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Abstract

Sexually  dimorphic  behaviours,  such as  parental  care,  have long  been  thought  to  be 
mainly driven  by  gonadal  hormones.  In  the  past  two  decades,  a  few  studies  have 
challenged this view, highlighting the direct influence of the sex chromosome complement 
(XX vs XY or ZZ vs ZW). The African pygmy mouse,  Mus minutoides, is a wild mouse 
species  with  naturally  occurring  XY  sex  reversal  induced  by  a  third,  feminizing  X* 
chromosome, leading to three female genotypes: XX, XX* and X*Y. Here, we show that 
sex  reversal  in  X*Y  females  shapes  a  divergent  maternal  care  strategy  (maternal 
aggression,  pup  retrieval  and  nesting  behaviours)  from  both  XX  and  XX*  females. 
Although  neuroanatomical  investigations  were  inconclusive,  we  show  that  the 
dopaminergic system in the anteroventral periventricular nucleus of the hypothalamus is 
worth investigating further as it may support differences in pup retrieval behaviour between 
females. Combining behaviours and neurobiology in a rodent subject to natural selection, 
we  evaluate  potential  candidates  for  the  neural  basis  of  maternal  behaviours  and 
strengthen the underestimated role of the sex chromosomes in shaping sex differences in  
brain and behaviours. All things considered, we further highlight the emergence of a third  
sexual phenotype, challenging the binary view of phenotypic sexes.

Keywords: Maternal care, natural sex reversal, third sexual phenotype
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 Introduction

Parental care, though not universal across the animal kingdom, is fundamental in many 

species  for  offspring’ survival  and thus,  fitness.  In  mammals,  parental  care  is  skewed 

towards females with obligatory lactation and greater investments, making it one of the 

most sexually dimorphic behaviours (see [1]). Male care for offspring is rare (5-10% of  

mammalian species),  mainly observed in monogamous species and always associated 

with biparental care [2,3]. On a proximate scale, this dimorphism as well as other sexually 

dimorphic traits, was long thought to be a product of gonadal steroid hormones only, acting 

to  shape  brain  neural  circuits  [4,5].  In  the  past  two  decades,  several  studies  have 

challenged  this  view,  providing  increasing  evidence  for  the  direct  role  of  the  sex 

chromosome complement  (XX or  XY)  on  sexually  dimorphic  phenotypes  [6–11].  More 

precisely, genetically modified mice have allowed to dissociate individuals’ gonadal and 

genotypic sexes such as in the four core genotypes (FCG) model, where the Sry gene has 

been deleted from the Y (Y-)  and translocated on an autosome (XX and XY -  females, 

XXSry and XY-Sry males) (see [12]). These advances have been crucial to decipher the 

direct role of both hormones and sex chromosomes on social behaviours [7,10,13–15]. 

However, very few studies have examined how sex chromosomes shape parental care 

and underlying brain neural circuits [7].

In rodents for instance, males tend to have more cell bodies and greater fiber densities of  

vasopressin expressing neurons, a neuropeptide involved in crouching over the pups or 

maternal aggression among others [16–21]. Interestingly, this dimorphism is likely to result 

from an imbalance in X chromosome number between the sexes [7,13,22]. Closely related 

to vasopressin, oxytocin is another substantial neuropeptide for parental care, well-known 

for  its  involvement  in  lactation,  but  also  for  enhancing  pup  retrieval  and  maternal 

aggression  in  females  [18,23–26].  However,  the  impact  of  the  sex  chromosome 
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complement on oxytocin in a parental context in the FCG or other mouse models has 

never been investigated. While the FCG has been a breakthrough in pointing out the value 

of the sex chromosome complement on parental  behaviours,  the common view of the 

system is far from complete considering the complexity of parenting behaviours and the 

various underlying neural pathways. Additionally, studies have only focused on genetically 

modified animals so far -which may have some limitations (e.g. absence of  Sry in XY- 

females), where naturally occurring sex reversal systems subject to natural selection could 

bring insightful information especially in terms of brain and behaviours’ evolution.

In natura, a handful of rodent species display atypical sex determination systems with loss 

of the Y chromosome in males, or females carrying a Y chromosome [27].  Among them, 

the  African  pygmy  mouse, Mus  minutoides, is  particularly  interesting:  a  third sex 

chromosome, called X*, has evolved from a mutation on the X chromosome, and induces 

sex reversal of X*Y individuals [28]. Thus, there are three distinct female genotypes in 

populations, XX, XX* and X*Y, while all males are XY. Sex-reversed X*Y females are fully  

fertile [29], and have a higher reproductive success than XX and XX* females in laboratory 

conditions [30]. In addition, when compared to XX and XX* females, X*Y females are more 

aggressive towards intruders, display reduced anxiety, similar to that of males, and have a 

greater  bite  force,  also  comparable  to  males  [31,32].  These  male-typical  behaviours 

observed in X*Y individuals, which are unlikely to be testosterone dependant [33], suggest 

