5. Section 6 presents different practical scenarios to modify the program counter, based on the presented fault models. The article is concluded along with future perspectives in Section 7.

Fault model inference

The method we followed in this work to describe and characterize the fault injection results is comparable to the methods used in [START_REF] Dureuil | From code review to fault injection attacks: Filling the gap using fault model inference[END_REF][START_REF] Alshaer | Cross-layer inference methodology for microarchitecture-aware fault models[END_REF][START_REF] Laurent | Bridging the gap between RTL and software fault injection[END_REF][START_REF] Moro | Electromagnetic fault injection: Towards a fault model on a 32-bit microcontroller[END_REF]. The core of the analysis consists in comparing the outcomes of executions, both the simulations and the actual fault injections, at various levels of digital system abstraction. In this work, we focus our analysis on two abstraction levels: ISA level and binary encoding of the instructions. We also enrich these descriptions by providing insights at the microarchitectural level.

On one side, physical fault injections are performed, with appropriate injection parameters, on a target device that is executing a simple target program, which is formed of a sequence of assembly instructions (step 1 in Figure 1). Then, from the physical fault injection results, we infer fault models at the binary encoding level of the instructions (step 2 in Figure 1). Applying the inferred binary fault models to the simulated execution of the same target program, that was used in step 1 , is the next step (step 3 in Figure 1). The outcomes of the physical fault injection and the software execution are then compared in order to provide better characterization of the impact of the fault injection and validate the inferred fault models (step 4 in Figure 1). The comparison is carried out on the output values of the processor's general-purpose registers. Each of these registers has a known value at the beginning, and any change can be detected after performing step 4 in Figure 1.

Partial update fault model

This section presents the inferred binary encoding fault models that are applied to the target programs. These fault models seek to explain the faulty behaviors that have been observed after physical fault injection campaigns have been carried out on the target device that is running these target programs.

It has been observed through these physical fault injection experiments that not all of the observed faulty behaviors can be explained by the binary encoding fault models described in [START_REF] Alshaer | Variable-length instruction set: Feature or bug?[END_REF]. There are in fact other faulty behaviors, which can be explained with the new fault models described in this section.

Partial update from the precharge value

This fault model corresponds to a fault that happens while the fetched data or instruction is propagated between internal registers from the flash memory to the core, as shown in Figure 2.

The hypothesis behind this fault model is based on the fact that not all bits of the data are propagated at the same speed from an internal register to another through a bus or combinational logic. Consequently, not all flip-flops within the destination register will get the update at the same time at a rising edge of a new clock cycle.

In nominal conditions, the clock period is defined such that all signals can be correctly sampled (i.e., the critical path has a positive slack). In case of a clock glitch, however, this behavior is disrupted by the fact the clock edge occurs quite sooner than expected. Thus, with the suitable injection parameters, it may happen that some flip-flops will receive the correct update, while some will receive the precharge value of the bus. Assuming that the precharge value of a bus or a wire between two registers is zero, then the correct update of a flip-flop means receiving the correct logic one or zero, while not receiving the correct update means capturing the precharge value of the bus, i.e. zero. This model is observed as a reset on some bits while the instructions are transferred through the fetch data path in Figure 2, as shown experimentally in subsection 5.1.

It should be mentioned that in [START_REF] Moro | Electromagnetic fault injection: Towards a fault model on a 32-bit microcontroller[END_REF], the authors claimed that some of the observed faults, as a result of electromagnetic fault injection, might be related to the precharge value of the target microcontroller's bus. However, they didn't have a clear model that could explain their observed faults.

Partial update from the previous value

This fault model is somehow similar to the previous one. It occurs on the same path shown in Figure 2. However, instead of receiving the precharge value from the bus, some flip-flops within a destination register will keep their old values, either because the values have not been changed or because the corresponding wire still keeps the old values, and hence, the updated values are similar to the old ones. Conversely, and at the same time, other flip-flops in the destination register will receive the correct updated value. This model is formally described as a bitwise OR between the old value and the new value of an internal register. This merge might be a full merge or a partial merge, as shown experimentally in subsection 5.2. Thus, in each flip-flop, the resulting value can be either the previous value or the correct value i.e. the value that the flip-flop should receive under normal execution, without any fault injection.

