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Abstract.—There is still no consensus as to how to select models in Bayesian phylogenetics, and more generally in applied 
Bayesian statistics. Bayes factors are often presented as the method of choice, yet other approaches have been proposed, 
such as cross-validation or information criteria. Each of these paradigms raises specific computational challenges, but they 
also differ in their statistical meaning, being motivated by different objectives: either testing hypotheses or finding the best-
approximating model. These alternative goals entail different compromises, and as a result, Bayes factors, cross-validation, 
and information criteria may be valid for addressing different questions. Here, the question of Bayesian model selection is 
revisited, with a focus on the problem of finding the best-approximating model. Several model selection approaches were 
re-implemented, numerically assessed and compared: Bayes factors, cross-validation (CV), in its different forms (k-fold 
or leave-one-out), and the widely applicable information criterion (wAIC), which is asymptotically equivalent to leave-
one-out cross-validation (LOO-CV). Using a combination of analytical results and empirical and simulation analyses, it is 
shown that Bayes factors are unduly conservative. In contrast, CV represents a more adequate formalism for selecting the 
model returning the best approximation of the data-generating process and the most accurate estimates of the parameters 
of interest. Among alternative CV schemes, LOO-CV and its asymptotic equivalent represented by the wAIC, stand out as 
the best choices, conceptually and computationally, given that both can be simultaneously computed based on standard 
Markov chain Monte Carlo runs under the posterior distribution. [Bayes factor; cross-validation; marginal likelihood; 
model comparison; wAIC.]

Anyone who has worked on data analysis for addressing 
phylogenetic or evolutionary questions has been faced 
with the question of selecting among alternative statisti-
cal models. For a given problem, one is often faced with 
several approaches, entailing different assumptions and 
sometimes returning different estimates for the phylogeny 
or the quantity of interest. One is then left with the ques-
tion of how to interpret the differences and which model 
to favor. The question is difficult for several reasons. First, 
the models of interest typically differ in their parameter-
ization, both in structure and in dimensionality, preventing 
direct comparison of their likelihood scores and requiring 
careful formalization of how to penalize them accordingly. 
Second, on a more conceptual front, model selection can 
be motivated by different objectives, depending on the 
specific question of interest. These alternative goals entail 
different compromises and may therefore imply different 
model selection procedures.

In some cases, the goal of model selection is to test 
alternative hypotheses about the underlying mech-
anisms. A relevant example in molecular evolution is 
the problem of determining whether or not a gene is 
under positive selection, using phylogenetic codon 
models. Two alternative models are confronted, one 
that allows for sites and/or branches to evolve under 
a positive selection regime, tested against a null model 
that only allows for purifying selection (Nielsen and 
Yang 1998; Kosakovsky Pond and Frost 2005; Zhang et 
al. 2005). Another example in phylogenetics is the test 
for the monophyly of a clade. In these examples, the 

alternative models being considered are meant to be 
idealized representations of alternative possible states 
of nature. As a result, the aim is to identify the “true” 
model, that is, the model formally representing the true 
objective situation.

In a classical frequentist context, the standard approach 
to deal with such hypothesis testing problems is to use 
likelihood ratio tests, relying on chi-square asymptotics 
or on parametric (Goldman 1993) and non-parametric 
(Shimodaira 2004) approaches to approximate the dis-
tribution under the null. In a Bayesian context, hypothe-
sis testing can be addressed in two different ways. One 
approach is to compare the marginal likelihoods under 
the two models, or equivalently, to compute the Bayes 
factor, that is, the ratio of the two marginal likelihoods 
(Jeffreys 1935; Kass and Raftery 1995; Oaks et al. 2019). 
Alternatively, a fully Bayesian formalization of the prob-
lem suggests also to define a prior probability over the 
models and then to select models based on their posterior 
probabilities (Kass and Raftery 1995).

In other situations, the question is instead to select 
the model that gives the most accurate estimation or 
the best approximation for the data-generating process, 
and this, without consideration of any hypothesis that 
would be true or false. A paradigmatic example is to 
choose the degree of a polynomial regression function 
(see, e.g., Burnham and Anderson 2002). Here, the true 
regression function is not generally believed to be itself 
a polynomial, and thus there is no question of identi-
fying the true degree. Instead, the question is to find 
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the best tradeoff between the lack of flexibility of poly-
nomials of lower degrees and the increased estimation 
error entailed by a higher degree.

In phylogenetics, instances of this second version 
of model selection are often encountered. An exam-
ple is the problem of choosing between an empirical 
model of amino acid evolution such as JTT (Jones et 
al. 1992), WAG (Whelan and Goldman 2001) or LG (Le 
and Gascuel 2008), or the general time reversible (GTR) 
model. Empirical matrices are estimates of the average 
amino-acid exchange rates across a heterogeneous set 
of proteins and taxonomic groups. As a result, the bio-
chemical prior information that they encode will fit a 
specific data set of interest only approximately. If the 
data set of interest happens to be sufficiently large, re-es-
timation of the complete general time-reversible model 
may give a more accurate model than the one proposed 
by any available empirical matrix. The problem that 
model selection has to solve in this context is whether 
one can afford this parameterization or whether falling 
back onto the prior biochemical knowledge encoded 
into an empirical matrix represents a safer option. The 
answer to this question will fundamentally depend on 
data size, but also, on how well the biochemical infor-
mation encoded into currently available amino-acid 
replacement matrices generalizes to the specific data set 
of interest.