that the Y chromosome and/or dosage imbalance in X chromosomes masculinize some 

neural circuits in the brain of  M. minutoides. The highly contrasted phenotypes between 

female genotypes thus represent a great opportunity to understand the neural bases of 

sexually dimorphic behaviours.  Furthermore, the dissociation of gonadal  and genotypic 

sexes makes the African pygmy mouse a key species to investigate the effect  of  sex 

chromosomes on  sex  differences  in  brain  and  behaviours.  In  this  study,  we  used  an 

integrative approach to  investigate the effect  of  genotypic  sex on maternal  care in  M. 
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minutoides, from behaviours to candidate brain neural circuits (Fig. 1). We show, here, that 

sex reversal  in  M. minutoides influences pup retrieval,  maternal  aggression,  and nest-

building behaviours. In rodents, it has been shown that retrieval behaviours and maternal 

aggression are stimulated by oxytocin expression in the paraventricular nucleus of the 

hypothalamus (PVN), while nesting behaviours are inhibited by vasopressin expression in  

the same region [18,24–26,34]. Hence, we then investigated the neuroanatomy of these 

neural circuits. Based on mouse models, it has also been shown that oxytocin neurons in 

the PVN are modulated by dopamine neurons in the anteroventral periventricular nucleus 

of the hypothalamus (AVPV) [26], and that dopamine levels can be positively correlated 

with Sry expression in the brain [35–37]. For instance,  Sry stimulates the expression of 

tyrosine  hydroxylase  (Th),  the  rate  limiting  enzyme  for  dopamine  synthesis  [35–37]. 

Therefore, we also investigated neurons expressing Th in the AVPV. According to maternal 

behaviours observed in this study, we expected X*Y females to have a greater number of 

oxytocin and vasopressin expressing neurons in the PVN as well as a greater number of 

Th expressing neurons in the AVPV. 

Material & Methods

Animals, genotype identification and study environment

Behavioural  experiments were conducted in accordance with  European guidelines and 

with the approval of the French Ethical Committee on animal care and use (No. CEEA-LR-

12170) in our laboratory colony (CECEMA facilities of Montpellier University) established 

from wild-caught animals from Caledon Nature Reserve (South Africa). Approximately 24 

generations of mice were bred in our colony. Individuals are reared in large (38 L x 26 W x 

24 H cm) or medium cages (31 L x 21 W x 21 H cm) filled with woodchips bedding, in a  

room held at 23 °C and with a 15:9 h light-dark cycle. They are supplied with food (mixed 

bird seeds) and water  ad libitum. Virgin females are housed in groups of 5-6 in large 
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cages. In our study, either females remained virgins or they were paired at 2-10 months 

old with a male (aged between 2-19 months old) in a medium cage for breeding and 

subsequent behavioural assays. Female genotype was identified either by PCR of  Sry 

using total genomic DNA extracted from tail tip biopsies with DNeasy blood and tissue kit 

(Qiagen) and following Veyrunes et al. [28] protocol, or by karyotyping using bone marrow 

of yeast-stimulated individuals as previously described [38].  We included X*Y and XX* 

females from litters of either XX* or X*Y females, and XX females from litters of XX or XX* 

females. This eliminates potential maternal effects related to the genotype of mothers. 

Behavioural assays

Tests were performed on primiparous females (i.e., first litter). X*Y and XX* females were 

aged 6 ± 2 months old and XX females were aged 5.5 ± 2 months old on average (age  

range of 3-13 months). Tests were conducted during light cycle, between 10.00 am and 

6.30 pm, by an experimenter blind to females’ genotype. When individuals were assessed 

in more than one assay, we conducted experiments sequentially by increasing magnitude 

of stress: we first tested females for pup retrieval, followed by mother-pup interactions and 

then, nest building, with a 15h gap at least between each test. Pup retrieval and mother-

pup  interactions  assays  were  filmed  with  a  camera  (SONY  HDR-CX130E)  and 

subsequently  analysed  with  Observer  v5.0.31  and  Observer  XT  softwares  (Noldus). 

Scoring for the nesting and parental care strategy tests were assessed by instantaneous 

observations. Average litter sizes per female genotype and for each assay are shown in 

tables S2 and S4. 

Pup retrieval experiments were carried out in home cage. Pups were aged 5 ± 2 days old 

on average. The father and mother were removed while the whole litter was placed at the 

opposite corner of the shelter with the nest. The assay started once the female was put 

back under the shelter and recorded until the first pup was retrieved. If no pup had been 
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retrieved within 10 minutes, the assay was ended. A total of 101 females (31 XX, 35 XX* & 

35 X*Y) were assessed once, on both first approach latency and retrieval probability.

Mother-pup interactions experiments were carried out in a new cage (38 x 26 x 24 cm) 

filled with the individuals’ own bedding. Pups were aged 4.9 ± 1.7 days old on average. We 

placed only one pup at the centre of the cage to account for litter size differences between 

females. We then placed the mother  at  a corner  of  the cage and recorded grooming, 

crouching  and  carrying  behavioural  responses  during  10  minutes.  We  assessed  75 

females (25 per genotype) once, on whether they displace/carry their pup, as well as on 

duration of grooming, huddling and crouching behaviours. 