When looking at the instructions execution in this case, we observe the following behavior. The instruction(s) fetched at clock cycle i is executed normally. However, the instruction(s) fetched at clock cycle i + 1 is not the one being executed. Instead, the observed instruction(s) is a full or partial merge between the fetched data at clock cycle i and the fetched data at clock cycle i + 1. More details about this behavior are provided in subsection 5.2.

Discussion

Exploiting the transition value of a wire or a bus from a precharge (or a previous) value to a new value is a well-established modelling approach in power analysis attacks [START_REF] Alioto | Differential power analysis attacks to precharged buses: A general analysis for symmetric-key cryptographic algorithms[END_REF][START_REF] Randolph | Power side-channel attack analysis: A review of 20 years of study for the layman[END_REF][START_REF] Shelton | Rosita: Towards automatic elimination of power-analysis leakage in ciphers[END_REF], which employ the so-called Hamming weight (or distance) leakage model. Likewise, our approach shows a similar pattern: depending on the type of register transition occurring (from previous or precharge value), the corresponding partial update fault model applies.

In section 5, we show that both cases can occur for the same device. This is not in contrast with our modeling, as depending on the actual element that is affected by the fault injection (in our case, the clock glitch) and the fine-tuning of the injection parameters, we may see different outcomes. Further details ahead.

Experimental setup

The target device and the fault injection method we employed are presented in this section. Section 5 includes the target programs, the corresponding experimental outcomes, and the discussion that follows.

Clock glitch fault injection

An effective method of fault injection is to introduce perturbations on the clock signal. Compared with other fault injection methods like laser or electromagnetic pulses, clock glitch is known to be effective and the least expensive method. Also, it can offer a respectable level of controllability thanks to its temporal accuracy and, consequently, the location of the injection within the target program. In clock glitch fault injection, the glitch interferes with the normal operation of the clock signal, possibly causing a timing violation that results in a variety of erroneous behaviors. Additionally, since the glitch is introduced into the global clock, it is uncertain which microarchitectural component might be affected by the fault injection.

The following settings, illustrated in Figure 3, are tuned when performing clock glitch fault injection:

-Delay: the time between the rising edge of a trigger signal and the rising edge of the target clock cycle. -Shift: the time between the rising edge of the glitch and the rising edge of the target clock cycle. -Width: the duration of the glitch. In this work, the clock glitch fault injection campaigns have been carried out using the ChipWhisperer environment [START_REF] O'flynn | Chipwhisperer: An open-source platform for hardware embedded security research[END_REF].

Target device

The target device is a 32-bit microcontroller that embeds an Arm Cortex-M4 processor. The Arm Cortex-M4 has a 3-stage pipeline: fetch, decode and execute. It has 13 general-purpose 32-bit registers, R0 to R12. Arm Cortex-M4 is based on ARMv7-M architecture [START_REF]ARM Limited: Armv7-m architecture reference manual[END_REF] and supports the Thumb-2 instruction set [START_REF] Limited | ARM architecture reference manual Thumb-2 supplement[END_REF].

Thumb-2 is a variable-length instruction set that offers two encoding lengths: 16 and 32 bits. The instruction has a 32-bit encoding if the most significant five bits of a 32-bit word have one of the following values [START_REF]ARM Limited: Armv7-m architecture reference manual[END_REF]: 0b11101, 0b11110 or 0b11111.

The flash memory access size in this microcontroller is 64 bits. Therefore, up to two 32-bit or four 16-bit instructions can be fetched simultaneously. Additionally, as the supported instruction set is a variable-length instruction set, misaligned instructions can be fetched in several configurations as described in [START_REF] Alshaer | Variable-length instruction set: Feature or bug?[END_REF]. For example, the first half of a 32-bit instruction may be fetched at a given clock cycle, while the second half is fetched at the next clock cycle.

In the experiments, the processor is put in a known state before each fault injection. This is done by initialization instructions, that are located before the target instructions. After each execution, the values of the general purpose registers are transferred to a control computer via a serial communication in order to analyze the results. The target programs are presented in the next section.

Experimental results

The result of any fault injection experiment is assigned to one of these classes:

-Crash: we obtain a crash, reset, or failure when attempting to read the target final state via the serial communication, -Silent: the final state of the target is the so-called golden state, i.e. as if no fault was injected, -Fault: the final state of the target is different from the golden state.

The results of the different clock glitch fault injection campaigns are discussed separately with respect to each fault model in the following subsections.

