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Conformal class of Lorentzian surfaces with Killing fields

Introduction

It is well known that there is no Uniformisation Theorem for Lorentzian surfaces, ie something that would say that the space of Lorentzian conformal structures (ie metrics up to conformal factor and up to diffeomorphism) on a given surface is, for example, finite dimensional. Indeed, two Lorentzian metrics on a surface are conformal if and only if they have the same lightlike cones. On an orientable surface these cones (made of two lines) define two foliations and it is known that there is no reasonable moduli space of foliations on a surface. One of the goals of this article is to better understand the set of conformal structures of Lorentzian tori admitting a non zero Killing field (in what follows Killing field will always mean non zero Killing field). The motivation is coming from the desire to find a conformal interpretation of a Theorem by L. Mehidi in [START_REF] Mehidi | On the existence and stability of two-dimensional Lorentzian tori without conjugate points[END_REF] (cf. Theorem 5.10) about Lorentzian tori without conjugate points.

It is not difficult to see that a torus T with a Killing field K is conformal to a flat metric (ie has linear lightlike foliations) if and only if all the orbits of K have the same type (between spacelike, lightlike and timelike) otherwise said if the sign of xK, Ky is constant. Hence, we will assume now that the sign of xK, Ky is not constant. In such a case the flow of K has to be periodic and the space of orbits of K is a circle. In [START_REF] Ch | Extensions maximales et classification des tores lorentziens munis d'un champ de Killing[END_REF], Ch. Bavard and the author gave a natural parameterization of this circle and therefore it is possible to associate to pT, Kq a well defined smooth periodic real function f induced by xK, Ky. Contrarily to the Riemannian case, r T , the universal cover of T , is not determined by f . The function f determines a bigger space E f whose construction is recalled in section 4. This space E f contains r T , otherwise said T is locally modeled on E f . In order to find r

T in E f (ie to define the developping map) it is necessary to add a finite combinatorial data that precises to which lightlike foliation belong the lightlike orbits of K. We denote by Perpf q the set of non zero periods of f and if P P Perpf q we denote by X f,P the vector field on R{P Z induced by f B t . In the same way as T is almost determined by f , the conformal class of T is almost determined by a vector field X f,P . More precisely: Theorem 1.1. Let f and g be two smooth periodic functions of non constant sign. Let T be a torus locally modeled on E f . There exists a torus locally modeled on E g that is conformal to a finite cover of T if and only if there exists P P Perpf q, Q P Perpgq and a ‰ 0 such that X f,P is diffeomorphic aX g,Q .

Moreover, see Remark 5.6, two conformal tori locally modeled on the same space E f are isometric. As, by [START_REF] Ch | Extensions maximales et classification des tores lorentziens munis d'un champ de Killing[END_REF]Proposition 5.2], the set of tori locally modeled on E f is finite dimensional, we see that the fibers of the map that sends the conformal class of a torus T locally modeled on E f on the vector fields R.X f,P , with P the period of f deduced from T , are finite dimensional.

This theorem, together with Mehidi's Theorem from [START_REF] Mehidi | On the existence and stability of two-dimensional Lorentzian tori without conjugate points[END_REF] mentioned above and the classification of hyperbolic vector fields on the circle, implies the following. Note that a Lorentzian torus is Reeb if its lightlike foliations are unions of Reeb components. A Reeb torus locally modeled on a space E f is determined by the choice of a period of f , of the length of the orbits of the Killing field and of a twist parameter, see [START_REF] Ch | Extensions maximales et classification des tores lorentziens munis d'un champ de Killing[END_REF] for details. The Clifton-Pohl tori correspond to the case b " 0. When |b| ă 1{8, it follows from [START_REF] Mehidi | On the existence and stability of two-dimensional Lorentzian tori without conjugate points[END_REF] that Reeb tori locally modeled on E sinpyqp1`b sinpyqq do not have conjugate points. The author does not know if the other conformal classes actually contains metrics without conjugate points.
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Conformal geometry of ribbons

Let I be an (open) interval and f : I Ñ R be a smooth function with non constant sign. A point x P I such that f pxq " 0 and f 1 pxq ‰ 0 will be called a simple zero of f . We call the surface R ˆI endowed with the Lorentzian metric f pyqdx 2 `2dxdy the Ribbon associated to f and denote it R f . The vector field B x is clearly a Killing field of R f , also denoted K f . Remark 2.1. Let Σ be a Lorentzian surface and if K be a (non zero) Killing field of Σ. Any p P Σ such that Kppq ‰ 0 has a neighborhood isometric to a ribbon. Indeed, let γ be a (maximal) lightlike geodesic transverse to K and containing p, its K-saturation, ie its image by the flow of K, is a ribbon (because the map t Þ Ñ xγ 1 ptq, Kpγptqqy is constant). The map f is given by t Þ Ñ xKpγptqq, Kpγptqqy). It follows that Σ can be covered by ribbons and neighborhoods of saddle points. Definition 2.2. Let tI α , α P Bu be the set of connected component of I f ´1p0q. The order of R induces an order denoted ă on B (more precisely α ă β if @py, y 1 q P I α ˆIβ we have y ă y 1 ).

For any

α P B, the submanifold B α " R ˆIα of R f is called an open strip of R f . 2. If J is a maximal subinterval of I containing a unique (simple) zero of f then R ˆJ is called a (simple) domino of R f .
On each interval I α we choose a primitive F α : I α Ñ R of ´1 f . If α is not the smallest or biggest element of B then F α is clearly a diffeomorphism. We easily verify that for any α P B, the curve γ α : t Þ Ñ pF α ptq, tq is a (pre)geodesic perpendicular to K contained in B α .

