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Abstract

This contribution focuses on extending the current state of the art in a central resource allocation

planning model known under the name of the short-run Johansen industry model in three ways.

First, we correct a long-standing issue of the correct choice of weight variables on the capacity

distribution by guaranteeing that these weights determine production combinations that belong

to the production technology on which the plant capacity estimates are based in the first place.

Second, we exploit the gap between average practice and best practice models by introducing an

efficiency improvement imperative that allows for partial technical inefficiency when planning.

Third, instead of only considering output-oriented plant capacity, we allow for alternative plant

capacity concepts. In particular, we introduce an input-oriented plant capacity concept, and an

alternative attainable output-oriented plant capacity concept that corrects a major empirical

issue in the traditional output-oriented plant capacity notion. These methodological refinements

are illustrated with a data set on U.S. fishing vessels by developing a planning model to curb

overfishing.

JEL codes: D24, L52, O21

Keywords: Data Envelopment Analysis; Free Disposal Hull; Technology; Plant Capacity; Plan-

ning.

*We thank two most constructive referees for their helpful comments. The usual disclaimer applies.
�Corresponding author: Univ. Lille, CNRS, IESEG School of Management, UMR 9221 - LEM - Lille Économie
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1 Introduction

The short-run Johansen (1972) industry or sectoral model is a planning tool which allows analysis

of industry structure on a disaggregated basis from underlying ex post firm-level inputs and a

single output. This model starts from a putty-clay model of production and investment decisions:

ex-ante firms are free to choose among several production activities exhibiting smooth substitution

possibilities, but ex post these firms face fixed coefficient technologies with capacities that are

entirely conditioned by past investment decisions. The short-run Johansen industry model (SRJIM)

nevertheless exhibits substitution possibilities when inputs and outputs can be reallocated across

the units composing the industry. Over time, substitution and technical change can be traced via

shifts in successive SRJIM. Surveys of this SRJIM are found in Førsund and Vislie (2016). Critical

remarks on the whole SRJIM framework are available in Shephard (1974).

The short-run industry or ex post macro (Johansen’s terminology) model is derived from the

short-run ex post firm functions. It is a simple linear programming model with an objective func-

tion maximising the sum of firm outputs subject to capacity constraints related to the aggregate

levels of inputs. The weight vectors are subject to an upper bound. Empirical applications of this

SRJIM include the following examples in chronological order: Førsund, Gaunitz, Hjalmarsson, and

Wibe (1980) analyse the Swedish pulp industry, Hildenbrand (1981) studies the Norwegian tanker

fleet and the US electric power-generating industry; Førsund and Hjalmarsson (1983) analyse the

Swedish cement industry; Førsund and Jansen (1983) reflect upon the Norwegian aluminum in-

dustry; Førsund, Hjalmarsson, and Eitrheim (1985) provide an international comparison of the

cement industry in the Nordic countries comparing Denmark, Finland, Norway, and Sweden; the

last four empirical chapters in Førsund and Hjalmarsson (1987) focus on a variety of sectors; Wibe

(1995) studies the Swedish paper industry; Førsund, Hjalmarsson, and Summa (1996) scrutinise

the Finnish brewery industry; and Førsund, Hjalmarsson, and Zheng (2011) develop an analysis

for Chinese coal-fired electricity generation plants, among others.

Sengupta (1989) and Färe, Grosskopf, and Li (1992) are the first to establish a link between

the SRJIM and frontier-based production theory that focuses on best practice instead of average

practice (see also Dosi, Grazzi, Marengo, and Settepanella (2016) for some further links). Average

practice analysis focuses on average behaviour, while best practice analysis concentrates on the best

performing units on the boundary of the production possibility set. Dervaux, Kerstens, and Leleu

(2000) innovate by developing an entirely non-parametric frontier-based approach to the SRJIM.

This work improves two features. First, it transforms the single output case into a multiple outputs

frontier framework.1 Second, it substitutes the somewhat ad hoc specification of a capacity distri-

bution in the traditional SRJIM by a non-parametric output-oriented (O-oriented) plant capacity

1However, in the traditional non-frontier literature Dosi, Grazzi, Marengo, and Settepanella (2016, Appendix
B) also develop a multiple output-case. To the best of our knowledge, this multi-outputs approach has never been
empirically implemented. Also Sengupta (1989, p. 49-50) outlines some possibilities to develop a multiple outputs
approach: also these options have never been implemented empirically.
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concept introduced in the literature by Färe, Grosskopf, and Kokkelenberg (1989) in the single out-

put case and by Färe, Grosskopf, and Valdmanis (1989) in the multiple output case using a pair of

O-oriented efficiency measures inspired by Johansen (1968).2 Relaxing the single-output restriction

substantially enlarges the scope of empirical applications beyond the historically almost exclusive

focus on industry studies. Furthermore, the frontier nature allows for a benchmarking perspective

when adopting it for social planning purposes.

Empirical applications of this generalised frontier-based SRJIM include the following examples:

Dervaux, Kerstens, and Leleu (2000) analyse French surgery units in 1605 hospitals, Kerstens,

Moulaye Hachem, Van de Woestyne, and Vestergaard (2010) provide an analysis of a German bank

branch network and how it can be restructured, Färe, Grosskopf, Kerstens, Kirkley, and Squires

(2001) provide a first study on how to reduce overfishing in the northwest USA Atlantic sea scallop

fishery, Kerstens, Squires, and Vestergaard (2005) and Kerstens, Vestergaard, and Squires (2006)

develop a plan to curb overfishing in the Danish fishery fleet under a variety of scenarios with quota

and fishing days, while Lindebo (2005), Tingley and Pascoe (2005) and Yagi and Managi (2011)

develop a similar plan for the North Sea, Scottish and Japanese fishing fleets, among others.

Note that the frontier-based SRJIM is but one example of a stream of literature on central

resource allocation models in the frontier framework. Central resource reallocation models cover a

heterogeneous variety of models reallocating some inputs and/or outputs across space and/or time

while eventually accounting for multiple objectives (e.g., efficiency, effectiveness, equality). To the

best of our knowledge Färe, Grosskopf, and Li (1992) and Golany, Phillips, and Rousseau (1993)

are among the first frontier-based central resource reallocation models. Other examples of these

models can be found in the work by Athanassopoulos (1998), Golany and Tamir (1995), Korhonen

and Syrjänen (2004), Lozano and Villa (2004), and Ylvinger (2000), among others.3

The purpose of this contribution is threefold. First, we want to remedy one remaining problem

in the SRJIM: while the O-oriented plant capacity concepts is estimated at the extremes of the

empirical data range in the technology, there is currently no guarantee that the scaling of these

plant capacity inputs and outputs remains technically feasible by remaining within the frontier

technology. By contrast, all frontier-based central resource allocation models in the literature meet

this requirement. This problem is illustrated using a numerical example and a general remedy

is proposed. Second, we bridge the gap between traditional average practice and more recent best

practice (frontier) models by introducing an efficiency improvement imperative that allows for some

form of technical inefficiency in the planning process. Third, following Dervaux, Kerstens, and Leleu

(2000) we make sure that the capacity distributions are based on nonparametric specifications that

2Johansen (1972) introduces the capacity distribution as a mechanism to derive optimal factor proportions in
a dynamic setting. He and followers like Muysken (1985) and Seierstad (1985) explicitly introduce the capacity
distribution notion as a continuous or discrete or mixed statistical distribution of the input coefficients when plants
are used at full capacity.

3A selective survey of these frontier-based central resource allocation models is found in Mar-Molinero, Prior,
Segovia, and Portillo (2014), while more complete and up to date reviews are published in White and Bordoloi (2015)
and Afsharian, Ahn, and Harms (2021).
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are compatible with the nonparametric nature of the SRJIM. Furthermore, we seek to widen

the methodological choices open to the users of the SRJIM by introducing two new plant capacity

concepts that are less problematic than the O-oriented plant capacity concept proposed in Dervaux,

Kerstens, and Leleu (2000).

On the one hand, we follow Cesaroni, Kerstens, and Van de Woestyne (2017) who define a new

input-oriented (I-Oriented) plant capacity measure using a pair of I-oriented efficiency measures.

On the other hand, we follow up on Kerstens, Sadeghi, and Van de Woestyne (2019b) who argue

that the traditional O-oriented PCU may be unrealistic in that the amounts of variable inputs

needed to reach the maximum capacity outputs may simply be unavailable at either the firm or the

industry level. This problem is linked to what Johansen (1968) called the attainability issue and

therefore Kerstens, Sadeghi, and Van de Woestyne (2019b) define a new attainable O-oriented (AO-

oriented) PCU. Throughout this contribution, we contrast the traditional average practice-based

SRJIM with the more recent frontier-based SRJIM to highlight both similarities and differences.

This contribution is structured as follows. Section 2 defines the basic technology and efficiency

measures needed to define frontier-based plant capacity concepts. Furthermore, it defines the tradi-

tional O-oriented PCU as well as the alternative I-oriented PCU and the AO-oriented plant capacity

measure. The next Section 3 defines the deterministic nonparametric technologies that are used to

compute these plant capacity concepts and that implicitly define the SRJIM. The basic frontier-

based SRJIM is discussed in Section 4. This same section illustrates the problem that the scaling of

the plant capacity inputs and outputs need not remain technically feasible by remaining within the

technology. Thereafter, Section 5 develops three new SRJIM. First, we develop a revised version

of the SRJIM based on the O-oriented plant capacity that does respect the technology. Second,

we introduce two new plant capacity concepts in the SRJIM: either the AO-oriented PCU, or the

I-oriented plant capacity measure. The differences between old and new SRJIM are empirically

illustrated in Section 6 using convex and nonconvex technologies. A final Section 7 concludes.

2 Technology and Plant Capacity Notions: Basic Definitions

2.1 Technology and Efficiency Measures

This section introduces basic notation and defines the firm technology. Given an N -dimensional

input vector x ∈ RN
+ and an M -dimensional output vector y ∈ RM

+ , the production possibility

set or technology T is defined as: T = {(x, y)|x can produce y}. Associated with T , the input set

denotes all input vectors x capable of producing a given output vector y: L(y) = {x|(x, y) ∈ T}.
Analogously, the output set associated with T denotes all output vectors y that can be produced

from a given input vector x: P (x) = {y|(x, y) ∈ T}.

Throughout this contribution, technology T satisfies a combination of the following assumptions:
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(T.1) Possibility of inaction and no free lunch, i.e., (0, 0) ∈ T and if (0, y) ∈ T , then y = 0.

(T.2) T is a closed subset of RN
+ × RM

+ , i.e., ∂T ⊂ T where the symbol ∂T denotes the boundary

of T .

(T.3) Strong input and output disposal, i.e., if (x, y) ∈ T and (x′, y′) ∈ RN
+ × RM

+ , then (x′,−y′) ≥
(x,−y) ⇒ (x′, y′) ∈ T .

(T.4) T is convex.

Briefly discussing these technology axioms, it is useful to recall the following (see, e.g., Hackman

(2008) for details). Inaction is feasible, and there is no free lunch. Technology is closed. This

closedness of T guarantees the existence of efficient output and input vectors: see Theorem 2.1 in

Kerstens and Sadeghi (2023) for more details. We assume free disposal of inputs and outputs in

that inputs can be wasted and outputs discarded. Finally, technology is convex. In our empirical

analysis not all axioms are simultaneously maintained.4 In particular, an assumption distinguishing

some of the technologies in the empirical analysis is convexity versus nonconvexity.

The radial input efficiency measure characterizes the input set L(y) completely and is defined

as:

DFi(x, y) = min{λ | λ ≥ 0, λx ∈ L(y)}. (1)

This radial efficiency measure is smaller or equal to unity (DFi(x, y) ≤ 1), with efficient production

on the boundary (isoquant) of L(y) represented by unity, and has a cost interpretation (see, e.g.,

Hackman (2008)).5

The radial output efficiency measure offers a complete characterization of the output set P (x)

and is defined as:

DFo(x, y) = max{θ | θ ≥ 0, θy ∈ P (x)}. (2)

This efficiency measure is larger than or equal to unity (DFo(x, y) ≥ 1), with efficient produc-

tion on the boundary (isoquant) of the output set P (x) represented by unity, and has a revenue

interpretation (e.g., Hackman (2008)).

In the short run, we can partition the input vector into a fixed and variable part. In particular,

we denote (x = (xf , xv)) with xf ∈ RNf

+ and xv ∈ RNv
+ such thatN = Nf+Nv. Similarly, a short-run

technology T f = {(xf , y) ∈ RNf

+ × RM
+ | there exists xv such that (xf , xv) can produce at least y}

and the corresponding input set Lf (y) = {xf ∈ RNf

+ | (xf , y) ∈ T f} and output set P f (xf ) = {y |
4For instance, note that the convex flexible or variable returns to scale technology does not satisfy inaction.
5The input-oriented distance function, denoted as Di(x,y) : RN

+ × RM
+ → R+ ∪ {∞}, is defined as follows:

Di(x,y) = sup
φ

{
φ > 0 | x

φ
∈ L(y)

}
.