Partial update from the precharge value

This section demonstrates how the partial update from the precharge value fault model explains many of the faulty behaviors observed during the fault injection campaigns. Also, it demonstrates the relation between this fault model and both the target instruction and the target device. To put it another way, it determines whether some bits in the fetched data are more sensitive to this fault model than other bits and, if so, whether the target instruction or the target device is to blame. The following subsections provide detailed results when targeting different instructions, and also when targeting a new device, identical to the already used one.

High-Hamming weight instruction

Since the partial update from the precharge value fault model causes some bits of the target instruction to be reset, it makes sense to choose an instruction with a large Hamming Weight in order to maximize the occurrence of the considered fault model. Under this assumption, we chose the instruction SUBS R6, 0xff, whose encoding in Thumb-2 is 0x3eff. Our rationale is twofold: the instruction has a comparatively large Hamming Weight [START_REF] Moro | Electromagnetic fault injection: Towards a fault model on a 32-bit microcontroller[END_REF] given its size. Secondly, since the partial update from the precharge value fault model causes some bits of the instruction to be reset, applying it on 0x3eff results in an instruction that can be discriminated with high probability.

The objective behind these experiments is to show that several faulty behaviors can be explained using the partial update from the precharge value fault model. In addition, we want to see if some bits are more vulnerable than others to be reset within a target instruction. Finally, were it the case, we need to know if this is because of the target instruction or of the target device. Since the fetch size in the target device is 64 bits, a 16-bit instruction may reside in any of four different positions within these 64 bits. Therefore, four injection campaigns have been performed, where the position of 0x3eff is different from one campaign to another. The main reason of changing the position of the target instruction is to find out if the fault model depends on the target instruction, or it depends on its position within the fetched 64 bits, and hence, depends on the physical implementation of the target device. The remaining three positions are filled with three instructions with the encoding 0x0000, in order to minimize possible side effects from other instructions and make the analysis easier. This encoding corresponds to the MOVS R0, R0 instruction, which is equivalent to a NOP.

Table 1 gives the target part code of each fault injection campaign. It also shows the glitch parameters that are used. These parameters are chosen in order to maximize the number of faults that can be classified under the partial update from the precharge value fault model. Position refers to the location of 0x3eff within the fetched 64 bits. The values of shift and width are provided as a percentage of a single clock cycle: the glitch is introduced before the rising edge of the target clock cycle if shift is negative. ChipWhisperer provides an additional parameter, called fine-width, which is used to offer fine-tuning of the width parameter. It has been noticed that fine-width provides better reproducibility of the results when it is used. Repetitions is the number of executions for each combination of parameters. For each fault injection campaign, the total number of experiments corresponds therefore to more than 20 000 executions, as summarized in the last row of the table. The same value of delay is used in all the campaigns, and it depends on the number of initialization instructions that precede the target part.

The results of the four injection campaigns on 0x3eff with respect to the three classes (i.e., Crash, Silent and Fault) are presented in Table 2. All the resulting faulty behaviors can be classified under two fault models: Skip (all the general purpose registers keep their initial values), or partial update from the precharge value . Table 2 also provides the number of observed behaviors linked to each fault model among the faulty executions.

Figure 4 shows the encoding of the executed instructions for each injection campaign, along with the number of times each of them is observed. All of these faulty behaviors are classified under the partial update from the precharge value fault model. This is because all of them can be seen as a reset on some bits of the original instruction 0x3eff. It should be noticed that resetting all Target 0x3eff 0x0000 0x0000 0x0000 part 0x0000 0x3eff 0x0000 0x0000 code 0x0000 0x0000 0x3eff 0x0000 0x0000 0x0000 0x0000 0x3eff the bits of 0x3eff will result in executing 0x0000, which is an instruction with no effect as mentioned earlier, and thus classified under the skip fault model.

Shift

Additionally, Table 2 and Figure 4 show that the number of faulty behaviors and the observed executed instructions depend on the position of the instruction in the fetched 64 bits. Thus, the results depend on the position rather than the instruction. Furthermore, the results of each position show that some instructions are more probable to be executed than others as a result of the fault injection.

To better understand the effect of the fault at each position, and hence, on each bit in the position, we define a metric called bit sensitivity. It measures the probability for a bit to be reset as a result of the clock glitch fault injection over the faulty behaviors that are classified under the partial update from the precharge value fault model at a specific position. The bit sensitivity S p (f, b) of bit b to a given fault model f at position p is defined in Equation [START_REF] Alioto | Differential power analysis attacks to precharged buses: A general analysis for symmetric-key cryptographic algorithms[END_REF].