The orthogonal reflection relatively to γ α , ie the map σ α : B α Ñ B α , px, yq Þ Ñ p2F α pyq x, yq, is an isometry that does not extend to R f . We will call it the generic reflection of R f with axis γ α . It sends the lightlike geodesic tx " 0u on the curve parameterized by t Þ Ñ p2F α ptq, tq which is therefore a lightlike geodesic.

In [START_REF] Ch | Extensions maximales et classification des tores lorentziens munis d'un champ de Killing[END_REF] the generic reflections are used to extend R f . Indeed, if we glue two copies of R f along a strip B α thanks to a generic reflection σ α we obtain a new Lorentzian surface.

Definition 2.3. The vertical foliation of R f is the lightlike foliation whose leaves are the lines tx " c; c P Ru. The horizontal foliation of R f is the foliation whose leaves are the lines ty " c; c P f ´1p0qu and the curves parameterized by I Ñ R f , t Þ Ñ p2F α ptq `x, tq, for any α P B and x P R. Definition 2.4. Two Lorentzian surfaces with a Killing field S 1 and S 2 are K-conformal if there exists a conformal diffeomorphism between them that sends Killing fields of S 1 on Killing fields of S 2 .

Remark 2.5. It is not difficult to see that a "K-isometry" between ribbons must read px, yq Þ Ñ pax `t0 , y{a `bq. Consequently, two ribbons R f and R g are K-isometric if and only if there exists a ‰ 0, b P R such that gpyq " a 2 f py{a `bq. Following [START_REF] Ch | Extensions maximales et classification des tores lorentziens munis d'un champ de Killing[END_REF], we say that f and g are in the same class and write rrf ss " rrgss.

Recall that a diffeomorphism between orientable Lorentzian surfaces is conformal if and only if it sends the lightlike foliations of the first on the lightlike foliations of the second. Proposition 2.6. Let f : I Ñ R and g : J Ñ R be two smooth maps and let R f and R g be the associated ribbons. A map Ψ f,g : R f Ñ R g is a K-conformal diffeomorphism if and only if Ψ f,g px, yq " pax `t0 , ϕpyqq where t 0 P R, a P R ˚and ϕ : I Ñ J is a diffeomorphism such that ϕ ˚f ptqB t " agptqB t .

Proof. If Ψ f,g is K-conformal it sends the vertical foliation of R f on the vertical foliation of R g and B x on aB x for some a ‰ 0. Therefore it must read px, tq Þ Ñ pax `t0 , ϕpyqq for some t 0 P R and some diffeomorphism ϕ. But it also preserves the foliations orthogonal to the Killing fields. Their tangent spaces are respectively spaned by B x ´f pyqB y and B x ´gpyqB y , therefore d px,yq Ψ f,g pB x ´f pyqB y q " paB x ´ϕ1 pyqf pyqB y " apB x ´gpϕpyqqB y q ie ϕ ˚f B y " gB y . The reciprocal is clear.

Abusing notations we will denote by Ψ f,g R g the surface R ˆI endowed with the pullback of the metric of R g . Note that, Ψ f,g pgpyqdx 2 `2dxdyq " aϕ1 pyqpf pyqdx 2 `2dxdyq. In particular, if the vector field f B t is complete, for any t P R we can consider ϕ t its flow at time t and define the map

Ψ f,f : px, yq Þ Ñ px, ϕ t pyqq that is a K-conformal diffeomorphism of R f .
Note that the foliations perpendicular to B x are the same for both metrics and therefore the generic reflections of R f are the generic reflections of Ψ f,g R g .

Conformal geometry of saddles

Let J be an interval containing 0 and θ : J Ñ R ˚be a smooth function. The surface tpu, vq P R 2 ; uv P Ju endowed with the metric 2θpuvqdudv is called the symmetric saddle 1 associated to θ and is denoted S θ . The vector field uB u ´vB v . is a Killing field of S θ , we will denote it by K θ . The geodesics perpendicular to K θ are the radial lines, they all meet at the origin, and the generic reflections they define are global isometries of S θ (they read pu, vq Þ Ñ p˘e t v, ˘e´t uq where t is a real parameter).

If γ is a horizontal or vertical line that does not contain 0 then its K θ -saturation, ie Ť tPR Φ t K pγq where Φ K is the flow of K, is a half-plane that we will call a half-saddle. Consequently, see [2, Lemme 2.3], each of the four half-saddles is isometric to a domino and S θ t0u is the union of 4 dominos. The generic reflections permute the dominos which are therefore all isometric to a given simple domino D f . More precisely, if γ : t Þ Ñ puptq, 1q is the geodesic starting from p0, 1q such that xγ 1 ptq, K θ pγptqy " 1, ie u is the solution of u 1 " ´1 θpuq , up0q " 0, then we can take f " ´2upθ ˝uq (we have normalized the choice of f P rrf ss by asking that f p0q " 0 and f 1 p0q " 2).

The following result is already contained is [START_REF] Ch | Extensions maximales et classification des tores lorentziens munis d'un champ de Killing[END_REF]. The following proof of it is simpler than the original one but chiefly it will allow us to prove Proposition 3.5 which is the goal of this section.