We can express DFi(x, y) = 1
Di(xk,yk)

(see Färe and Lovell (1978) for a first statement). Since there is a one-to-
one relationship between distance functions and efficiency measures, our focus in this contribution is on efficiency
measures.
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(xf , y) ∈ T f} can be defined. Note that technology T f is obtained by a projection of technology

T ⊂ RN
+ ×RM

+ into the subspace RNf

+ ×RM
+ (i.e., by setting all variable inputs equal to zero).6 By

analogy, the same applies to the input set Lf (y) and the output set P f (xf ).

Denoting the radial output efficiency measure of the output set P f (xf ) by DF f
o (xf , y), this

efficiency measure can be defined as follows:

DF f
o (x

f , y) = max{θ | θ ≥ 0, θy ∈ P f (xf )}. (3)

The sub-vector input efficiency measure reducing only the variable inputs is defined as follows:

DFSR
vi (xf , xv, y) = min{λ | λ ≥ 0, (xf , λxv) ∈ L(y)}. (4)

The sub-vector input efficiency measure reducing only the fixed inputs is defined as follows:

DFSR
fi (xf , xv, y) = min{λ | λ ≥ 0, (λxf , xv) ∈ L(y)}. (5)

Next, we need the following particular definition of a technology: L(0) = {x | (x, 0) ∈ T} is the

input set with zero output level.7 The sub-vector input efficiency measure reducing variable inputs

evaluated relative to this input set with a zero output level is as follows:

DFSR
vi (xf , xv, 0) = min{λ | λ ≥ 0, (xf , λxv) ∈ L(0)}. (6)

2.2 Plant Capacity Notions

It is common to distinguish between technical or engineering capacity, and economic capacity.

Johansen (1968) develops a technical approach through an informally defined plant capacity no-

tion. This informal definition of plant capacity by Johansen (1968, p. 362) reads:“the maximum

amount that can be produced per unit of time with existing plant and equipment, provided that

the availability of variable factors of production is not restricted.” This plant capacity notion is

made operational by Färe, Grosskopf, and Kokkelenberg (1989) and Färe, Grosskopf, and Valdma-

nis (1989) using a pair of O-oriented efficiency measures. Now recall the definition of O-oriented

PCU.

Definition 2.1. The O-oriented PCUo is defined as follows:

PCUo(x, x
f , y) =

DFo(x, y)

DF f
o (xf , y)

,

6See Cesaroni, Kerstens, and Van de Woestyne (2019, p. 388 and following) for more details about this projection.
7As already pointed out in Cesaroni, Kerstens, and Van de Woestyne (2019, p. 388), L(0) can also be defined as

L(ymin) = {x | (x, ymin) ∈ T}, whereby ymin = min
k=1,...,K

yk takes the minimum in a component-wise manner for every

output y over all observations K.
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where DFo(x, y) and DF f
o (xf , y) are output efficiency measures including (excluding) the variable

inputs as defined before in (2) and (3).

O-oriented PCU has an upper limit of unity, since 1 ≤ DFo(x, y) ≤ DF f
o (xf , y), 0 < PCUo(x, x

f , y) ≤
1. Färe, Grosskopf, and Kokkelenberg (1989) distinguishes between a biased (DF f

o (xf , y)) and un-

biased (PCUo(x, x
f , y)) plant capacity measure depending on whether the measure ignores (adjusts

for) inefficiency. By taking the ratio of efficiency measures, existing inefficiency is eliminated yielding

a cleaned concept of O-oriented PCU.8

Recently, Kerstens, Sadeghi, and Van deWoestyne (2019b) argue that the O-oriented PCUo(x, x
f , y)

is unrealistic because the variable inputs needed to reach capacity output may be unavailable. This

is linked to what Johansen (1968) called the attainability issue. Hence, Kerstens, Sadeghi, and

Van de Woestyne (2019b) define a new AO-oriented PCU level.

Definition 2.2. An AO-oriented PCU APCUo at a certain level λ̄ ∈ R+ is defined by

APCUo(x, x
f , y, λ̄) =

DFo(x, y)

ADF f
o (xf , y, λ̄)

,

where the AO-oriented efficiency measure ADF f
o at level λ̄ ∈ R+ is defined by

ADF f
o (x

f , y, λ̄) = max{φ | φ ≥ 0, 0 ≤ λ ≤ λ̄, φy ∈ P (xf , λxv)} (7)

Again, for λ̄ ≥ 1, since 1 ≤ DFo(x, y) ≤ ADF f
o (xf , y, λ̄), notice that 0 < APCUo(x, x

f , y, λ̄) ≤ 1.

Also, for λ̄ < 1, since 1 ≤ ADF f
o (xf , y, λ̄) ≤ DFo(x, y), notice that 1 ≤ APCUo(x, x

f , y, λ̄).

One can again distinguish between a so-called biased plant capacity measure (ADF f
o (xf , y, λ̄)),

and an unbiased attainable PCU measure (APCUo(x, x
f , y, λ̄)), whereby the latter is cleaned from

any inefficiency. Kerstens, Sadeghi, and Van de Woestyne (2019b) pragmatically experiment with

values of λ̄ ∈ {0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5, 5}9, and note that if expert opinion cannot determine

a plausible value, then it may be better to opt for an I-oriented plant capacity measure that does

not suffer from the attainability issue.

Cesaroni, Kerstens, and Van de Woestyne (2017) define an I-oriented plant capacity measure

using a pair of I-oriented efficiency measures.

Definition 2.3. The I-oriented PCUi is defined as follows:

PCUi(x, x
f , y) =

DFSR
vi (xf , xv, y)

DFSR
vi (xf , xv, 0)

,

where DFSR
vi (xf , xv, y) and DFSR

vi (xf , xv, 0) are the sub-vector input efficiency measures defined in

8Computational issues are discussed in Section 4.
9Notice that λ̄ < 1 is added for completeness sake. Normally there is no need to reduce variable inputs below their

currently available levels.
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(4) and (6), respectively.

Since 0 < DFSR
vi (xf , xv, 0) ≤ DFSR

vi (xf , xv, y), notice that PCUi(x, x
f , y) ≥ 1.10 Thus, I-

oriented PCU has a lower limit of unity. Similar to the previous cases, one can distinguish between

a so-called biased plant capacity measure (DFSR
vi (xf , xv, 0)) and an unbiased PCUi(x, x

f , y), the

latter being cleaned of any inefficiency. Graphical illustrations of plant capacity Definitions 2.1, 2.2

and 2.3 are in Appendix A. Cesaroni, Kerstens, and Van de Woestyne (2019) also define an input-

based and output-based long-run plant capacity concept whereby both fixed and variable inputs

can adjust. Furthermore, Kerstens, Sadeghi, and Van de Woestyne (2019a) empirically illustrate

that both engineering and economic capacity concepts differ systematically when estimated using

convex and nonconvex technologies.

As stated earlier, the average practice single output SRJIM suffer in practice from a rather

ad hoc specification of capacity distributions (as recently admitted in Dosi, Grazzi, Marengo, and

Settepanella (2016, fn 13)). It should be stressed that some substantial efforts are available in

the literature to derive a more satisfactory solution for this state of affairs: Muysken (1985) de-

velops continuous capacity distribution, while Seierstad (1985) develops any form of the capacity

distribution (discrete, continuous, or a mixture). However, it is clear that the above frontier-based

technical or engineering plant capacity concepts are quite appealing since these can easily be com-

puted relative to deterministic nonparametric technologies (see below). For detailed formulations

of the mathematical programs to compute these three PCU concepts, see Kerstens, Sadeghi, and

Van de Woestyne (2020, Appendix B.1).

Kerstens and Sadeghi (2023) have theoretically investigated the existence question regarding

the above plant capacity notions at the firm level and at the industry level. For the O-oriented, the

AO-oriented, and the I-oriented plant capacity measures the question as to the existence at the firm

level poses no problem: all these concepts are well defined for variable returns to scale technologies.

However, at the industry level the picture changes: the O-oriented and the AO-oriented plant

capacities may not exist, while the I-oriented plant capacity notion is the only one that always

exists.

These theoretical results have drastic consequences for the use of the SRJIM as a planning

model. The frontier-based SRJIM based on O-oriented plant capacities, as defined in Dervaux,

Kerstens, and Leleu (2000), loses much of its appeal. The alternative SRJIM developed here based

on the AO-oriented plant capacity can mitigate this problem under certain conditions. Clearly, the

alternative SRJIM developed here based on the I-oriented plant capacity notion is the only solution

free of any reservations.

10Kerstens, Sadeghi, and Van de Woestyne (2019a, Proposition B.1) prove that DFSR
vi (xf , xv, 0) =

DFSR
vi (xf , xv, ymin), where ymin is as defined supra.
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3 Deterministic Nonparametric Technologies: Definitions

Having introduced all efficiency measures needed to define various plant capacity concepts, we now

turn to the algebraic definition of the technologies relative to which plant capacities are estimated.

In the literature cited above, the fact that the SRJIM is not explicitly considered as a technology

has led to the problem that the scaling of capacities need not respect the technology. Therefore,

in this contribution we explicitly develop the deterministic nonparametric technologies relative to

which plant capacities are computed and that implicitly define the SRJIM.

Given data on K observations (k = 1, · · · ,K) consisting of a vector of inputs and outputs

(xk, yk) ∈ RN
+ × RM

+ , a unified algebraic representation of convex and nonconvex nonparametric

frontier technologies under the flexible or variable returns to scale assumption is as follows:

TΛ =

{
(x, y) | x ≥

K∑
k=1

zkxk, y ≤
K∑
k=1

zkyk, (z1, . . . , zK) ∈ Λ

}
, (8)

where

(i) Λ ≡ ΛC =

{
(z1, . . . , zK) |

K∑
k=1

zk = 1 and zk ≥ 0

}
;

(ii) Λ ≡ ΛNC =

{
(z1, . . . , zK) |

K∑
k=1

zk = 1 and zk ∈ {0, 1}

}
.

The activity vector (z1, . . . , zK) of real numbers summing to unity represents the convexity axiom.

This same constraint with each vector element being a binary integer represents nonconvexity. The

convex technology satisfies axioms (T.1) (except inaction) to (T.4), while the nonconvex technology

adheres to axioms (T.1) to (T.3). It is now useful to condition the above efficiency measures relative

to these nonparametric frontier technologies by distinguishing between convexity (convention C)

and nonconvexity (convention NC). This firm technology allows us to compute a series of frontier-

based concepts of plant capacity to which we now turn.

4 Short-run Johansen Industry Model: Basic Version

Following Dervaux, Kerstens, and Leleu (2000), this model permits reallocation of production

among units by explicitly allowing technical efficiency and capacity utilisation improvements using

two phases. Phase one computes capacity outputs and corresponding inputs. In phase two, the

SRJIM is constructed with parameters from phase one. As explained below, this SRJIM does not

inherit the technology properties used to compute plant capacity.

In phase one, the short-run O-oriented radial technical efficiency measure DF f
o (x

f
p , yp) (i.e., the

denominator in Definition 2.1) of firm p, (p = 1, . . . ,K), with fixed inputs xfp ∈ RNf

+ and outputs

8



yp ∈ RM
+ requires the following program:

DF f
o (x

f
p , yp) = max

φ,z,xv
φ

s.t
K∑
k=1

zkyk ≥ φyp,

K∑
k=1

zkx
f
k ≤ xfp ,

K∑
k=1

zkx
v
k ≤ xv,

z = (z1, . . . , zK) ∈ Λ,

φ ≥ 0, xv ≥ 0,

(9)

where Λ determines the convex or nonconvex assumption of the technology defined in (8). Assume

that φ∗ is the optimal value of short-run O-oriented model (9). To find a solution that maximizes

slacks and surpluses, the following model is solved for all p firms:

max
S+,S−,z,xv

1M .S+ + 1Nf
.S−

s.t
K∑
k=1

zkyk − S+ = φ∗yp,

K∑
k=1

zkx
f
k + S− = xfp ,

K∑
k=1

zkx
v
k ≤ xv,

z = (z1, . . . , zK) ∈ Λ,

xv ≥ 0, S+ ≥ 0, S− ≥ 0,

(10)

with 1M = (1, . . . , 1) ∈ RM and 1Nf
= (1, . . . , 1) ∈ RNf . From model (10), an optimal activity

vector zp∗ = (zp∗1 , . . . , zp∗K ) is provided for firm p under evaluation. Capacity outputs and the

optimal fixed and variable input levels can be computed:

ŷ∗p =

K∑
k=1

zp∗k yk; xf∗p =

K∑
k=1

zp∗k xfk ; xv∗p =

K∑
k=1

zp∗k xvk. (11)

Depending on the sector, it might be wise to adjust capacity outputs to account for technical

inefficiencies. Realistic planning procedures in a second-best setting may allow for some form of

inefficiency in production along part of the planning horizon (see Peters (1985)). This basic intu-

ition may be modeled by modifying the capacity output in the second stage of the SRJIM based

on observed technical inefficiency, which may eventually be remedied by an O-oriented efficiency

improvement imperative (αout
p ). Technically efficient firms (DFo(xp, yp) = 1) require no such adjust-

ment. When technical inefficiency is (partially) tolerated, and assuming the O-oriented efficiency

improvement imperative or correction factor is less than or equal to unity ( 1
DFo(xp,yp)

≤ αout
p ≤ 1),

9



the modification of capacity output in (11) can be considered as follows:

y∗p = αout
p

K∑
k=1

zp∗k yk. (12)

When inefficiencies are partially or completely accepted, capacity outputs decrease and the industry

needs additional firms. When no adjustment for inefficiency is made in the planning process, then the

O-oriented efficiency improvement imperative or correction factor is simply fixed at unity (αout
p = 1).

