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Abstract—Software-defined networking (SDN) was devised to
simplify network management and automate infrastructure shar-
ing in wired networks. These benefits motivated the application
of SDN in resource-constrained wireless networks to leverage
solutions for complex applications. However, some of the core
SDN traits expose the networks to denial of service attacks
(DoS). There are proposals in the literature to detect DoS in
wireless SDN networks; however, not without shortcomings: there
is little focus on resource constraints, high detection rates have
been reported mostly for small networks and the detection is
disengaged from the identification of the type of attack or the
attacker. Our work targets these shortcomings by introducing a
lightweight, online change point detector to monitor performance
metrics that are impacted when the network is under attack. A
key novelty is that the proposed detector is able to operate in
either centralized or distributed mode. The centralized detector
has very high detection rates and can further distinguish the type
of attack from a list of known attacks. In turn, the distributed
detector can be useful to identify the nodes launching the attack.
Our proposal is tested over IEEE 802.15.4 networks. The results
show detection rates exceeding 96% in networks of 36 and 100
nodes and identification of the type of attack with a probability
exceeding 89% when using the centralized approach.

Index Terms—Internet of Things, wireless sensor networks,
software-defined networking, intrusion detection, change point
detection.

I. INTRODUCTION

SOFTWARE-DEFINED networking (SDN) is a logically
centralized paradigm, devised to simplify network man-

agement and automate infrastructure sharing in wired networks
[1][2]. These benefits motivated the application of SDN in
resource-constrained settings, such as wireless sensor networks
(WSN) and Internet of Things (IoT) to leverage solutions for
complex applications. Unlike other commonly used protocols
that are decentralized (such as RPL - RFC 6550), SDN-
based protocols are fundamentally different. The fusion of
SDN – WSN and SDN – IoT are referred to as software-
defined wireless sensor networks (SDWSN) and software-
defined Internet of Things (SDIoT), respectively [3] [4].

Network control centralization and data and control planes
separation are fundamental enablers of SDN programmability
and network reconfiguration. However, these traits turn the net-
work prone to denial of service (DoS) attacks, a vulnerability
that is inadvertently passed on to SDWSNs and SDIoT [5] [6].
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There are proposals in the literature to detect and mitigate DoS
attacks in SDNs, including for SDWSNs and SDIoT. However,
the proposed approaches are not adapted to very restricted
networks, such as out-of-band connection for control packets
between switches and controllers. Additionally, most works
reported high detection rates only for small networks. Other
shortcoming in existing literature is a lack of solutions able to
identify the type of attack and the attacker itself.

With these challenges in mind, we propose a novel DoS
detector for constrained SDN networks based on change point
(CP) detection theory. Our main hypothesis is that detecting
a change in the monitored network metrics can be used as an
alert for an anomaly, i.e., for intrusion detection purposes. A
key novelty is that the proposed detector is able to operate in
either centralized or distributed mode; while there exist works
on decentralized detection for networks using distributed pro-
tocols, such as RPL [7], decentralized detection is largely
unexplored in SDN-based networks.

In the centralized detection, a Security application monitors
changes in the control packets overhead and the data packets
delivery rate underlying statistics. In the distributed detection,
every node is in charge of detecting a change on its own
local metrics and to inform the Security application in case
of a change. Notably, the centralized detector that runs on the
controller permits to identify with a very high rate the attack
and can further distinguish the type of attack from a list of
known attacks. The distributed detector that runs on individual
nodes is also able to detect the DoS attacks with a high rate
and further provides information that permits to identify the
nodes launching the attack.

We evaluated the performance of both approaches on the
IT-SDN framework [19], simulating new-flow and neighbor
information types of attacks in topologies of 36 and 100 nodes,
when all the sensor nodes were emulated as TelosB mote. Our
contributions are:

1) We developed DoS detectors suitable for restricted net-
works (IEEE 802.15.4);

2) The proposed detectors do not need large training
datasets (unlike machine learning (ML)-based detec-
tors); as will be discussed in the body of the paper, a
short window (e.g., 200 samples) of normal operation
suffices to capture the baseline underlying statistics;

3) We studied the parameterization of the centralized detec-
tor to optimize the detection speed versus the detection
rate and studied the trade-off between them. The quick-
est detector achieved an attack identification rate of more
than 89%, increased to 99% for less agile detectors.
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TABLE I
RELATED WORK

Author High detection rate Multiple types
of attack

Attack type
identification

Resource constrained
networks

Attacker
identification

Bhunia and Gurusamy [8] X
Jia et al. [9] X X
Ravi and Shalinie [10] X X
Wani et al. [11] X X X
Li et al. [12] X X
Bagga et al. [13] X X
Yin et al. [14] X X
Miranda et al. [15] X X
Wang et al. [16] X X X X
Nunez et al. [17] X X X
Nunez et al. [18] X X X X
Proposed centralized / decentralized detector X X X X X

4) The decentralized detector is so lightweight that it can
run on each individual node, which allowed us to iden-
tify the region in which the attack is launched, or even,
the attacker itself with a probability exceeding 93%.

The remainder of the paper is organized as follows. In
Section II the state of the art is summarized while in Section III
the investigated SDWSN DoS attacks are explained. Section
IV outlines the CP detector. In Sections V and VI we present
the centralized and distributed detectors, respectively. Finally,
Section VII concludes the paper.