Nesting tests were performed in home cage, early evening (~6.00 pm) and nests were 

scored on the following morning (~10.00 am) for 90 females (28 X*Y, 24 XX and 28 XX*). 

Age of the pups was 6.7 ± 1.9 days old. The father was removed from the cage as well as 

all  environmental  enrichments  except  bedding.  We  added  one  nestlet  (5x5  cm  of 

compressed cellulose; Serlab, D00009) to provide nesting materials. Individuals received 

the same nestlet prior to experiment (post-parturition) for habituation. Nest scoring was 

assessed only once, from 0 to 5 according to Gaskill  et al.  [39] graduation: 0-cellulose 

unused and no nest, 1- no nest site, 2- flat nest, 3- slightly curved nest, 4- nest with walls,  

5- fully enclosed nest. We scored the nest accordingly to the graduation above but with 

more flexibility allowing intermediary scores as well (e.g. 3.5 or 4.5). We also recorded the 

percentage of nestlet used by females as they do not necessarily use it to build the nest 

(i.e., they can use their bedding). 

Parental care strategy, or whether mice display biparental care versus maternal care only, 

was  investigated  for  105  females  (29  XX,  37  X*Y and  39  XX*)  in  home  cage.  This 

experiment consisted in observing mates in their home cage, following the birth of the first 

litter. Hence, no manipulations were made on these individuals. We assessed strategies 

by characterizing female behaviours towards fathers (i.e.,  fathers included or excluded 
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from parental care). We made repeated one-off observations (i.e., instantaneous scan) of 

males’ position in the cage and possible physical injuries, from birth to 14 dpp (before pups 

start to explore outside the shelter) and every 2-3 days. We rated fathers’ involvement 

gradually and increasingly, from 1 to 6: 1= father killed or removed for severe injuries, 2= 

chased,  with  aggression stigmata,  3= always in  a  different  lodge,  not  tolerated in  the 

shelter with the pup(s), 4= tolerated inside the shelter but in the opposite corner, 5= under 

the same shelter, next to the mother and 6= paternal care observed: huddling, carrying, 

crouching. Score measurements were not repeated if  the father was killed or removed 

(i.e., score 1 or 2, referred to as high level of maternal aggression).

Immunohistochemistry

We sampled virgin individuals only based on our own ethical considerations as well as for 

technical limitations : killing mothers would also imply the loss of the litter, while some 

genotypes,  notably  XX females,  are hard to  breed [40].  Eighteen virgin  mice (3-5 per 

genotype  including  males  as  a  control  group)  were  euthanised  with  isoflurane  4% 

anaesthesia followed by decapitation. Brains were collected in 4% PFA and stored for at 

least 48 hours at 4°C. Brains were sliced at 30 µm using a vibratome (Leica Microsystems) 

and coronal sections were collected into a PBS-filled container. Floating brain slices were 

then put in 4x3 well plates (4 wells per individual) and washed three times with Phosphate 

Buffer Saline (PBS) before staining. We sliced and stained the whole brain to account for 

any potential divergence from M. musculus in the brain anatomy (no data were available 

on the brain of M. minutoides). Brain slices were first incubated for 24h at 4°C or two hours 

at  room  temperature  (RT)  with  a  Goat  coupled  Fab  anti-mouse  IgG  blocking  buffer  

(1:1000, Abliance, BI 3013C) diluted in PBS with 0.1% Triton 100X (PBS.T) and ~1% BSA 

to prevent non-specific binding. Then, slices were incubated for 24-48h at 4°C with mouse 

anti-Neurophysin I (1:2000, Merck Millipore, MABN844, marker for Oxytocin), rabbit anti-
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vasopressin  (1:1000,  Immunostar,  20069)  and  sheep  anti-Th  (1:1000,  abcam,  ab113) 

diluted in PBS.T and BSA, followed by secondary antibodies : Cy3 coupled Donkey anti-

mouse  IgG  antibody  (1:1000,  Jackson  ImmunoResearch,  715-165-140),  Cy5  coupled 

Donkey  anti-rabbit  IgG  (1:1000,Jackson  ImmunoResearch,  711-606-152)  and  A488 

coupled Donkey anti-sheep IgG (1:1000, Jackson ImmunoResearch, 713-546-147) diluted 

in PBS.T and BSA, for 24-48 hours at 4°C. Slices were finally incubated for 3-6 minutes  

with DAPI (1:10 000, Invitrogen) diluted in PBS and mounted on Polysine® Slides stored at 

4°C until imaging.

Imaging and cell counts

Brain slices including the PVN and AVPV were identified based on the mouse brain atlas 

from  Franklin  and  Paxinos  [41].  Slices  were  then  processed  with  a  scanner  (Zeiss 

Axioscan)  or  confocal  microscopy  (Zeiss,  LSM  780)  and  cell  counts  (i.e.,  number  of 

immunoreactive  cells)  were  done  blindly  and  manually  on  ImageJ,  for  entire  nuclei. 