Firms are required to shift away from their maximum capacity when the efficiency improvement

imperative (αout
p ) moves away from unity.

In a second phase, these ‘optimal’ frontier results at the firm level are parameters in the SRJIM.

The SRJIM minimises the use of fixed inputs in a radial way (using DFSR
fi (xf , xv, y) from (5)) such

that the total production of outputs is at least at the current total level by reallocating production

between firms. Reallocation is allowed based on the frontier production outputs and input usage

of each firm. In the short run, current plant capacities cannot be exceeded. The formulation of the

multi-output and frontier-based SRJIM (hereafter referred to as the basic version (bv)) is specified

as:
min

θbv ,wbv
k ,Xv

θbv,

s.t.
K∑
k=1

wbv
k y∗k ≥ Y,

K∑
k=1

wbv
k xf∗k ≤ θbvXf ,

K∑
k=1

wbv
k xv∗k ≤ Xv,

0 ≤ wbv
k ≤ 1, k = 1, ...,K,

θbv ≥ 0, Xv ≥ 0,

(13)

where

Y =

(
K∑
k=1

yk1, . . . ,
K∑
k=1

ykM

)
and Xf =

(
K∑
k=1

xfk1, . . . ,
K∑
k=1

xfkNf

)
. (14)

After solving model (13), the vector (wbv∗
p xf∗p , wbv∗

p xv∗p , wbv∗
p y∗p) can be a target for firm p where

wbv∗
p is an optimal solution of model (13) and xf∗p , xv∗p and y∗p are obtained from the relations (11).

Note that the variable inputs Xv in model (13) are a vector of decision variables.

The frontier-based SRJIM (13) focuses on reducing fixed inputs by a scalar θbv. This is shown in

the empirical application in Dervaux, Kerstens, and Leleu (2000) which sought to minimize surgery

units. The same motivation applies to empirical applications curbing overfishing in fisheries where

output quotas are imposed to guarantee biological sustainability. While fixed inputs can normally

not be reduced by definition, one can mothball either temporarily or definitively particular vessels.

It is trivial to define an alternative SRJIM that maximises all industry outputs similar to (2): see,

e.g., Färe and Grosskopf (2003, p. 109-115) for an output-oriented approach based on directional

10



distance functions.11

Geometrically, this SRJIM (13) is a set consisting of a finite sum of line segments, or zono-

topes (see Hildenbrand (1981, p. 1096)).12 More precisely, assuming divisibility and additivity of

production processes, the industry technology is geometrically represented by the space formed by

the finite sum of all the line segments linking the origin and the points representing each produc-

tion unit (see Dosi, Grazzi, Marengo, and Settepanella (2016, p. 877)). Furthermore, Dosi, Grazzi,

Marengo, and Settepanella (2016, footnote 3) remark that convexity comes as a result of the chosen

analytical framework: it is not an assumption of some underlying theory of production.

The activity vector w = (w1, . . . , wK) indicates which portions of the line segments representing

the firm capacities are effectively used to produce outputs from given inputs. The bounds on the

activity vector w (0 ≤ wk ≤ 1) reflect the assumption of constant returns to scale up to full

capacity for individual production units (see Hildenbrand (1981, p. 1096)). The optimal solution

to this simple LP gives the combination of firms that can produce the same or more outputs with

less or the same use of fixed inputs at the aggregate level. In the following Proposition, we prove

that model (13) has finite optimum value.

Proposition 4.1. Model (13) is always feasible and has finite optimal value.

The proofs of Proposition 4.1 and the other propositions are given in Appendix C.

In brief, average and best practice SRJIM share a similar formal structure of the SRJIM. The

main difference is that only the best practice version is consistent with the idea of an industry

frontier, while the average practice version does not ensure estimation of an industry frontier given

uncertainties surrounding the underlying ad hoc capacity estimates.

In the putty-clay framework with limited substitution ex post, Johansen (1972) assumes embod-

ied technical change in the successive vintages of capital. This typically leads to co-existing units of

different vintages with different unit costs. One may wonder whether co-existing vintages prevents

one from speaking about technical inefficiencies, implying that the frontier version of the SRJIM

is questionable. For instance, Belu (2015) illustrates in a putty-clay vintage model where recent

vintages are modeled as more efficient than older ones that basic production frontier models may

not detect the imputed distribution of inefficiencies. However, we conjecture that the metafrontier

framework initiated by O’Donnell, Rao, and Battese (2008) and corrected by Kerstens, O’Donnell,

and Van de Woestyne (2019) can provide a way out: for a discrete number of vintages each group

technology represents a single vintage and the metaproduction technology is the union of all group

technologies. This framework affects both the plant capacity estimates and the SRJIM solution.

Since vintages play no role in our empirical application, we leave out the details of such a metafron-

tier vintage framework for future work.

11Färe and Grosskopf (2003) define a model similar to (13), except that they ignore the first phase and base
capacities on observed inputs and outputs.

12One may also benefit from consulting the work of Koopmans (1977), Hildenbrand (1983) or Settepanella, Dosi,
Grazzi, Marengo, and Ponchio (2015).
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Furthermore, to impose minimal assumptions on the frontier technology when estimating plant

capacity utilisation measures, as well as on the short-run industry model, we dispense with the

traditionally maintained convexity axiom. Following Afriat (1972) and Deprins, Simar, and Tulkens

(1984) we employ a strongly disposable variable returns to scale nonconvex production technology

in addition to the more traditional convex production technology. Nonconvex models are known to

provide a tighter fit with the data.

Some may object that social planning based on an SRJIM is too demanding: perhaps, one

should allow for some amount of technical inefficiency persisting among firms. But, as shown in

Kerstens, Vestergaard, and Squires (2006) and as developed infra, it is straightforward to adjust the

frontier-based short-run Johansen (1972) industry model to allow for some technical inefficiency.

Additionally, there are some subtle differences between average practice and best practice mod-

els. Average practice models ignore fixed inputs, while best practice models do not. As a matter of

fact, in average practice models the fixed inputs indirectly determine the capacities. Furthermore,

some of the average practice authors assume cost minimization (e.g., Hildenbrand (1983, p. 175)).

Indeed, average practice models need input prices to determine the cost per output, while many

best practice models depend solely on physical inputs and outputs. It is relatively easy to demon-

strate that the feasible set of the multi-output SRJIM (13) under certain conditions is comparable

to the multi-output average practice zonotope set in Dosi, Grazzi, Marengo, and Settepanella (2016,

Appendix B).

Finally, we mention a series of methodological refinements of the SRJIM. First, it has been

rather common to trace how the short-run average practice Johansen (1972) industry production

function has evolved over time (Førsund and Hjalmarsson (1983), Førsund and Jansen (1983),

Førsund and Hjalmarsson (1987), Wibe (1995)). Second, Dosi, Grazzi, Marengo, and Settepanella

(2016) define a normalized volume of the zonotope as a measure of industry heterogeneity. These

authors also propose a measure of productivity change based on the zonotope’s main diagonal, and

assess the role of firm entry and exit on industry level productivity growth (see Settepanella, Dosi,

Grazzi, Marengo, and Ponchio (2015) for technical details). Both these developments so far do not

seem to have been implemented in a frontier context.

To provide some intuition, we graphically show using 13 fictitious observations (Appendix B)

with two inputs (one variable, one fixed) and a single output, that by solving model (13) the

optimal weight vector wbv∗ does not guarantee the projected point is part of the technology. Figure

1a presents a two dimensional representation of this three dimensional technology. The horizontal

axis shows the amount of simultaneous change in fixed and variable inputs (α) for the target point 13

in a radial way while the vertical axis shows the amount of changes in outputs (φ). For observation

13, (α,φ) = (1, 1) since (xv∗13, x
f∗
13 , y

∗
13) = (6, 4, 5). Consequently, the target point of observation 13 is

depicted as the black solid box (label A). Based on these results, we must scale down point A by a

factor 0.2 resulting in the target point (1.2, 0.8, 1) for which (α,φ) = (0.2, 0.2). The corresponding

point is labeled D in Figure 1a: obviously, point D does not belong to the technology and is thus

12



(a) Output-oriented case (b) Input-oriented case

Figure 1: Intersection of the technology with the plane going through the origin and the output-
and input-oriented target point of observation 13

infeasible.

Anticipating further developments in Section 5, the revised version of the SRJIM will only

consider the line segment between points A and C in Figure 1a. The new SRJIM based on the

I-oriented plant capacity will in Figure 1b start from point A and only considers solutions on the

line segment between points A and C.

5 Output-, Attainable Output-, and Input-oriented Short-run Jo-

hansen Industry Models: New Proposals

This section develops methodological refinements to the basic SRJIM. We first correct the SR-

JIM such that the scaling of the plant capacity inputs and outputs remains technically feasi-

ble.Thereafter, we develop a new SRJIM based on the AO-oriented plant capacity concept. Finally,

we develop a new SRJIM based on the I-oriented plant capacity notion.

5.1 Short-run Johansen Industry Model with Output-oriented Capacity Mea-

sures: A Revised Version

This model requires two steps. Starting from models (9) and (10), an optimal firm p activity vector

zp∗ is provided. Capacity output and its optimal use of fixed and variable inputs xf∗p and xv∗p can

be computed by means of equation (11) and optimal outputs y∗p can be obtained by equation (12).

In step two, these ‘optimal’ frontier results (capacity output, variable and fixed inputs) at the

firm level are used as parameters in the SRJIM (hereafter also referred to as the revised version

13



(rv)):

min
θrv ,wrv ,Xv

θrv

s.t.
K∑
k=1

wrv
k y∗k ≥ Y,

K∑
k=1

wrv
k xf∗k ≤ θrvXf ,

K∑
k=1

wrv
k xv∗k ≤ Xv,

wrv = (wrv
1 , . . . , wrv

K ) ∈ Γ rv,

θrv ≥ 0, Xv ≥ 0.

(15)

where

Y =

(
K∑
k=1

yk1, . . . ,

K∑
k=1

ykM

)
and Xf =

(
K∑
k=1

xfk1, . . . ,

K∑
k=1

xfkNf

)
,

and

Γ rv = {(w1, . . . , wK) | wk ≤ 1, (wkx
f∗
k , wkx

v∗
k , wky

∗
k) ∈ TΛ, k = 1, . . . ,K}. (16)

This set Γ rv determines the feasible weights (w1, . . . , wK) such that the target points (wpx
f∗
p , wpx

v∗
p , wpy

∗
p),

(p = 1, . . . ,K), belong to the technology. Note that for feasible weights (w1, . . . , wK) ∈ Γ rv, we

have wp ≤ 1 for all p = 1, . . . ,K. Therefore in model (15), the decision variable wrv
p scales down the

target point (xf∗p , xv∗p , y∗p) of firm p and respects the technology. Note that in model (15), the vector

Xv of variable inputs are decision variables. To obtain a lower bound Lrv
p for wrv

p , (p = 1, ...,K),

we need to solve model (17):

Lrv
p = min

δ,z
δ

s.t.
K∑
k=1

zkyk ≥ δy∗p,

K∑
k=1

zkx
f
k ≤ δxf∗p ,

K∑
k=1

zkx
v
k ≤ δxv∗p ,

z = (z1, . . . , zK) ∈ Λ,

δ ≥ 0,

(17)

where y∗p, x
f∗
p and xv∗p are defined in (11). By solving model (17), output and input capacity targets

are scaled down such that they become feasible within the technology. Therefore, model (17) can be

interpreted as reducing the capacity targets to obtain the lower bound of weights, while respecting

the technology. This relaxes the assumption of constant returns to scale up to full capacity in the

basic version of the model.

Note that the main difference between the basic version (13) and the revised version (15) of

the SRJIM is in the range of the weights (w1, . . . , wK): in model (13) we have 0 ≤ wbv
k ≤ 1,
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while in model (15) we have Lrv
k ≤ wrv

k ≤ 1. Therefore, after solving model (15), the vector

(wrv∗
p xf∗p , wrv∗

p xv∗p , wrv∗
p y∗p), where wrv∗

p is an optimal solution of model (15), can be a target for

firm p which belongs to the technology TΛ.

Contrasting the basic (bv) and revised version (rv) of the SRJIM yields the following result:

Proposition 5.1. In technology (8), we have:

(i) Model (15) is always feasible and it has finite optimal value.

(ii) Assume that (θbv
∗
, wbv∗) and (θrv

∗
, wrv∗) are an optimal solution of models (13) and (15),respectively,

then we have: θbv
∗ ≤ θrv

∗
and wbv∗

p
>
=
<
wrv∗
p .