Proposition 3.1. Any simple domino D f can be isometrically embedded as a half-sadlle in a unique symmetric saddle S θ f . Moreover, this embedding is unique up to left composition by isometry of S θ f . Proof. We start with the linear case ie with the domino D 0 " R ˆI0 defined by f 0 pyq " λy, λ P R ˚, I 0 Q 0 but may be different from R. In this case, an embedding is given by Φ 0 : px, yq Þ Ñ py exppλx{2q, expp´λx{2qq as one can check that Φ ´1 0 ˚p2dxdy `λydx 2 q " ´1 λ 2dudv and that Φ 0˚Bx " λ 2 puB u ´vB v q. Let f : I Ñ R be a smooth function with a unique simple zero (wlog we assume that f p0q " 0). The vector field f pyqB y on I is hyperbolic (ie the zeros of f are simple) with a unique 0. It is well known that it can be linearized, see for example [3, Theorem 2.16], ie there exists a diffeomorphism ϕ : I Ñ I 0 such that ϕ ˚pf ptqB t q " λtB t , λ " f 1 p0q (I 0 depends on the completeness of f pyqB y ). According to Proposition 2.6, there exists a conformal diffeomorphism Ψ f : D f Ñ D 0 sending K f on K f 0 , otherwise said there exists a function ζ such that Ψ ´1 f ˚p2dxdy `f pyqdx 2 q " ζpyqp2dxdy `λydx 2 q. The composition Φ f " Φ 0 Ψf is an isometric embedding of R f into the symmetric saddle S θ f " ptpu, vq P R 2 ; uv P

I 0 u, ´ζpuvq λ 2dudvq sending K f on λ 2 puB u ´vB v q. If Ξ : D f Ñ S θ f
is another isometric embedding then its image is a half-space of S f , therefore there exists a generic reflection σ such σ ˝ΞpD f q " Φ 0 ˝Ψf pD f q " Ω `" tpu, vq P R 2 ; uv P I 0 , v ą 0u. Hence, pσ ˝Ξq ˝pΦ 0 ˝Ψf q ´1 is an isometry of Ω `, but every isometry of Ω `results from the flow of K, [2, Proposition 2.6], and therefore is the restriction of an isometry of S θ f . Proving the uniqueness of the embedding in S θ f .

It follows that if D f embedds in S θ 1 then θ 1 and θ f coincide on a half-saddle and therefore are equal. Definition 3.2. Let D f be a simple domino. Let σ α and σ β be two generic reflections of D f with axis α and β. We will say that σ α and σ β are compatible if there exists an isometrical embedding Ψ of R f into a symmetric saddle such that the geodesics containing Ψpαq and Ψpβq are orthogonal (at the saddle point).

Remark 3.3. According to Proposition 3.1, any isometrical embedding into a symmetric saddle will send the axis of compatible generic reflections on orthogonal geodesics.

Let σ α and σ β be two compatible generic reflections on a simple domino D f . Let D 1 , . . . , D 4 be 4 copies of D f and Σ f be the Lorentzian surface obtained by gluing D 1 to D 2 thanks to σ α , D 2 to D 3 thanks to σ β , D 3 to D 4 thanks to σ α and finally D 4 to D 1 thanks to σ β . Let Ψ f be an isometric embedding of D f into the symmetric saddle S θ f . The local isometries Ψ f ˝σα ˝Ψ´1 f and Ψ f ˝σβ ˝Ψ´1 f extends to a global isometry denoted by σα and σβ . We immerse š 1ďiď4 D i in S θ f using Ψ f for D 1 , σα ˝Ψf for D 2 , σβ ˝σ α ˝Ψf for D 3 , and σα ˝σ β ˝σ α ˝Ψf for D 4 . As pσ β ˝σ α q 2 " id, because their axis are orthogonal, this immersion induces an isometry Λ f between Σ f and S θ f t0u (or equivalently a K-conformal embedding in the flat saddle S 0 ) Fact 3.4. If Ψ : D f Ñ D g is a K-conformal diffeomorphism between simple dominos then Ψ ˚Dg and D f have the same pairs of compatible generic reflections Proof. We keep the notation from the proof of Proposition 3.1. The map Φ 0 ˝Ψf is a K-conformal embedding of both Ψ f,g D g and D f in the flat saddle S 0 . Therefore being compatible for Ψ f,g D g or D f is the same.

The above construction starting with D g , using the embedding Ψ g " Ψ f ˝Ψ´1 f,g of D g in S 0 , and the compatible (according to Fact 3.4) generic reflections Ψ f,g ˝σα ˝Ψ´1 f,g and Ψ f,g ˝σβ ˝Ψ´1 f,g , provides us a surface Σ g and a conformal embedding Λ g of Σ g in the flat saddle S 0 . It is obvious that the map Ψ f,g induces a conformal diffeomorphism Λ f,g between Σ f and Σ g that satisfies Λ g ˝Λf,g " Λ f . It proves the following. Proposition 3.5. Let D f and D g be two simple dominos and let S θ f and S θg be their saddle extensions. Any K-conformal diffeomorphism Ψ : D f Ñ D g is the restriction of a Kconformal diffeomorphism between the saddles S θ f and S θg .

The universal extensions

We recall in this section the construction of the so-called universal extension E f associated to a real function f . It is slightly modified in order to obtain more explicit atlases what simplifies the construction of maps between these spaces. Some details of the construction are nevertheless left to the reader and can be found in [START_REF] Ch | Extensions maximales et classification des tores lorentziens munis d'un champ de Killing[END_REF].