S p (f, b) = 1 - P (b = 1 | p) P (fault model = f | p) (1)
Figure 5 presents the bit sensitivity values for the results obtained during the fault injection campaigns on 0x3eff at all positions. Obviously, bits that are zero in 0x3eff (bits 8, 14, and 15) have no corresponding bit sensitivity value. We can see that the bit sensitivity is different from one position to another and from one bit to another at the same position. Thus, under the partial update from the precharge value fault model, some instructions are more probable than others. Subsection 5.1 presents the results of targeting a different instruction, to confirm that the partial update from the precharge value fault model depends on the physical implementation of the device, and not on the target instruction.

It is important to note that whenever there is a doubt about the execution of an instruction, results are confirmed using alternative initial register values. Nonetheless, in rare circumstances, more than one instruction may produce the same outcome, for instance, when the value of a register is zero. For example, this might happen because of moving zero to the register, or by shifting its value by 32 bits. In Figure 4, when the encoding is starred, it means that there is an alternative instruction that could lead to the same outcome, and we selected one based on other observed encoding at the same position. It is important to stress that this is happening only in a few cases (4 times), and does not affect the measurements or the general conclusion.

Confirming sensitive bits

We carried out extra experiments with the value 0x3b7d, which is the encoding of the SUBS R3, 0x7d instruction. Again, we chose this instruction since it has a relatively high Hamming weight, and allows recognizing the encoding of the executed instructions as a result of the partial update from the precharge value fault model with high probability. However, we specifically took care to have ones in the most sensitive positions from Figure 5 to see if these measurements are reproducible when targeting a different instruction.

The experimental parameters for the fault injection campaigns on 0x3b7d are identical to that of 0x3eff, given in Table 1. The only difference is that the target program has 0x3b7d instead of 0x3eff. The classification results are presented in Table 3, while the bit sensitivity values are plotted in Figure 6. It is clear that the classification results and the bit sensitivity values of 0x3b7d are very close to the corresponding results of 0x3eff. This leads us to the conclusion that the partial update from the precharge value fault model is instruction-independent with high probability. If it depended on the instruction, then changing the position should not have an observable distinct effect on the executed instructions and on the bit sensitivity of different positions. On the other hand, the next subsection shows that bit sensitivity greatly depends on the target device. 0x3eff experiments on a new microcontroller In this section, we present the results of targeting the 0x3eff instruction again while using a brand new device, which we did not use to perform any experiment previously. In any other means, it is identical to the one we used in the previous experiments. This is done to better understand the dependency of the partial update from the precharge value fault model on the target device. The experimental parameters of this campaign are identical to those in Table 1.

For our purposes, it is enough to present the results on the 2 nd and 4 th positions to see that they are very different between the two devices. The results are presented in Table 4 and Figure 7.

A very interesting observation is that the number of faults and the bit sensitivity were much higher when performing the fault injection campaigns on the old device. This is clear for the bit sensitivity of the 4 th position in Figure 7b, as we can see the distribution of the bit sensitivities is similar to that in Figures 5d and6d, however, on the old device, the sensitivity is much higher. This could be explained as an aging effect, since the old device has been used for fault injection experiments for a few months. We speculate that the bit sensitivity could increase over time (a common consequence of performance degradation due to aging), but further research is needed to confirm this observation.

Conclusion on bit sensitivity

To summarize, the bit sensitivity figures illustrate that, as a result of the partial update from the precharge value fault model, the probability distribution of the corrupted instruction is not random, and it depends on several features that are mostly device-dependent. The probability of executing a given instruction differs from the probability of executing another. This discrepancy is determined by both the instruction's position inside the target program and the target device itself. This is of prime importance if the instruction results in a security vulnerability, as will be highlighted in section 6.

Partial update from the previous value

In this section, we focus on the occurrence of faulty behaviors that can be classified under the partial update from the previous value fault model. In this case, there is no precharge value and the transition occurs from the value that was previously stored in the register. In the time while the register is updating its value, a transient situation may occur when some bits already have the new value, whereas others are still to be updated. This behavior can be seen a merge between the previous and the new instruction. The following subsections give examples of observed faulty behaviors that are classified as full or partial merge.