Oxytocin and vasopressin neurons’ distribution across the whole PVN nucleus were also 

investigated to account for potential differences in localization between genotypes.

Statistical analysis

All statistical analyses were conducted on R v4.1.2 [42] using lme4, stanarm, ordinal and 

multgee  packages  (see  [43,44]  for  data  and  scripts,  respectively).  Pup  retrieval  was 

investigated with Bayesian (generalized) linear mixed models,  incorporating the age of 

pups as a random effect on the intercept. We fit our models to assess retrieval probability  

and visit latency using a log(x+1)-transformation to correct for a right-skewed distribution 

(many latencies at 600s). We ran four Markov chains of 2000 iterations each, removed the 

first  1000  (warm-up)  and  kept  the  second  half  to  estimate  our  parameters.  Both  our 

models  checked  convergence  recommendations  ( R̂<1.1).  Post-hoc  comparisons  were 
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made using  emmeans package to contrast each genotype. Point estimates reported per 

genotype are medians (back transformed from the log (x+1) scale) and median-based 

contrasts  with  89%  Highest  Posterior  Density  (HPD)  intervals  excluding  one  were 

considered as truly different (89% HPD is the standard interval for Bayesian models and 

analogous to 95% confidence intervals). Mother-pup interactions were also analysed with 

Bayesian  (generalized)  linear  mixed  models  with  pups’  age  as  a  random  effect  and 

following the same steps as stated above. We log(x+1)-transformed duration responses to 

correct for  a left-skewed distribution (many durations at 0s) and post-hoc comparisons 

were made to contrast genotypes. Nesting scores were analysed with a cumulative logit 

model (clm) and probabilities for nest quality per genotype were retrieved accordingly. XX 

was set as the reference group and we made multiple pairwise comparisons (emmeans) 

with adjusted p-value to assess each genotype effect. We did not include the age of pups’ 

as a random effect due to computational limitations. Parental care strategy was assessed 

with a population-averaged ordinal model to account for repeated measures and possible 

correlation between observations using the ordLORgee() function from multgee package 

[45].  Probabilities  were  then  retrieved  using  a  back-transformation  of  parameters 

estimation according to a cumulative logit link. Cell counts for immunostaining assays were 

analysed using the non-parametric Kruskal Wallis test for multiple group comparisons. 

Results

Higher retrieval efficiency in X*Y females

During pup retrieval experiments, X*Y females approached their pup(s) significantly faster 

than XX and XX* females (Fig. 2a, Fig. S1, table S1 in [46]), with a median visit latency at 

51.7s [33.6-73.8 89% HPD] versus 156.5s [94.5-223.3 89% HPD] for XX and 112s [71.5-

158.6 89% HPD] for XX* females. Interestingly, 35.5% of XX females did not visit their 

pup(s) while only 17.1% of XX* females and 11.4% of X*Y did not respond (table S2 in 
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[46]). To confirm that differences were not driven by the absence of response (i.e., visits), 

we reanalysed latencies only on females visiting their pup(s),  and we found the same 

results (Fig S2 in [46]). Additionally, X*Y females were significantly more likely to retrieve 

their pup(s) when compared to XX and XX* females, with an estimated retrieval probability 

of 0.87 [0.77, 0.95 89% HPD], while XX and XX* had a respective probability of 0.47 [0.32,  

0.63 89% HPD] and 0.55 [0.42, 0.70 89% HPD] only (Fig. 2b, tableS1 in [46]). Hence, X*Y 

females are more efficient at pup retrieval than XX and XX* females.

Poor nest quality in X*Y females

All females showed nesting behaviours as no nest score below 3 was recorded. However, 

X*Y females were more likely to build poor quality nests in contrast to both XX (Fig. 2c, z= 

-3.5,  p=0.001)  and  XX*  females  (z=-4.61,  p<  0.001).  They  had  a  probability  of  0.37 

(highest probability) for building a slightly curved nest (i.e., score 3) while they had a 0.15  

probability, for making a fully enclosed nest (i.e., score 5). Conversely, XX and especially 

XX* individuals were more likely to build high quality nests, with a respective probability of 

0.51 and 0.70 for a fully enclosed nest. This also indicates a relatively high consistency in 

nest-building behaviour for XX* females. Though XX* had a higher probability than XX 

individuals for building high quality nests, they show similar behavioural trends (Fig. 2c, z= 

-0.78, p=0.35). Interestingly, most X*Y females (89.3%) did not use the nestlet to build a 

nest  but used  their  own bedding,  in  contrast  to  50% for  XX and 42.9% for  XX*.  We 

therefore tested for a relationship between nest quality and nestlet usage (i.e., disinterest 

for the nestlet or poor learning) in X*Y females and did not find any correlation (χ² =12.04, 

p=0.12). X*Y females are thus less efficient at nest building when compared to XX and 

XX* females.