One of the raison d'être of these extensions is that if Σ is a surface with a Killing field whose ribbons can be embedded isometrically in a given ribbon R f then Σ is locally modeled on E f (in the sense of pG, Xq-structures). According to [2, Proposition 3.8], if Σ is connected and compact or real analytic then it is is locally modeled on E f for some function f . We first fix some notations. Let tB α ; α P Bu be the set of strips of the ribbon R f . Let C be the set of pairs tα, βu of elements of B such that the strips B α and B β are separated by a simple zero of f , we will say that such strips are contiguous. We denote by D αβ the domino containing these contiguous strips and by S αβ the symmetric saddle associated to it. Let G be the group with the following presentation:

G " xB | @α P B, α 2 " 1 ; @pα, βq P C, pαβq 2 " 1y.

On each B α we choose a generic reflection σ α . We choose them such that if pα, βq P C then σ α and σ β are compatible.

We can now start the construction. Let X " š iPG R i , where the R i are copies of R f . We denote by B i,α the copy on R i of the strip B α of R f (more generally the copy on R i of any object Z ˚defined on R f , will be denoted Z i,˚) . For any pi, jq P G 2 such that α :" i ´1j P S we identify B i,α to B j,α thanks to σ α (more correctly thanks to σ i,α : B i,α Ñ B iα,α , px, yq Þ Ñ σ α px, yq). In doing so, we obtain a connected Lorentzian surface Y 0 with a Killing field (that reads ˘Bx in the R i depending on the parity of the length of the word i in G).

We note that for every tα, βu P C and every i P G, we have glued the dominos D i,αβ , D iα,αβ , D iαβ,αβ and D iαβα,αβ into a surface isometric to S αβ t0u (because we have chosen σ α and σ β compatible, cf section 3). Thus, we can glue a copy of S αβ to Y 0 along it in order to add the missing saddle point. Doing so systematically, we obtain a Lorentzian surface Y f having a non trivial complete Killing field still denoted K f . Fact 4.1. The surface Y f is simply connected.

Proof. As the ribbons are simply connected, any loop in Y , is homotopic to a broken lightlike geodesic 0 . Let w be the word in the alphabet B given by the index of the strips containing the breaking points of 0 (we can suppose that no breaking point of 0 is a saddle point). Since is a loop, the image of w in G has to be trivial. The strips and the saddles being simply connected we can suppose that w contains no δ 2 with δ P B and no pαβq 2 with tα, βu P C. It means that the image of w in the free group generated by B is trivial and is therefore contractible.

Proposition 4.2. The surface Y f is isometric to the universal extension E f defined in [START_REF] Ch | Extensions maximales et classification des tores lorentziens munis d'un champ de Killing[END_REF] (and will be denoted E f now).

Proof. It follows from [2, Théorème 3.21]. Indeed, Y is "de classe rf s " as any point of Y that is not a saddle point is contained in a copy of R f and "réflexive" as each strip of Y is the intersection of two copies of R f . Moreover, Y is "sans selles à l'infini" (without saddles at infinity) ie every lightlike orbits of K is contained in a complete lightlike orbit (because of the presence of the saddles). At last, Y is simply connected according to fact 4.1.

Lemma 4.3 (Lemmes 3.10 and 3.17 from [START_REF] Ch | Extensions maximales et classification des tores lorentziens munis d'un champ de Killing[END_REF]). Any generic reflection (associated to K f ) of E f extends into a global isometry of E f .

If f is T -periodic, then there exits an isometry τ of E f such that τ pR 1 q " R 1 and that the restriction of τ to R 1 reads px, yq Þ Ñ px, y `T q.

Proof. According to [START_REF] Ch | Extensions maximales et classification des tores lorentziens munis d'un champ de Killing[END_REF]Proposition 2.38] any isometry between punctured saddles extends to an isometry between the saddles. Consequently, it is enough to prove the lemma on the surface Y 0 . It is also enough to prove the first point for the generic reflections used in the construction of Y 0 (and conjugate by the flow of K to obtain the others). For any px, yq P R f and i P G, we denote by px, yq i the point of R i whose coordinates are px, yq.

Let α P B and i 0 P G. The map r

σ α : š R i Ñ š R i , px, yq i Þ Ñ px,
yq αi is an isometry that induces an isometry p σ α of Y 0 (because i ´1j " pαiq ´1pαjq and the σ β 's are involutions). The image of the strip B i 0 ,α in Y 0 is invariant by p σ α and coincide with σ α on it. Assume f is T -periodic. The map τ 0 : R f Ñ R f , px, yq Þ Ñ px, y `T q sends strips on strips, therefore there exists a map µ : B Ñ B such that τ 0 pB α q " B µpαq . Clearly, if tα, βu P C then so does tµpαq, µpβqu. It means that µ preserves the relations defining G and therefore induces an endomorphism of G, still denoted µ. Moreover if σ α and σ β are compatible then so are τ 0 ˝σα ˝τ ´1 0 and τ 0 ˝σβ ˝τ ´1 0 . Consequently, we can choose the generic reflections used to construct E f so that for any δ P B , τ 0 ˝σδ ˝τ ´1 0 " σ µpδq . Let r τ : š R i Ñ š R i , px, yq i Þ Ñ px, y `T q µpiq . Again r τ induces a map p τ : Y 0 Ñ Y 0 . Indeed, if px, yq i and px 1 , y 1 q j are distinct points glued together, then i ´1j " α P B and px 1 , y 1 q " σ α px, yq. Furthermore, r τ ppx, yq i q " px `T, yq µpiq and r τ ppx 1 , y 1 q j q " px 1 `T, y 1 q µpjq but we see that µpiq ´1µpjq " µpαq and σ µpαq px 1 `T, y 1 q " px `T, yq, therefore r τ ppx, yq i q and r τ ppx 1 , y 1 q j q are also identified on Y 0 . Hence, p τ is the isometry we are looking for.