(iii) If θbv
∗
< θrv

∗
, then for all multiple optimal solutions of model (13), there exists k ∈ {1, . . . ,K}

such that the corresponding target point (wbv∗
k xf∗k , wbv∗

k xv∗k , wbv∗
k y∗k) does not belong to the tech-

nology.

(iv) If θbv
∗
= θrv

∗
, then there is at least one optimal solution of model (13) for which the corre-

sponding target points of all observed units belong to the technology.

Interpreting Proposition 5.1, the fact that θbv
∗ ≤ θrv

∗
shows the empirical relevance of relaxing

the hypothesis of constant returns to scale up to full capacity. Furthermore, it also shows that if

we have θbv
∗
< θrv

∗
, then for every multiple optimal solution of the basic version of the SRJIM

(13), there is at least one observation for which its target point does not respect the technology.

Also, the relation θbv
∗
= θrv

∗
guarantees one optimal solution of the basic version of the SRJIM

(13) such that all corresponding target points of observations belong to the technology.

It is important to note that the relation θbv
∗
= θrv

∗
does not guarantee that all multiple optimal

solutions of model (13) lead to target points belonging to the technology. Even if θbv
∗
= θrv

∗
, the

possibility exists of having a target point of some observations not respecting the technology.

By solving model (13) on the data of the numerical example in Table B.1, we obtain θrv
∗
= 0.660.

Hence, we have 0.638 = θbv
∗
< θrv

∗
= 0.660. Therefore, based on Proposition 5.1, for every multiple

optimal solution of the basic version of the SRJIM (13), there is at least one observation for which

its target point does not respect the technology.

As illustrated in Figure 1a, the traditional O-oriented SRJIM (13) scales down point A to obtain

the target point D, located outside of the technology. But, by implementing the revised SRJIM

(15), the target point A translates to the solid black box B: this remains technically feasible by

remaining within the technology (see Appendix D, section D.1).
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5.2 Short-run Johansen Industry Model with Attainable Output-oriented Effi-

ciency Measure: New Proposal

As mentioned in Section 2.2, the original O-oriented PCUo(x, x
f , y) has no variable input limi-

tations. However, in most empirical settings this is unrealistic and we limit the variable inputs

available at either the firm or the industry level (see Kerstens, Sadeghi, and Van de Woestyne

(2019b) for details). Thus, APCUo(x, x
f , y, λ̄) is a more realistic alternative PCU measure pro-

vided a reasonable level λ̄ is chosen.

The AO-oriented efficiency measure ADF f
o (x

f
p , yp, λ̄) at level λ̄ ∈ R+ is computed by:

ADF f
o (x

f
p , yp, λ̄) = max

xv ,φ,z
φ

s.t
K∑
k=1

zkyk ≥ φyp,

K∑
k=1

zkx
f
k ≤ xfp ,

K∑
k=1

zkx
v
k = xv,

xv ≤ λ̄xvp,

z = (z1, . . . , zK) ∈ Λ,

xv ≥ 0.

(18)

In model (18), the scalar λ̄ is varied over some part of the interval (0,∞). But, when λ̄ < 1, then

model (18) may be infeasible. However, Kerstens, Sadeghi, and Van de Woestyne (2019b) determine

the complete feasible interval for λ̄ by defining three critical points. For our purpose, we only need

two critical points:

Definition 5.1. For a given observation (xp, yp), the following two critical points C1
P and C2

P can

be defined.

C1
P = DFSR

vi (xfp , x
v
p, 0), (19)

and

C2
P = DFSR

vi (xfp , x
v
p, yp). (20)

Note that C1
P and C2

P make up the components of the I-oriented PCUi(x, x
f , y) in Definition

2.3. Furthermore, Kerstens, Sadeghi, and Van de Woestyne (2019b) have proven that for every

observation (xp, yp): if λ̄ < C1
P , then model (18) is infeasible.

Assume that φ∗ is the optimal value of model (18), then the following model can be solved to
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find a solution maximizing slacks and surpluses:

max
xv ,S+,S−,z

1M .S+ + 1Nf
.S−

s.t
K∑
k=1

zkyk − S+ = φ∗yp,

K∑
k=1

zkx
f
k + S− = xfp ,

K∑
k=1

zkx
v
k = xv,

xv ≤ λ̄xvp,

z = (z1, . . . , zK) ∈ Λ,

xv ≥ 0, S+ ≥ 0, S− ≥ 0.

(21)

The method is developed in two steps. First, from model (21) an optimal activity vector zp
∗
=

(zp∗1 , . . . , zp∗K ) is provided for firm p under evaluation yielding capacity output and optimal fixed

and variable inputs:

y∗p = αout
p

K∑
k=1

zp∗k yk; xf∗p =
K∑
k=1

zp∗k xfk ; xv∗p =
K∑
k=1

zp∗k xvk. (22)

Moreover, the O-oriented efficiency improvement imperative or correction factor αout
p , which

indicates the portion of adjustment for the technical inefficiency of firm p, is less than or equal to

unity ( 1
DFo(xp,yp)

≤ αout
p ≤ 1). This is repeated for all firms p = 1, . . . ,K.

In a second step, these ‘optimal’ frontier results (capacity output, variable and fixed inputs) at

the firm level are used as parameters in the below SRJIM (hereafter referred to as the attainable

version (att)):

min
θatt,watt,Xv

θatt

s.t.
K∑
k=1

watt
k y∗k ≥ Y,

K∑
k=1

watt
k xf∗k ≤ θattXf ,

K∑
k=1

watt
k xv∗k ≤ Xv,

watt = (watt
1 , . . . , watt

K ) ∈ Γ att,

θatt ≥ 0, Xv ≥ 0,

(23)

where

Y =

(
K∑
k=1

yk1, . . . ,
K∑
k=1

ykM

)
and Xf =

(
K∑
k=1

xfk1, . . . ,
K∑
k=1

xfkNf

)
,

and

Γ att = {(w1, . . . , wK) | wk ≤ 1, (wkx
f∗
k , wkx

v∗
k , wky

∗
k) ∈ TΛ, k = 1, . . . ,K}, (24)
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where y∗p, x
f∗
p and xv∗p are now defined in (22) instead of (11). Note that the variable inputs Xv

in model (23) is a vector of decision variables. Set Γ att determines the feasible area of weights

(w1, . . . , wK) such that the target point (wpx
f∗
p , wpx

v∗
p , wpy

∗
p), where p = 1, . . . ,K, belongs to the

technology.

The constraints wk ≤ 1, (k = 1, ...,K), in set Γ att guarantee that the obtained target points

(wpx
f∗
p , wpx

v∗
p , wpy

∗
p) can be magnified at most by λ̄ which is an attainable level of variable inputs

defined in model (18). Therefore, in model (23) decision variable wk scales down the target point

(xf∗k , xv∗k , y∗k) of firm p such that the technology is respected. Note that we have no relation between

θatt
∗
and θrv

∗
in optimality.

To obtain a lower bound Latt
p , (p = 1, ...,K), for watt

p in model (23) we need to solve model (17)

where y∗p, x
f∗
p and xv∗p are now defined in (22) instead of (11).

Note that the attainable SRJIM (23) can lead to infeasibilities in practical applications. Propo-

sition 5.2 proves some necessary and sufficient conditions for which model (23) is feasible.

Proposition 5.2. In technology (8), we have:

(i) Model (23) is feasible if and only if
∑K

k=1 y
∗
k ≥ Y .

(ii) If C2
k ≤ λ̄ for all k = 1, . . . ,K, then model (23) is feasible.

(iii) If we remove constraint (watt
1 , . . . , watt

K ) ∈ Γ att in model (23), then model (23) is always

feasible.

(iv) If model (23) is infeasible under the convex case, then it is infeasible under the nonconvex

case.

Based on Proposition 5.2, if there is an m ∈ {1, ...,M} such that
∑K

k=1 y
∗
km <

∑K
k=1 ykm, then

model (23) is infeasible. Also, if model (23) is infeasible, then there is some k ∈ {1, ...,K} such that

we have C2
k > λ̄. However, since C2

k ≤ 1, if we assume that λ̄ ≥ 1, then the attainable SRJIM (23)

is feasible. Finally, when the attainable SRJIM need not comply with the technology, this model is

always feasible. Again, the problem of infeasibility is potentially worse under nonconvexity.

After solving model (23), the vector (watt∗
p xf∗p , watt∗

p xv∗p , watt∗
p y∗p) can be a target for firm p which

belongs to the technology (8), and in which watt∗
p is an optimal solution of model (23) and xf∗p , xv∗p

and y∗p are obtained from the relations (22). Note that if in the SRJIM (23) instead of minimising

the fixed inputs, we maximise the outputs in a radial way by reallocating production between firms,

then Proposition 5.2 becomes redundant.
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5.3 Short-run Johansen Industry Model with Input-oriented Capacity Mea-

sures: New Proposal

The I-oriented short-run efficiency measure DFSR
vi (xfp , xvp, 0) is computed by optimizing the follow-

ing program 13:

DFSR
vi (xfp , xvp, 0) = min

θ,z
θ

s.t
K∑
k=1

zkyk ≥ ymin,

K∑
k=1

zkx
f
k ≤ xfp ,

K∑
k=1

zkx
v
k ≤ θxvp,

z = (z1, . . . , zK) ∈ Λ,

θ ≥ 0.

(25)

Note that the observed output levels on the right-hand side of the output constraints are set equal

to ymin. These output levels are compatible with any output levels where production is initiated

and differs from zero. The reader is referred to Kerstens, Sadeghi, and Van de Woestyne (2019a,

Proposition B.1) for additional interpretations (see also supra). Therefore, in model (25), one can

put y at the right-hand side of the first constraint and make it a decision variable (instead of ymin).

In so doing, we are symmetric with the O-oriented model (9) where the variable inputs are decision

variables. Assume that θ∗ is the optimal value of model (25), the following model can be solved

which maximizes slacks and surpluses:

max
z,S+,Sv−,Sf−

1M .S+ + 1Nf
.Sf− + 1Nv .S

v−

s.t
K∑
k=1

zkyk − S+ = ymin,

K∑
k=1

zkx
f
k + Sf− = xfp ,

K∑
k=1

zkx
v
k + Sv− = θ∗xvp,

z = (z1, . . . , zK) ∈ Λ,

S+ ≥ 0, Sv− ≥ 0, Sf− ≥ 0,

(26)

with 1Nv = (1, . . . , 1) ∈ RNv
+ .

Similar to the O-oriented SRJIM above, we proceed in two steps. First, from model (26) an opti-

mal activity vector zp∗ = (zp∗1 , . . . , zp∗K ) is provided for firm p under evaluation allowing computation

13One can put y at the right-hand side of the first constraint and make it a decision variable (instead of 0). In so
doing, we are symmetric with the O-oriented model (9) where the variable inputs are decision variables. ???
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of capacity output and its optimal levels of fixed and variable inputs:

y∗p =
K∑
k=1

zp∗k yk; xf∗p =
K∑
k=1

zp∗k xfk ; xv∗p = αinp
p

K∑
k=1

zp∗k xvk. (27)

This has to be repeated for all firms p = 1, . . . ,K. The I-oriented efficiency improvement imperative

or correction factor αinp
p , which indicates the portion of adjustment for variable I-oriented technical

inefficiency of firm p is greater than or equal to unity (1 ≤ αinp
p ≤ 1

DFSR
vi (xf ,xv ,y)

).

In a second step, these ‘optimal’ frontier results (capacity output and capacity variable and

fixed inputs) at the firm level are used as parameters in the below SRJIM (hereafter referred to as

the I-oriented version (inp)):

min
θinp,winp,Xv

θinp

s.t.
K∑
k=1

winp
k y∗k ≥ Y,

K∑
k=1

winp
k xf∗k ≤ θinpXf ,

K∑
k=1

winp
k xv∗k ≤ Xv,

winp = (winp
1 , . . . , winp

K ) ∈ Γ inp,

θinp ≥ 0, Xv ≥ 0.

(28)

where

Y =

(
K∑
k=1

yk1, . . . ,

K∑
k=1

ykm

)
and Xf =

(
K∑
k=1

xfk1, . . . ,

K∑
k=1

xfkNf

)
, (29)

and

Γ inp = {(w1, . . . , wK) | wk ≥ 1, (wkx
f∗
k , wkx

v∗
k , wky

∗
k) ∈ TΛ, k = 1, . . . ,K}. (30)

This set Γ inp determines the feasible weights (w1, . . . , wK) such that the target points (wpx
f∗
p , wpx

v∗
p , wpy

∗
p)

belong to the technology. Note that for the weights (w1, . . . , wK) ∈ Γ inp, we have wp ≥ 1 for all

p = 1, . . . ,K. Therefore, in model (28) decision variable wk scales up the target point (xf∗k , xv∗k , y∗k)

of firm p such that the technology is respected. Note that θinp
∗
cannot be compared to θbv

∗
, θrv

∗

and θatt
∗
in optimality.