Genotypic sex does not impact mother-pup interactions
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Most  females  interacted  with  their  pup  and  there  were  no  significant  differences  in 

interaction  durations  nor  probabilities  (table  S3,  Fig.  S3-4  in  [46]).  X*Y,  XX  and  XX* 

females spent in median 7.9s [3.07-13.2 89% HPD], 11.2s [4.65-18.8 89% HPD] and 15.9s 

[7.03-25.8 89% HPD] crouching over the pup, 7.17s [3.48-11.36 89% HPD ], 4.96s [2.26-

7.97 89% HPD] and 7.30s [3.58-11.64 89% HPD ] huddling with the pup, 3.18s [1.36-4.99 

89% HPD], 4.87s [8.49-7.46 89% HPD] and 5.79s [2.89-8.70 89% HPD] grooming the pup, 

respectively.  In addition, they had respective probabilities of 0.68 [0.42-0.9 89% HPD], 

0.76 [0.5-0.93 89% HPD] and 0.67 [0.4-0.87 89% HPD] to displace their pup. 

Genotypic sex influences female parental strategy

X*Y females were on average more likely to show maternal aggression than XX and XX* 

females, which inversely, were more likely to be involved in biparental care (Fig. 2d, X*Y vs 

XX, z=-2.81, p=0.005; X*Y vs XX*, z=-2.87, p=0.004). Indeed, X*Y females had a highest 

probability at 0.33 to severely aggress or kill mates (i.e., score 1) in contrast to a 0.19  

probability to display biparental care (i.e., score 6). Inversely, XX and XX* females had 

highest probabilities at 0.46 and 0.43 respectively for biparental care in comparison to 0.12 

and 0.13 probabilities for maternal  aggression. Strikingly,  XX and XX* females’ curves 

almost  overlay  with  quite  similar  probabilities  in  each  category,  highlighting  identical  

parental care strategy in XX and XX* females.

 Hypothalamic neural circuits of maternal care

We did not find evidence for difference in the global neuroanatomy of M. minutoides PVN 

in comparison to  M. musculus  [23,41,47]. Vasopressin is expressed in both parvo- and 

magnocellular neurons, mostly in intermediate regions of the PVN where it is expressed 

dorsolaterally (Fig. S5, S7-S10 in [46]) and oxytocin is mostly expressed in magnocellular 

neurons  and  more  homogeneously  across  the  nucleus  than  vasopressin  (midline  and 

rostro-caudal axis; Fig.  S6-S10 in  [46]).  We did not have enough power to statistically 

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290



compare oxytocin and vasopressin neuron distributions across genotypes but there were 

no overall striking differences (Fig. S5-S6 in [46]), with high variabilities in count data due 

to inter-individual variability and small sample sizes. In addition, there were no differences 

in oxytocin neurons number between genotypes (Fig. 3a,c-S6, χ² = 0.89, p= 0.83). We did 

not find differences in the number of vasopressin expressing neurons either (Fig. 3b,c, 

χ²=0.82, p= 0.84) but there is a tendency for a lower number in X*Y females driven mostly 

by the lower number of vasopressin neurons in anterior regions (Fig. S5 in [46]). Finally, 

there were no differences in the neuroanatomy of the AVPV in comparison to M. musculus 

[41,48,49].  Since there is evidence for  a  sexual  dimorphism in the nucleus size in  M. 

musculus [49,50], we weighted the number of Th expressing neurons by the area of the 

nucleus and did  not  find differences in  the density  of  Th neurons between genotypes 

(χ²=2, p= 0.57), though a tendency for a greater density in X*Y females (Fig. 4). 

Discussion

The African pygmy mouse is a species with a naturally occurring sex reversal system, 

involving a dissociation between phenotypic and genotypic sexes in X*Y females. This 

fascinating system represents a great opportunity to shed light on the impact of the sex 

chromosomes on sexually dimorphic behaviours such as parental care. By focusing on 

maternal phenotypes specifically, we show that sex reversal in  M. minutoides influences 

pup retrieval,  maternal  aggression,  nest  building  behaviours  and may also  impact  the 

maternal  dopaminergic  circuit  in  the  AVPV  nucleus.  Our  study  confirms  and  further 

extends  evidence  on  the  influence  of  the  sex  chromosome  complement  on  parental 

behaviours and brings promising prospects for its impact on the neurobiology of parenting.

 X*Y females are more efficient at pup retrieval than both XX and XX* females. They first  

approached their  pup faster  and showed more consistent  retrieval,  while  XX and XX* 
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showed increased latencies to first approach and retrieve their pup about one out of two 

times  only.  Moreover,  in  a  reproductive  context,  X*Y  mothers  were  highly  aggressive 

towards mates, whereas XX and XX* females were more likely to share parental care. 