Full merge

The merge is considered full if and only if the observed executed instruction(s) can be expressed as a bitwise OR between the data fetched at clock cycle i and the data fetched at clock cycle i + 1. In the following, an example is provided, which illustrates how two new 32-bit instructions are executed as a result of a full merge between eight different 16-bit instructions.

Listing 1.1 shows the target program and the encoding of each instruction of this example. The observed execution as a result of the clock glitch fault injection is given in Listing 1.2. The bitwise OR of the first two hexadecimal digits at line 1 (0xa9) and the corresponding digits at line 5 (0x42) gives 0xeb. Since the most significant five bits are 0b11101, this word is decoded as a 32-bit instruction, as explained in subsection 4.2. The same holds for the merging of instructions at lines 3 and 7.

Listing 1.2 is obtained a full merge applied on Listing 1.1 as follows:

-Merging the 32 bits at lines 1 and 2 with the 32 bits at lines 5 and 6 respectively: 0xa9000000 | 0x42000305 = 0xeb000305. -Merging the 32 bits at lines 3 and 4 with the 32 bits at lines 7 and 8 respectively: 0xa9000000 | 0x42020405 = 0xeb020405. One of the observed executions that can be classified under Partial merge is as the following: We observed that not all the 32 bits at lines 1 (0xf1010104) are systematically merged with the corresponding 32 bits at line 4 (0xf102020a): only the destination and source registers are merged. In addition to this behavior, another partial merge occurred in the following instructions, only over the least significant digit, between the 16 bits at line 2 (0x4002) and the 16 bits at line 5 (0x0004). As a consequence, only the destination register at line 5 is affected. The observed execution of this example is shown in Listing 1.4. It should be mentioned that we cannot discriminate on the opcode values (0xf1), as it is the same in both ADD instructions. It is worth mentioning that a Full merge was also observed for the target program in Listing 1.3

Program counter modification

In this section, we exploit the proposed fault models to change the value of the program counter to an address stored in one of the general purpose registers. Being able to modify the program counter allows to break the control flow integrity of a program. This is leveraged in various attacks, such as privilege escalation or secure-boot violation [START_REF] Timmers | Controlling PC on ARM using fault injection[END_REF].

In the following subsections, we measure the probability of modifying the program counter under different scenarios for the target program in Listing 1.5. The results of the different scenarios, along with the fault models that led to the success of the attack, and the glitch parameters that allowed observing the results are summarized in Table 5. The success rate is computed over 10 000 executions for each clock glitch fault injection scenario. The glitch parameters are tuned to maximize the success rate.

Misaligned code

In [START_REF] Alshaer | Variable-length instruction set: Feature or bug?[END_REF], the authors were able to modify the program counter to an address stored in R8 as a result of the skip fault model in a misaligned code. This is done by executing the least significant 16 bits of a misaligned 32-bit instruction. The first half of the 32-bit instruction is fetched at clock cycle i and its second half is fetched at clock cycle i + 1. Therefore, skipping the fetched data at clock cycle i results in decoding the remaining half that is fetched at clock cycle i + 1, and executing when it is a valid encoding for a 16-bit instruction. The same thing can happen for the ADD R6, R1, 0x4c7 instruction shown in Listing 1.5. Its least significant 16 bits (0x46c7) are the encoding of MOV PC, R8, which stores the value of R8 into the program counter. Thus, executing MOV PC, R8 leads to a jump from line 3 to line 11, since R8 stores the address of line 11.

We reproduced their attack on Listing 1.5. Many useful and dummy instructions are used in Listing 1.5 to make sure of detecting the execution of MOV PC, R8. The success rate in this scenario was 100 %. We noticed that 9996 of the executions can be classified under the skip fault model. However, four executions can be classified under the partial update from the precharge value fault model. This is because resetting some bits of the most significant 16 bits of ADD R6, R1, 0x4c7, will lead to execute two 16-bit instructions, as the most significant five bits do not identify a valid encoding for a 32-bit instruction (as detailed in 4.2). For these four executions, we confirmed this is happening by observing the values of the registers that the MOVS R1, R0 instruction, of encoding 0x0001, had been executed. Thus, the instructions MOVS R1, R0 and MOV PC, R8 are executed in sequence.