Definition 4.4. We denote by Is gen pE f q the subgroup of the isometry group of E f generated by the generic reflections (associated to K f ). Note that Is 0 gen pE f q, the identity component of Is gen pE f q, is the flow of K f . We denote by Is ˘pE f , K f q the group of isometries of E f sending K f on ˘Kf (when the curvature is not constant, it is the isometry group of E f ).

5 The results

Conformal geometry of the universal extensions

Notation 5.1. Let f : I Ñ R be a smooth periodic function and Perpf q be the set of its non trivial periods. For any P P Perpf q, we denote X f,P the vector field on R{P Z induced by f B t .

Theorem 5.2. Let f : I Ñ R, g : J Ñ R be two smooth non constant functions. Let E f and E g be the universal extensions associated to them.

There exists a conformal diffeomorphism Φ : E f Ñ E g such that Φ Is gen pE f q Φ ´1 " Is gen pE g q if and only if there exists a P R ˚such that the vector fields f B t and agB t are diffeomorphic.

Moreover, if f and g are both periodic and if there exists pP, Qq P Perpf q ˆPerpgq such that X f,P and X g,Q are diffeomorphic then we can choose Φ such that Φ Is ˘pE f , K f q Φ ´1 and Is ˘pE g , K g q are commensurable. It is also true if f and g are both non periodic.

Recall that two subgroups of a given group are commensurable if their intersection has finite index in both of them.

Proof. We first assume that there exists a P R ˚such that the vector fields f B t and agB t are diffeomorphic. According to Proposition 2.6, there exists a conformal diffeomorphism Ψ f,g : R f Ñ R g sending K f on aK g . Possibly replacing g by another element in rrgss we can suppose that a " 1. This diffeomorphism sends strips of R f on strips of R g , respecting contiguity. For any α P B, we denote by B 1 α the strip Ψ f,g pB α q and σ 1 α the generic reflection Ψ f,g ˝σα ˝Ψ´1 f,g . According to Fact 3.4, if tα, βu P C then σ 1 α and σ 1 β are compatible. It implies that the group used in the construction of E g is also G. For any i P G we denote by R 1 i a copy of R g . We can use the σ 1 α to glue together the R 1 i 's in order to get the surfaces Y 0 g and

Y g " E g . Let Θ : š R i Ñ š R 1 i be the map sending each R i on the corresponding R 1 i via Ψ f,g . It clearly induces a K-conformal diffeomorphism from Y 0
f to Y 0 g . Proposition 3.5 says precisely that this diffeomorphism extends into a K-conformal diffeomorphism Φ between pE f , K f q and pE g , K g q. It follows from the proof of Lemma 4.3 that Φ conjugates the generic reflections of E f to the generic reflections of E g .

Reciprocally, if E f and E g are K-conformal then so are R f and R g , therefore there exists a P R ˚such that f B t and agB t are diffeomorphic (again by Proposition 2.6).

Let ξ P Is ˘pE f , K f q and let R be a ribbon of E f . The expression of ξ using "ribboncoordinates" on R and ξpRq gives an isometry of R f . According to [2, Proposition 4.1], this isometry of R f does not depend on the choice of R and, because Is gen pE f q{Is 0 gen pE f q acts simply transitively on the set of ribbons this correspondence induces an isomorphism between Is ˘pE f , K f q{pIs gen pE f q{Is 0 gen pE f qq and Is ˘pR f , K f q, the group of isometry of R f sending K f on ˘Kf . Moreover, elements of Is ˘pR f , K f q come from symmetries of f or from the flow K f . Consequently, if neither f nor g is periodic then Is gen pE f q and Is gen pE g q have finite index (at most 2) in Is ˘pE f , K f q and Is ˘pE g , K g q.

Assume now that f and g are periodic and that X f,P is diffeomorphic to X g,Q . It means that there exists ϕ : R Ñ R such that ϕ ˚pf ptqB t q " gptqB t and that ϕpy `P q " ϕpyq `Q. We can start over the former construction with Ψ f,g px, yq " px, ϕpyqq and construct new maps Θ and Φ. Let r

τ f : š R i Ñ š R i , px, yq i Þ Ñ px, y `P q µpiq and r τ g : š R 1 i Ñ š R 1 i , px, yq i Þ Ñ px, y `Qq µpiq .
The (new) map Θ conjugates these maps and therefore Φ conjugates the isometries τ f and τ g induced by them (see proof of Lemma 4.3).

The flows of K f and the map px, yq Þ Ñ px, y `P q (respectively the flow of K g and px, yq Þ Ñ px, y `Qq) generate a finite index subgroups of Is ˘pR f , K f q (resp. Is ˘pR g , K g q). The subgroup of Is ˘pE f , K f q (resp. Is ˘pE g , K g q) generated by Is gen pE f q and τ f (resp. Is gen pE g q and τ g ) have therefore finite index in Is ˘pE f , K f q (resp. Is ˘pE g , K g q).