II. RELATED WORK

In this section, we review security DoS approaches for
resource-constrained SDN-based networks, focusing on detec-
tion and identification accuracy, type of DoS attacks detected
and the consideration of resource constraints. Table I summa-
rizes the main performance metrics of related works and of the
proposed CP detector. A comparative analysis is performed
for the following five metrics: i) the ability to achieve high
detection rates, i.e., equal or greater than 90%; ii) multiple
types of attack detection; iii) type of attack identification; iv)
limitation of resources; and v) attacker identification.

Several recent works about DoS attack detection in SDN-
based networks used centralized ML techniques to detect
anomalies in the behavior of the network [8], [10], [9], [11],
[20], [12], [13]. In these works, high detection rates were
demonstrated, i.e., higher than 90%. However, none of the
proposed approaches considered resource constraints or were
evaluated in restricted networks, they were OpenFlow-based
or required high traffic of packets monitoring the network.
Regarding other metrics, in [9] and [11], an attack type iden-
tification algorithm was proposed, while in [10] an attacker
identification mechanism was presented.

The proposals in [14], [15], [16] considered resource-
constrained networks but did not attain high detection rates.
Concerning other metrics, in [15], [16], multiple types of
attack were detected while in [14], [16] attacker identification
algorithms were presented.

The main shortcoming in the state of the art is the trade-
off between detection rate and resources to execute the DoS
attack detection. The proposals that attained high detection
rate were not suited for resource-constrained networks and

proposals that considered resource limitations did not attain
high detection rates. As shown in Table I, our solution is
able to provide high detection rates while it is well suited for
resource-constrained networks. Additionally, our solution was
able to detect different types of DoS attack, identify the type
of attack with high probability and identify the area in which
the attacker is located, or even the attacker itself, bridging the
gap in the literature.

The present study builds upon our previous works in [21],
[17] and [18], in which we analyzed the impact of different
types of attacks on various performance metrics, proposed a
universal CP DoS detector that combined an offline and an
online detector as well as an entirely online multimetric CP
detector. We here extend our results on the centralized ap-
proach studying the trade-off between detection rate and agility
of detection and further propose a distributed approach based
on metrics collected and analyzed on every node. Using the
transmitting time, processing time, etc., in the decentralized
DoS detection, the possibility of intrusion detection at PHY
arises, along with its potential integration with physical layer
security solutions [22]. Note that the centralized approach
requires more bandwidth while the distributed consumes more
of the nodes memory resources.

III. SDWSN DOS ATTACKS

In terms of security, SDNs have advantages and disadvan-
tages. The access to network traffic and performance data
along with the controller global view has been leveraged to
develop new security strategies [23]. Based on centralized
traffic analysis and security policies, the controller has an
important role in determining if the network is under attack
and in reconfiguring the network to mitigate the impact. In
turn, SDNs are entirely dependent on the controller, if it is
compromised, the whole network is compromised [24], [25].

IT-SDN [19] is an SDWSN framework comprising the sens-
ing layer, the control layer and three communication protocols:
the Southbound protocol, the Neighbor Discovery protocol
and the Controller Discovery protocol. The sensing layer is
composed of the wireless sensor devices used to collect data
from the environment and relay data to the sinks. The control
plane is in charge of making routing decisions and configuring
them in the sensing layer devices. The Southbound protocol
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Fig. 1. FDFF attack: the attackers send data packets to their neighbors using
unknown IDs. The sensor nodes request a rule to the controller to treat this
packet, the controller calculates the rule and send it to the sensor node.

defines the message formats for communication between the
WSN and the controller. All the nodes in the network use
the Controller Discovery protocol to find a route to the
controller and use the Neighbor Discovery protocol to collect
neighborhood information to then send it to the controller.

Six packet types are provisioned in the Southbound proto-
col: flow request, flow setup, flow ID register, acknowledge-
ment, neighbor report and data packet. To obtain information
for an incoming packet, a WSN node utilizes the flow request
to query the controller. The controller replies with a flow
setup packet. Moreover, the controller could change already
configured entries using such packet. The neighbor report
packet contains the sender’s neighborhood information, which
is used by the controller to update the network graph. The
nodes send a neighbor report to the controller if: (i) the node
detects one or more new neighbors, (ii) the node detects one
or more nodes are no longer its neighbors, or, (iii) there is a
significant change in one or more neighbors’ routing metric.

We tested our proposal when the network was un-
der two different attacks: a new-flow-based attack [26]
and a neighbor information type of attack. Based on the
IT-SDN characteristics, we adapted these two attacks to
target its security vulnerabilities, dubbed in the rest of
this paper as a false data flow forwarding (FDFF) and a
false neighbor information (FNI).

1) A FDFF attack targets the controller via network de-
vices. First, the attacker sends data packets with un-
known flow IDs to its neighbors. The neighbors receive
the packet and check the flow table to determine the
action required, without success, thus ask a rule to
the controller by sending a flow rule request packet.
The controller receives this packet, calculates the rule
and replies sending a flow setup packet. Fig. 1 shows
the packets exchange during this attack, which aims
at increasing the packet traffic and the controller and
neighbors processing overhead [21]. Since the attacker
uses its neighbors to attack the control plane, locating
an attacker located outside of the controller radio range
is challenging. In our proposal, we overcome this issue
by proposing a distributed detection approach.