As another example, accounting for pattern hetero-
geneity across sites is usually done using mixture mod-
els (Lartillot and Philippe 2004; Pagel and Meade 2004; 
Evans and Sullivan 2012; Susko et al. 2018; Schrempf et 
al. 2020). In that context, the question of model selec-
tion is important, and non-trivial, whether for choosing 
between alternative empirical models, for determining 
the number of components, or for the sake of a more 
general assessment of alternative mixture designs. 
However, the true distribution of substitution rates or 
patterns across sites is not itself a mixture. Instead, the 
hope is just that a well-chosen mixture should give a 
reasonable approximation of the unknown true distri-
bution, which would then provide increased robustness 
for phylogenetic inference purposes. The situation is 
thus formally similar to the one described above in a 
regression context using a polynomial regression func-
tion: the point of model selection with these phyloge-
netic mixture models is not to identify the true number 
of components, but to find a good compromise between 
the lack of flexibility of model with few mixture com-
ponents, and the increased estimation error incurred 
under rich mixtures.

The general problem of finding the best approximat-
ing model, as opposed to testing hypotheses, has been 
classically formalized in different ways. On one side, 
the approaches used for hypothesis testing, namely 
likelihood ratio tests and Bayes factors, have often 
been employed in this context as well. However, it is 
not totally clear whether they represent a correct for-
malization of the question, given that there is no proper 
hypothesis to be tested. As pointed out by Akaike (1974) 
and others (Burnham and Anderson 2002; Sullivan and 

Joyce 2005), hypothesis testing is not adequately for-
mulated, in decision-theoretic terms, as a procedure of 
approximation, the two goals being intrinsically differ-
ent. In the more specific context of Bayesian inference, 
Bayes factors or model posterior probabilities have been 
recognized as appropriate only in circumstances where 
it was believed that one of the competing models was 
in fact true, and that in other circumstances, other crite-
ria may be more appropriate (Bernardo and Smith 1994; 
Konishi and Kitagawa 2007). Accordingly, approaches 
have been developed, which are more decisively fram-
ing the question in terms of finding the best approxi-
mation, without predicating on any model being true. 
Among these approaches, two main types can be iden-
tified: cross-validation (CV) and information criteria.

The idea of CV is to train the model on a subset of the 
data and then evaluate the fit of the model over another 
non-overlapping subset of the observations. The pro-
cedure is typically repeated over multiple random 
splits of the data into a training and a validation set, 
and the score is averaged over these replicates (Stone 
1974; Geisser 1975; Geisser and Eddy 1979; Zhang 1993; 
Gelfand 1996; Smyth 2000). Given its operational defi-
nition, CV thus directly estimates the predictive fit of a 
model. However, this apparent focus on the predictive 
performance does not imply that CV will be useful only 
in a context where prediction is indeed contemplated 
in practice. Perhaps a more fundamental justification is 
the following: since good prediction of future data can 
be achieved only by capturing, through the fine-tuning 
of the parameters of the model, the structural features 
of the data-generating process, the predictive fit should 
be a good indicator of estimation accuracy. By a simi-
lar argument, it can also be seen that CV automatically 
accounts for overfitting. By definition, overfitting is 
what happens when a model captures random, non-re-
producible patterns in the data. Owing to this non-re-
producibility, a model that overfits will therefore show 
a poor fit on new data obtained from the same popu-
lation. This idea can be quantitatively formalized in 
terms of the generalization gap of a model (Thomas et 
al. 2020), or optimism (Efron 1986), which is defined as 
the average drop in the apparent log-likelihood score, 
when going from the training set to the validation set. 
Altogether, more complex models will thus have more 
expressiveness for capturing structural features of the 
data-generating process, but they will also tend to have 
a wider generalization gap. CV automatically captures 
the balance between these two opposing components of 
the overall fit.

In the details, CV can be implemented in many differ-
ent ways, depending on what proportion of the data to 
set aside for validation, or how many replicates to con-
sider (see Zhang 1993, for an overview). The simplest 
and original approach is leave-one-out cross-validation 
(LOO-CV), whereby each observation is successively 
taken out of the sample and reserved for subsequent 
validation of the model, while training is done on the 
remaining data (Stone 1974). Alternatively, in k-fold 
cross-validation (k-fold CV), the data set is split into 
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k equal-sized subsets, then each subset is set aside for 
validation and the remaining k− 1 subsets are used for 
training (Breiman et al. 1984; Zhang 1993).

In all cases, direct implementation of CV is expen-
sive, owing to the total number of replicates to consider. 
A variant of k-fold CV has previously been used in a 
phylogenetic context (Lartillot et al. 2007; Lartillot and 
Philippe 2008), sometimes in combination with strict 
subsampling, that is, using training and validation sets 
that together represent a subset of the data (Pisani et al. 
2015). Strict subsampling was motivated by the need to 
reduce the computational cost. A downside, however, is 
that the models are then under a regime of data size that 
does not correspond to the effective regime in which 
subsequent inference is conducted. Yet the relative fit of 
alternative models with differing dimensions depends 
on data size, since higher-dimensional models typically 
require more data to learn their parameters.

For all these reasons, indirect approaches to CV, 
which would avoid the explicit resampling and fitting 
procedure, would be particularly useful. In this direc-
tion, and in the specific case of leave-one-out, it is in 
fact possible to get an estimate of the CV score based 
only on a standard Markov chain Monte Carlo (MCMC) 
run conditioned on the full data set (Gelfand et al. 1992; 
Chen et al. 2012; Lewis et al. 2014). This clever impor-
tance sampling approach, called cross-predictive ordi-
nates (CPOs), makes leave-one-out CV particularly 
attractive in a Bayesian context.

