
A parametric Kalman filter (PKF) tour of data assimilation
practical and theoretical data assimilation

O. Pannekoucke1,2,3, R. Menard4, M. Bocquet5, R. Fablet6, S. Ricci3, A. Perrot1, V. Guidard1, O. Thual3,7,
M. Sabathier8, V. Maget8

1CNRM UMR3589, CNRS, Météo-France, France. 2INPT-ENM, France. 3CERFACS, France. 4Environment and Climate Change Canada, Canada. ARQI/Air Quality Research Division
Environment and Climate Change Canada, Dorval (Québec), Canada. 5CEREA, joint lab École des Ponts ParisTech and EdF R&D, Université Paris-Est, France. 6IMT-Atlantic, UMR CNRS

Lab-STICC, Brest, France. 7Université de Toulouse, INPT, CNRS, IMFT, France. 8ONERA, Toulouse, France.

Mathematical Approaches of Atmospheric Constituents Data Assimilation and Inverse Modeling | BIRS | 19-24 March
2023

Pannekoucke et al. PKF tour of data assimilation Math. Appr. Atm. Cons. DA/IM 2023 1 / 44



Kalman Filter

Under linear assumptions [Kalman, 1960] filter details the dynamics of Gaussian uncertainty along the
analysis and forecast cycles. Analysis update writes

K = Pf HT (HPf HT + R)−1,

X a = X f + K(Yo − HX f ),

Pa = (I− KH)Pf ,

(1)

where Pf = E
[
ef ef T

]
and Pa = E

[
eaeaT

]
, with the forecast evolution{

X f = MX a,

Pf = MPaMT .
(2)

This is a simple algorithm. But update of forecast covariance matrix Pf = MPaMT is numerically costly.

KF needs approximations for practical implementation in large systems!
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Parametric Kalman Filter

What are the PKF equations for the forecast and analysis steps ?
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VLAT covariance matrices

In this talk we consider covariance models parameterized by the variance and the local anistropy tensor
fields – the VLATcov model [Pannekoucke, 2021]. For an error field e(t , x),

the variance is defined as V (t , x) = E
[
e2]

the local anisotropy tensor is given either by the metric tensor, g(t , x), which measures the anisotropy
of the correlation function

ρ(t , x , x + δx) =
E [e(t , x)e(t , x + δx)]√

Vx Vx+δx
=

δx→0
1− 1

2
||δx ||2gx +O(δx2),

or the aspect tensor [Purser et al., 2003], s(t , x), which is the matrix inverse of the metric tensor

sx = g−1
x ,

and extends the correlation length-scale of [Daley, 1991].
Note that (gx)ij = E

[
∂i

(
e√
V

)
∂j

(
e√
V

)]
= E [∂iε∂jε] where ε = e/

√
V is the normalized error

[Berre, 2000, Weaver and Mirouze, 2013].
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Shape of local correlaton functions

ρ(x, x + δx) = 1− 1
2
||δx||2gx +O(||δx||3) ≡ 1− 1

2
||δx||2s−1

x
+O(||δx||3), (3)

the local aspect tensor sx characterized the local anisotropy of the local correlation function at x
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Sequential assim. of obs.: PKFO1/PKFO2 [Pannekoucke et al., 2016, Pannekoucke, 2021]
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Ex. assimilation of a single obs. in a 2D domain

Here, the KF solution coincides with the PKFO2.
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Ex. assimilation of an obs. network in a 2D domain

Analysis-error Variance field
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Ex. assimilation of an obs. network in a 2D domain

Relative variation of isotropic length scale, r =
La

iso−Lf
iso

Lf
iso

, where Liso =
√

Tr(s)/2
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second-order Gaussian filter / PKF for VLATcov models

∂tχ =M(∂χ), (4)

the Reynolds decomposition X (t , x , ω) = E [X ] (t , x) + e(t , x , ω) leads to

PKF forecast step dynamics


∂tE [X ] =M(t , ∂E [X ]) +M′′(t , ∂E [X ])(E [∂e ⊗ ∂e]),
∂tV = 2E [e∂te] ,
∂tg = ∂tE

[
∂i

(
e√
V

)
∂j

(
e√
V

)]
≡ ∂tE [∂iε∂jε] ,

(5)

[Pannekoucke et al., 2016, Pannekoucke et al., 2018, Pannekoucke and Arbogast, 2021], and extends the
seminal work of [Cohn, 1993].