2) A FNI attack modifies the packets that contain neighbor

Fig. 2. FNI attack: the sensor node sends a neighbor report to the controller
and the attacker in the route (in the case there is one) modifies the neighbor-
hood information before forwarding the packet to the controller.

information. The attackers do not intercept the neighbor
information packets but modify the ones that use them
to reach the controller. When receiving a neighbor infor-
mation packet, the attacker modifies either the routing
metric or the node identification number, then the packet
continues its normal route to reach the controller. The
packets exchange for this attack is depicted in Fig.
2. This attack leads the controller to mistreat false
information as true and to send erroneous routing rules
to the nodes. This attack significantly disturbs the data
and control packets delivery rate [21].

In the case of SDWSN and SDIoT, these type of attacks
can be critical to resource-constrained devices. In Table II, we
summarize some IEEE 802.15.4 compliant platforms along
with Raspberry Pi 3 specifications to highlight this point.

TABLE II
WSN MOTES SPECIFICATIONS

Platform Microprocessor
model

Clock
(MHz)

Flash Mem.
(kB)

RAM
(kB)

TelosB MSP430 8 48 10
SensorTag ARM Cortex-M3 48 128 20
RE-Mote ARM Cortex-M3 32 512 32
Raspberry Pi3 4 x ARM 1200 SD card 1×106

Cortex-A53

IV. ONLINE CHANGE POINT DETECTION ALGORITHM

In this section, we provide an outline of the online CP
algorithm used for DoS attack detection in SDWSN. Generally,
CP problems are formulated as hypothesis tests. The null
hypothesis represents the structural stability of the process,
while the alternative hypothesis indicates one or multiple CPs
and is used to detect an anomaly. The test statistics may be
viewed as two-sample tests adjusted for the unknown break
location, thus leading to max-type procedures. Often asymp-
totic relationships are derived to obtain critical values for the
tests. After the null hypothesis is rejected, the location(s) of
the break(s) need(s) to be estimated [27].

To outline the online CP algorithm, let {Xn : n ∈ N} be
the time series of the metric monitored. Using Wold’s theorem
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we can assume that, for X1, ..., XN , each sample is expressed
as Xn = µn+Yn, where {µn, n ∈ N} is the mean of the time
series and {Yn : n ∈ N} is a random zero mean term, so that
we can rewrite Xn as:

Xn =

{
µ+ Yn, n = 1, . . . ,m+ k∗ − 1

µ+ Yn + I, n = m+ k∗, . . .
(1)

where k∗ ∈ N∗ represents the unknown time of change and
µ, I ∈ Rr represent the mean parameters before and after k∗,
respectively. We here assume a period of no change in the
mean of at least m samples, i.e., during the first m samples
of our observation there is no change so that µ1 = . . . = µm.

During this period, our detector “learns” in real-time the
statistics of the observed time series and the mean value in
particular. The statistical hypothesis test is articulated as,

H0 : I = 0

H1 : I 6= 0.
(2)

The on-line sequential analysis belongs to the category of
stopping time stochastic processes. In general, a chosen on-
line test statistic TSon(m, l) and a given threshold F (m, l)
define the stopping time τ(m):

τ(m) =

{
min{l ∈ N : TSon(m, l)> F (m, l)},

∞, if TSon(m, l)< F (m, l) ∀l ∈ N,
(3)

implying that TSon(m, l) is calculated on-line for every l in
the monitoring period. The procedure stops if the test statistic
exceeds the value of the threshold function F (m, l). As soon
as this happens, the null hypothesis is rejected and a CP is
detected. F (m, l) is defined as,

F (m, l) = cvon,αg(m, l), (4)

where: (i) cvon,a is the critical value determined from the
asymptotic behavior of the stopping time procedure under H0

by letting m → ∞, (ii) and g(m, l) is the weight function
defined as:

g(m, l) =
√
m

(
1 +

l

m

)(
l

l +m

)γ
(5)

where the sensitivity parameter γ ∈ [0, 1/2).
The online algorithm uses the standard CUSUM detector

[28], with test statistic denoted by TScton. Its corresponding
critical value is denoted by cvcton,α and the stopping rule
by τct(m). The sequential CUSUM detector is denoted by
E(m, l),

E(m, l) =
(
Xm+1,m+l −X1,m

)
. (6)

The standard CUSUM test statistic is expressed as:

TScton(m, l) = lΩ̂
− 1

2
m E(m, l), (7)

where Ω̂m is the estimated long-run covariance, defined as
in (4), which captures the dependence between observations.
Then, the stopping rule τct(m), is defined as:

τct(m) = min{l ∈ N : ‖TScton(m, l)‖1 ≥ cvcton,αg(m, l)},
(8)

where the `1 norm is involved to modify TScton so that it can be
compared to a one-dimensional threshold function. The critical
value, cvcton,α, is derived from the asymptotic behavior of the
stopping rule under H0:

lim
m→∞

Pr{τ(m) <∞} (9)

= lim
m→∞

Pr

{
sup

16l6∞

‖TScton(m, l)‖1
g(m, l)

> cvcton,α

}
= Pr

{
sup
t∈[0,1]

‖W (t)‖1
tγ

> cvcton,α

}
= α (10)

where W (t) denotes the Brownian motion with mean 0 and
variance t. The on-line critical values can be computed using
Monte Carlo simulations, considering that,

cvcton,α = sup
t∈[0,1]

W (t)

tγ
. (11)

Lastly, the estimated on-line CP, k̂∗on, is derived directly
from the value of the stopping time τ(m), as,

k̂∗on = m+ {τ(m)|τ(m) <∞}. (12)

Summarizing, the overall algorithm has 3 main steps:
• Step 1: define the values of the quantities m, γ, the

confidence level α and set l.
• Step 2: after collecting m samples of the metric, Γ(m, l)

(7) and the weight function in (5) are calculated for every
l in the monitoring period to then apply (9).

