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Abstract. Automatic surgical skill assessment has the capacity to bring
a transformative shift in the assessment, development, and enhancement
of surgical proficiency. It offers several advantages, including objectivity,
precision, and real-time feedback. These benefits will greatly enhance
the development of surgical skills for novice surgeons, enabling them to
improve their abilities in a more effective and efficient manner. In this
study, our primary objective was to explore the potential of hand skele-
ton dynamics as an effective means of evaluating surgical proficiency.
Specifically, we aimed to discern between experienced surgeons and sur-
gical residents by analyzing sequences of hand skeletons. To the best of
our knowledge, this study represents a pioneering approach in using hand
skeleton sequences for assessing surgical skills. To effectively capture the
spatial-temporal correlations within sequences of hand skeletons for sur-
gical skill assessment, we present STGFormer, a novel approach that
combines the capabilities of Graph Convolutional Networks and Trans-
formers. STGFormer is designed to learn advanced spatial-temporal rep-
resentations and efficiently capture long-range dependencies. We evalu-
ated our proposed approach on a dataset comprising experienced sur-
geons and surgical residents practicing surgical procedures in a simu-
lated training environment. Our experimental results demonstrate that
the proposed STGFormer outperforms all state-of-the-art models for the
task of surgical skill assessment. More precisely, we achieve an accuracy
of 83.29% and a weighted average F1-score of 81.41%. These results rep-
resent a significant improvement of 1.37% and 1.28% respectively when
compared to the best state-of-the-art model.

Keywords: Graph Convolutional Networks · Transformer · Surgical
Skill Assessment · Hand Skeleton · Simulation · Education

1 Introduction

Surgical skill assessment refers to the process of evaluating and measuring sur-
geon’s technical proficiency and competence in executing surgical procedures. It
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delivers targeted feedback that enables efficient skill development through the
provision of guidance, ultimately resulting in better patient treatment. Tradi-
tionally, evaluation has been performed by senior surgeons using both global and
task-specific checklists [5,12]. However, classical surgical skill assessment check-
lists have several limitations, such as having a restricted scope, being prone
to evaluator bias, lacking standardization, being a time-intensive and expen-
sive process. Therefore, the development of automated tools to evaluate surgical
skills is of significant interest. Collection and analysis of tool motion or video
data can lead to an accurate assessment of the trainee’s surgical proficiency. The
proficiency can be quantified numerically through metrics such as the average
OSATS score [12], or categorized into novice or expert levels, providing a clear
and objective evaluation.

The conventional approach for automatically evaluating surgical proficiency
relies on analyzing instrument motion, which can be obtained from various data
sources such as video object tracking [14], video spatial-temporal features [24],
and robotic kinematics [8, 20]. Other techniques focus solely on utilizing video
data. For instance, Funke et al. [3] proposed to use a Temporal Segment Net-
work [19] by fine-tuning a pre-trained 3D Convolutional Neural Network on a
stack of video frames. In [10], the authors proposed a unified multi-path frame-
work for automatic video-based surgical skill assessment, taking into account
various aspects of surgical skills, such as surgical tool usage, intraoperative event
patterns, and other skill proxies. To capture the relationships between these fac-
tors, a path dependency module has been specially designed.

In recent years, Graph Convolutional Networks (GCNs) have become the de
facto choice for modeling relational data due to their ability to capture both the
local and global structure of graphs. This has resulted in GCNs achieving state-
of-the-art performance in various tasks related to spatial-temporal data [6,17,21].
Similarly, Transformers [18] have revolutionized the field of natural language pro-
cessing and have become the go-to method for various natural language process-
ing (NLP) tasks. In addition to language-related applications, the Transformer
architecture has also been applied to tasks beyond NLP, such as skeleton-based
action recognition, and has produced outstanding results, as demonstrated in
studies such as [13,16,23].