The PKF dynamics can be computed by using a computer algebra system.

SymPKF performs the symbolic computation of the PKF for VLATcov model and can also automatically
generate codes (finite difference) for the theoretical and numerical exploration
[Pannekoucke and Arbogast, 2021].

see https://github.com/opannekoucke/sympkf
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Illustration: SymPKF on the Burgers’ equation
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PKF dynamics for the Burgers’ equation

For u ← E [u],

∂

∂t
u = κ

∂2

∂x2
u − u

∂

∂x
u −

∂
∂x Vu

2

∂

∂t
Vu = −

2κVu

νu,xx
+ κ

∂2

∂x2
Vu−

κ
(

∂
∂x Vu

)2

2Vu
− u

∂

∂x
Vu−2Vu

∂

∂x
u

∂

∂t
su,xx = 2κ su,xx

2 E

(
εu

∂4

∂x4
εu

)
− 3κ

∂2

∂x2
su,xx

−2κ+
6κ
(

∂
∂x su,xx

)2

su,xx
−

2κ su,xx
∂2

∂x2 Vu

Vu
+

κ ∂
∂x Vu

∂
∂x su,xx

Vu
+

2κ su,xx
(

∂
∂x Vu

)2

Vu
2 − u

∂

∂x
su,xx +2 su,xx

∂

∂x
u

is a coupled system, where the term E
(
εu

∂4

∂x4 εu
)

is unclosed, and is due to the diffusion
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Example of Analytical Closure

[Pannekoucke et al., 2018] proposed the local Gaussian closure

E
(
εu

∂4

∂x4 εu

)
∼ 3g2

u − 2∂2
x gu = 2

∂2
x su

s2
u

+ 3
1
s2

u
− 4

(∂x su)
2

s3
u
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The design of analytical closure can be difficult, but can be done using IA: PDE-NetGen
[Pannekoucke and Fablet, 2020]

see https://github.com/opannekoucke/pdenetgen

Pannekoucke et al. PKF tour of data assimilation Math. Appr. Atm. Cons. DA/IM 2023 16 / 44

https://github.com/opannekoucke/pdenetgen


Example of Analytical Closure

[Pannekoucke et al., 2018] proposed the local Gaussian closure

E
(
εu

∂4

∂x4 εu

)
∼ 3g2

u − 2∂2
x gu = 2

∂2
x su

s2
u

+ 3
1
s2

u
− 4

(∂x su)
2

s3
u

0.0 0.2 0.4 0.6 0.8 1.0
x/D

0.0

0.2

0.4

0.6

0.8

1.0

(a
) V

el
oc

ity

Ens. validation
PKF P18-closure

0.0 0.2 0.4 0.6 0.8 1.0
x/D

0

2

4

6

8

10

(b
) V

ar
ia

nc
e

0.0 0.2 0.4 0.6 0.8 1.0
x/D

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

(c
) L

en
gt

h-
sc

al
e

The design of analytical closure can be difficult, but can be done using IA: PDE-NetGen
[Pannekoucke and Fablet, 2020]

see https://github.com/opannekoucke/pdenetgen

Pannekoucke et al. PKF tour of data assimilation Math. Appr. Atm. Cons. DA/IM 2023 16 / 44

https://github.com/opannekoucke/pdenetgen


Hybridation physics-IA: CNN as differential operators

For a function u(x), a finite difference approximation of ∂x u on a regular grid is for instance

∂x u(xk ) ≈
u(xk + δx)− u(xk − δx)

2δx

that can be computed as
∂x u = σ(au + b),

That is a convolutional neural network (CNN)

PDE-NetGen implements a finite difference operator F
such that for any multi-index α,

Fαu(x) ≈ ∂αu(x) +O(|δx |2)

For instance:

F3
x u(x , y) = ∂3

x u(x , y) +O(δx2),

F2
xy u(x , y) = ∂2

xy u(x , y) +O(δx2, δxδy , δy2).
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Use of hybridation physics-IA: PDE-NetGen

[Pannekoucke and Fablet, 2020] proposed to find a closure by the design of an automatic generation of neural
network that translates PDE in NN. E