• Step 3: If a CP is detected, the online process stops.
Conversely, if period l ends, a new monitoring period
is defined.

We note that the computational complexity of the algorithm is
O(N logN), where N is the length of the monitoring window.

V. CENTRALIZED DETECTION

[21], showed that FDFF and FNI attacks have a significant
impact on the data packets delivery rate and the control
packets overhead. The control packets overhead include all
southbound packets, except the data ones, and the neighbor
discovery protocol packets. A centralized intrusion detection,
first proposed in [17] and [18], can be used to determine if
the network is under attack based on the monitoring of these
two metrics.

Our proposal is based on the SDN architecture explained
in the IRTF RFC 7426 [29], depicted in Fig. 3. The Secu-
rity application is in charge of all security decisions. The
management plane main purpose is to ensure the network is
running optimally; here, we additionally leverage it to collect
the metrics used to detect the attacks. Furthermore, the control
plane, besides making the control decisions, provides topology
information to the Security application.

The Security application runs the CP detection algorithm
(Section IV) monitoring the data packets delivery rate and
the control packets overhead time series. To construct the
time series, the application requests this information from
the management plane periodically. The management plane
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Fig. 3. SDWSN architecture based on IRTF RFC 7426 document [29].

Fig. 4. Centralized detection message exchanges for time series constructions:
the data sink and the sensor nodes send to the management plane the
information required to calculate the data packets delivery rate and the control
overhead of the whole network. Then the Security application requests the
metric value from the management plane

establishes communication with the network devices using the
Southbound Interface to obtain information about the network
operation. The sensor nodes report to the management plane
the number of data and control packets transmitted, and the
data sink node reports the number of data packets received.
With this information, it is possible to calculate both metrics.
A sink node exclusively used for the reception of management
packets is used. The sensor nodes and the data sink node
can be programmed to either send this information to the
management plane periodically or upon request. Fig. 4 shows
the message exchange required to construct the metrics time
series.

We here propose to run two detectors in parallel on the
Security application to identify the type of attack based on
which detector triggers an alert first. This is motivated by
previous results which showed a relation between the type of
attack and the metrics analyzed [21]. We also expect that using
the proposal with two detectors in parallel allows detecting
when the network is under attack irrespective of the type
of attack with high detection rates. Additionally, the attack
detection and identification information could be sent to the
controller to implement mitigation strategies, yet this is outside
the scope of this work. In detail, an attack is classified as
a FDFF or a FNI attack based on the following reasoning,
corroborating our previous results in [18]:

1) If a CP is detected in the mean value of the data packets
delivery rate or the mean value of the control packets
overhead, we determine that the network is under attack;

2) If the CP is first detected in the mean value of the
control packets overhead, the attack is classified as
FDFF; conversely, if the CP is detected first in the
mean value of the data packet delivery rate, the attack
is classified as FNI.

A. Experimental setup

We generated a dataset comprising 480 simulations, divided
into 240 simulations of FNI attacks and 240 simulations of
FDFF attacks. Then, we split each subgroup into two sets: one
set for parameterization to capture different trade-offs between
the detection rate and the speed of detection and the other for
validation. In particular, we used the first set to determine
the optimal values of {m, γ} (both parameters explained in
Section IV) for each type of attack and each observed metric.
Then, using the values determined for {m, γ}, we executed the
CP detector algorithm over the validation sets to evaluate the
performance achieved. We performed simulations on square
grids with either 36 or 100 nodes and we varied the number
of intruders (attackers) in three proportions: 5%, 10% and 20%
of the total of nodes in the network.

First, we executed the algorithm on the first set for m ∈
{100, 150, 200} and γ ∈ {0, 0.15, 0.25, 0.35, 0.45, 0.49} to
determine the values that provide the best performance for
different trade-offs between the detection rate DR and the
detection time median DTM . The DR is the ratio of suc-
cessfully detected attacks over the total number of attacks.
The DTM is the median of the number of samples required to
detect the attack. From that, we introduced a “detection score”
to capture the relative importance given to the DR versus the
DTM (which focuses on detecting changes in a signal or a
time series as quickly as possible after they occur [30]). The
proposed detection score, denoted by PDS , is defined as:

PDS(A,B) = A(1− S) +B(DR), with A+B = 1, (13)

where A and B are coefficients that determine the rel-
ative weight of each term, and S = DTM

l with l
the number of samples monitored after the attack starts.
We used five combinations of A and B, i.e., (A,B) ∈
{(1, 0), (0.8, 0.2), (0.5, 0.5), (0.2, 0.8), (0, 1)}, to compare the
results when prioritizing the speed of detection (A > B)
versus when prioritizing the detection rate (A < B).