Aligned code

The aforementioned attack relies on the misalignment of the code in memory, as explained in [START_REF] Alshaer | Variable-length instruction set: Feature or bug?[END_REF]. We add a single MOVS R0, R0 (0x0000) to the target program, just before ADD R6, R1, 0x4c7 instruction, to realign it. The code is now aligned, all bits of 0xf20146c7 are fetched in a single clock cycle. In this case, the fault model that we can rely on to create new instructions (and thus modify the program counter) is the partial update from the precharge value fault model. The aim is to reset bits over the most significant 16 bits while not touching the least significant 16 bits, in order to keep the encoding of MOV PC, R8, i.e., 0x46c7. The success rate of the clock glitch fault injection campaign in this case was 0.71 %. However, no side effect is observed along with executing MOV PC, R8, but this is normal as resetting some bits of the most significant 16 bits of 0xf20146c7 could lead to execute many 16-bit instructions with no observable effect like MOVS R0, R0 (0x0000), or TST R0, R0 (0x4200) for example.

This result is an improvement over the state of the art, since one could imagine that making the code aligned will protect from the misaligned faulty behaviors that are described in [START_REF] Alshaer | Variable-length instruction set: Feature or bug?[END_REF]. Thus, aligning the code cannot be considered a sufficient countermeasure against clock glitch attacks, that might focus on misaligned codes. However, aligning the sensitive instructions can effectively decrease the success rate, as demonstrated experimentally.

Countermeasure: register substitution

In this scenario the code is misaligned, but we changed the destination register in ADD R6, R1, 0x4c7 from R6 to R2. Other occurrences of R6 are replaced with R2 in the rest of the program. Now, the least significant 16-bit word for ADD R2, R1, 0x4c7 is 0x42c7. The success rate in this scenario was zero: no fault led to modify the program counter to the value in R8, even when we used the same experimental parameters that previously led to a success rate of 100 %. The R2 register was chosen because 2 in the encoding can not be turned into a 6 by resetting bits. Thus, we avoid obtaining the encoding of MOV PC, R8.

This scenario shows that a clear understanding of the fault effect led to the design of a very simple and cost-effective countermeasure. This proposal clearly has no overhead and is easily implemented by the compiler, except in rare cases where registers might be under a lot of pressure.

Trojan

In this case, dummy code with no effect on the target program is added just before ADD R2, R1, 0x4c7, where the code is protected against executing MOV PC, R8. This dummy code is shown in Listing 1.6. It implements a Trojan that can be activated by clock glitch fault injection in order to controllably execute the MOV PC, R8 instruction. It is clear that the partial update from the previous value fault model in the full merge setting will lead to execute MOV PC, In terms of future works, proper formalization of protections against the presented fault models will be very necessary. At software level, an automated framework made of vulnerability assessment followed by automatic code protection would greatly improve the security of the targeted application. At a lower level, several approaches might be envisioned at different abstraction levels, from ISA down to transistor-level. Also, targeting other architectures will be important to see if the proposed models can be generalized to various Finally, although clock glitch has been used in this article to perform the fault injection, the presented results may be generalized to other fault injection techniques that rely on timing violations. This includes, for example, voltage glitch and electromagnetic fault injection.

Fig. 1 :

 1 Fig. 1: Fault model inference methodology.

Fig. 2 :

 2 Fig. 2: Fetch data path in a microcontroller.

Fig. 3 :

 3 Fig. 3: Clock glitch parameters

- 13 Width

 13 {6, 10} {6, 10} {3, 4} {3,

(d) 4 th positionFig. 4 :

 4 Fig. 4: Encoding of the observed executed instructions when targeting 0x3eff at four different positions within the target programs.

Fig. 5 :

 5 Fig. 5: Bit sensitivity values obtained when targeting 0x3eff.

Fig. 6 :

 6 Fig. 6: Bit sensitivity values obtained when targeting 0x3b7d.

Fig. 7 :

 7 Fig. 7: Bit sensitivity values obtained when targeting 0x3eff on the new device at the 2nd and the 4th positions.

Table 1 : Experimental parameters

 1

	Position	1 st	2 nd	3 rd	4 th

Table 2 : Fault obtained when targetting the 0x3eff instruction at four different positions

 2

	Class	1 st	Position 2 nd 3 rd	4 th
	Crash	0	0	23	1
	Silent	33	1574 2273 158
	Fault	20 407 18 866 18 144 20 281
	Skip	11 523 8295 11 107 7901
	Partial update from the precharge value 8884 10 571 7037 12 380