In a more theoretical spirit, and starting with Akaike 
(1974), a long series of information criteria have been 
proposed, based on information-theoretic consider-
ations. The fundamental idea behind these information 
criteria is to identify the model which, once trained on 
the data set of interest, induces a distribution over the 
data that is closest to the true distribution of the pop-
ulation. Mathematically, the distance between model 
and truth is measured by the information loss (i.e., the 
Kullback–Leibler divergence). Importantly, this dis-
tance is measured under the effective conditions of use 
of the model, that is, under the current data size. As a 
result, it accounts for the two different reasons why the 
model might not be so close to the true distribution in 
practice: because of model mis-specification, but also, 
because of stochastic error in parameter estimation 
due to finite sample size. This last point will critically 
depend on both the size of the data set and the model 
dimension.

Information criteria were first derived in a maximum 
likelihood context. The original Akaike Information 
Criterion (AIC, Akaike, 1974), has a particularly sim-
ple expression. However, its derivation relies on the 
assumption that the models being considered are not 
far from the true distribution. It is thus not valid under 
strong model violation, a situation often encountered in 
practice. The AIC was revisited by Takeuchi (in an orig-
inal contribution in Japanese, as reported in Konishi 
and Kitagawa 1996), who proposed the Takeuchi 
Information Criterion (TIC), which is valid even in the 
presence of strong model violation. The TIC reduces to 

the AIC when the data are indeed under the model for 
some true parameter value. Compared to the AIC, the 
TIC is slightly more involved computationally. In prac-
tice, however, the difference between TIC and AIC can 
be substantial (Konishi and Kitagawa 1996).

The TIC was then adapted to the maximum penalized 
likelihood framework, with the regularized informa-
tion criterion (RIC, Shibata 1989). A more general der-
ivation, valid for a broader range of plug-in estimators 
(including maximum likelihood, maximum penalized 
likelihood, or posterior mean Bayesian point estimate), 
was proposed, in the form of the generalized informa-
tion criterion (GIC, Konishi and Kitagawa 1996). Finally, 
the widely applicable information criterion (wAIC, 
Watanabe 2009) represents a more specific Bayesian 
adaptation, which, unlike the GIC, does not rely on a 
plug-in estimator. All of these information criteria, RIC, 
GIC, and wAIC, provide a measure of the expected pre-
dictive fit under the corresponding estimation method, 
all of which are valid even under model violation, thus 
like the TIC (and unlike the AIC). The wAIC is also 
valid under a broader class of models, such as mix-
ture models or Bayesian networks, which are singu-
lar, in the sense that they entail some redundancy (i.e., 
non-identifiability) in the mapping from parameters 
to probability distributions over the data (Watanabe 
2007). Because of their non-identifiability, such singular 
models typically have complex asymptotic properties 
that are not correctly handled by current information 
criteria. Addressing these complications is what led to 
the development of singular statistical learning theory 
(Watanabe 2001, 2009), of which the wAIC is one of the 
specific contributions.

Several other information criteria have been pro-
posed, in addition to those mentioned above. Two of 
them were explicitly meant for Bayesian inference: the 
deviance information criterion, or DIC (Spiegelhalter 
et al. 2002) and the Bayesian analog of AIC, also called 
AIC Monte Carlo (AICM) (Raftery et al. 2007; Gelman 
et al. 2014). The DIC has been somewhat controver-
sial (Celeux et al. 2006; Plummer 2008; Gelman et al. 
2014; Spiegelhalter et al. 2014). One problem is that it 
relies on the posterior mean point estimate, which is 
not easily defined for mixture models (Celeux et al. 
2006) or in a phylogenetic context. Another problem 
is that, like the AIC, the DIC assumes that the model 
is correctly specified (Spiegelhalter et al. 2002). As 
for the AICM, it was derived based on an analogy 
with the AIC, by relying on a definition of the effec-
tive number of parameters of a model based on the 
Monte Carlo variance of the log-likelihood. There are 
two problems with this derivation, however. First, 
the analogy with the AIC, which is a maximum like-
lihood criterion, fails to capture the contribution of 
the prior to the fit of a model in the Bayesian case. 
Second, just like the AIC and the DIC, the AICM does 
not account for the impact of model violation. Finally, 
the Bayesian information criterion, or BIC (Schwarz 
2006) represents one last criterion, which does not 
proceed from the same rationale as the other criteria 
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mentioned above, as it is not based on an information 
loss argument. Instead, it is meant as an asymptotic 
expression for the log of the marginal likelihood. As 
such it is more appropriate for true model identifi-
cation than for best model approximation purposes 
(Aho et al. 2014). Of note, the BIC can be strongly 
conservative even in a true model identification task 
(Vrieze 2012).

There is an intimate connection between information 
criteria based on the information loss (AIC, TIC, RIC, GIC, 
and wAIC) and CV. Information criteria are effectively 
asymptotic approximations of the expected predictive fit 
of the model trained on a data set of the original size. CV, 
on the other hand, is a direct operational estimate of the 
expected predictive fit of the model trained on a subset of 
the data. In the case of LOO-CV, for large data sets, this dif-
ference is relatively minor, as leaving out one single data 
point will have a minor impact on the training. As a result, 
LOO-CV is asymptotically equivalent to the information 
criteria of the Akaike family (Stone 1977; Watanabe 2010a), 
or equivalently, information criteria of the AIC family are 
just asymptotic expressions for the CV score, each valid 
under different specific assumptions. This result is import-
ant, as it emphasizes the operational meaning of informa-
tion criteria. Practically, it suggests simple experiments 
on empirical data, to check the range of data size under 
which this asymptotic equivalence is effective.