During the evaluation, two CP detectors ran in parallel. One
detector for monitoring the control packets overhead and the
other for monitoring the data packets delivery rate. The vali-
dation set comprised both FDFF and FNI attack simulations,
50% of each, including all the topologies chosen and attack
intensity levels. In the validation stage, we used the optimal
pairs (m, γ) identified for each pair (A,B) to maximize the
metric PDS(A,B). Whenever a CP was detected, we stopped
the detectors, declared the network under attack and identified
which metric triggered the detector to determine the type of
attack.
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(a) FDFF attack (b) FNI attack

Fig. 5. Topology example for 36 nodes with 10% of nodes behaving as
attackers: there is one SDN controller, two sinks and three attackers. The
green circle represents the radio range of all nodes. No attackers are in the
radio range of any sink or controller nodes

(a) FDFF attack (b) FNI attack

Fig. 6. Topology example for 100 nodes with 10% of nodes behaving as
attackers: there is one SDN controller, two sinks and ten attackers. The green
circle represents the radio range of all nodes. No attackers are in the radio
range of any sink or controller nodes

The SDWSN implementation uses IT-SDN 1, without
changing the default configuration [19], and the simulations
were performed using COOJA simulator [31], emulating
TelosB motes. We used fully bidirectional square grid topolo-
gies with 36 and 100 nodes, one controller, two sinks: one sink
to receive data packets and the other to receive management
packets. The controller was placed in the center of the grid
and the sinks were placed in the middle of the grid edge,
since this location gave a better performance in terms of
delay, control overhead, energy consumption and delivery
rate according to [19]. The attackers were semi-randomly
distributed in the network under the condition that two or more
attackers cannot be neighbors and this distribution remains
equal in every scenario replication. Figs. 5 and 6 show the
attackers distribution for 36 nodes and 100 nodes, respectively,
when 10% of nodes are attackers. The green circle around the
controller represents the devices radio range. Notice that no
attackers are in the radio range of any sink or controller nodes.

The sensor nodes were programmed to transmit one data
packet every 30 seconds and one management packet every
2 minutes, both with a 10-byte payload. The data packets
contained the application information and the management
packets contained the information required by the network
management plane [32]. The data packets delivery rate and
the control packets overhead were observed every two minutes,

1Available at http://www.larc.usp.br/users/cbmargi/www/it-sdn/

TABLE III
SIMULATION PARAMETERS

Simulation parameters
Node boot interval [0, 1] s

Data traffic start time [2, 3] min

Radio module power 0 dB

Distance between neighbors 50 m

Attacks begins after 28800 s

IT-SDN parameters
Controller retransmission timeout 60 s

ND protocol Collect (Contiki-3.0)

Link metric ETX (0 - 255)

Neighbor report max frequency 1 packer per minute

CD protocol none

Flow setup source routed

Route calculation algorithm Dijkstra

Route recalculation threshold 10%

Flow setup types regular or source routed

Flow table size 10 entries

considering the exchange of messages in the whole network
during this window of time. The delivery rate was calculated
by dividing the number of data packets successfully received
by the number of data packets sent. The control packets
overhead was quantified as the number of control packets
sent. Since samples were collected every two minutes, each
simulation was run for 10 hours. During the first eight hours
the network operated normally (i.e., for 240 samples there
was no change), then the attack was triggered. This imposed
a bound m < 240. Table III summarizes the remainder
simulation and IT-SDN most important parameters.

B. Results and discussion

In Section V-B1, the results of the training experiments are
analyzed to determine the values of m and γ that maximize
PDS . In Section V-B2 we discuss performance.

1) Optimizing m and γ: PDS was calculated for all the
topologies, attack scenarios and combinations of m and γ.
For α ∈ {0.90, 0.95, 0.99}, in 90% of all the cases PDS was
maximized when m = 200, turning this value a universally
optimal choice and the m value used for the remainder of the
analysis. Consequently, when running the online detector, no
training is required, other than the observation of 200 samples
of normal network operation.

For the next part, the results were separated grouping each
attack based on the monitoring metric: for a FDFF attack, the
control overhead CP detection results were analyzed, while for
a FNI attack the data packets delivery rate, CP detection results
were analyzed based on the analysis in [17]. The average value
of PDS as a function of γ and α for the case of a FDFF attack
is depicted in Fig. 7. Fig. 7a shows that when prioritizing faster
detection (i.e. A = 1) the higher values of PDS are obtained
for γ = {0.35, 0.45} and the lowest for γ = {0, 0.15}. In turn,
Fig. 7b shows that prioritizing the detection rate, the higher
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(a) A = 1 and B = 0

(b) A = 0 and B = 1

Fig. 7. Metric PDS in function of γ and α for FDFF attack: (a) shows PDS

when prioritizing the quickest detection and (b) shows PDS when prioritizing
the detection rate.

TABLE IV
γ THAT MAXIMIZES PDS

PDSPDSPDS
γγγ

α = 0.90 α = 0.95 α = 0.99

Best γ for control overhead CP detector
A = 1 and B = 0 0.45 0.45 0.45
A = 0.8 and B = 0.2 0.35 0.35 0.45
A = 0.5 and B = 0.5 0.25 0.35 0.45
A = 0.2 and B = 0.8 0.25 0.25 0.35
A = 0 and B = 1 0 0 0

Best γ for delivery rate CP detector
A = 1 and B = 0 0.45 0.45 0.45
A = 0.8 and B = 0.2 0 0.15 0.15
A = 0.5 and B = 0.5 0 0 0.15
A = 0.2 and B = 0.8 0 0 0
A = 0 and B = 1 0 0 0

values of PDS were obtained for γ = {0, 0.15, 0.25}, reaching
PDS = 1.