In this study, we explored the potential of using hand skeleton sequences
for surgical skill assessment. Our framework offers several advantages, includ-
ing (1) being lighter and easier to train than models that process entire video
sequences, and (2) providing an affordable alternative to expensive robotic sur-
gical systems that can provide kinematics data, since the hand skeleton can be
extracted from affordable mobile phones. Additionally, hand skeleton detection
is performed in real-time, which ensures its practicality and suitability for use in
real-world scenarios. As far as our knowledge extends, this is the first attempt to
use hand skeleton sequences for evaluating surgical proficiency. Considering the
graph structure of the hand skeleton and the dynamic spatial-temporal patterns
in sequences of hand movement, we propose the STGFormer framework that
combines the strengths of spectral GCNs for learning spatial-temporal represen-
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Fig. 1: Illustration of our STGFormer based surgical skill assessment framework,
which is composed of two key components: Spatial-Temporal Graph Transformer
and Surgical Skill Classifier.

tations and Transformers for capturing long-range dependencies. Our framework
has shown to outperform all existing state-of-the-art spatial-temporal skeleton-
based deep learning models for surgical skill evaluation.

The contributions of this work are twofold and can be summarized as follows:
(1) we propose to use sequences of hand skeleton for the task of surgical skill
assessment. This approach offers several advantages, such as being non-invasive,
objective, and extensible to operating rooms. Moreover, hand skeletons can be
extracted from inexpensive devices, such as a smartphone. By analyzing hand
dynamics, practitioners can gain valuable insights into their performance, which
can be used for improvement and ultimately lead to better patient treatment;
(2) we developed a new spatial-temporal model that learns the dynamic spatial-
temporal correlations of hand skeletons. It consists of a spectral GCN for spatial-
temporal feature learning follows by a Transformer encoder for capturing global
temporal dependencies. This combination of proven techniques leads to the best
prediction performances compared to existing state-of-the-art models.

2 Proposed Approach

This section introduces our STGFormer framework, which is illustred in Fig-
ure 1. The framework consists of two essential components: (1) a spectral GCN
responsible for learning spatial-temporal representation from hand skeleton se-
quences, and (2) a Transformer encoder designed to capture global temporal
patterns.

2.1 Spectral Graph Convolutional Networks

In order to learn higher-level feature representations, we constructed a spatial-
temporal graph and employed a spectral domain GCN.
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Graph Construction In this study, we constructed an undirected spatial-
temporal graph G = (V,E) to obtain high-level representations of a hand skeleton
sequence consisting of N joints over T frames. The set of nodes in the graph is
represented by V , while E denotes the set of edges. The construction process is
outlined as follows:
Nodes: the nodes in the graph consist of all joints in the sequence, expressed
as V = {vti | t = 1, .., T, i = 1, .., N}. Each node vti is initialized with its 3D
coordinate information. In this study, N is equal to 21.
Edges: the set of edges E is defined as the union of intra-skeleton connections,
Eintra, and inter-frame connections, Einter, in the graph, defined as follows:

Eintra = {vtivtj | (i, j) ∈ H, t ∈ {1, .., T}} (1)

Einter = {vtiv(t+1)i | i ∈ {1, .., N}, t ∈ {1, .., T − 1}} (2)

In Eq. 2., H represents the set of naturally connected hand joints.

Graph Learning We trained a spectral deep GCNs based on the previously
constructed graph G. We define the graph convolution operator as in [9]:

H̃(l+1) = σ(D̃− 1
2 ÃD̃− 1

2H(l)W (l)) (3)

where Ã = A+ In denotes the adjacency matrix of the undirected graph G with
inserted self-connections, In represents the identity matrix, D̃ii =

∑
j Ãij is the

diagonal degree matrix, W (l) is a learnable weight matrix, and σ(.) an activation
function. H l represents the matrix of activations in the lth layer; H0 = X, where
X is the matrix of input node feature.