Altogether, there is thus by now a broad theoreti-
cal background on model selection. Several alternative 
methods have been proposed, with subtle differences 
concerning their aim or their exact regime of applica-
bility. These issues have already been discussed in the 
applied statistical literature (Burnham and Anderson 
2002; Konishi and Kitagawa 2007; Vrieze 2012; Aho et al. 
2014), yet this has not yet been fully incorporated into 
current phylogenetic practice. This is particularly appar-
ent in Bayesian phylogenetics. Thus, although it has long 
been noted that Bayes factors are conservative in model 
selection when used in combination with vague priors 
on the model-specific parameters (the so-called Jeffreys–
Lindley paradox, Lindley 1957; Jeffreys 1967), and that 
CV approaches may be more adequate for best-approxi-
mating model selection (Gelfand et al. 1992; Bernardo and 
Smith 1994; Konishi and Kitagawa 2007), Bayes factors or 
marginal likelihoods are often presented as the method 
of choice (Kass and Raftery 1995; Lartillot and Philippe 
2006; Xie et al. 2011; Oaks et al. 2019) and are widely 
used (Suchard et al. 2001; Baele et al. 2012b, 2013; Baele 
and Lemey 2013; Brown and Thomson 2017; Ronquist 
et al. 2021). The computational challenges raised by the 
numerical evaluation of marginal likelihoods (Lartillot 
and Philippe 2006; Xie et al. 2011; Baele et al. 2012a) have 
also represented a clear limitation, which has prevented 
a broader and more systematic application of this para-
digm to current empirical problems based on large data 
sets. CV was used in Bayesian phylogenetics primarily 
for computational reasons (Lartillot et al. 2007; Lartillot 
and Philippe 2008), although without any correct evalu-
ation of its numerical accuracy and its theoretical validity 

in that context. The implementation of LOO-CV offered 
by CPO appears to be attractive, and has already been 
introduced specifically in phylogenetics (Lewis et al. 
2014), but has thus far not been broadly used in this con-
text. Finally, the wAIC has never been applied to phylo-
genetic model selection.

In this work, the theoretical and methodological back-
ground just presented is utilized to revisit the question of 
Bayesian model selection in phylogenetics, with a focus 
on the question of choosing among alternative models 
of sequence evolution, and with an emphasis on identi-
fying the best approximating model, irrespective of any 
question about hypothesis testing. The statistical and 
numerical issues are both examined. On the numerical 
side, the work presented here starts from the realiza-
tion that k-fold CV, such as implemented in PhyloBayes 
(Lartillot et al. 2013), turns out to be numerically inaccu-
rate. This point is examined, and an alternative method 
is proposed, based on sequential importance sampling 
(sIS), which is similar to sequential Monte Carlo (Wang 
et al. 2016) and gives an estimate of the marginal likeli-
hood and, simultaneously, the k-fold CV scores for any k. 
This sIS approach is computationally intensive but can be 
used on data sets of relatively small size to validate and 
compare marginal likelihood and CV for their ability to 
select the model that is most accurate in parameter esti-
mation. Finally, the CPO approach to leave-one-out CV is 
re-implemented, its statistical and numerical properties 
are characterized, and its connection with the wAIC is 
explored on an empirical phylogenomic data set.

Materials and Methods

Definitions and Relations Between Alternative Bayesian 
Measures of Model Fit

In this subsection, the alternative Bayesian measures 
of model fit are formally defined. A homogeneous 
mathematical notation is introduced, so as to empha-
size the connections and the differences between them, 
leaving aside in a first step the numerical and algorith-
mic problems.

Suppose we have a data set made of n observations, 
X = (Xi)i=1...n. In the context of phylogenetic inference, 
these observations would typically be the columns of a 
multiple-sequence alignment. In the following, we will 
adopt a frequentist perspective and assume that these 
observations are independent and identically distrib-
uted (i.i.d.) from an infinite population of unknown 
distribution.

We then consider a model M parameterized by θ. In 
a Bayesian framework, this model is endowed with a 
prior p(θ) and then conditioned on data X , giving the 
posterior distribution p(θ|X):

p(θ|X) = p(X|θ) p(θ)
p(X)

,
(1)
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where

p(X) =
ˆ

p(X|θ) p(θ)dθ
(2)

is the marginal likelihood. We wish to evaluate the fit 
of the model.

Marginal Likelihoods and the Bayes Factor

The first approach is to use the marginal likelihood 
as the measure of the fit. In the following, when mul-
tiple models are compared, the dependence of the 
marginal likelihood on the specific model will be more 
explicitly noted p(X|M), for model M. Otherwise, the 
simpler notation p(X) is used. Often, the fit of a given 
model M2 is computed relatively to another model M1
, by computing the Bayes factor, defined as the ratio 
of the marginal likelihoods of the two models (Jeffreys 
1935):

BF =
p(X | M2)

p(X | M1)
.

(3)

A Bayes factor greater than 1 thus means that the 
model M2 has a higher fit, compared to M1. As a way to 
ensure a scaling consistency across all alternative mea-
sures of fit considered here, it is useful to define the per-
site log marginal likelihood:

m =
1
n
ln p(X), (4)

or, when comparing two models, the per-site log 
Bayes factor:

∆m =
1
n
lnBF =

1
n
(ln p(X | M2)− ln p(X | M1)). (5)

Bayesian Cross-Validation

An alternative to marginal likelihoods and Bayes fac-
tors is CV. As mentioned in the introduction, the general 
idea is to split the data set into two subsets, using one sub-
set (noted Xt) for training the model and then evaluating 
the fit of the model over the remaining subset (noted Xv, 
for validation). In the context of Bayesian inference, a nat-
ural procedure to implement CV is to average the valida-
tion likelihood (probability of the validation set) over the 
training posterior distribution (i.e., the distribution over 
the parameters obtained by conditioning the model on 
the training set). The resulting CV score is then log-trans-
formed and averaged over multiple random splits of the 
original data set into training and validation sets. Of note, 
other approaches have been proposed, such as comput-
ing the cross-validated likelihood on a plug-in estimate 
of the model’s parameters, typically, the posterior mean 
(Konishi and Kitagawa 1996). However, this approach is 
not applicable for singular and redundant models, such as 
mixture models (Plummer 2008).