The average value of PDS for the case of a FNI attack is
presented in Fig. 8. Contrary to the results in Fig. 7, in this
case the trend was not as clear because lower values of γ
maximized PDS when A = B = 0.5 and B = 1, i.e., the
detection rate influences PDS more than the detection speed.

By varying γ, we were able to configure the detector to
prioritize faster detection or accuracy. However, the response
was different for both attacks. In Table IV, the values of γ
that maximize PDS are shown. In cases whereby more than
one value resulted in the same or very similar values, one was
chosen arbitrarily.

(a) A = 1 and B = 0

(b) A = 0 and B = 1

Fig. 8. Metric PDS in function of γ and α for FNI attack: (a) shows PDS

when prioritizing the quickest detection and (b) shows PDS when prioritizing
the detection rate

Fig. 9. Probability of control overhead CP detector being triggered first in
case of FDFF attack

2) Centralized detector performance: For this part, two
detectors were set to run simultaneously using m = 200.
The first experiment was devised to identify the type of attack
based on the first detector triggered. The probability of the
control overhead CP detector being triggered first in case of
a FDFF attack is depicted in Fig. 9. These results showed
that in the worst case the detector monitoring the control
overhead has a probability between 0.89 and 0.98 of being
triggered first in case of a FDFF attack. In case of a FNI
attack, the detector monitoring the data packets delivery rate
was triggered first in 100% of the events. These results showed
that there is evidence to support the hypothesis drawn in
our previous works about the relation metric/attack. Next, the
detection performance irrespective of the type of attack was
analyzed, when both detectors were running simultaneously.
The results in Fig. 10 showed a detection rate over α when
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(a) Detection rate (b) Detection speed

Fig. 10. Detection performance of FDFF and FNI attacks using γ and m values that optimize PDS for five different cases: {A,B} =
{{1, 0}, {0.8, 0.2}, {0.5, 0.5}, {0.2, 0.8}, {0, 1}}

A = {0, 0.2, 0.5, 0.8} for α = {0.90, 0.95}; when α = 0.99,
DR = α for A = {0, 0.2} only. As a conclusion, to maximize
the detection rate the configuration for A = {0, 0.2} should
be used. In terms of detection speed, as shown in Fig. 10b,
to maximize the detection rate means a lag of 3 samples on
average with respect to the fastest detection result obtained.

Summarizing Section V, we chose the pairs (m, γ) that
maximized the detection performance metric PDS . Our results
showed that in 90% of cases m = 200 maximized PDS . With
respect to γ, it was observed that using γ = 0.45, 0.49 reduced
the time to detect the attack but this had an adverse effect on
the detection rate. Conversely, when γ = 0, 0.15 the detection
rate was maximized at the cost of delaying the detection. Then,
the CP detectors using the parameters values chosen before
were tested. The results showed that it is possible to detect
the attack with DR ≥ α when B > A. Yet prioritizing the
fastest detection, the detection rate drops to 0.93 or below. In
terms of detection rate, this proposal and our previous proposal
[17] have a similar performance. Moreover, here we provide
concrete evidence to support the relation between monitored
metric and the type of attack.

VI. DISTRIBUTED DETECTION

In this section we explain our distributed detection proposal
for DoS attacks in SDWSN, implementing one CP detector
per node (potentially on every node). To the best of our
knowledge, intrusion detection at the individual sensor level
breaks new ground in SDN resource-constrained wireless
networks. For the FDFF and FNI attacks, our hypothesis is that
decentralized detection could be efficient if metrics related to
the number of control packets exchange and the active state
time (i.e., the time the node is not on sleeping mode) are
monitored.

To test our hypothesis, the following metrics were moni-
tored: the processing time, the transmitting time, the number
of control packets received and the number of control packets
transmitted. However, for compactness we will present results
only the best performing metrics, i.e, we focus on the results
from monitoring the transmitting time and the number of
control packets received.2 When a CP is detected, the sensor

2The transmitting time is the time the node remains with the radio
module turned. The control packets metric is the number of control packets
transmitted. These packets include all southbound packets, except the data
ones, and the neighbor discovery protocol packets.

informs the Security application.
To reach the Security application, we include a packet

in the Southbound protocol, exclusively for this purpose. In
this packet, the sensor can include important information,
such as the metric in which the anomaly was detected and
a suspect address, among others. This packet is forwarded
to the SDN controller, which sends this information to the
Security application through the Network Services Abstraction
Layer. Using this information, the security application can
investigate which node or nodes have launched the attack and
also execute mitigation strategies. In this section, we analyze
the anomaly detection probability on every node running
the CP detector; in Section VI-B, we propose and evaluate
an attacker identification algorithm based on the distributed
detection approach.

In the experiments based on Contiki 3.0 as follows, the
transmitting time was obtained using Energest [33], a tool
to monitor device hardware usage. Furthermore, the number
of control packets was obtained by programming every node
to print every packet received. Using the COOJA simulator
serial output it is possible to copy this information into a text
document for further analysis.