Corollary 5.3. Let f and g be two smooth non constant functions such that f B t is diffeomorphic to gB t . If f and g are both non periodic or both periodic and if there exists pP, Qq P Perpf q ˆPerpgq such that X f,P and X g,Q are diffeomorphic, then any Lorentzian surface Σ locally modeled on E f admits a finite cover that is K-conformal to a surface Σ 1 locally modeled on E g . Proof. Let r Σ be the universal cover of Σ and Γ be the fundamental group of Σ. According to [2, Lemme 3.15], there exists local isometry (the so-called developing map ) D : r Σ Ñ E f and a group homomorphism ρ : Γ Ñ Is ˘pE f , K f q such that for any ν P Γ, D ˝ν " ρpνq ˝D.

Theorem 5.2 says that there exists a conformal diffeomorphism Φ : E f Ñ E g such that pΦIs ˘pE f , K f qΦ ´1q and Is ˘pE g , K g q are commensurable. Therefore, replacing possibly Σ by a finite cover of itself, we can assume that ΦρpΓqΦ ´1 Ă Is ˘pE g , K g q. We denote by r Σ 1 the surface r Σ endowed with the pull-back by Φ ˝D of the metric of E g , it is K-conformal to r Σ and invariant by the action of Γ. Thus, the surface Σ 1 " r Σ 1 {Γ has the desired properties.

Remark 5.4. As noted at the end of section 2, to any diffeomorphism ϕ ‰ id sending f B t (respectively X f,P ) on itself, we can associate a non trivial K-conformal diffeomorphism ψ f,f of R f . Repeating the proof of Theorem 5.2 with this map instead of Ψ f,g provides us a non trivial K-conformal diffeomorphisms of E f centralizing Is gen pE f q (respectively a finite index subgroup of Is ˘pE f , K f q). Similarly, the proof of Corollary 5.3 shows that if ϕ ‰ id sends f B t (X f,P when f is periodic) on itself, then ϕ induces a non trivial K-conformal transformations of a finite cover of any surface locally modeled on E f .

When Σ is locally modeled on E f , compact and non flat the space of leave of its Killing field K f is a circle of length P Σ . The function f being given by xK, Ky it is naturally P Σperiodic, P Σ may not be the smallest positive period of f (as r Σ may have smaller quotients) again see [START_REF] Ch | Extensions maximales et classification des tores lorentziens munis d'un champ de Killing[END_REF] for details. In this case, we denote by X Σ the vector field on R{P Σ Z induced by f B t .

Conformal geometry of tori

Corollary 5.3 implies one half of Theorem 1.1, the other one follows from the two following propositions.

Proposition 5.5. Let T and T 1 be non flat Lorentzian tori with Killing fields. If T and T 1 are K-conformal then the vector fields X T is diffeomorphic to a multiple of X T 1 .

Proof. Let Ψ : T Ñ T 1 be a K-conformal diffeomorphism. We denote by p T and p T 1 the holonomy coverings of T and T 1 ie their cyclic coverings whose Killing fields have no closed obits. The complement of the lightlike orbits of p K (a Killing field of p T ) is a (possibly infinite) union of strips. A finite, even number of them are of "type 2" ie are bounded by lightlike geodesics belonging to distinct lightlike foliations. We denote them S 1 , . . . , S 2k . Note that k is a conformal invariant.

If k " 0, then there exists a lightlike geodesic cuting every orbit of p K. It means that the universal cover of T (resp. T 1 ) is (isometric to) a ribbon R f (resp. R g ). Consequently,

p T » R f {xτ y (resp. p T » R g {xτ 1 y
) where τ (resp. τ 1 ) is the isometry that reads px, yq Þ Ñ px `δ, y `P q (resp. px, yq Þ Ñ px `δ1 , y `P 1 q) where P ą 0 (resp P 1 ą 0) is the natural period of f (resp. g) and δ P R (resp δ 1 ) is a twist parameter. The map Ψ lifts into a map r Ψ : R f Ñ R g that reads px, yq Þ Ñ pax, ϕpyqq, for some a ‰ 0, and satisfies r Ψ ˝τ " τ 1 ˝r Ψ. Thus we have ϕpy `P q " ϕpyq `P 1 therefore ϕ induces a diffeomorphism between R{P Z and R{P 1 Z that sends X T on aX T 1 according to Proposition 2.6.

When k ą 0, it follows that p T is a union of 2k ribbons R f 1 , . . . , R f 2k such that the first strip of R f i is S i and the last one is S i`1 (of course S 2k`1 " S 1 ). For any 1 ď i ď 2k f i and f i`1 coincide on S i`1 so that they glue together in the periodic function f . Hence they can be seen as "sub-ribbons" of R f . The ribbons R f i and R f i`1 are glued together thanks to a generic reflection σ i`1 (it must be an isometry of S i`1 and it must swap the lightlike foliations).

Similarly p T 1 is a union of 2k ribbons denoted R g 1 , . . . , R g 2k glued on the strips S 1 i thanks to generic reflections σ 1 i . We denote by Ψ i : R f i Ñ R g i the maps obtained by restriction of the lift of the K-conformal map Ψ.

According to Proposition 2.6, Ψ i reads px, yq Þ Ñ pax `ti , ϕ i pyqq where ϕ i is a diffeomorphism sending f i B t on ag i B t , a ‰ 0 does not depend on i. Moreover, for any px, yq P S i , we must have Ψ i´1 px, yq " σ 1 i ˝Ψi ˝σi px, yq. But Ψ i is K-conformal therefore there exits another generic reflection σ 2 i such Ψ i ˝σi " σ 2 i ˝Ψi . But σ 1 i ˝σ2 i is a horizontal translation therefore ϕ i and ϕ i´1 coincide on S i . It means that the ϕ i glue together in a diffeomorphism of the circle that sends X T on aX T 1 .