1 st position

	Binary encoding	0x0800* 0x3a1f 0x3e9f 0x3a1b 0x0801* 0x3e1f 0x3edf 0x381b 0x3813	1	Number of occurences 1106 968 922 777 (a) Number of occurences 2226 2116 408 360 0x0040 0x3eee 0x08c0 0x00c0 0x3efe 0x0cc0 0x0ec2 0x2200* 0x3eea 0x0ec0 0x0cc2 0x0ee2 Binary encoding 1813 1618 1228 983 694 509 425 163 125 51 6 (b)	2956

2 nd position

	Binary encoding	0x3ef7 0x0200 0x0600 0x3ef6 0x0e82 0x0680 0x0681 0x3686 0x3eb6 0x3682 0x0e86 0x3696 0x36b6 0x36a6 0x3e96 0x3e86 0x3ea6 0x3ed6 0x0e80 0x3ee6 0x36c6 0x36f6 0x36e6 0x36d6 0x2679 0x3ec6 0x36a2 0x0601 0x3e82	96 95 71 43 42 32 25 23 19 15 15 7 6 5 4 3 2 1 1 1 1	272 223	592 489 443	1323 1114	2074
					Number of occurences	
				(c)		

3 rd position

	Binary encoding	0x3490 0x34fa 0x3cfe 0x3cfa 0x0400 0x2410 0x34c0 0x2490 0x0410 0x34da 0x34d2 0x2400* 0x3410 0x3cff 0x34f2 0x34d8 0x34f0 0x34f8	149 116 105 90 83 71 55 41 39 21 8	474	1450 1419 1295	2452 2357 2155
					Number of occurences	

4 th position

	Bit index	0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	0.0 0.000	0.2	0.4 0.354 0.504 0.6 Bit sensitivity 0.251 0.354 0.354 0.395 0.354 0.354	0.8 0.742 0.830	1.0 1.000 0.950	Bit index	0 1 2 3 4 5 6 7 8 9 10 11 12 13 15 14	0.0	0.040	0.2	0.4 0.320 Bit sensitivity 0.6 0.667 0.8 0.736 0.720 0.907 1.0 1.000 0.720 0.619 0.589 0.436 0.720 0.680
	Bit index	0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	(a) 1 st position 0.666 0.450 0.534 0.586 0.592 0.615 0.347 0.000 0.190 0.513 0.530 0.530	1.000	Bit index	0 1 2 3 4 5 6 7 8 9 10 11 12 13 15 14	0.000	(b) 2 nd position 0.495 0.502 0.160 0.508 0.451 0.241 0.704 0.247 0.124	0.821	0.996 1.000
			0.0	0.2	0.4	0.6 Bit sensitivity	0.8	1.0			0.0			0.2	0.4	0.6 Bit sensitivity	0.8	1.0
				(c) 3 rd position							(d)

Table 3 : Fault obtained when targeting the 0x37bd instruction at four different positions

 3

	Class	1 st	Position 2 nd 3 rd	4 th
	Crash	0	0	0	0
	Silent	39	2304 2589 197
	Fault	20 401 18 136 17 851 20 243
	Skip	11 694 8386 10 528 7606
	Partial update from the precharge value 8707 9750 7323 12 637

4 th position

	Bit index	0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	0.0 0.000	0.2	0.4 0.266 0.335 Bit sensitivity 0.6 0.509 0.335 0.228 0.422 0.333 0.333	0.8	1.0 1.000 0.941	Bit index	0 1 2 3 4 5 6 7 8 9 10 11 12 13 15 14	0.0	0.025	0.2	0.4 0.325 Bit sensitivity 0.6 0.677 0.8 0.713 0.677 0.605 0.677 0.652	0.838	1.0 1.000 0.950
	Bit index	0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	0.000		(a) 1 st position 0.742 0.459 0.499 0.560 0.591 0.311 0.541 0.458 0.453	1.000	Bit index	0 1 2 3 4 5 6 7 8 9 10 11 12 13 15 14	(b) 2 nd position 0.466 0.421 0.458 0.481 0.639 0.130 0.060 0.000	0.763	0.992 1.000
			0.0	0.2	0.4	0.6 Bit sensitivity	0.8	1.0			0.0		0.2	0.4	0.6 Bit sensitivity	0.8	1.0
				(c) 3 rd position							(d)		

Table 4 : Fault obtained when targeting the 0x3eff instruction using the new device