Previous results  showed that  non-reproductive X*Y females are more aggressive than 

other  female  genotypes  towards  intruder  males  [31].  Here,  we  show  this  enhanced 

aggressiveness further extends towards the pup’s own father (as male partners were killed 

or needed to be removed for 43.2% of X*Y females (i.e., 16 out of 37), suggesting that X*Y 

females are more likely to be solitary mothers. Furthermore, X*Y females built poor quality 

nests (slightly curved), while XX and especially XX* females performed better with fully 

enclosed nests. It was surprising that almost all X*Y females did not use the nestlet but 

their  own bedding, and the lack of correlation between nestlet  usage and nest quality  

strongly suggests a disinterest for the nestlet in X*Y females. Because nest building is an 

essential component of maternal care especially in altricial species, to protect the young 

from potential threats and for thermoregulation, this would thus suggest maladaptation in 

X*Y females. However, here, experiments were conducted in breeding conditions where 

temperature  is  held  constant  and  where  the  only  potential  threat  is  the  father  (i.e., 

infanticide). In addition, we show that X*Y females can assure pups protection through 

agonistic  behaviours  (i.e.  maternal  aggression).  Therefore,  nest  quality  might  be  less 

essential for these females in breeding conditions, and in the future, it would be worthwhile 

to  compare these  behaviours  with  wild  animals  in  natural  populations.  All  things 

considered, the divergent behavioural patterns between X*Y and XX / XX* females reflect  

two  distinct  maternal  strategies  shaped  by  the  sex  chromosome  complement  in  M. 

minutoides. Although there is an unequivocal effect of the sex chromosome complement 

on  some  maternal  behaviours,  there  were  no  differences  in  mother-pup  interactions 

suggesting that it does not modulate all components of maternal care. 
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It  is  very  striking  that  X*Y  females  displayed  -quite  consistently-,  divergent  maternal 

behaviours from XX and XX* females: they showed a greater retrieval efficiency, high level  

of maternal aggression, but also poor nest-building skills  as found in males suggesting 

masculinization (data not shown; [51]). Interestingly, this pattern of co-occurrence of both 

feminized and masculinized traits in X*Y females was already found in previous studies: 

while they have functional ovaries and show, moreover, a greater reproductive success 

than both XX and XX* females (e.g. higher ovulation rate, bigger litter sizes) [29,30], they  

also display male-like reduced anxiety behaviours, they are more aggressive, and have a 

greater bite strength than XX and XX* females [31,32]. All things considered, the constant  

divergence between X*Y on one side and XX and XX* females on the other side highlights  

that the association of a feminizing X* and a male-specific Y chromosome has given birth  

to a third sexual phenotype in the African pygmy mouse. 

The differences of maternal care behaviours between female genotypes raise questions 

concerning the genetic basis of maternal strategies in M. minutoides. Several hypotheses 

are  discussed  here.  First,  the  divergent  behaviours  of  the  X*Y  females  suggest  an 

influence  of  the  Y  chromosome  and  one  prime  candidate  among  this  gene-poor 

chromosome is Sry, which is expressed in the brain of X*Y females [29]. In male rats and 

mice for instance,  Sry  expression in the brain regulates some neural pathway such as 

dopaminergic neurons (e.g. positive regulation of tyrosine hydroxylase, Th, expression in 

the substantia nigra), which is likely to influence behaviours in a male-specific manner [35-

37].  Secondly, there could also be an influence of the female specific X* chromosome. 

However, since XX* females behave like XX females, this would imply maternal X*-biased 

chromosome inactivation  (X*CI),  or  parental  imprinting  of  X-linked genes [52,53],  with 

preferential expression of the paternal X alleles. There is no evidence for skewed X*CI in 

M. minutoides based on cytological investigations of embryos fibroblast cell cultures [54], 
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but  next  generation  sequencing  technologies  with  a  special  focus  on  allele-specific 

expression in the brain would be necessary to confirm or refute this finding, and therefore  

help clarify hypotheses. Thirdly, another hypothesis to correlate with divergent maternal 

strategies is X dosage (i.e., copy number of X and X* chromosomes; 2 copies in XX and 

XX*, and only one copy in X*Y females). In the house mouse, hundreds of autosomal 

genes are under the influence of X dosage [55], such as vasopressin involved in nesting 

behaviours [7,13,19,34]. In addition, a few X-linked genes (3-8%), such as Kdm6a involved 

in gene expression regulation, escape inactivation in mice and have also been suggested 

to influence sexual phenotypes ([12,15,56]). Finally, one might also suppose an epistasis 

interaction  between  the  X*  and  the  Y  chromosome.  In  Drosophila  melanogaster for 

instance, it has been shown that a few X-linked genes involved in pheromone detection 

are regulated by the Y chromosome, which is likely to impact reproductive phenotypes 

[57].