To obtain an upper bound U inp
p , where p = 1, ...,K, for winp

p we need to solve the next model
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(31):

U inp
p = max

δ,z
δ

s.t.
K∑
k=1

zkyk ≥ δy∗p,

K∑
k=1

zkx
f
k ≤ δxf∗p ,

K∑
k=1

zkx
v
k ≤ δxv∗p ,

z = (z1, . . . , zk) ∈ Λ,

δ ≥ 0,

(31)

where y∗p, x
f∗
p and xv∗p are defined in (27). By solving this model we scale up the output and input

capacity targets such that they become feasible within the technology. Notice that in all previous

models based on O-oriented plant capacity we start from output and input capacity targets that

are situated in point A at the horizontal section in Figure 1a, while here we start from I-oriented

plant capacity targets that are situated at the vertical section in Figure 1a: in Figure 1b one can

note another point A at the vertical section.

Therefore, model (31) can be interpreted as expanding the capacity targets to obtain the upper

bound of weights while respecting the technology. Note that all weights winp
k ≥ 1 since the optimal

solution starts out from the vertical section in Figure 1b and moves up to the right in input-output

space, while all previous models based on O-oriented plant capacity start from output and input

capacity targets that are situated at the horizontal section in Figure 1a and move down to the left

in input-output space. Hence, in model (31) we need to scale up capacity outputs and capacity

variable and fixed inputs to meet all requirements.

Note that the I-oriented SRJIM (28) can lead to infeasibilities in practical applications. But, if

there are no upper bounds in the I-oriented short-run Johansen industry model (28) (i.e., we do

not need to respect the technology by ignoring constraint (winp
1 , . . . , winp

K ) ∈ Γ inp in model (28)),

then model (28) is always feasible. Proposition 5.3 proves some necessary and sufficient conditions

for which model (28) is feasible.

Proposition 5.3. In technology (8), we have:

(i) Model (28) is feasible if and only if
∑K

k=1 U
inp
k y∗k ≥ Y .

(ii) If we remove constraint (winp
1 , . . . , winp

K ) ∈ Γ inp in model (28), then model (28) is always

feasible.

(iii) If model (28) is infeasible under the convex case, then it is infeasible under the nonconvex

case.

After solving model (28), the vector (winp∗
p xf∗p , winp∗

p xv∗p , winp∗
p y∗p) can be a target for DMUp

which belongs to the technology (8) where winp∗
p is an optimal solution of model (28) and xf∗p , xv∗p
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and y∗p are obtained from the relations (27).

To foster understanding, the reader may consult the numerical example in Appendix D.3. It is

now shown graphically that by solving the I-oriented SRJIM (28) one obtains a solution that again

respects the technology.

Figure 1b shows the intersection of the technology with the plane passing through the origin and

the I-oriented target point of observation 13, i.e., point (xv∗13, x
f∗
13 , y

∗
13) = (2, 2, 2) which is obtained

from equation (27). The horizontal axis shows the amount of simultaneous changes in fixed and

variable inputs (α) for the I-oriented target point 13 in a radial way and the vertical axis shows the

amount of changes in outputs (φ). Therefore, for (α,φ) = (1, 1) we have (xv∗13, x
f∗
13 , y

∗
13) = (2, 2, 2)

(black solid box A).

Note that by implementing the I-oriented SRJIM (28) by using the numerical data in Table

B.1, we have θinp
∗
= 0.81. In this case, the target point A (i.e., the target point of unit 13) remains

unchanged at point A in Figure 1b (see Appendix D, section D.3).

6 Empirical Illustration

6.1 Data

Our sample is from 170 fishing vessels operating in the northwest Atlantic Ocean during a single

year (exact year not disclosed for confidentiality purposes). All vessels use similar technology and

catch their fish by dragging a net behind their vessels just off the ocean floor. Catches were grouped

into three distinct categories based on species: flatfish, roundfish, and “other”. There are three fixed

inputs: vessel length, engine horsepower, and vessel gross tonnage. The only variable input is days

spent at sea.

Table 1 presents basic descriptive statistics. Vessels are between 36 and 88 feet in length (average

63). Their horsepower ranges from 180 to 1,380 (494 average) and their tonnage is between 5 and

199 (average 90). On average, these vessels fish 67 days per year with a range between 2 and

242 days. Their average roundfish catch is 99,113 pounds with a range between zero and 750,976.

Flatfish catch is between 9 and 265,617 pounds (average 50,602). The “other” category average

catch is 154,253 pounds with a range between 299 and 1,462,807 pounds.

An important remark needs to be made with respect to the sole variable input time spent at

sea in days. Based on equation (11) we have xv∗p =
∑K

k=1 z
p∗
k xvk and since

∑K
k=1 z

p∗
k = 1, then

min
k=1,...,K

xvkn ≤ xv∗pn =
∑K

k=1 z
p∗
k xvkn ≤ max

k=1,...,K
xvkn for all n = 1, . . . , Nv. Hence, we have 2.222 ≤

xv∗p1 ≤ 242.195 for all p = 1, . . . ,K. Thus, the optimal amount of variable inputs is always bounded

by the minimum and maximum levels of observed variable inputs in the data, and it can certainly

not reach the absolute upper bound of 365 days in the year analysed.
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Table 1: Descriptive Statistics for 170 Observed Data

Fixed input 1 Fixed input 2 Fixed input 3 Variable input Output 1 Output 2 Output 3

Horsepower Length Tonnage Days Roundfish Flatfish Other

Average 494.4824 62.67194 90.14706 67.79868 99113.2254 50601.95 154252.701

St. Dev. 210.1697 14.60609 54.59042 66.21814 154640.012 54758.96 233021.661

Min 180 35.8 5 2.222 0 9 299

Max 1380 88.4 199 242.195 750976 265616.9 1462806.89

Table 2 reports the descriptive statistics of I-oriented, O-oriented and AO-oriented PCU for

our vessels using convex and non-convex technologies. These results reflect output- and I-oriented

efficiency improvement imperatives of unity (i.e., αout
p = αint

p = 1). The main motivation to dif-

ferentiate between convex and non-convex technologies is that recently Kerstens, Sadeghi, and

Van de Woestyne (2019a) revealed significant differences between convex and non-convex PCU.

Note that for both the AO-oriented efficiency measure ADF f
o (xf , y, λ̄) and the AO-oriented PCU

APCUo(x, x
f , y, λ̄), we have chosen λ̄ = 2.

Table 2: Descriptive Statistics of Input and Output Plant Capacity Utilisation for 170 DMUs in
both Convex and Non-convex Cases

Convex DFvi(x
f , xv, y) DFvi(x

f , xv, 0) PCUi(.) DFo(.) DF f
o (.) PCUo(.) ADF f

o (.) APCUo(.)

Average 0.576 0.201 16.557 2.283 8.056 0.631 3.892 0.712

St. Dev. 0.242 0.279 21.297 1.735 14.286 0.342 3.777 0.246

Min 0.109 0.009 1.000 1.000 1.000 0.022 1.000 0.134

Max 1.000 1.000 108.999 11.546 129.824 1.000 28.865 1.000

Nonconvex

Average 0.984 0.222 28.120 1.056 3.866 0.679 1.454 0.862

St. Dev. 0.064 0.300 30.095 0.230 10.792 0.344 1.189 0.220

Min 0.543 0.009 1.000 1.000 1.000 0.014 1.000 0.094

Max 1.000 1.000 108.999 2.675 129.558 1.000 11.282 1.000

Analyzing Table 2, first we conclude that on average the PCUi(x, x
f , y) indicates that one needs

16.55 times more variable inputs (days) with current outputs than with zero outputs under C, while

under NC one employs 28.12 times more variable inputs (days). Second, on average the biased PCU

measure DF f
o (xf , y) indicates that outputs can be increased 8.05 times under C and 3.86 times

under NC. There is substantial variation in DF f
o (xf , y) as indicated by the standard deviation and

range: the maximum increase in outputs amounts to 129.824 times under C and 129.558 under NC.

Third, on average the unbiased PCU measure PCUo(x, x
f , y) indicates that current outputs are 63%

of maximal plant capacity outputs under C and 67% under NC. Heterogeneity in PCUo(x, x
f , y)

is large as indicated by the standard deviation and the range: the minimum of 2.2% under C and

1.4% under NC are quite low. Fourth, for the biased attainable PCU measure ADF f
o (xf , y, λ̄ = 2)

the average of the output magnification under C is higher than under NC. For a twofold increase in

variable inputs (i.e., λ̄ = 2), we obtain on average a 3.892 output magnification under C and 1.454

under NC. Fifth, the average of APCUo(x, x
f , y, λ̄ = 2) is smaller under C than under NC.

In conclusion, the different PCU measures behave substantially different under C and NC tech-
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nologies. This is in line with earlier results reported by Kerstens, Sadeghi, and Van de Woestyne

(2019a).

6.2 Key Results

Turning to the results of the four SRJIM, Table 3 shows basic descriptive statistics of their efficiency

scores (θ), weights (wp), lower and upper bounds (Lp and Up), the number of units for which their

weights coincide to their lower bound (#wp = Lp ), the number of units for which their weights

coincide to their upper bound (#wp = Up ), and the number of units which are located outside

of the technology (# DMUp /∈ T ). The rows of Table 3 include results under the convex and

nonconvex cases.

Table 3: The results of weights, lower and upper bounds for all methods

Weights Lower or upper bound

Convex θ Average St. Dev. Min Max Average St. Dev. Min Max # wp = Lp # wp = Up # DMUp /∈ T

bv 0.3 0.330 0.466 0 1 111 54 117

rv 0.84 0.937 0.108 0.5802 1 0.9366 0.1076 0.580 1 170 170 0

att 0.82 0.946 0.104 0.5802 1 0.9464 0.1040 0.580 1 170 170 0

inp Inf Inf Inf Inf Inf 61.0550 25.4301 1 116.19 Inf Inf Inf

Nonconvex

bv 0.35 0.350 0.474 0 1 109 56 114

rv 0.92 0.996 0.025 0.817 1 0.996 0.025 0.817 1 170 170 0

att 0.91 0.995 0.033 0.6858 1 0.995 0.033 0.686 1 170 170 0

inp Inf Inf Inf Inf Inf 14.567 35.205 1 116.19 Inf Inf Inf

bv: basic version of O-oriented SRJIM

rv: revised version of O-oriented SRJIM

att: AO-oriented SRJIM

inp: I-oriented SRJIM

We draw the following conclusions from Table 3. First, fixed inputs can be reduced by 70% in

the basic version (bv), but only 16% in the revised version (rv). This dramatic difference is because

117 of the 170 vessels are not part of the frontier technology, an issue largely ignored in the SRJIM

literature. This is due to low average weights in the basic version compared to the revised version. In

the revised version all 170 observations have weights equal to their lower bound. Second, applying

a nonconvex technology slightly attenuates these results: fixed inputs can be reduced by 65% in the

basic version and by just 8% in the revised version. Average weights are higher under nonconvexity

in both versions.

Third, opting for an AO-oriented PCU slightly improves the results compared to the revised

version of the O-oriented PCU because capacity inputs and outputs are somewhat reduced. Under

convexity fixed inputs can be reduced by 16% in the revised version and by 18% in the attainable

case, while in the nonconvex case fixed inputs can be reduced by 8% in the revised version and by

9% in the attainable case. While the average weight slightly increases under convexity, it marginally

decreases under nonconvexity. Also in the attainable version all 170 observations have weights equal

to their lower bound. Fourth, the I-oriented SRJIM (28) is infeasible for this empirical application

under both convex and nonconvex cases. Thus, it is impossible to scale up the I-oriented capacity
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targets of units such that these are capable to generate the current aggregate output levels while

respecting the technology. The reader should realise that the I-oriented SRJIM (28) does yield a

solution for the numerical example (see Appendix D), but that the configuration of the empirical

data leads to an infeasibility. More detailed results are found in Appendix E.

We think it is safe to conclude the following from our empirical illustration. First, the basic

version of the SRJIM is both conceptually wrong and leads to overly optimistic reductions in fixed

inputs. Secondly, the degree of reallocation is somehow conditioned on the type of PCU to which one

adheres. Our results indicate that the traditional O-oriented PCU may still be a bit too optimistic

compared to the AO-oriented PCU that leads to fewer reductions in fixed inputs. Regrettable, the

conceptually appealing I-oriented SRJIM results in an infeasible solution for our data.

7 Conclusions

This contribution has provided a cursory review of the historic development of the SRJIM, and

distinguishes between the traditional average practice version and the more recent best practice

or frontier-based version. The goals of this contribution are twofold. First, we remedy a remaining

problem in the Johansen (1972) SRJIM by relaxing the assumption of constant returns to scale up to

full capacity for individual production units. Hence, capacity inputs and outputs remain technically

feasible and remain within the technology. Second, we have opened up the methodological choices

of the SRJIM by introducing a new I-oriented PCU, and an AO-oriented PCU.

In order to demonstrate our findings, we provided a basic numerical example to illustrate the

differences and similarities between these modeling options, as well as an empirical illustration

using US based fishery data. Both these illustrations have shown the viability of our new modeling

options.