 4

						Class						Position 2 nd 4 th
						Crash						0	2
						Silent						18 058 16 995
						Fault						2382 3443
						Skip						345	0
						Partial update from the precharge value 2037 3443
	Bit index	0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	0.000 0.000 0.000 0.058	0.421 0.548 0.189 0.351 0.281 0.500	0.775 0.688	1.000	Bit index	0 1 2 3 4 5 6 7 8 9 10 11 12 13 15 14	0.005 0.162 0.001 0.000 0.001 0.009 0.009 0.008 0.001 0.016 0.019	0.281	1.000
			0.0	0.2	0.4	0.6 Bit sensitivity	0.8	1.0			0.0	0.2	0.4	0.6 Bit sensitivity	0.8	1.0
					(a) 2 nd position					(b)

4 th position

1: Target program to execute two new 32-bit instructions as a result of full merge.

	1 ADD R1, SP, 0x0	// 0xa900
	2 MOVS R0, R0	// 0x0000
	3 ADD R1, SP, 0x0	// 0xa900
	4 MOVS R0, R0	// 0x0000
	5 TST R0, R0	// 0x4200
	6 LSLS R5, R0, 0xc	// 0x0305
	7 TST R2, R0	// 0x4202
	8 LSLS R5, R0, 0x10	// 0x0405
	Listing 1.1 ADD R1, SP, 0x0	// 0xa900
	2 MOVS R0, R0	// 0x0000
	3 ADD R1, SP, 0x0	// 0xa900
	4 MOVS R0, R0	// 0x0000
	5 ADD R3, R0, R5	// 0xeb000305
	6 ADD R4, R2, R5	// 0xeb020405
	Listing 1.2:	

Observed execution as a result of full merge on Listing 1.1. Partial merge

 In this case, only part of the fetched data at clock cycle i and the data fetched at clock cycle i + 1 is merged. The target code that is used for this example is shown in Listing 1.3.

	1 ADD R1, R1, 0x4	// 0xf1010104
	2 ANDS R2, R0	// 0x4002
	3 MOVS R0, R0	// 0x0000
	4 ADD R2, R2, 0xa	// 0xf102020a
	5 MOVS R4, R0	// 0x0004
	6 MOVS R0, R0	// 0x0000
	Listing 1.3: Target program for partial merge experiment.

Listing 1.4: Observed execution as a result of partial merge after targeting Listing 1.3.

	1 ADD R1, R1, 0x4	// 0xf1010104
	2 ANDS R2, R0	// 0x4002
	3 MOVS R0, R0	// 0x0000
	4 ADD R3, R3, 0xa	// 0xf103030a
	5 MOVS R6, R0	// 0x0006
	6 MOVS R0, R0	// 0x0000

5: Target program for PC modification experiments.

	1 R8 = address of line 11
	2 // series of 0x0000	
	3 ADD R6, R1, 0x4c7	// 0xf20146c7
	4 ADD R3, R3, 0xa	
	5 ADD R4, R4, 0xb	
	6 ADD R5, R6, R3	
	7 ADD R3, R3, 0xf	
	8 // series of 0x0000	
	9 ADD R5, R5, 0x5	
	10 // series of 0x0000	
	11 ADD R1, R1, 0x3	
	12 ADD R9, R0, R6	
	Listing 1.	

ACKNOWLEDGMENTS

This work has been supported by the LabEx PERSYVAL-Lab (ANR-11-LABX-0025-01) and the French National Research Agency in the framework of the "Investissements d'avenir" program (ANR-15-IDEX-02).

R8, since we have that 0x4281 | 0x0446 = 0x46c7 (MOV PC, R8). The experimental success rate of this scenario was 95.11 %. This scenario is possible if we assume that the attacker is the software developer himself. Alternatively, the compiler used to compile the code may be untrusted and thus represent the attacker. As a countermeasure, a code review, based on the presented fault models, should be able to detect such Trojans.

Conclusion and future works

A new binary encoding fault model has been presented and defined: the partial update fault model, which comes in two variations: the partial update from the precharge value and the partial update from the previous value fault models. These fault models allow explaining a wide range of the faulty behaviors that are obtained when performing clock glitch fault injection campaigns. Therefore, they can be used to perform vulnerability analysis of software codes against these fault attacks, and help in better designing efficient and low-cost countermeasures.

We have also given an exploitation example: modifying the program counter can be achieved and explained through these fault models. Following that, we proposed a simple yet effective countermeasure against such vulnerability. We also examined the dependency of partial update from the precharge value fault model with respect to the target device and program.