Based on this general idea, multiple settings can be 
contemplated for implementing CV. These alternative 

settings differ in how the data set is split, how the rep-
lication procedure is defined, or whether the likelihood 
is averaged over the posterior distribution jointly for all 
observations of the validation set, or independently for 
each of them.

In k-fold CV, the data set is split into k subsets of 
equal size. Then, each subset is considered in turn as the 
validation set, while the other k− 1 subsets are pooled 
together to make the training set. There are thus k rep-
licates in total. In a variant of this approach, previously 
used in phylogenetics (Lartillot and Philippe 2008), each 
replicate is obtained independently of other replicates, 
by randomly splitting the data set into a fraction f  of 
the observations, which is set aside for validation, while 
the remaining fraction 1− f  used for training. It is thus 
close to the original version of k-fold CV, with f = 1/k, 
except that the replicates are not obtained by systematic 
rotation of the subsets. As a result, the number of rep-
licates can be arbitrary. In practice, for computational 
reasons, a small number of replicates is used, typically 
m = 10. The fraction f  is typically set to 0.1 or 0.2, or 
equivalently, k = 10 or 5. In the following, this approach 
will also be called k-fold CV, even if it does not exactly 
correspond to the original version.

To more formally describe the detailed procedures, 
assume that l = 1..L replicates are considered, each 
based on a random split of the data set into X = (Xt

l ,X
v
l ),  

and that the training and validation sets are of size q 
and r, respectively. Thus, in k-fold CV, q = (1− f )n and 
r = fn, with f = 1/k, but these definitions are more gen-
erally valid for other CV schemes.

Using these notations, a first version of k-fold CV 
score, which in the following will be called joint k-fold 
CV, consists in averaging the joint likelihood of all data 
points of the validation set over the posterior under the 
training set, that is, computing, for replicate l:

p(Xv
l |X

t
l) =

ˆ
p(Xv

l |θ) p(θ|X
t
l)dθ (6)

and then averaging the logarithm of this score over 
the replicates:

CVj =
1
r
1
L

∑
l

lnp(Xv
l |X

t
l).

(7)

The subscript in CVj  refers to the fact that the score 
is based on the joint likelihood of the validation set. 
Note also that, in this definition, the logarithmic score is 
divided by the size of the validation set. It is thus a mea-
sure of the predictive score per future observation. This 
convention will be useful for comparing the alternative 
settings introduced below, which differ in the value of r.

The definition just given corresponds to how CV 
was implemented previously in a phylogenetic con-
text (Lartillot et al. 2007; Lartillot and Philippe 2008). 
Alternatively, the posterior averaging can be done inde-
pendently for each observation of the validation set. 
Noting Ivl  the subset of 1 . . . n corresponding to the indi-
ces of the observations assigned to the validation set in 
replicate l, the site-wise CV score is thus defined as:
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CVs =
1
r
1
L

∑
l

∑
i∈Ivl

lnp(Xi|Xt
l).

(8)

Again, the score is per future observation. The site-
wise approach has recently been used in the context of 
phylogenetics (Bujaki and Rodrigue 2022).

Finally, in leave-one-out CV, each observation is taken 
in turn and set aside for validation, using the n− 1 
remaining observations to train the model. Noting X(i) 
the training set (of size n− 1) obtained by removing 
observation i, the score is defined as:

CVl =
1
n

n∑
i=1

lnp(Xi|X(i)).
(9)

The Widely Applicable (or Watanabe–Akaike) Information 
Criterion (wAIC)

As mentioned in the introduction, the idea behind 
information criteria is to assess models based on how 
close their predictive distribution (once trained on a 
current data set) is to the true distribution of the data, 
using the Kullback–Leibler divergence as a quanti-
tative measure of the deviation between model and 
truth.

More formally, let q∗ stand for the unknown true 
distribution. Then, the Bayes generalization error is 
defined as the expected Kullback–Leibler divergence 
between the true distribution and the posterior distri-
bution under the model (Watanabe 2010b):

Bg = E
ï
ln

q∗(Ynew
1 )

p(Ynew
1 | X)

ò
,

(10)

where Ynew
1  is a single new data point sampled from 

the population, X  is a (training) data set of size n, and 
the expectation is over both X  and Ynew

1 . Developing the 
logarithm gives:

Bg = E [ln q∗(Ynew
1 )]− E [ln p(Ynew

1 | X)] . (11)

The first term of this equation is the entropy of the 
empirical source. It does not depend on the model 
under consideration, and thus, choosing the model 
minimizing the generalization error Bg is equivalent 
to choosing the model maximizing the second term, 
E [ln p(Ynew

1 | X)], which is just the Bayes predictive fit, 
that is, the expected fit of the model on a new data 
point, once trained on a data set of size n.

The next step of the derivation of information criteria 
is to derive a practically usable asymptotic approxima-
tion of the predictive fit. In this direction, an asymptotic 
was derived by Watanabe (2007), leading to the wAIC, 
which takes the following form:

wAIC =
1
n

∑
i

lnEpost[ p(Xi | θ)]−
1
n

∑
i

Vpost[ln p(Xi | θ)],
(12)

where Epost is the expectation, and Vpost the variance, 
over the posterior distribution under the complete data 

set X . Of note, the convention used here differs from the 
classical convention set up by Akaike by a factor −2n. 
That is, the wAIC such as defined here is per site, and 
higher values correspond to a better prediction.