2.2 Transformer Encoder

In order to capture complex temporal patterns in the hand skeleton sequences,
we feed the final high-level representation, previously extracted from the GCN,
to a Transformer encoder. To be more specific, we concatenate the newly ob-
tained representations of every joint jti into a vector h0

t for each frame. This
concatenation process is illustrated in Eq. 4. Next, we combine the initial repre-
sentations h0

t from all frames into a vector h0 as depicted in Eq. 5. This vector
h0 serves as the input for a Transformer encoder.

h0
t = [jt1, jt2, .., jtN ] (4)

h0 = [h0
1, h

0
2, .., h

0
T ] (5)

The Transformer is an advanced neural network architecture that relies on
the self-attention mechanism, enabling the model to effectively process input
sequences and generate predictions. Unlike traditional recurrent neural networks,
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which are limited by sequential processing, the Transformer can simultaneously
attend to different parts of the input sequence, making it highly efficient at
capturing long-term dependencies.

The self-attention mechanism in the Transformer calculates a weighted sum
of the input sequence, with the weights being learned during the training process.
This allows the model to assign importance to different positions in the sequence,
focusing on the most relevant information for prediction. By considering the
entire input sequence rather than just past representations, the Transformer can
effectively capture contextual information and make accurate predictions.

A crucial component of the Transformer is the Multi-Head Attention (MHA)
module. It enhances the model’s ability to capture long-range dependencies and
enables simultaneous attention across multiple representation subspaces at dif-
ferent positions. The MHA achieves this by utilizing Query-Key-Value (QKV)
pairs. Each QKV triple is transformed into separate linear projections, and the
scaled dot-product attention mechanism is applied. The scaled dot-product at-
tention can be defined as follows:

Attention(Q,K, V ) = softmax(
QKT

√
dk

)V (6)

where 1√
dk

is used to counteract the vanishing gradient problem cause by the

softmax function.

Each head of the MHA module is computed in parallel. The MHA module
can be mathematically represented by the following equations:

MultiHead(Q,K, V ) = Concat(head1, ..., headh)W
O (7)

with headi = Attention(QWQ
i ,KWK

i , V WV
i ) (8)

where WQ
i ∈ Rdm×dk ,WK

i ∈ Rdm×dk ,WV
i ∈ Rdm×dv , WO ∈ Rhdv×dm rep-

resent the query, key, value, and output projection learnable weight matrices,
respectively. h and dm correspond to the number of heads and the output di-
mension of the encoder block. In this study, we choosed dk = dv = dm/h.

2.3 Surgical Skill Classifier

After the forward pass through k-th Transformer encoder layer, the learned rep-
resentation hk, as shown in Eq. 9, is utilized as input to a fully connected neural
network. This network is responsible for making predictions about whether the
hand skeleton sequence is related to a senior surgeon or a surgical resident.

hk = [hk
1 , h

k
2 , .., h

k
T ] (9)
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3 Experimental Results

This section presents the dataset collected for the surgical skill assessment task,
as well as the results obtained using our proposed approach and several state-
of-the-art deep learning-based models.

3.1 Dataset

Fig. 2: Illustration of the circular cutting exercise using the VirtaMed simulator.

Data Collection We gathered data from a total of 16 participants, consisting
of 4 experienced surgeons and 12 surgical residents. The participants executed
a circular cutting exercise using the VirtaMed medical simulator, as depicted
in Figure 2. The first step of the cutting exercise was to use a laparoscope, as
illustrated in Figure 3a, to enter the virtual environment and position the view
at the correct location. Following that, the participants utilized an atraumatic
grasper tool (Figure 3b) to apply tension to the tissue and execute a precise cut
along a circular incision between two lines using a pair of scissors (Figure 3b).
For each participant, we recorded their hand movements while they performed
the exercise using a smartphone equipped with 4K recording capability.