 Interestingly,  some of  our  behavioural  observations are in contradiction with  previous 

findings on the FCG, which may give insight into their genetic bases. Contrary to X*Y 

females in M. minutoides, sex-reversed XY- females in the FCG displayed similar nesting 

behaviours to XX females, but had impaired retrieval capabilities: they retrieved less pups 

and belatedly when compared to XX females [7]. Considering nest building, in the FCG 

model,  the  authors  suggested  that  the  poor  nesting  skill  in  XY-Sry and  XXsry males 

compared to XX and XY- females were due to the expression of Sry and/or the secretion 

of perinatal androgens, which masculinize the underlying neural circuits [7]. In our case, 

X*Y  females  built  poor  quality  nests  as  well,  while  they  do  not  have  differences  in  

gonadal/adrenal hormonal levels compared to the other female genotypes (testosterone 

and estradiol; [33]) but they do express  Sry in their brain [29]. Therefore,  Sry  is a good 

candidate to correlate with impaired nesting behaviours in these females. Considering pup 

retrieval, results in the FCG suggested that the Y chromosome and/or X dosage imbalance 
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was necessary to alter  retrieval phenotypes. Here, we show that X*Y females perform 

better  at  pup  retrieval  even  though they have one copy  of  the  X*  chromosome,  a  Y  

chromosome, and express Sry in their brain [29]. Therefore, either the impact of Y-linked 

genes (including Sry) is different between FCG mice and the African pygmy mouse, either 

it  is  an  X*  chromosome effect,  or  an  epistasis  interaction  between the  X*  and  the  Y 

chromosome.  Although the genetic  bases remain  unknown, our  results  show that  sex 

reversal in the African pygmy mouse does not seem to alter maternal care quality, contrary 

to  expectations  based  on  the  FCG.  This  discrepancy  further  illustrates  the  need  to 

consider not only genetically modified laboratory mice but also non-model species with 

alternative phenotypes shaped by natural selection -such as observed in M. minutoides-, 

to better understand the genetic and neural bases of behaviours. 

In  mammals,  oxytocin and vasopressin are crucial  neuropeptides that  intervene in the 

initiation and maintenance of parental  care [58].  In rodents,  oxytocin expression in the 

PVN induces  pup  retrieval  and  maternal  aggression  [18,24–26,59]  while  vasopressin, 

which can also mediate maternal  aggression,  has been shown to  inhibit  nest  building 

[18,34].  Moreover,  vasopressin  has  been  shown  to  be  influenced  by  X  chromosome 

number,  with  greater  expression  in  individuals  with  a  single  X chromosome [7,13,19]. 

Hence, oxytocin and vasopressin were prime candidates to explain the divergent maternal 

behaviours in M. minutoides, and a greater number of vasopressin and oxytocin neurons 

in  the  PVN of  X*Y  females  in  comparison  to  XX  and  XX*  females  could  have  been 

expected (Fig. 1). However, we did not find such differences between females nor with 

males, emphasized by the high variability in count data (i.e. indicative of low power; Fig. 

3a,b).  The  lack  of  differences  in  oxytocinergic  and  vasopressinergic  systems  global 

anatomy  in  the  PVN  suggests  no  differences  in  oxytocin  and  vasopressin  levels. 

Nonetheless, larger sample sizes and the functionality of the neuroendocrine networks as 
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well  as the hormonal output should be tested to confirm or refute this hypothesis (e.g. 

quantification of gene and protein expression in the PVN, blood hormonal levels measured 

over time) [19,26,34]. In addition, we tested virgin females  while parental neural circuits 

are known to evolve with sexual experience [25,26,58,60]. Differences in oxytocin and/or 

vasopressin between females may thus arise at first pregnancy.

Another interesting brain region to look at was the AVPV. It has been shown that neurons 

expressing tyrosine hydroxylase (Th) in the AVPV stimulate oxytocin expressing neurons 

in the PVN and consequently pup retrieval in females [26]. Moreover, these neurons are 

sexually  dimorphic  with  a  greater  number  in  females  than  males  already  in  virgin 

individuals [26,49].  Our results  do not  support  the sexual  dimorphism described in  M. 

musculus,  however  we  show a  tendency  for  a  greater  density  of  Th  neurons  in  X*Y 

females, which is also supported by preliminary results on  Th mRNA expression levels 

(RNAseq  and  RT-qPCR)  in  the  whole  brain of  M.  minutoides  (unpublished  data). 

Therefore, the tendency for Th may also be consistent with pup retrieval results and it 

would be worth exploring further this potential link between sex chromosomes and the 

regulation of parenting through the dopaminergic system. 

Finally, it is noteworthy that parenting is a complex behaviour that is regulated by diverse 

neural pathways and neuromodulators. In mice for instance, nesting behaviours have also 

been shown to be inhibited by another peptide, the neuropeptide Y, whose expression is  

sexually dimorphic [61,62]. It is thus likely that the sex chromosome complements in  M. 

minutoides act on various neural circuits to shape maternal behaviours, and future studies 

should integrate other brain regions and neuromodulators, to help understand the neural  

basis of maternal strategies. Because we work on a wild non-model species, we have 

ethical  considerations, which restrain the establishment of  a causal  link between brain 

nucleus, peptides and behaviours: we have small sample sizes, use virgin individuals only,  

and face technical limitations (e.g. stereotaxic surgery has never been performed on this  
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species). Nonetheless, inceptive investigations of the neuroanatomy provide an essential  

basis to describe and understand the evolution of the brain and behaviours, as illustrated 

here in a species with highly contrasted phenotypes.