In terms of interpretation, the first term of wAIC
, which is the average per-site posterior mean like-
lihood, can be seen as the self-fit, that is, the mean fit 
of the individual data points of the training set, under 
the parameter value estimated on that training set. 
Because it uses the data twice, this measure of the fit is 
optimistic. The second term, which is the per-site pos-
terior mean variance of the log-likelihood, represents 
an estimate of this optimism bias. As such, it plays the 
same role as the dimensional penalty in AIC. Of note, 
in spite of their similar form, the two terms in Equation 
(12) are not of the same order of magnitude. Owing to 
the asymptotic concentration of the posterior, the vari-
ance of the log-likelihood at a typical site (the second 
term) decreases as a function of data size, whereas the 
mean log likelihood (the first term) remains asymptoti-
cally macroscopic. The same situation holds for the AIC 
and other classical information criteria, for which the 
dimensional penalty becomes negligibly small com-
pared to the log-likelihood term for sufficiently large 
data sets.

The Theoretical Targets of Bayesian Cross-Validation and 
the wAIC

In this subsection, the theoretical relations between 
CV (in its different versions) and the wAIC are clarified. 
Whichever setting is used, from a frequentist perspec-
tive, the primary quantity of interest takes the form of 
an expected predictive fit, which only varies among set-
tings in the size of the training and validation sets. To 
formalize this point in full generality, define:

C(q, r) =
1
r
E
[
ln p(Yr | Yq)

]
, (13)

where Yq and Yr are two independent data sets ran-
domly drawn from the population, of size q and r, 
respectively. In words, C(q, r) is the expected predictive 
fit on a data set of size r upon training on an independent 
data set of size q. By this definition, k-fold joint CV can 
be seen as an estimator of C((1− f )n, fn), with f = 1/k 
, k-fold site-wise CV as an estimator of C((1− f )n, 1), 
leave-one-out CV as an estimator of C(n− 1, 1), and the 
wAIC is an estimator of C(n, 1). The per-site log mar-
ginal likelihood is also a special case of this formula, 
obtained by training on an empty set and validating on 
the complete data set, that is, as an estimator of C(0, n).

Several points deserve discussion here. First, in all 
cases, the frequentist target C(q, r), regardless of the 
specific values of q and r, is an expectation over data 
sets randomly sampled from the empirical source. In 
contrast, all estimators are in practice computed on the 
unique data set of size n that is assumed to be available. 
However, for large n, they all become very close to their 
respective frequentist targets.
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Second, the Bayes generalization error can be written 
more compactly as:

Bg = H∗ − C(n, 1), (14)

where H∗ is the entropy of the empirical source. 
Arguably, minimizing the Bayes generalization error, 
or equivalently maximizing the Bayes predictive fit 
C(n, 1), should be considered as the most meaning-
ful target of model selection in the present context, 
since in practice, what one wants to evaluate is the 
fit of the model under the effective regime in which 
this model is used (i.e., on a data set of size n). Among 
all explicit CV schemes, LOO-CV is the one closest to 
this requirement, since it is an estimator of C(n− 1, 1), 
which differs from C(n, 1) by an amount of the order of 
1/n. For reasonably large datasize, this difference will 
be negligible. Which of LOO-CV and wAIC is best at 
approximating the Bayes generalization error is more 
subtle question. The wAIC is directly targeting C(n, 1). 
However, it entails additional approximations, which 
should vanish asymptotically but could lead to depar-
tures for data sets of intermediate size that are bigger 
than the difference between C(n, 1) and C(n− 1, 1). 
As for k-fold CV, it stands a bit further from the ideal 
target. In practice, it will tend to underestimate the 
predictive fit of all models, but more so for those mod-
els that are more parameter-rich. To what extent this 
can make a difference in practice will be explored on 
several examples below. For more details and more 
insights about these conceptual issues, and in partic-
ular about the difference between joint and site-wise 
k-fold CV, see also Supplementary material, Section 4, 
Additional theoretical results on the expected predic-
tive fit.

Finally, if the model is regular, then for large n, the 
posterior distribution becomes increasingly concen-
trated around an asymptotic parameter value θ0. In the 
specific case where the data have been produced under 
the model, then θ0 will be the true parameter value. In 
the general case where the data are from an unknown 
distribution, there is no true parameter value, in which 
case θ0 is the best approximation (in the Kullback–
Leibler metric) that the model can give for the distri-
bution induced by this empirical source. In both cases, 
for large n, all expected scores introduced above, k-fold, 
leave-one-out, marginal or wAIC, converge asymp-
totically to the expected log likelihood of a single new 
observation (Ynew

1 ) sampled from the population under 
θ0:

C(0, n) ∼ C((1− f )n, fn) ∼ C((1− f )n, 1) ∼
C(n− 1, 1) ∼ C(n, 1) ∼ E[ln p(Ynew

1 | θ0)], (15)

where ~ stands for asymptotic equivalence (that is, 
all expressions have the same limit for large n).

Monte Carlo Methods

To ease notation, in the following, it is assumed that, 
for CV, the first q data points were used for training, 
and the last r for validation, with q and r depending on 

the exact CV approach. Estimation of the marginal like-
lihood can be seen as a special case obtained by setting 
q = 0. In what follows, Xa:b denotes the set of observa-
tions (Xi)a≤i≤b. Thus, in particular, X1:q represents the 
first q observations (i.e., the training set). When q = 0
, X1:q is the empty set. The index i = 1 . . . n runs over 
data points, and t = 1 . . .T over the parameter configu-
rations sampled by MCMC.

Naive Importance Sampling (nIS) for k-Fold CV

The naive importance sampling (nIS) approach is 
used for joint and site-wise k-fold CV. In both cases, we 
assume that an MCMC chain has been run under the 
training set, yielding a sample (θt)t=1...T approximately 
under the posterior distribution θt ∼ p(θ | X1:q), for 
t = 1 . . .T.