To conclude, we mention some avenues for future research. One possibility is to further extend

the choice of PCU by including a graph-oriented plant capacity concept (see Kerstens, Sadeghi, and

Van de Woestyne (2020)) or some of the new plant capacity concepts introduced in Kerstens and

Sadeghi (2023). Furthermore, this presentation may perhaps benefit from introducing a directional

distance function to unify all types of specialised efficiency measures that are currently employed.

Another possibility is to use nonradial instead of radial efficiency measures to measure plant

capacity concepts and to evaluate possibilities for reallocation in the SRJIM. One may conjecture

that this is especially important in the case of nonconvex technologies where slacks and surpluses are

plentiful. Another avenue is to trace the evolution of the frontier-based SRJIM over time. Finally,

the link between a vintage-based model and the metafrontier framework as the union of several

vintage group technologies needs to be worked out in more detail.
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Appendices: Supplementary Material

A Graphical Illustrations

Now we try to clarify Definitions 2.1, 2.2 and 2.3 with the help of a two-dimensional Figure A.1

which depicts a single variable input and an output space. In particular, Figure A.1 shows a total

product curve for given variable inputs as the polyline abcd and its horizontal extension at d. We

focus on observation e. Note that observations are represented by squares and projection points by

circles.

Figure A.1: Total product curve: Output-oriented, attainable output-oriented and I-oriented plant
capacities

The O-oriented PCUo(x, x
f , y) compares point e to its vertical projection point e3 on the frontier

on the one hand, and the translated point e1 that consumes more variable inputs to its vertical

projection point on the horizontal frontier segment emanating from point d with maximal outputs

on the other hand. Clearly, the maximal output d can be labeled the plant capacity output. Thus,

the unbiased PCUo(x, x
f , y) is somehow linked to the distance e3d1, whereby point d1 is simply

the translation of the maximal output at point d to the output level comparable with point e.

The AO-oriented plant capacity measure APCUo(x, x
f , y, λ̄) compares point e to its vertical

projection point e3 on the frontier on the one hand, and the translated point f that consumes at most

a fraction λ̄ more variable inputs to its vertical projection point at point f1 with maximal outputs

at level λ̄ on the other hand. Clearly, the maximal output f1 at level λ̄ can be labeled the attainable

plant capacity output. Thus, the unbiased attainable plant capacity measure APCUo(x, x
f , y, λ̄) is

somehow linked to the distance e3f2, whereby point f2 is simply the translation of the maximal

output at point f1 to the output level comparable with point e.

The I-oriented PCUi(x, x
f , y) focuses on a sub-vector of variable inputs and compares point e
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to its horizontal projection point e4 on the frontier on the one hand, and the translated point e2

(consuming equal amounts of variable inputs but at a zero outputs level) to its horizontal projection

point on the vertical frontier segment ab with zero outputs on the other hand. Clearly, the minimal

variable input a yielding zero output can be labeled the plant capacity input. Thus, the unbiased

PCUi(x, x
f , y) is somehow linked to the distance b1e4, whereby point b1 is the translation of the

variable input at point b to the variable input level comparable with point e.

B Numerical Example on the Infeasibility of Model (13) with the

Technology

To provide some intuition, we graphically show that by solving model (13) the optimal weight vector

wbv∗ does not guarantee that the projection point is part of the technology. Consider a numerical

example containing 13 fictitious observations with two inputs generating a single output: one input

is variable, the other one is fixed. The first four columns of Table B.1 contain these data. By solving

model (13), we obtain θbv
∗
= 0.638, where θbv

∗
is the optimal value of θbv. Columns 5 to 7 of Table

B.1 show the inputs and outputs targets defined in equation (11) which are obtained by solving

model (10). The vector wbv∗ = (wbv∗
1 , . . . , wbv∗

K ) is an optimal solution of model (13) and is reported

in column 8. The final target points of inputs and outputs obtained by solving model (13) (i.e.,

points (wbv∗
p xf∗p , wbv∗

p xv∗p , wbv∗
p y∗p) corresponding to firm p) are presented in the last three columns.

As can be seen in Table B.1, the value of wbv∗
k for all units is unity except for units 4, 5, 6 and 13.

For these four units, we have wbv∗
4 = wbv∗

5 = wbv∗
6 = 0 and wbv∗

13 = 0.2. Therefore, for units 4, 5 and

6, the target points are located at the origin. However, the target point of unit 13 is (1.2, 0.8, 1):

this point does not belong to the production possibility set. We show this by reporting the result

of the refined O-oriented SRJIM in Section D.1.

Table B.1: Inputs and outputs targets obtained by solving model (13)

DMUp xvp xfp yp xv∗p xf∗p y∗p wbv∗
p wbv∗

p xv∗p wbv∗
p xf∗p wbv∗

p y∗p
1 3 3 2 5 3 4 1 5 3 4

2 2 5 2 6 4 5 1 6 4 5

3 2 7 2 6 4 5 1 6 4 5

4 5 2 2 2 2 2 0 0 0 0

5 10 2 2 2 2 2 0 0 0 0

6 2 2 2 2 2 2 0 0 0 0

7 3 7 4 6 4 5 1 6 4 5

8 3 4 4 6 4 5 1 6 4 5

9 5 3 4 5 3 4 1 5 3 4

10 9 3 4 5 3 4 1 5 3 4

11 5 5 5 6 4 5 1 6 4 5

12 6 4 5 6 4 5 1 6 4 5

13 4 6 5 6 4 5 0.2 1.2 0.8 1
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A

D

Figure B.1: 3-dimensional view of the convex frontier for numerical example

Also, we can visualize this infeasibility problem in Figures B.1 and B.2a. A three-dimensional

representation of the technology resulting from these 13 fictitious observations is provided by Figure

B.1. This technology consists of two inputs (variable input xv and fixed input xf ) and one output

(y) and is visible by means of its convex boundary. The original observations are visible by means

of orange spheres. The projection of the frontier in the vertical plane xv = 0 is visualised by the

transparent red region positioned on the xf axis. The projection of the original observations in the

vertical plane xv = 0 is indicated by blue boxes. The optimal 3D points obtained from equation

(11) (i.e., (xv∗p , xf∗p , y∗p)) are denoted with green crosses. Finally, the targets points obtained after

applying model (13) (i.e., (wbv∗
p xf∗p , wbv∗

p xv∗p , wbv∗
p y∗p)) are illustrated with black boxes.

The gray intersecting plane passes through the origin and the O-oriented target point (xv∗13, x
f∗
13 , y

∗
13) =

(6, 4, 5) of observation 13 (label A). Based on the results of Table B.1, since wbv∗
13 = 0.2, this target

point scales down by 0.2 times to (1.2, 0.8, 1) depicted by the black square (label D) in the gray

intersecting plane. Obviously, this point does not belong to the technology.

To even better illustrate this technological infeasibility, we present in Figure B.2a the intersection

of the gray plane and the boundary of technology of Figure B.1. The horizontal axis shows the

amount of simultaneous change in fixed and variable inputs (α) for the target point 13 in a radial

way while the vertical axis shows the amount of changes in outputs (φ). For observation 13, (α,φ) =
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(a) Output-oriented case (b) Input-oriented case

Figure B.2: Intersection of the technology with the plane going through the origin and the output-
and input-oriented target point of observation 13

(1, 1) since (xv∗13, x
f∗
13 , y

∗
13) = (6, 4, 5). Consequently, the target point of observation 13 is depicted

as the black solid box (label A). Again based on the results of Table B.1, we must scale down

point A by a factor 0.2 resulting in the target point (1.2, 0.8, 1) for which (α,φ) = (0.2, 0.2). The

corresponding point is labeled D in Figure B.2a. Geometrically, this scaling factor corresponds with

the ratio of Euclidean distances ∥0D∥/∥0A∥ = 0.2 = wbv∗
13 . Obviously, this point D does not belong

to the technology and is thus not feasible.

Based on the results of Table B.1, the O-oriented target points of units 2, 3, 7, 8, 11 and 13 are

identical. Therefore, the intersection of the technology with the plane passing through the origin

and the O-oriented target point (xv∗p , xf∗p , y∗p) of these observations are the same as illustrated in

Figure B.2a. The value of wbv∗
k for these units is unity. Therefore, the target point of these units,

except unit 13, remains unchanged at point A in Figure B.2a.

C Proofs of Propositions

Proof of Proposition 4.1: Assume that (S+∗
, S−∗

, z∗k) is an optimal solution of model (10). Since

S+∗ ≥ 0 and φ∗ ≥ 1, we have:

y∗p = αout
p ŷ∗p = αout

p

K∑
k=1

z∗kyk ≥ αout
p

K∑
k=1

z∗kyk − S+∗ ≥ 1

φ∗

K∑
k=1

z∗kyk − S+∗
= yp.

By summation on p, we have
K∑
p=1

y∗p ≥
K∑
p=1

yp = Y . Moreover, let θbv
∗
=

∑K
k=1 x

f∗
k

Xf , Xv∗ =
∑K

k=1 x
v∗
k

and wbv∗
k = 1(k = 1, . . . ,K), then (θbv

∗
, Xv∗ , wbv∗

k ) is a feasible solution of model (13) with the

finite objective function. Therefore, model (13) has a finite optimum value.
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Proof of Proposition 5.1:

(i) The proof is similar with the proof of Proposition 4.1.

(ii) Suppose that the vector (θrv
∗
, wrv∗ , Xv∗) is an optimal solution of model (15). Since the target

points (y∗p, x
f∗
p , xv∗p ) for models (13) and (15) are the same, hence (θrv

∗
, wrv∗ , Xv∗) is a feasible

solution for model (13). Therefore, θbv
∗ ≤ θrv

∗
because this kind of model (13) is a minimising

problem. To complete the proof, note that we have wbv∗
p

>
=
<
wrv∗
p because the results of the

numerical as well as empirical examples show that wbv∗
p can be equal, bigger or smaller than

wrv∗
p .

(iii) Assume that θbv
∗
< θrv

∗
and (wbv∗

1 , . . . , wbv∗
K ) is an optimal solution of model (13). This opti-

mal solution is not a feasible solution of model (15), because if we assume that (wbv∗
1 , . . . , wbv∗

K )

is a feasible solution of model (15), then we have θrv
∗ ≤ θbv

∗
and based on the part (i), we

have θbv
∗ ≤ θrv

∗
. Hence, we have θrv

∗
= θbv

∗
which it is a contradiction because we assume

that θbv
∗
< θrv

∗
. Therefore, we have (wbv∗

1 , . . . , wbv∗
K ) /∈ Γ rv. Based on equation (16), there is

k ∈ {1, . . . ,K} such that (wbv∗
k xf∗k , wbv∗

k xv∗k , wbv∗
k y∗k) /∈ TΛ.

(iv) Assume that (wrv∗
1 , . . . , wrv∗

K ) is an optimal solution of model (15) with the optimal value θrv
∗
.

Therefore, it is a feasible solution of model (13) with the objective value θrv
∗
. Assume that θbv

∗

is an optimal value of model (13). Since we assume that θbv
∗
= θrv

∗
, hence (wrv∗

1 , . . . , wrv∗
K ) is

an optimal solution of model (13) and for this optimal solution we have (wrv∗
1 , . . . , wrv∗

K ) ∈ Γ rv.

Thus based on equation (16), we have (wrv∗
k xf∗k , wrv∗

k xv∗k , wrv∗
k y∗k) ∈ TΛ for all k ∈ {k =

1, . . . ,K}.

Proof of Proposition 5.2:

(i) Suppose that model (23) is feasible and (watt∗
1 , ..., watt∗

K ) is an optimal solution for deci-

sion variables (watt
1 , ..., watt

K ). Hence, we have
∑K

k=1w
att∗
k y∗k ≥ Y . Since watt∗

k ≤ 1, we have∑K
k=1 y

∗
k ≥ Y .

Now, assume that
∑K

k=1 y
∗
k ≥ Y . Letting,

watt∗
k = 1, θatt

∗
= max

n=1,...,Nf

∑K
k=1 x

f∗
kn∑K

k=1 x
f
kn

, Xv∗ =

K∑
k=1

xv∗k .

Hence, (watt∗
k , θatt

∗
, Xv∗) is a feasible solution of model (23).

(ii) Suppose that C2
k ≤ λ̄, then ADF f

o (x
f
p , yp, λ̄) = φ∗ ≥ 1. For this reason, assume that (z∗k, θ

∗ =

C2
k) is an optimal solution of model (20). Since C2

kx
v
p ≤ λ̄xvp, hence (ẑk = z∗k, x̂

v = C2
kx

v
p, θ̂ = 1)

is a feasible solution of model (18) with objective value θ̂ = 1. Therefore, ADF f
o (x

f
p , yp, λ̄) ≥ 1

because this kind of model is a maximising problem. Thus, based on model (21), we have∑K
k=1 y

∗
k ≥ Y . Hence, based on part (i), model (23) is feasible.
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(iii) If we define (watt∗
k , θatt

∗
, Xv∗) as follows:

watt∗
1 = max

m=1,...,M

∑K
k=1 ykm
y∗1m

and watt∗
k = 0 for all k = 2, . . . ,K,

θatt
∗
= max

n=1,...,Nf

watt∗
1 xf∗

1n∑K
k=1 x

f
kn

,

Xv∗ = watt∗
1 xv∗1 .