(
εu

∂4

∂x4 εu
)
∼ a0

∂2
x su

s2
u

+ a1
1
s2

u
+ a2

(∂x su)
2

s3
u

Pannekoucke et al. PKF tour of data assimilation Math. Appr. Atm. Cons. DA/IM 2023 18 / 44



Machine learning estimation of a0,a1 and a2

Compute numerous ensemble forecasting (here 400)
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Machine learning estimation of a0,a1 and a2

a0 = 1.864 , a1 = 3.004, a2 = −3.604 Trained-NN (top) vs. Proposed closure (bottom) (a0 = 2, a1 = 3, a2 = −4)
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Advection & PKF

∂tc + u∂x c = 0. (6)
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Velocity field for the simulation

the PKF dynamics reads as (alternative to Pf = MPaMT for VLATcov.)

∂tc = −u∂x c, (7a)

∂tVc = −u∂x Vc , (7b)

∂tsc,xx = −u∂x sc,xx + 2sc,xx∂x u, (7c)
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Advection & PKF : Dirichlet at x = 0, open channel in Λ

PKF validated by ensemble estimation
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(f) Length-scale fields at time t=1.5Tadv
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Advection & PKF : Dirichlet at x = 0, open channel in Λ

PKF validated by ensemble estimation
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Advection & PKF : Dirichlet at x = 0, open channel in Λ

Ensemble of forecast generated for the ensemble validation of the PKF.
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Advection & PKF: details of the EnKF setting

For a smooth random error (in time) η(t), the error variance is defined as

Vη(t) = E
[
η(t)2

]
,

and the time auto-correlation is characterized from

gtt(t) = E
[
∂t

(
η(t)

Vη(t)

)
∂t

(
η(t)

Vη(t)

)]
. (8)

If the error at x = 0 stands as e(t , x = 0) = η(t), then Vη(t) = V (t , x = 0), and the temporal metric tensor
reads as

gtt,x=0(t) = E [∂tε(t , x = 0)∂tε(t , x = 0)] , (9)

where ε = e/
√

V is the normalized error associated with the spatial error e.
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Advection & PKF: details of the EnKF setting

For the advection where ∂tec = −u∂x ec , then

gc,tt =
x=0

u2gc,xx +
u2 (∂x Vc)

2

4V 2
c

+
u∂tVc∂x Vc

2V 2
c

+
(∂tVc)

2

4V 2
c

,

or
gc,tt =

x=0
u2gc,xx ,

under local homogeneous and stationary assumptions.
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Heterogeneous Diffusion & PKF

∂t f = ∂x(D∂x f ). (8)

here f stands for e.g. the density of a plasma (Fokker-Planck Eq.)
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Diffusion coefficient for the simulation

Diff. coef. similar to those encountered in radiation belt simulations.
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Heterogeneous Diff. Eq. & Dirichlet BC & PKF
PKF validated by ensemble estimation (EnKF: gf ,tt (t, x) ≈ 3D(x)2gf ,xx (t, x))
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Heterogeneous Diff. Eq. & Dirichlet BC & PKF
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Heterogeneous Diff. Eq. & Neumman BC & PKF

PKF validated by ensemble estimation
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Heterogeneous Diff. Eq. & Neumman BC & PKF

PKF validated by ensemble estimation
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Heterogeneous Diff. Eq. & Neumman BC & PKF

Samples for the ensemble validation
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Assimilation cycles applied to transport of a passive scalar

For the linear transport
∂tc + u∇c = 0, (9)

SymPKF gives the PKF dynamics: (with c ← E [c])
∂

∂t
c = −u

∂

∂x
c − v

∂

∂y
c

∂

∂t
Vc = −u

∂

∂x
Vc−v

∂

∂y
Vc

∂

∂t
sc,xx = −u

∂

∂x
sc,xx−v

∂

∂y
sc,xx +2 sc,xx

∂

∂x
u + 2 sc,xy

∂

∂y
u

∂

∂t
sc,xy = −u

∂

∂x
sc,xy −v

∂

∂y
sc,xy +sc,xx

∂

∂x
v +

sc,xy
∂

∂x
u + sc,xy

∂

∂y
v + sc,yy

∂

∂y
u

∂

∂t
sc,yy = −u

∂

∂x
sc,yy −v

∂

∂y
sc,yy +2 sc,xy

∂

∂x
v + 2 sc,yy

∂

∂y
v
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Assimilation cycles applied to transport of a passive scalar

Assimilation cycles starting from an
isotropic forecast-error covariance at t=0.