First considering joint k-fold CV, Equation (6), being 
an expectation over the posterior distribution under the 
training set, can be approximated by the corresponding 
Monte Carlo average:

p(Xq+1:n|X1:q) � 1
T

T∑
t=1

p(Xq+1:n | θt).
(16)

Thus, nIS for joint k-fold CV runs as follows: for 
t = 1 . . .T, compute the likelihood of the validation data, 
Lt = p(Xq+1:n|θt), compute the arithmetic mean of the 
Lit’s over the T  Monte Carlo samples and log-transform.

A similar approach can be used for the site-wise ver-
sion of k-fold CV, since, for any single observation Xi  of 
the validation set:

p(Xi|X1:q) � 1
T

T∑
t=1

p(Xi | θt).
(17)

The site-wise posterior averages can be computed 
in parallel for each observation and then combined 
according to Equation (8). That is, for t = 1 . . .T, com-
pute the likelihood separately for each data point of 
the validation data, Lit = p(Xi | θt), for i = q+ 1 . . . n. In 
a second step, for all i = q+ 1 . . . n, compute the arith-
metic mean of the L’s over the T  Monte Carlo samples, 
log-transform, and finally, sum all individual contribu-
tions across the r data points of the validation set.

The Cross-Predictive Ordinate (CPO) Approach for LOO-
CV

The CPO approach (Chen et al. 2012; Lewis et al. 
2014) gives an estimate of the leave-one-out CV score. It 
relies on the following harmonic-mean identity:

1
p(Xi | X(i))

=

ˆ
1

p(Xi | θ)
p(θ | X)dθ.

(18)

This identity suggests to obtain a sample of parame-
ter configurations from the posterior distribution under 
the entire data set, θt ∼ p(θ | X1:n), for t = 1 . . .T, and 
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then approximate the expectation given by Equation 
(18) by a Monte Carlo average:

1
p(Xi | X(i))

� 1
T

T∑
t=1

1
p(Xi|θt)

.
(19)

Here also, like for site-wise k-fold CV, the Monte 
Carlo averages across all sites can be computed in par-
allel, over a single scan of the MCMC chain. Thus, for 
each t = 1 . . .T; for each i = 1 . . . n, compute the likeli-
hood of each data point separately, Lit = p(Xi | θt) for 
site i. Then, in a second step, for each site, compute the 
harmonic mean L̄i of the Lit’s over the T  Monte Carlo 
samples, log-transform and sum all individual contri-
butions across the r data points of the validation set.

As a harmonic mean estimator, CPO may be subject to 
numerical instabilities, caused by the occasional but dis-
proportionate contribution of single MCMC samples for 
which the site-specific likelihood turns out to be excep-
tionally small (and thus its inverse particularly large, in 
Equation (19)). This is conceptually the same issue as for 
the harmonic mean estimator of the marginal likelihood 
(Raftery et al. 2007), although the problem is expected to 
be less dramatic in the present case, where the harmonic 
mean is applied to the likelihood values at a single site, 
over parameter configurations sampled from the joint 
posterior distribution induced by all sites. Still, instabilities 
may occur, in particular for small data sizes or for more 
complex models. To address this point, a stabilized version 
has been proposed (Vehtari et al. 2016), which fits, for each 
i, a generalized Pareto distribution to the right tail of the 
empirical series of inverse likelihood values (20% largest 
1/Lik’s over the T Monte Carlo samples). The contribution 
of these 20% importance weights to the harmonic mean 
is then replaced by the expectation under the generalized 
Pareto distribution. As an aside, the parameter of the fit-
ted Pareto distribution, here noted κ (noted k in Vehtari et 
al. 2016), offers an additional quality check. According to 
Vehtari et al. (2016), if the value of κ̂ exceeds 0.7, indicating 
a heavy tail for the inverse likelihood values, then there 
should be some concern about the reliability of the result-
ing estimate for the corresponding site. This alternative 
approach based on Pareto smoothing was not used sys-
tematically in the present case, although it was examined 
more specifically when checking the numerical accuracy 
of LOO-CV (Results, section Asymptotics of LOO-CV and 
the wAIC, Supplementary Material, section 3, Numerical 
stability and accuracy of LOO-CV and the wAIC).

Sequential Importance Sampling (sIS) for BF and k-Fold CV

Sequential importance sampling (sIS) is a step-by-step 
version of importance sampling, which can be recruited 
for computing the marginal likelihood of the models 
of interest, but also, with some minor adaptation, the 
k-fold CV score for any k. It is based on the observa-
tion that the joint probability of all data points can be 
expressed in terms of a sequential product of the mar-
ginal likelihoods of each of the individual observations:

p(X1:n) =
n∏
i=1

p(Xi | X1:i−1),
(20)

or, on a logarithmic scale and on a per-site basis:

1
n
ln p(X1:n) =

1
n

n∑
i=1

lnp(Xi | X1:i−1).
(21)

In turn, if, for t = 1..T, θit is sampled from the par-
tial posterior based on the first i− 1 data points, that 
is, θit ∼ p(θ | X1:i−1), then an importance sampling esti-
mate of p (Xi|X1:i−1) is given by:

p(Xi | X1:i−1) �
1
T

T∑
t=1

p(Xi | θit).
(22)

This suggests to run a quasi-static MCMC in which 
data points are added sequentially, each time running 
the MCMC for a few cycles and averaging the likelihood 
of the next data point under parameter configurations 
sampled from the posterior induced by all current data 
points (Equation (22)). These individual IS estimates 
can then be log-transformed and combined additively 
(Equation (21)). This can be seen as a particular case of 
the stepping-stone approach (Fan et al. 2011), in which 
the interpolation between the prior and the posterior is 
implemented with partial data sets of increasing size, 
rather than using power posteriors.