Remark 5.6. If in the statement of Proposition 5.5 we add that T and T 1 are both modeled on the same E f , then T and T 1 are isometric. It is clearly sufficient to prove that p T and p T 1 are isometric. When k " 0, it follows from the fact that τ " τ 1 . When k is positive, it emerges from the proof above that there exists a map Θ : p T Ñ p T 1 sending each R f i on itself by px, yq Þ Ñ pax `ti , ayq (the compatibility in only encoded in the t i 's). But |a| must be 1, as the period of a flow is invariant by conjugacy, therefore Θ is an isometry. Proposition 5.7. If two non conformally flat Lorentzian tori with Killing fields T and T 1 are conformal then they are K-conformal.

Proof. We consider an S 1 -action preserving the lightlike foliations of T , denoted F and F 1 . We will prove that this action coincide, up to diffeomorphism, with the action induced by the Killing field of T . By hypothesis, at least one of these foliations is not linear, we assume it is F. We lift F and F 1 to the holonomy covering p T and consider their spaces of leaves L and L 1 . These spaces have a natural, possibly non Hausdorff (it depends on the presence of Reeb components), 1-dimensional manifold structure (see [START_REF] Haefliger | Variétés (non séparées) à une dimension et structures feuilletées du plan[END_REF]). We denote by γ a generator of the cyclic group π 1 pT q{π 1 p p T q. Our S 1 -action on T preserving F and F 1 lifts in a R-action on p T that preserves the lifted foliations and therefore induces a smooth R-action on L and L 1 . The fact that the action of 1 (seeing S 1 as R{Z) on T is trivial implies that the action of 1 on p T and therefore on L and L 1 coincide with the action of γ (or γ ´1). Clearly, the R-action on p T is determined by the R-actions on L and L 1 .

The foliation F is not linear and is invariant by a S 1 -action, therefore it has a proper subset of compact leaves. The fixed points of the action of γ on L correspond to the compact leaves of F and therefore to the points fixed by the R-action. These fixed points delimit half-lines on which the action of γ has no fixed points and therefore satisfies the hypotheses of Szekeres' Theorem (see [START_REF] Szekeres | Regular iteration of real and complex functions[END_REF] or [START_REF] Navas | Groups of Circle Diffeomorphisms[END_REF]Theorem 4.1.11]) which says that the R-action on each of these lines, and therefore on L by the above remark, is determined by the action of γ. If F 1 is also not linear then the same is true for the action of R on L 1 . Hence, in this case, there exists only one R-action on r T preserving the lifted foliations: the one induced by K. If F 1 is linear, then, using the notations from the proof of Proposition 5.7, k " 0, ie p T is a quotient of a ribbon. The space L 1 is either diffeomorphic to R or to S 1 and the R-action on it has no fixed points. We can assume that γ acts on L 1 as a translation. The R-action fixing no point there exists a diffeomorphism ϕ of L 1 fixing a point, conjugating the action to an action by translations and commuting with the action of γ (if L 1 » S 1 it comes from the invariance by conjugacy of the rotation number of γ and if L 1 » R from the fact that any pair of non trivial translations are conjugated). Moreover, there exists a diffeomorphism Φ of p T that induces ϕ on L 1 and the identity on L. Indeed, any leaf of p F can be seen as a covering of L 1 . We endow each leaf of F by the lift of ϕ that has fixed points. Taking coordinates on which p F and p F 1 read as product foliations, it is clear that the map Φ obtained is smooth. Clearly Φ commutes with γ and therefore induces a diffeomorphism of T that conjugates our S 1 -action with the one given by K.

Hyperbolic vector fields on the line are rather easy to compare. Indeed, it is enough to compare their zeros, see [START_REF] Belitskii | One-dimensional Functional Equations[END_REF] for a proof, more precisely: Theorem 5.8. Let f and g be two smooth functions on R and let ¨¨¨ă z i ă z i`1 ă . . . and ¨¨¨ă z 1 i ă z 1 i`1 ă . . . , i P Z be their sets of zeros. If for any i P Z f 1 pz i q " g 1 pz 1 i q ‰ 0 then the vector fields f ptqB t and gptqB t are difffeomorphic . Definition 5.9.

• We will say that a function f : R Ñ R satisfies Mehidi's condition if there exists λ ą 0 such that for any z P R, f pzq " 0 implies |f 1 pzq| " λ. By extension we will say that a Lorentzian torus with a Killing field satifies Mehidi's condition if it is locally modeled on E f and f satisfies Mehidi's condition.

• A Lorentzian torus is Reeb if its lightlike foliations are unions of Reeb components. Theorem 5.10 (Mehidi [START_REF] Mehidi | On the existence and stability of two-dimensional Lorentzian tori without conjugate points[END_REF]). Let T be a non flat Lorentzian torus locally modeled on E f . If T has no conjugate points and if the zeros of f are simple (or equivalently if the closed lightlike geodesic are not complete) then T is Reeb and f satisfies Mehidi's condition. Moreover the reciprocal is true for f close enough from 4 sin.

The case f ptq " 4 sinptq corresponds to the Clifton-Pohl tori, ie tori having the same universal cover as T CP :" `R2 t0u, 2dxdy

x 2 `y2 ˘{ppx, yq " 2px, yqq (see [2, Exemple 3.27]). It was proven in [START_REF] Ch | Sur les surfaces lorentziennes compactes sans points conjugués[END_REF] that Clifton-Pohl tori do not have conjugate points.