PKF forecast steps are computed with

∂tc + u∇c = 0,

∂tVc + u∇Vc = 0,

∂tsc + u∇sc = (∇u) sc + sc (∇u)T + η∇2sc .

PKF analysis steps are performed using
Algo 1 (PKF01) & 2 (PKO2).

Validation of the PKF based on EnKF
using 1000 members.

see [Pannekoucke, 2021], see also GOSAT
assim in Sina’s work
[Voshtani et al., 2022a, Voshtani et al., 2022b]

Relative variation of isotropic length scale, r =
La

iso−Lh
Lh
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Assimilation cycles applied to transport of a passive scalar

Assimilation cycles starting from an
isotropic forecast-error covariance at t=0.

PKF forecast steps are computed with

∂tc + u∇c = 0,

∂tVc + u∇Vc = 0,

∂tsc + u∇sc = (∇u) sc + sc (∇u)T + η∇2sc .

PKF analysis steps are performed using
Algo 1 (PKF01) & 2 (PKO2).

Validation of the PKF based on EnKF
using 1000 members.

see [Pannekoucke, 2021], see also GOSAT
assim in Sina’s work
[Voshtani et al., 2022a, Voshtani et al., 2022b]

Analysis-error variance fields

Pannekoucke et al. PKF tour of data assimilation Math. Appr. Atm. Cons. DA/IM 2023 29 / 44



Table of contents

1 Parametric Kalman filter for VLAT covariance dynamics

2 Assimilation step – as seen by the PKF

3 Forecast step – as seen by the PKF

4 Handling uncertainty at a boundary – as seen by the PKF

5 Assimilation cycles – as seen by the PKF

6 Characterization of the model-error covariances – contribution of the PKF

7 Toward multivariate PKF formulation

8 Conclusions and Perspectives

Pannekoucke et al. PKF tour of data assimilation Math. Appr. Atm. Cons. DA/IM 2023 30 / 44



PKF and model-error covariance
But for the EnKF

∂tVc + u∇Vc ̸=0

because discretization leads to solve

∂tc + u∇c = −δx2u
6

∂3
x c − δy2v

6
∂3

y c,

Comp. in 1D at n = 241 PKF vs. EnKF

Comp. in 1D at n = 241 PKF vs. n = 723 EnKF

see [?]
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PKF and model-error covariance

Some correlation functions in 1D exp. for transport (2nd order spatial derivative)

see [?]
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Predictability-error covariance dynamics: the model

When solving the adection equation
∂tc + u∂x c = 0, (10)

where u(t , x) > 0 is an heterogeneous wind field and c(t , x) a passive scalar field. The modified equation
associated with the Euler-upwind scheme

cq+1
i − cq

i

δt
= −ui

cq
i − cq

i−1

δx
, (11)

reads as
∂tC + U∂x C = κ∂2

x C, (12)

where {
U(t , x) = u − δt

2 ∂tu + δt
2 u∂x u,

κ(t , x) = u
2 (δx − uδt) . (13)

which shows that the num. model is suffering from dispersion and dissipation.
Note that similar expressions are obtained for semi-Lagrangian discretization as used in NWP and air quality.
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u(x)→

Figure: Nature versus numerical dynamics

Transport with conservation for the nature
but heterogeneous damping for the num. model == model error.
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Predictability-error covariance dynamics: the model

With the local Gaussian closure (op. cit.) the predictability-error covariance dynamics for

∂tC + U(t , x)∂x C = κ(t , x)∂2
x C, (14)

reads as

∂tC = −U∂x C + κ∂2
x C,

∂tV p = U∂x V p − 2V pκ

sp + κ∂2
x V p − κ (∂x V p)

2

2V p

∂tsp = −U∂x sp + (2∂x U)sp+

κ∂2
x sp + 4κ− 2 (∂x sp)

2

sp κ+ ∂xκ∂x sp − 2∂2
x V p

V p κsp+

∂x V p

V
κ∂x sp − 2∂x V p

V p sp∂xκ+
2 (∂x V p)

2

V p2 κsp,
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Time evolution of the low-dependent part of Pm