A. Experimental setup and results
A dataset of 120 simulations divided into two groups was

generated, divided in two parts so that half concerned for a
FDFF attack and the other half for a FNI attack. For both
attacks, grid topologies of 36 and 100 nodes were simulated,
whereby 10% of nodes were attackers. For these experiments,
we prioritized detection accuracy over detection speed and thus
the detector was configured using γ = 0 while we set the target
α = 0.99, and m = 200 according to the results from Section
V.

The detection performance was evaluated on every node
monitoring each metric separately, i.e., running only one
detector at a time due to memory constraints on the nodes.
For this evaluation, the detection probability of every node on
each scenario was evaluated. The same simulation parameters
and attackers positions used for the centralized detection
experiments, were maintained as summarized in Table III,
while the attackers position are depicted in Figs. 5 and 6.
The analysis of the detection performance is based on the
probability of CP detection on each node and the location of
nodes reporting high detection rates.
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(a) Transmitting time (b) Control packets received

Fig. 11. Detection probability heat maps for 36 nodes when the network is under FDFF attack. Each square represents a node in the network and the number
inside them is the detection probability result. The red squares with an “A” inside are the attackers. (a) shows the results when monitoring the transmitting
time and (b) shows the results when monitoring the control packets received.

(a) Transmitting time (b) Control packets received

Fig. 12. Detection probability heat maps for 100 nodes when the network is under FDFF attack. Each square represents a node in the network and the number
inside them is the detection probability result. The red squares with an “A” inside are the attackers. (a) shows the results when monitoring the transmitting
time and (b) shows the results when monitoring the control packets received.

1) Results for a FDFF attack: We analyzed positioning of
nodes and detection rates when monitoring the transmitting
time and the control packets received. The corresponding heat
maps are shown in Fig. 11 for a topology of 36 nodes. Note
that i) when monitoring the transmitting time, the neighbors
of the attackers have higher detection rates than farther nodes;
and ii) when monitoring the control packets received, exclud-
ing the controller and the node in the lower left corner, all the
nodes reporting an alarm are in the attacker neighborhood and
have a PDR = 1.

For a 100-node topology, a similar behavior was observed
when monitoring the control packets received (Fig. 12b);
however, when monitoring the transmitting time (Fig. 12a)
it was observed that any node on the network can reach high
detection rates. This is because when the network is under
attack, the number of control packets increase and this impacts
the radio usage of all the nodes forwarding those packets. In
turn, the control packets received is a metric that impacts only
the node that receives the packet.

In terms of detection time, the quantity 1−S was analyzed
for the 100-node case. The average 1 − S when monitoring
the control packets received and the transmitting time are 0.84

and 0.90, respectively. Furthermore, the average 1 − S for
the nodes neighboring the attackers is 0.96 and 0.92 when
monitoring the control packets received and the transmitting
time, respectively. Consequently, considering all the nodes that
detected the attack, the detection is faster when monitoring
the transmitting time, whereas on the nodes neighboring the
attackers, the detection is faster when monitoring the control
packets received.

2) Results for a FNI attack: The detection rates when the
network is under an FNI attack are lower compared to a
FDFF attack. Many nodes report alarms with probabilities
over 0.5 with an average 1 − S of 0.64 and 0.61 when
monitoring the control packets received and the transmitting
time, respectively; i.e, between 20% and 29% slower than for
a FDFF attack detection.

Investigating the location of the nodes with higher detection
rates in the topology, it was observed that when monitoring
the control packets received, no clear conclusion for alerts
risen in the immediate neighborhood of the attacker could be
drawn, as shown in Fig. 13. Intuitively, only a portion of the
neighborhood of the attacker nodes route their packets toward
the controller through the attacker, in which case the network



IEEE INTERNET OF THINGS JOURNAL, VOL. XX, NO. XX, MARCH 20XX 10

(a) 36 nodes (b) 100 nodes

Fig. 13. Detection probability heat maps when the network is under FNI attack. Each square represents a node in the network and the number inside them
is the detection probability result. The red squares with an “A” inside are the attackers. (a) shows the results for 36 nodes and (b) shows the results for 100
nodes.

(a) 36 nodes (b) 100 nodes

Fig. 14. Detection probability heat maps when the network is under FNI attack. Each square represents a group of nodes and the number inside them is the
detection probability. (a) shows the results for 36 nodes and (b) shows the results for 100 nodes.

misconfiguration impacted them first. Due to this imbalance,
we alternatively propose to perform CP detection per regions
(areas) using data aggregation. To this end, the 36 nodes were
divided into four groups and the 100 nodes into nine groups
and one time series was generated per group. Each sample of
this time series represented the sum of time series of all the
nodes in the group, thus one CP detector was executed per
group. In Fig. 14, the PDR is depicted for 36 and 100 nodes
when monitoring the control packets received. Excluding the
groups that contained the controller, in all the cases, the
detection probability achieved is better than that obtained by
any of the nodes individually. This indicates that with data
aggregation, we lose granularity but we gain in detection rates.

B. Attacker Identification

Next, we leverage the SDN properties by using the con-
troller global view of the network to identify the attacker
address or approximate the location based on the alarms
reported by the nodes. It is worth mentioning that our proposal
does not require the geographical location of the nodes, but
only the network graph available at the SDN controller. We
next present and evaluate an algorithm to locate the attackers
under a FDFF or FNI attack.