Then, (watt∗
k , θatt

∗
, Xv∗) is a feasible solution of model (23).

(iv) Based on the technology (8), since we have TNC ⊆ TC , therefore, if TC = ∅, then TNC = ∅.

Proof of Proposition 5.3

(i) Suppose that model (28) is feasible and (winp∗

1 , ..., winp∗

K ) is an optimal solution for decision

variables (winp
1 , ..., winp

K ). Hence, we have
∑K

k=1w
inp∗

k y∗k ≥ Y . Since winp∗

k ≤ U inp
k , we have∑K

k=1 U
inp
k y∗k ≥ Y .

Now, assume that
∑K

k=1 U
inp
k y∗k ≥ Y . Letting,

winp∗

k = U inp
k , θinp

∗
= max

n=1,...,Nf

∑K
k=1 U

inp
k xf∗kn∑K

k=1 x
f
kn

, Xv∗ =
K∑
k=1

U inp
k xv∗k .

Hence, (winp∗

k , θinp
∗
, Xv∗) is a feasible solution of model (28).

(ii) If we define (winp∗

k , θinp
∗
, Xv∗) as follows:

winp∗

1 = max
m=1,...,M

∑K
k=1 ykm
y∗1m

and winp∗

k = 0 for all k = 2, . . . ,K,

θinp
∗
= max

n=1,...,Nf

winp∗
1 xf∗

1n∑K
k=1 x

f
kn

,

Xv∗ = winp∗

1 xv∗1 .

Then, (winp∗

k , θinp
∗
, Xv∗) is a feasible solution of model (28).

(iii) Based on the technology (8), since we have TNC ⊆ TC , therefore, if TC = ∅, then TNC = ∅.

D Numerical Example

D.1 Section 5.1: Short-run Johansen Industry Model with Output-oriented Ca-

pacity Measures: A Revised Version

We illustrate the ease of implementing this revised SRJIM with O-oriented capacity measures by

using the numerical data in Table B.1. By solving model (13) on the data of the numerical example

in Table B.1, we obtain θrv
∗
= 0.660. Hence, we have 0.638 = θbv

∗
< θrv

∗
= 0.660. Therefore, based

on Proposition 5.1, for every multiple optimal solution of the basic version of the SRJIM (13), there

is at least one observation for which its target point does not respect the technology.
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As illustrated in Figure 1a, the traditional O-oriented SRJIM (13) scales down point A to obtain

the target point D which is located outside of the technology. But, by implementing the revised

SRJIM (15), the target point A translates to the solid black box B: this remains technically feasible

by remaining within the technology.

Table D.1 reports input and output targets obtained by solving model (15). The first four

columns show the target points of units obtained by relation (11). The lower bound Lrv
p and the

amounts wrv∗
p are reported in the fifth and sixth columns, respectively. The final targets of inputs

and outputs obtained by solving model (15) (i.e., points (wrv∗
p xf∗p , wrv∗

p xv∗p , wrv∗
p y∗p) corresponding

to firm p) are presented in the 7-th, 8-th and 9-th columns. To see the magnification of the variable

inputs we report the ratio of variable inputs of the target point over the current variable inputs

(i.e.,
wrv∗

p xv∗
p

xv
p

) in the very last column.

Table D.1: Inputs and outputs targets obtained by solving model (15)

DMUp xv∗p xf∗p y∗p Lrv
p wrv∗

p wrv∗
p xv∗p wrv∗

p xf∗p wrv∗
p y∗p

wrv∗
p xv∗

p

xv
p

1 5 3 4 1 1 5 3 4 1.667

2 6 4 5 0.667 0.667 4 3 3.333 2

3 6 4 5 0.667 0.667 4 3 3 2

4 2 2 2 1 1 2 2 2 0

5 2 2 2 1 1 2 2 2 0.2

6 2 2 2 1 1 2 2 2 1

7 6 4 5 0.667 0.667 4 3 3.333 1.333

8 6 4 5 0.667 0.667 4 3 3.333 1.333

9 5 3 4 1 1 5 3 4 1

10 5 3 4 1 1 5 3 4 0.556

11 6 4 5 0.667 0.786 5 3 4 0.943

12 6 4 5 0.667 0.786 5 3 3.929 0.786

13 6 4 5 0.667 0.762 5 3.048 3.810 1.143

Analyzing the results in Table D.1, we can draw the following conclusions. First, the minimum

amount of lower bound wrv∗
p is 0.667 and its maximum amount remains 1. Comparing with the

results of Table B.1, this new method puts all target points in the production possibility set by

excluding weights below the lower bound wrv∗
p of 0.667. Second, the optimal amount wrv∗

p of units

2, 3, 7 and 8 coincides with their lower bounds, and the amount of wrv∗
p of units 11, 12 and 13 is

situated between their lower and upper bounds. Furthermore, the amount of wrv∗
p for the remaining

units is unity such that these units reach their upper bounds. For unit 13, we have Lrv
13 = 0.667:

this means that if we put wrv∗
13 < 0.667, then the obtained target point (wrv∗

13 xv∗13, w
rv∗
13 xf∗13 , w

rv∗
13 y∗13)

does no longer belong to the production possibility set. Note that in the previous Table B.1, since

we have wbv∗
13 = 0.2 < 0.667 = Lrv

13, the obtained target of unit 13 in the basic version is situated

outside the production possibility set. As illustrated in Figure 1a, the traditional O-oriented SRJIM

(13) scales down the target of unit 13 (i.e., point A) to obtain the target point D which is located

outside of the technology.

To solve this problem of the infeasibility of point D in Figure 1a, we have now modified the
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SRJIM (13) such that the scaling of this point A remains technically feasible by remaining within

the frontier technology by only moving along the segment AC. We can show this feasibility again by

reference to Figure 1a. Note that since wrv∗
13 = 0.762, we now scale down the point (xv∗13, x

f∗
13 , y

∗
13) =

(6, 4, 5) (solid black box A) by 0.762 times to obtain the target point (wrv∗
13 xv∗13, w

rv∗
13 xf∗13 , w

rv∗
13 y∗13) =

(5, 3.048, 3.810) in Figure B.1. As can be seen in Figure 1a, the latter target point translates to

point (0.762, 0.762) that is represented by the solid black box B: this remains technically feasible

by remaining within the technology.

Note that based on the results of Table B.1, the O-oriented target point of units 2, 3, 7, 8, 11

and 12 are identical with unit 13. Therefore, the intersection of the technology with the plane that

passes through the origin and the O-oriented target point (xv∗p , xf∗p , y∗p) of these observations are

the same as illustrated in Figure 1a. The amount of wrv∗
p for the units 2, 3, 7 and 8 coincides with

their lower bounds. Hence, their target points are located on point C in Figure 1a. The amount of

wrv∗
p of units 11 and 12 is situated between its lower and upper bounds and these units have the

same behavior as unit 13.

Finally, the last column of Table D.1 indicates the amounts by which the variable inputs can be

magnified. There is rather a large amount of variation in these variable inputs. Indeed, the range

is broad: the minimum change in variable inputs amounts to 0.2 times and the maximum increase

in variable inputs amounts to 2 times.

D.2 Section 5.2: Short-run Johansen Industry Model with Attainable Output-

oriented Efficiency Measure: New Proposal

Note furthermore that by implementing the AO-oriented SRJIM (23) by using the numerical ex-

ample in Table B.1, we have θatt
∗
= 0.70 which is higher than θbv

∗
and θrv

∗
. In this case, the

target point A translates to the solid black box C in Figure 1a: this remains technically feasible by

remaining within the boundary of the frontier technology.

Table D.2 reports the results of the SRJIM with AO-oriented efficiency measure on the numerical

example. It is structured in a way similar to the previous Table D.1. For this numerical example,

we have chosen λ̄ = 2. Thus, we believe that an increase of the variable inputs with a factor more

than 2 is implausible. We make three observations. First, as can be seen in the last column of Table

D.2, the variable input can be magnified by maximum 1.667 times. Only for the first unit this

magnification is 1.667 and for the other units, it is smaller than 1.667. Second, the optimal amount

watt∗
p of units 2, 3, 7 and 13 coincides with their lower bounds. The amount of watt∗

p of units 8, 11

and 12 is situated between their lower and upper bounds. Furthermore, the amount of watt∗
p for

the remaining units is unity such that these units reach their upper bounds. Third, for none of the

observations in this numerical example we reach the upper bound λ̄ = 2.

Note that based on the results of Table D.2, the AO-oriented target point of units 7, 8, 11, 12

and 13 are (xv∗p , xf∗p , y∗p) = (6, 4, 5). Therefore, the intersection of the technology with the plane
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Table D.2: Inputs and outputs targets obtained by solving model (23)

DMUp xv∗p xf∗p y∗p Latt
p watt∗

p watt∗
p xv∗p watt∗

p xf∗p watt∗
p y∗p

watt∗
p xv∗

p

xv
p

1 5 3 4 1 1 5 3 4 1.667

2 4 5 4.667 0.6 0.6 2 3 2.8 1.2

3 4 6 5 0.667 0.667 3 4 3.333 1

4 5 2 2 1 1 5 2 2 1

5 2 2 2 1 1 2 2 2 0.200

6 2 2 2 1 1 2 2 2 1

7 6 4 5 0.667 0.667 4 3 3 1

8 6 4 5 0.667 0.829 5 3 4 1.658

9 5 3 4 1 1 5 3 4 1

10 5 3 4 1 1 5 3 4 0.556

11 6 4 5 0.667 0.778 5 3 4 0.933

12 6 4 5 0.667 0.833 5 3 4.167 0.833

13 6 4 5 0.667 0.667 4 2.667 3.333 1

that passes through the origin and the AO-oriented target point (xv∗p , xf∗p , y∗p) of these observations

are the same as illustrated in Figure 1a. Note that since watt∗
13 = 0.667, we need to scale down

the point (xv∗13, x
f∗
13 , y

∗
13) = (6, 4, 5) (solid black box A) by 0.667 times to obtain the target point

(watt∗
13 xv∗13, w

att∗
13 xf∗13 , w

att∗
13 y∗13) = (4, 2.667, 3.333) in Figure 1 and its projection (0.677, 0.677) in Fig-

ure 1a (solid black box C). Also, unit 7 has the same behavior as unit 13. The amount of watt∗
p of

units 8, 11 and 12 is situated between their lower and upper bounds.

D.3 Section 5.3: Short-run Johansen Industry Model with Input-oriented Ca-

pacity Measures: New Proposal

Table D.3 reports the results for the SRJIM with I-oriented plant capacity. It is structured in a

similar way as Tables D.1 and D.2. The only difference between these tables is in the 5-th column:

while in Tables D.1 and D.2 this column reports the lower bound of wp, in Table D.3 it shows the

upper bound for winp
p (i.e., U inp

p ).

Analyzing the results in Table D.3, we draw the following conclusions. First, the upper bound

winp
p of all units is 2.5. This new method keeps all target points within the production possibility

set by excluding weights above the upper bound winp∗
p of 2.5. Second, the optimal amount winp∗

p of

units 3, 4 and 5 are bigger that unity and coincides with their upper bounds. The amount of winp∗
p

of unit 6, 7, 8 and 10 is situated between its lower and upper bounds. Furthermore, the amount of

winp∗
p for the remaining units 1, 2, 9, 11, 12 and 13 is unity such that these units reach their lower

bound that is smaller than their upper bound.

Based on the results of Table D.3, since U inp
13 = 2.5, hence it can be scaled up 2.5 times such

that its target point remains technologically feasible. But, since we have winp∗

13 = 1, therefore unit

13 remains unchanged at point A in Figure 1b. Note that based on the results of Table D.3, the I-

oriented target points of all units are identical with the I-oriented target point of unit 13. Therefore,
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Table D.3: Inputs and outputs target obtained by solving of model (28)

DMUp xv∗p xf∗p y∗p U inp
p winp∗

p winp∗
p xv∗p winp∗

p xf∗p winp∗
p y∗p

1 2 2 2 2.5 1 2 2 2

2 2 2 2 2.5 1 2 2 2

3 2 2 2 2.5 2.5 5 5 5

4 2 2 2 2.5 2.5 5 5 5

5 2 2 2 2.5 2.5 5 5 5

6 2 2 2 2.5 2.417 4.833 4.833 4.833

7 2 2 2 2.5 1.833 3.667 3.667 3.667

8 2 2 2 2.5 2 4 4 4

9 2 2 2 2.5 1 2 2 2

10 2 2 2 2.5 1.75 3.5 3.5 3.5

11 2 2 2 2.5 1 2 2 2

12 2 2 2 2.5 1 2 2 2

13 2 2 2 2.5 1 2 2 2

the intersection of the technology with the plane that passes through the origin and the I-oriented

target points (xv∗p , xf∗p , y∗p) of all observations are the same as illustrated in Figure 1b. The amount

of winp∗
p for the units 1, 2, 9, 11 and 12 is unity, hence these units have the same behavior as unit

13 and their targets remain unchanged at point A in Figure 1a.