Evolution of the flow-dependent part of the model-error covariance [Pannekoucke et al., 2021]
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PKF and model-error covariance

see [Ménard et al., 2021]

the high-order time scheme version of the modified
equation that predict variance time evolution

∂tV p + u∂x V p = U∂x V p − 2V pκ

(Lp)2 + κ∂2
x V p − κ (∂x V p)

2

2V p{
U(t , x) = −∆t

2 ∂tu + ∆t
2 u∂x u,

κ(t , x) = u
2 (∆x − u∆t) . (15)

reads as, when corrected to force transpart of
variance

∂tV p + u∂x V p = I − 2V pκ

(Lp)2 + κ∂2
x V p − κ (∂x V p)

2

2V p

with this time κ = u∆x
2 . See [Ménard et al., 2021] who

proposed a flow dependent inflation for the EnKF I to
ensure the true transport of V p. Connexion with
Shay’s presentation of monday.
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Simple multivariate chemical transport model: LV-1D

Lotka-Voltera interaction for species A and B

X + A
k1→ 2A,

A + B
k2→ 2B

B
k3→ Y .

leads to the dynamics in 1D domain{
∂tA + u∂x A = −A∂x u + k1A− k2AB
∂tB + u∂x B = −B∂x u + k2AB − k3B

This offers a minimal framework to explore multivariate assimilation in chemical transport model (CTM)

✘□ Multivariate (2 species)
✘□ Non-linear dynamics (as often the case CTM)
✘□ Continuous fields so to take advantage of the PKF
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Multivariate PKF dynamics for LV in 1D domain

∂tA + u∂x A = −A∂x u + k1A− k2AB − k2VAB (16a)

∂tB + u∂x B = −B∂x u − k3B + k2AB + k2VAB (16b)

∂tVAB + u∂x VAB = −2VAB∂x u + VAB(k1 − k2B − k3 + k2A) + k2VAB − k2VBA (16c)

∂tVA + u∂x VA = −2VA∂x u + 2[VA(k1 − k2B)− k2AVAB] (16d)

∂tVB + u∂x VB = −2VB∂x u + 2[VB(−k3 + k2A) + k2BVAB] (16e)

∂tsA + u∂x sA︸ ︷︷ ︸
TA,adv−1

= 2sA∂x u︸ ︷︷ ︸
TA,adv−2

− 2k2AVABsA

VA︸ ︷︷ ︸
TA,chem−1

+
2k2AσBs2

A∂x ε̃A∂x ε̃B

σA︸ ︷︷ ︸
TA,chem−2

.. (16f)

∂tsB + u∂x sB︸ ︷︷ ︸
TB,adv−1

= ... (16g)

with cross-correlation approx.

rAB(x, y) =
1
2

(
VAB(x)

σA(x)σB(x)
+

VAB(y)
σA(y)σB(y)

)
exp

(
−||x− y||2

[ 1
4 (sA(x)+sB(x)+sA(y)+sB(y))]−1

)
, (17)

Pannekoucke et al. PKF tour of data assimilation Math. Appr. Atm. Cons. DA/IM 2023 40 / 44



Multivariate PKF dynamics for LV in 1D domain

[?]
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Multivariate PKF dynamics for GRS (6 chem. species) in 1D domain

[?]
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Conclusion & Perspectives

In the PKF error-covariance matrices are approximated by some covariance model
The Assimilation cycle described for univariate assimilation
The PKF is a pratical tool that approximates the KF (or its non-linear second-order extension)
The dynamics of the parameters approximates the real error-covariance matrix.
Symbolic tools have been designed to facilitate the computation of the PKF dynamics (SymPKF)
PKF often needs a closures
IA tools have been designed to replaced unkown terms by NN parameterizations or to discover
analytical closures (PDE-NetGen)
The PKF dynamics gives access to the physics of uncertainty, and appears as a theoretical tool
Which has been explored for understanding the model-error covariance due to the discretization of
PDEs
Multivariate PKF assimilation – some preliminary results for air quality !

Perspectives
Accounting for 2D/3D bounded domains (– interesting results for EnKF ?)
Accounting for the meteorology / parameter uncertainty in the PKF dynamics
Multivariate extension application to geophysical dynamics (SW eq.)
Application in targeting and sensivity analysis
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