The circular cutting exercise was conducted in a simulated environment
at the PRESAGE medical simulation center (Plateforme de Recherche et
d’Enseignement par la Simulation pour l’Apprentissage des Attitudes et des
GEstes), which is a department affiliated with the Faculty of Medicine at the
University of Lille. This simulation center accurately replicates surgical training
scenarios, making it an ideal setting for developing surgical skills. It is common
for surgical novices to practice on medical simulator, where they perform tasks
from curricula such as the Fundamentals of Laparoscopic Surgery (FLS) [15].
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(a)

(b)

Fig. 3: (a) Laparoscope; (b) Atraumatic Grasper / Scissors.

FLS Program The circular cutting exercise is an important part of the train-
ing of residents and is included in the FLS program. Initiated in 2004, the FLS
program was designed to deliver standardized training for laparoscopic proce-
dures and encompasses theoretical knowledge as well as practical skills. Surgeons
often need to complete the FLS program to obtain certification in laparoscopic
surgery.

The circular cutting exercise is a crucial component of the FLS program,
along with few other simulation exercises, and holds significant importance
within the training curriculum. Despite seeming straightforward, it remains an
important aspect of the training curriculum. This exercise helps residents de-
velop precise control over laparoscopic instruments, particularly scissors, and
improves their hand-eye coordination. It also enables them to understand the
tactile feedback and resistance encountered when cutting tissue using these in-
struments, and enhances their depth perception skills by accurately assessing
the distance and thickness of simulated tissue.

3.2 Data Preprocessing

We used the method from [22] to extract the hand skeleton of both hands from
the recorded videos of each individual. The hand landmark model outputs a set of
21 3D coordinates for each frame, based on the hand intra connectivity structure,
as illustrated in Figure 1. We opted to rely solely on right hand landmarks, as
left hand detection was unreliable and played a minor role in this task. Indeed,
the right hand was primarily responsible for the cutting, while the left hand
primarily held the tissue with limited movement. Afterward, we normalized each
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hand skeleton sequence by subtracting the coordinate of the first wrist joint
(v00) from each joint. Finally, we generated non-overlapping sliding windows of
20 seconds, which correspond approximately to 600 data points. As a result, we
have a varying number of data sequences for each subject, which are directly
dependent on the time taken to complete the exercise, with a duration of the
recordings ranging from 1 minute and 33 seconds to 6 minutes and 17 seconds,
with an average duration of 3 minutes and 6 seconds.

Table 1: Surgical skill assessment: comparison with state-of-the-art methods.

Method Acc F1-score

SoCJ [2] 80.39 77.55

TCN [1] 80.08 78.25

LSTM [7] 81.21 79.36

DeepGRU [11] 81.42 79.48

Transformer [18] 80.53 78.19

GCN [9] 81.92 80.13

ST-GCN [21] 79.14 79.54

ASTGCN [6] 79.30 79.49

STGFormer (ours) 83.29 81.41

3.3 Results

Evaluation framework In line with the JIGSAWS [4] dataset, which is widely
used as a benchmark for evaluating surgical skill assessment, our study also
takes into account the surgeon’s experience as a valuable indicator of surgical
proficiency. In our case, given the existence of two distinct groups of practitioners,
namely senior surgeons and surgical residents, we formulate the surgical skill
assessment as a binary classification task.

Our evaluation strategy involved utilizing a subject-independent 6-fold cross-
validation to enhance the robustness of our evaluation. This approach was nec-
essary because the data sequences of hand movements from the same subjects
are likely to exhibit correlations. To ensure fairness in distributing the limited
number of surgeons in our dataset across each fold, we generated all possible
combinations of two surgeons, resulting in a total of six combinations. This en-
sured that each surgeon had an equal presence in both the training and test
sets.

Additionally, we ensured that surgical residents were evenly distributed
across the six folds to maintain homogeneity. To assess the performance of our
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model, we employed accuracy as well as the weighted average F1-score. The in-
clusion of the F1-score allowed us to account for imbalanced class distributions
within our dataset.