Combining behaviours and the neuroanatomy of parenting, we highlight the emergence of 

a  third  sexual  phenotype  in  a  wild  species.  While  the  relative  impact  of  each  sex 

chromosome on maternal behaviours is yet to be determined, our results bring exciting 

advances to research on both the neural basis and the impact of the sex chromosomes on 

natural  behaviours.  Furthermore, research on multiple sexual  phenotypes in other wild  

species with unusual sex determination system as described here, in the African pygmy 

mouse, could help strengthen the challenge of rethinking the stereotypical dichotomous 

view of sexes.
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Figures

Figure 1. Neural investigations and predictions based on maternal behaviours observed in 
the  African  pygmy  mouse,  and  the  known  influences  of  some  neuropeptides  and 
neurotransmitters on these behaviours in other rodents. Maternal behaviour experiments 
showed that sex-reversal in  M. minutoides influenced pup retrieval, maternal aggression 
and nest building, with X*Y females being different from both XX and XX* females for each  
behaviour. We investigated potential candidates for the neural basis of these behaviours 
based on M. musculus and Peromyscus studies: the paraventricular nucleus (PVN) of the 
hypothalamus  where  the  expression  of  oxytocin  triggers  pup  retrieval  and  maternal  
aggression [18,24–26] while vasopressin expression inhibits nesting behaviours [34]. We 
also  investigated  Th  neurons  (i.e.,  dopaminergic  system)  in  the  anteroventral 
periventricular nucleus (AVPV) of the hypothalamus, which have been shown to enhance 
retrieval behaviours through the regulation of oxytocin neurons in the PVN (solid arrow) 
[26].  Moreover,  it  has  been  shown  that  Th  neurons  can  be  regulated  by  the  sex 
determining gene, Sry (e.g. [36]) and that vasopressin can be influenced by X dosage (e.g. 
[7]) (dashed arrows). All things considered, we predicted greater oxytocin, vasopressin and 
Th cell numbers / density in the PVN and AVPV of X*Y females, respectively. Predictions 
are represented by + symbols. © Laurence Meslin CNRS - ISEM 2022
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Figure 2. Sex chromosome complements shape maternal behaviours in the African pygmy 
mouse.  a,b,  Pup  retrieval.  Estimates  of  first  visit  latency  and  retrieval  probability  per 
genotype.  Values  are  medians  with  89%  HPD  intervals.  Latency  to  first  visit  and 
probabilities  are  retrieved  from  a  back-transformation  of  our  parameters.  *Asterisks 
indicate significance of the genotype effect : X*Y females show a significantly reduced visit 
latency and a higher retrieval probability in contrast to XX and XX* females (median-based 
contrasts with 89% HPD intervals are shown in table S2). nXX=31 , nXX*=35, nX*Y=35  c, 
Likelihood curves of nest quality depending on females’ genotype. Nest quality estimates 
range from 3 (slightly curved nest) to 5 (fully enclosed nest) as no values below 3 were  
recorded. X*Y females build poorer quality nest than both XX (p=0.001) and XX* females 
(p<.0001).  nXX=24  ,  nXX*=28,  nX*Y=28  d,  Likelihood  curves  of  parental  care  strategies 
regarding fathers involvement inside the nest from 1 : no involvement of fathers and high 
level of maternal aggression to 6 : biparental care. nXX=29 , nXX*=39, nX*Y=37. X*Y females 
are more likely to display maternal aggression than both XX (p=0.005) and XX* females 
(p=0.004), which likely share care with males. 
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Oxytocin Vasopressin Merged

X
X

X
X

*
X

*Y
X

Y

Figure 3. No genotypic sex effect on oxytocin and vasopressin neurons’ number in the 
PVN of virgin individuals. a,b, Total number of oxytocin and vasopressin expressing 
neurons in the PVN of virgin XX, XX*, X*Y females and XY males. Oxytocin : nXX=5 , 
nXX*=5, nX*Y=4, nXY=4. Vasopressin : nXX=4 , nXX*=4, nX*Y=3, nXY=3. Data are means ± 
s.e.m and raw counts are also represented by empty dots. c, Oxytocin and vasopressin 
staining in the PVN of virgin African pygmy mice and associated M.musculus brain slice 
reference (black rectangle represents the PVN area, modified from Franklin & Paxinos 
[41]. Scale bars 50 µm.
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Figure 4. Tendency for a greater Th neuron density in the AVPV of X*Y females. a, Density 
of Th- expressing neurons in the AVPV of virgin XX, XX*, X*Y females and XY males:  
number  of  total  Th  neurons weighted by  the  sum of  the area (mm2).  nXX=4 ,  nXX*=5, 
nX*Y=3, nXY=3. Data are means ± s.e.m and raw counts are also represented by empty 
dots. b, Th staining in the AVPV of virgin African pygmy mice and associated M.musculus 
brain slice reference (black rectangle represents the AVPV area, modified from Franklin & 
Paxinos [41]. Scale bars 50 µm.
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