1) Attacker detection for a FDFF attack: Our proposal is
to identify the attackers IDs based on the alarms reported
by their neighbors. To accomplish this, we programmed a
register on the sensor nodes to store the addresses of the
nodes sending data packets with unknown flow IDs. The
register stores this information for the last ten packets received,
corresponding to the slowest detection DTM (for γ = 0,
1− S = 0.84 = 9.6 samples on average). Algorithm 1 shows
the proposed approach in pseudocode.

Fig. 15 allows observing that monitoring either the trans-
mitting time or the control packets received, there were
no misidentifications. When monitoring the control packets
received, the identification probability was 1.00 for all the
attackers, while when monitoring the transmitting time the
identification probability was between 0.85 and 1.00. When
evaluating the identification algorithm for 100 nodes (Fig. 16)
we obtained excellent results as well; no misidentifications and
identification probabilities over 0.93. In fact, when monitor-
ing the control packets received the identification probability
reached 1.00 for all the attackers.

2) Attacker detection for a FNI attack: Continuing the
study on grouping of nodes in the case of a FNI attack,
next the detection speed on every group is analyzed. Fig.
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(a) Transmitting time (b) Control packets received

Fig. 15. Attackers identification probability using Algorithm 1 when the network is under an FDFF attack: 36-node case. Each square in the map represents
a node in the network. The number in the squares represent the probability of this node being classified as an attacker.(a) shows the results when monitoring
the transmitting time and (b) shows the results when monitoring the control packets received

(a) Transmitting time (b) Control packets received

Fig. 16. Attackers identification probability using Algorithm 1 when the network is under an FDFF attack: 100-node case. Each square in the map represents
a node in the network. The number in the squares represent the probability of this node being classified as attacker.(a) shows the results when monitoring the
transmitting time and (b) shows the results when monitoring the control packets received

Algorithm 1 FDFF attackers identification
1: procedure FDFF ATID(node id, suspect])
2: ; node id: address of the node sending the alarm
3: ; suspect: address number of the suspect detected
4: ; suspect counter: counter for suspect
5: ; suspect nei: # of neighbors of suspect
6: Wait alarms[node id, suspect]
7: if new alarm then
8: suspect counter++
9: suspect nei = graph information(suspect)

10: if suspect counter == suspect neig then
11: suspect is an attacker
12: end if
13: end if
14: end procedure

17 shows 1 − S (normalized DMT ) for 36 and 100 nodes
when monitoring the control packets received. For 36 nodes
(Fig. 17a), it is shown that group 1 (the group without an
attacker) has the lowest 1 − S, which means this is the last

group reporting an alarm. However, in the case of 100 nodes
(Fig. 17b) the results did not show a similar trend. Therefore,
no clear conclusion can be drawn in this case.

Summarizing Section VI, under a FDFF attack most nodes
in the vicinity of the attackers detected the attack with a
probability equal or over 90%. Under a FNI attack, the results
detection rates on individual nodes were not consistent. By
observing aggregate time series, the detection rates increased
at the cost of losing granularity. In terms of detection speed,
the distributed approach monitoring the control packets re-
ceived was 5% faster than the centralized approach (Fig.
18b). In turn, when the network is under a FNI attack, the
centralized approach was always faster. As regards the attacker
identification, for FDFF attacks, Algorithm 1 is shown to
identify attackers with a probability over 0.93 in all the cases.
Conversely, for FNI attacks, no reliable relation between any
metric or the presence of attackers in the groups was observed.

VII. CONCLUSIONS

In this work, we proposed online, CP-based, centralized
and decentralized intrusion detection algorithms for SDWSN-
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(a) 36 nodes

(b) 100 nodes

Fig. 17. Detection speed (1-S metric) for FNI detection by data aggregation
when monitoring the control packets received. (a) shows the results for 36
nodes and (b) shows the result for the case with 100 nodes

constrained networks. The main strengths of our proposed
detectors are the high detection rates, the identification of the
type of attack and the localization or even identification of the
attacker in some cases. The centralized approach leveraged the
global view of the attack at the controller and allowed us to
identify the type of attack; the distributed detection provided
information that, in some cases, allows identifying the nodes
launching the attack or at least a cluster of suspicious nodes.

The algorithms were evaluated through simulations using
IT-SDN, Contiki-3.0 and the COOJA simulator, emulating
TelosB motes. Topologies of 36 and 100 nodes were simulated,
varying attackers proportionality ranging between 5%, 10%
to 20% of the total number of nodes in the topology. The
centralized detector was tuned to either maximize the detection
rate or the detection speed. Our results showed detection
probabilities over 0.96 in networks of 36 and 100 nodes when
using the centralized approach and were able to identify the
type of attack with a probability over 0.89. Furthermore, we
observed a FDFF attackers identification with probability over
0.93 when using the distributed detection.

As future work, we intend to develop a full implementation
of both approaches, compare their impact on the network per-
formance and resource usage besides integrating both detectors
into a single, hybrid approach.

(a) Average 1 − S value considering
all the nodes for the distributed ap-
proach

(b) Average 1− S value considering
only the node near the attackers for
the distributed approach

Fig. 18. Detection speed comparison between the centralized and the
distributed approaches
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