The optimal amount winp∗
p of unit 3, 4 and 5 is bigger than unity and coincides with their

upper bounds. Therefore, the target point of these three units translates to point (2.5, 2.5) that is

represented by the solid black box B in Figure 1b. The amount of winp∗
p of units 6, 7, 8 and 10 is

situated between their lower and upper bounds. For example, if we focus on unit 8, since winp∗

8 = 2,

hence we must scale up point A by 2 times to obtain the target point B of unit 8 (i.e., (4, 4, 4) in

Figure B.1 and its projection (2, 2) in Figure 1b).

E Empirical Illustration: Supplementary Material

E.1 Output-oriented Short-run Johansen Industry Model: Basic Version

Table E.1 shows basic descriptive statistics for all normalised inputs and outputs defined in equation

(11) which are obtained by solving model (10). The rows of this table include two parts: first part

shows the results under convex case, and the second shows the results under non-convex case. In

both parts, we report the arithmetic averages, the standard deviation, the minima and maxima

depending on the context.

Turning to the analysis of Table E.1, we can draw several conclusions. First, the average mag-

nification of three fixed inputs are smaller and close to unity under both C and NC. Second, the

result indicates that the variable input can be magnified by at least 3.46 times under C and 3.05

times under NC, on average. Also, the range is broad: the maximum increase in variable input
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Table E.1: Descriptive Statistics of Normalised Inputs and Outputs Defined in (11)

Convex
xf∗
p1

xf
p1

xf∗
p2

xf
p2

xf∗
p3

xf
p3

xv∗
p1

xv
p1

y∗p1
yp1

y∗p2
yp2

y∗p3
yp3

Average 0.922 0.926 0.907 3.465 273.639 10.528 16.029

St. Dev. 0.126 0.074 0.138 4.691 1136.602 33.802 55.466

Min 0.477 0.636 0.396 0.425 1.000 1.000 1.000

Max 1.000 1.000 1.000 46.697 11869.221 390.978 670.947

Nonconvex

Average 0.885 0.928 0.815 3.056 211.902 21.029 8.685

St. Dev. 0.141 0.087 0.207 4.680 892.748 204.597 48.571

Min 0.450 0.660 0.323 0.844 1.000 1.000 1.000

Max 1.000 1.000 1.000 49.076 6015.026 2620.529 618.344

amounts to 46.70 times under C and 49.07 times under NC.14 Third, the results show that three

outputs can be magnified by at least 273.64, 10.53 and 16.03 times under C and 211.90, 21.03 and

8.68 times under NC, on average. There is also a great amount of variation, as indicated by the

standard deviation, and the range is broad: for example the maximum increase in the first output

amounts to 11869.22 times under C and 6015.03 times under NC.

Table E.2 shows the basic descriptive statistics for all normalised inputs and outputs obtained

by solving model (13), i.e., points (
wbv∗

p xf∗
p

xf
p

,
wbv∗

p xv∗
p

xv
p

,
wbv∗

p y∗p
yp

) corresponding to DMUp where wbv∗
p is

an optimal solution of model (13) and xf∗pn, xv∗pn and y∗pm are obtained from the relations (11). The

rows of this table include again two parts. The first part reports the results under the convex case,

and the second part reports the results under the non-convex case. In both parts, we report the

arithmetic averages, the standard deviation, the minima and maxima depending on the context.15

Table E.2: Descriptive Statistics of Normalised Inputs and Outputs Obtained by Solving Model
(13)

Convex wbv∗
p

wbv∗
p xf∗

p1

xf
p1

wbv∗
p xf∗

p2

xf
p2

wbv∗
p xf∗

p3

xf
p3

wbv∗
p xv∗

p1

xv
p1

wbv∗
p y∗p1
yp1

wbv∗
p y∗p2
yp2

wbv∗
p y∗p3
yp3

Average 0.335 0.299 0.303 0.301 1.319 151.982 2.838 4.771

St. Dev. 0.468 0.425 0.425 0.427 2.918 991.182 6.627 16.113

Min 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Max 1.000 1.000 1.000 1.000 19.322 11869.221 45.386 146.072

Nonconvex

Average 0.357 0.311 0.325 0.282 1.465 102.164 18.705 5.748

St. Dev. 0.476 0.422 0.436 0.394 4.574 586.743 204.704 48.382

Min 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Max 1.000 1.000 1.000 1.000 49.076 6015.026 2620.529 618.344

Analyzing the results in Table E.2, we can draw the following conclusions. First, the average

14Based on equation (11) we have xv∗
p =

∑K
k=1 z

p∗
k xv

k and since
∑K

k=1 z
p∗
k = 1, then min

k=1,...,K
xv
kn ≤ xv∗

pn =∑K
k=1 z

p∗
k xv

kn ≤ max
k=1,...,K

xv
kn for all n = 1, . . . , Nv. Hence, based on the information in Table 1, we find that

2.222 ≤ xv∗
p1 ≤ 242.195 for all p = 1, . . . ,K. Therefore, the optimal amount of variable inputs is always bounded

by the minimum and maximum levels of observed variable inputs in the data.
15Note that the first output is zero for 6 DMUs: hence, we do not consider these DMUs in the descriptive statistics.
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of wbv∗
k indicates that for scaling down capacity outputs and capacity variable and fixed inputs

to meet all requirements, we need on average a 0.335 scaling under C and a 0.357 scaling under

NC. Second, the minimum amount of wbv∗
p is zero, Therefore, for some units the target points are

located on the origin.

E.2 Output-oriented Short-run Johansen Industry Model: Revised version

Table E.3 is structured in a similar way as Table E.2. In this table, the basic descriptive statistics

for all normalised inputs and outputs obtained by solving model (15) are reported. The amounts

of wrv∗
p and lower bound Lrv

p are reported in the second and third columns, respectively. To see the

magnification of the fixed, variable inputs and outputs we report the ratio of their target point over

their current amount, i.e., points (
wrv∗

p xf∗
p

xf
p

,
wrv∗

p xv∗
p

xv
p

,
wrv∗

p y∗p
yp

) corresponding to DMUp where wrv∗
p is

an optimal solution of model (15) and xf∗p , xv∗p and y∗p are obtained from the relations (11), in the

fourth to tenth columns.

Table E.3: Descriptive Statistics of Normalised Inputs and Outputs Obtained by Solving Model
(15)

Convex Lrv
p wrv∗

p
wrv∗

p xf∗
p1

xf
p1

wrv∗
p xf∗

p1

xf
p1

wrv∗
p xf∗

p1

xf
p1

wrv∗
p xv∗

p1

xv
p1

wrv∗
p y∗p1
yp1

wrv∗
p y∗p2
yp2

wrv∗
p y∗p3
yp3

Average 0.934 0.934 0.863 0.864 0.846 3.309 261.448 10.323 14.839

St. Dev. 0.109 0.109 0.164 0.119 0.157 4.658 1061.042 33.828 44.615

Min 0.580 0.580 0.383 0.576 0.396 0.425 0.580 0.580 0.580

Max 1.000 1.000 1.000 1.000 1.000 46.697 10919.902 390.978 517.788

Nonconvex

Average 0.996 0.996 0.880 0.924 0.811 3.047 211.887 21.022 8.679

St. Dev. 0.026 0.026 0.141 0.088 0.206 4.679 892.751 204.598 48.571

Min 0.817 0.817 0.450 0.660 0.323 0.817 0.817 0.817 0.817

Max 1.000 1.000 1.000 1.000 1.000 49.076 6015.026 2620.529 618.344

Based on Table E.3, we draw the following conclusions. First, the minimum amount of lower

bound Lrv
p as well as wrv∗

p is 0.580 times under C and 0.817 times under NC and their maximum

amount remains 1 for both C and NC. Second, the amount of lower bound Lrv
p and wrv∗

p are

identical for all units, hence the optimal amount wrv∗
p of all units coincides with their lower bounds.

Third, since we have wrv∗
p ≤ 1, comparing with the results of Table E.1, all final target points

obtained by solving model (15) are smaller than the target points obtained from equation (11).

Fourth, comparing with the results of Table E.2, this new method puts all target points within

the production possibility set by excluding weights below the lower bound wrv∗
p of 0.580 under C

and 0.817 under NC. Fifth, comparing with the results of Table E.2, in the basic version of the

O-oriented short run Johansen Industry model the average of wbv∗
p is 0.335 under both C and NC,

while in the revised version of O-oriented short run Johansen Industry model the average of wrv∗
p

is 0.934 under C and 0.996 under NC. It means that for most units, the target points obtained

from model (13) do no longer belong to the production possibility set. Finally, the seventh column

of Table E.3 indicates that the variable inputs can be magnified by at least 3.31 times under C
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and 3.05 times under NC, on average. There is a large amount of variation in the variable inputs.

Indeed, the range is broad: the minimum changes in variable inputs amounts to 0.42 times under

C and 0.82 times under NC and the maximum increase in variable inputs amounts to 46.70 times

under C and 49.08 times under NC.

E.3 Attainable Output-oriented Short-run Johansen Industry Model

Table E.4 reports the results of the SRJIM with AO-oriented efficiency measure (23). It is structured

in a similar way as the previous Table E.3. For this empirical example, we have chosen λ̄ = 2. Thus,

we believe that an increase of the variable inputs with a factor more than 2 is implausible.

Table E.4: Descriptive Statistics of Normalised Inputs and Outputs Obtained by Solving Model
(23)

Convex Latt
p watt∗

p
watt∗

p xf∗
p1

xf
p1

watt∗
p xf∗

p2

xf
p2

watt∗
p xf∗

p3

xf
p3

watt∗
p xv∗

p1

xv
p1

watt∗
p y∗p1
yp1

watt∗
p y∗p2
yp2

watt∗
p y∗p3
yp3

Average 0.944 0.944 0.857 0.847 0.762 1.476 34.246 5.304 7.029

St. Dev. 0.105 0.105 0.166 0.124 0.206 0.518 151.191 15.470 18.207

Min 0.580 0.580 0.383 0.576 0.226 0.425 0.580 0.580 0.580

Max 1.000 1.000 1.000 1.000 1.000 2.000 1781.082 182.033 221.958

Nonconvex

Average 0.995 0.995 0.878 0.923 0.830 1.207 9.052 2.358 2.052

St. Dev. 0.033 0.033 0.168 0.110 0.238 0.324 49.919 6.221 2.494

Min 0.686 0.686 0.333 0.505 0.113 0.686 0.686 0.686 0.686

Max 1.000 1.000 1.000 1.000 1.000 1.994 610.176 62.861 19.585

We make three observations. First, the minimum amount of the lower bound Latt
p as well as

watt∗
p is 0.580 times under C and 0.686 times under NC and their maximum amount remains 1 for

both C and NC. Second, the amount of the lower bound Latt
p and watt∗

p are identical for all units,

hence the optimal amount watt∗
p of all units coincides with their lower bounds. Third, as can be seen

in the seventh column of Table E.4, the variable input can be magnified at least 1.476 times under

C and 1.207 times under NC, on average, and it can be magnified by about maximum 2 times.

E.4 Input-oriented Short-run Johansen Industry Model

Table E.5 shows basic descriptive statistics for all normalised inputs and outputs defined in equation

(27) which is obtained by solving model (26). Turning to the analysis of Table E.5, we can draw

two conclusions. First, the average of magnification of all fixed, variable inputs and outputs except

for the first output are smaller than unity under both C and NC. For the first output, there is

a great amount of variation, as indicated by the standard deviation, and the range is broad: for

example the maximum increase in the first outputs amounts to 1516.43 times under both C and

NC. Second, the fixed input and three variable inputs can be magnified by maximum 1 times under

both C and NC.
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Table E.5: Descriptive Statistics of Normalised Inputs and Outputs Defined in Relation (27)

Convex
xf∗
p1

xf
p1

xf∗
p2

xf
p2

xf∗
p3

xf
p3

xv∗
p1

xv
p1

y∗p1
yp1

y∗p2
yp2

y∗p3
yp3

Average 0.8161 0.7346 0.4852 0.1907 13.6486 0.8339 0.3732

St. Dev. 0.2062 0.1614 0.2855 0.2730 120.1295 4.8842 1.3003

Min 0.2855 0.5079 0.1479 0.0092 0.0004 0.0112 0.0032

Max 1.0000 1.0000 1.0000 1.0000 1516.4267 61.1712 15.5652

Nonconvex

Average 0.7953 0.7232 0.4738 0.2100 11.4405 0.9093 0.4244

St. Dev. 0.1967 0.1550 0.2678 0.2927 118.4416 5.9376 1.5092

Min 0.2855 0.5079 0.1479 0.0092 0.0000 0.0112 0.0031

Max 1.0000 1.0000 1.0000 1.0000 1516.4267 74.9765 15.5652

Note that the I-oriented SRJIM (28) is infeasible for this empirical application under both

convex and nonconvex cases. Thus, it is simply impossible to scale up the I-oriented capacity

targets of units such that these can generate the current aggregate output levels while respecting

the technology.
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