Surgical Skill Classification We compared our approach with eight state-of-
the-art models that we re-implemented. Our approach was compared to classical
deep learning-based methods such as TCN [1], LSTM [7], DeepGRU [11], and
Transformer [18], trained directly on sequences of raw hand landmarks. In ad-
dition, we compared our approach with state-of-the-art spatial-temporal graph-
based models, including GCN [9], ST-GCN [21], and ASTGCN [6]. The ST-GCN
consists of multiple spatial-temporal convolutional blocks, each of which includes
two temporal gated convolution layers and one spatial graph convolution layer
in the center. The ASTGCN consists of multiple blocks, each composed of a
spatial-temporal attention mechanism and a spatial-temporal convolution that
utilizes graph convolutions to capture spatial patterns and standard convolutions
to describe temporal features simultaneously. We also compared our framework
with a model trained on handcrafted features, namely the SoCJ descriptor [2],
which extracts a descriptor from the hand skeleton based on its geometric shape.
These features are then input into a LSTM model.

In Table 1, we presented the results of our STGFormer model and above men-
tioned state-of-the-art baselines. Our STGFormer achieves the best performance
in terms of both evaluation metrics, achieving 83.29%, and 81.41% in terms of
accuracy, and F1-score respectively, as shown in Table 1, which represent an
improvement of 1.37% and 1.28% when compared to the best state-of-the-art
model.

The SoCJ approach, which involves extracting spatial descriptors, exhibits
the lowest F1-score among the evaluated methods. In addition, even when com-
pared to a LSTM model trained directly on raw data, the SoCJ descriptor proves
to be inefficient, highlighting the limitations of the descriptor extraction process
for our particular task.

As part of our ablation study, we observed that STGFormer outperformed
both the GCN and Transformer models by a significant margin, achieving an
accuracy and F1-score improvement of at least 1.37% and 1.28% respectively.
This outcome clearly demonstrates the effectiveness of combining graph-based
and transformer-based approaches in the context of learning surgical skill evalu-
ation. These results highlight the importance of incorporating spatial and tem-
poral information for accurate and robust assessment of surgical skills.

Therefore, based on these findings, we can draw several conclusions regard-
ing the effectiveness of using temporal data either individually or in combina-
tion with spatial data. Firstly, the superiority of STGFormer over the GCN and
Transformer models suggests that leveraging both spatial and temporal informa-
tion provides a more comprehensive understanding of surgical skill performance.
By capturing the interplay between spatial relationships and temporal dynamics,
STGFormer can extract more informative features, leading to improved accuracy
and F1-score.
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Secondly, the performance gap between STGFormer and the other models im-
plies that solely relying on either spatial or temporal data may not be sufficient
for accurate surgical skill assessment. Spatial information alone might not cap-
ture the dynamic nature of the surgical procedure, while temporal information
alone might lack the contextual understanding provided by spatial relationships.
Therefore, combining both spatial and temporal data, as done in STGFormer,
proves to be crucial for achieving superior performance for the particular task
of surgical skill assessment.

4 Conclusion

This study demonstrates the feasibility of utilizing hand skeleton sequences for
accurate surgical skill assessment. The successful development of automated sur-
gical skill assessment holds significant importance in training aspiring surgeons
and enhancing their proficiency in performing safe interventions. In order to
achieve this goal, we proposed a novel approach called STGFormer, which effec-
tively captures spatial-temporal correlations and long-range dependencies in the
hand skeleton sequences of practitioners as they perform tasks within a simu-
lated environment. Extensive experiments were conducted on a dataset compris-
ing both senior surgeons and surgical residents, and our STGFormer framework
achieved an accuracy of 83.29% and a weighted average F1-score of 81.41%.
These results strongly support the efficiency of our approach to accurately dis-
tinguish between senior surgeons and surgical residents, highlighting its potential
as a valuable tool for evaluating surgical skills.

In a future study, we plan to extend our research by investigating a multi-
modal approach that combines hand skeleton sequences with RGB data to im-
prove the accuracy of surgical skill assessment. This integration aims to leverage
the complementary information provided by both modalities, further enhancing
the robustness and effectiveness of our assessment framework.
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