Corollary 5.11. A torus with a Killing field is Reeb and satisfies Mehidi's condition if and only if its universal cover is K-conformal to the universal cover of the Clifton-Pohl torus.

Proof. Let T be a Reeb torus locally modeled on E f satisfying Mehidi's condition. Replacing possibly f by another element of rrf ss, we can assume that |f 1 pzq| " 4 for any z zero of f (as it is possible to replace f pyq by a 2 f py{aq). It follow from Theorem 5.8 that f ptqB t and 4 sinptqB t are diffeomorphic and therefore E f is K-conformal to E 4 sin (the extension containing the universal cover of the Clifton-Pohl torus).

According to [2, Théorème 3.25 and Proposition 4.35], r T , the universal cover of T , is isometric to the saturation under the flow of K f of a maximal broken lightlike geodesic γ of E f that has at most one breaking point per strip and never cuts two distinct separatrices of a saddle point (or equivalently that never cuts twice an integral curve of K f ). It follows from [2, Lemme 5.17] that if the lightlike foliations of T are unions of Reeb components then γ has one breaking point on each strip. This condition characterizes r T up to isometry of E f and of course it also characterizes r T CP , the universal cover of T CP , inside E 4 sin . Therefore the K-conformal map between E 4 sin to E f sends any copy of r T CP on a copy of r T . Reciprocally, if r T is K-conformal to r T CP then [2, Lemme 5.17] tells us that T is also Reeb. Moreover, on any domino of r T the metric reads ζpyqp4 sinpyqdx 2 `2dxdyq for some positive function ζ. The function f is then 4pζ ˝Zqpsin ˝Zq where Z is a solution of y 1 " 1 ζpyq and at z any zero of f we have |f 1 p0q " 4|. Thus, T satisfies Mehidi's condition.

To classify hyperbolic vector fields on the circle, another invariant is needed. For Lorentzian tori it means that being K-conformal or having K-conformal universal cover are two different things.

Definition 5.12 (see [START_REF] Hitchin | Vector fields on the circle, Mechanics, analysis and geometry: 200 years after Lagrange[END_REF] and [START_REF] Bykov | The smooth classification of coarse vector fields on a circumference[END_REF]). Let X be a hyperbolic vector field on the circle R{P Z ie a vector field induced by a vector field of the line f ptqB t , f being P -periodic and having only simple zeros. Let z 1 ă ¨¨¨ă z n be the zeros of f in r0, P r. We define (with z n`1 " z 1 `P ) µpXq " lim εÑ0 n ÿ i"1

ż z i`1 ´ε z i `ε 1 f P R
Definition 5.13. Let X f,P be the hyperbolic vector field on R{P Z induced by a P -periodic map f . The list of invariants of X f,P is the following

• the number n f of zeros of X f,P (ie of f on r0, P r),

• the values of the λ f,i :" f 1 pz i q, where z i is ith zero of f ,

• the global invariant µpX f,P q (it is indeed invariant under circle diffeomorphism).

Theorem 5.14 (Hyperbolic vector fields on the circle -Hitchin [START_REF] Hitchin | Vector fields on the circle, Mechanics, analysis and geometry: 200 years after Lagrange[END_REF], Bykov [4]-). Two hyperbolic vector fields on S 1 are diffeomorphic if and only if the have the same list of invariants.

Let b Ps ´1, 1r, and f b : R Ñ R, bpyq Þ Ñ sinpyqp1 `b sinpyqq. It is proven in r4s that when b runs through s ´1, 1r then µpX f b ,2π q (and therefore µpX f b ,2kπ q, for any k P Z ˚) runs through all R. It follows that if f is P -periodic and satisfies Mehidi's condition then there exists b Ps ´1, 1r and k P Z ˚such that X f,P is diffeomorphic to λX f b ,2kπ . Hence, Theorem 1.1 implies the following corollary (uniqueness of the torus actually follows from Remark 5.6). • The quadratic variations of Clifton-Pohl tori are the tori covered by pR 2 t0u, 2dxdy

Qpx,yq q where Q is a positive definite quadratic form. According to [7, Theorem 4.20] they do not have conjugate points. They are clearly all K-conformal to a Clifton-Pohl tori (no need to compute µ).

• It follows directly form [START_REF] Mehidi | On the existence and stability of two-dimensional Lorentzian tori without conjugate points[END_REF]Theorem 4.20] that if |b| ă 1{8 (because of the property f 1 f 3 ď 0) then Reeb tori localy modeled on E f b do not have conjugate points. But they are in the K-conformal class of a Clifton-Pohl torus if and only if b " 0. It is not clear to the author, if there exists tori without conjugate points in the K-conformal classes given by |b| ě 1{8.
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 12 Let T be a non flat Lorentzian torus with a Killing field. If T is without conjugate point and if the closed lightlike geodesics of T are incomplete then there exists a unique b Ps ´1, 1r such that T is in the conformal class of a Reeb torus locally modeled on E sinpyqp1`b sinpyqq .
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 5 15. If T is a torus with a Killing field satisfying Mehidi's condition, then there exists a unique b Ps ´1, 1r and a unique torus locally modeled on E f b and K-conformal to T . Examples 5.16.

The definition of symmetric saddle given in[START_REF] Ch | Extensions maximales et classification des tores lorentziens munis d'un champ de Killing[END_REF] is a priori more general but it follows from Proposition 3.1 that these definitions are in fact equivalent