As just mentioned, applying the sIS approach over 
the complete range of data points gives an estimate of 
the marginal likelihood. Alternatively, since:

p(Xv | Xt) =
n∏

i=q+1

p(Xi | X1:i−1),
(23)

summing only the last r data points, with r = 1/k, gives 
the joint k-fold CV score. Of note, the order of the data 
points does not matter for the full marginal likelihood, 
but it does for joint k-fold CV. In practice, for joint k-fold 
CV, the procedure is repeated over a series of L random 
permutations of the original data set, which then auto-
matically implements the L replicates, each consisting of 
a random partition of the original data set into a training 
(i = 1 . . . q) and a validation (i = q+ 1 . . . n) sets.

To formalize the practical details of the Monte Carlo 
procedure for sIS, in the following, a cycle is defined 
as a coordinated series of multiple MCMC moves that 
are applied successively on all parameter components 
of the models. A parameter configuration is saved after 
each cycle. A cycle can be arbitrary, although in prac-
tice, for sIS to give accurate estimates, a cycle should 
be sufficiently long to give a reasonably good de-cor-
relation of the MCMC between successive saved sam-
ples. The algorithm then proceeds as follows. Starting 
from a parameter configuration sampled from the prior 
θ0 ∼ p(θ), at step i = 1 . . . n:

• the MCMC is run for a short burn-in period of B cycles, 
so as to equilibrate the MCMC, and then for another 
series of T  cycles, giving T  new parameter configurations 
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θ approximately under the partial posterior distribu-
tion p(θ|X1:i−1);

• the likelihood of the next data point is calculated 
under each of these sampled parameter values, that is, 
Lit = p(Xi | θit)

• the arithmetic mean of the T  likelihood factors Lit, 
t = 1 . . .T, is calculated:

Li =
1
T

T∑
t=1

Lit.
(24)

Finally, the Li’s for i = 1 . . . n are log-transformed and 
combined such as specified by Equation (21).

In practice, the Monte Carlo procedure just described 
is not computationally efficient, and this, for two reasons. 
First, the quality of the estimate of p(Xi|X1:i−1) given by 
Equation (24) depends on the variance of the log-likeli-
hood ln p(Xi | θ) under the partial posterior p(θ|X1:i−1). 
When this variance is large, a larger number of samples 
should be used. In practice, many data points (e.g., con-
stant sites in a phylogenetic context) are characterized by 
a small variance, while a minority of data points induce 
a large variance. This suggests that the number of Monte 
Carlo samples can be tuned on a per-site basis, by first 
running a small number of cycles at step i to estimate the 
variance of the log-likelihood and then proceed with a 
number of cycles determined based on this variance esti-
mate (see Supplementary Material, section 1.2, Automatic 
tuning of the Monte Carlo on a site-specific basis for sIS).

Second, the estimate of the marginal likelihood given 
by this approach can have a large variance, which is 
mostly contributed by the first steps of the algorithm, that 
is, when sampling from a distribution close to the prior. A 
similar problem was encountered by Fan et al. (2011). The 
solution that was then proposed to reduce the variance is 
to interpolate, not between the prior and the posterior, but 
between an empirical estimate of the posterior and the true 
posterior. A similar approach is adopted here. Specifically, 
the version of the sIS algorithm described thus far is such 
that, at step i, the MCMC is leaving the following unnor-
malized density invariant:

qi(θ) = p(X1:i−1 | θ) p(θ). (25)

In the modified version, a family of reference dis-
tributions is introduced, pε(θ), for 0 ≤ ε ≤, such that, 
when ε = 0, p0(θ) is an estimate of the posterior distri-
bution obtained based on a preliminary run, while, for 
ε = 1, p1(θ) reduces to the original prior p(θ). Then, at 
step i, the MCMC is targeting the following unnormal-
ized density:

qi(θ) = p(X1:i−1 | θ)pεi(θ), (26)

where εi = min(1, 2(i − 1)/n). Thus, the family 
of reference distributions implements an interpolation 
between the empirical estimate of the posterior and the 
prior, starting under the empirical posterior distribution 
p0(θ) for i = 1, progressively moving toward the true 
prior for the first half of the data set, reaching the prior 
when i > n/2 and then staying under the prior for the 

second half of the data set. The reason why the inter-
polation is implemented only over the first half of the 
data set is that the computation of the k-fold CV score 
requires to be under the original prior for all data points 
between q+ 1 and n. Thus, with this design, all CV scores 
such that the training set is at least half of the entire data 
set can be computed based on this single run, by sum-
ming over the relevant segment, which is guaranteed to 
be contained within the second half. The details about 
the reference priors depend on the specific model and 
are given in the Supplementary material, Section 1.3, 
Reference distribution for sIS.

Monte Carlo Estimation of the wAIC

Practical estimation of the wAIC is relatively straight-
forward, in that the theoretical expectation and vari-
ance terms of Equation (12) are simply replaced by their 
Monte Carlo counterparts (empirical mean and vari-
ance over the MCMC sample).

Bias Estimation and Correction

All Monte Carlo estimators presented above entail 
a step in which the expectation of a likelihood (or its 
inverse for CPO) is replaced by an arithmetic mean 
over the corresponding MCMC sample (Equations (16) 
and (17) for nIS, Equation (18) for CPO, Equation (22) 
for sIS, and Equation (12) for the wAIC). These Monte 
Carlo estimators are unbiased on the natural scale. 
However, the resulting scores are ultimately log-trans-
formed. This transformation introduces a bias, which is 
negative for all estimators except for CPO, for which it 
is positive.

When the variance of the Monte Carlo estimator (on 
the natural scale) is small, the absolute value of the bias 
is, to a good approximation, equal to half of the variance 
of the log-likelihood values over which the average is 
performed. In turn, the variance of the log-likelihood 
values can be estimated based on two independent 
MCMC runs. This approach was implemented system-
atically for all estimators, except for k-fold joint CV, 
for which the variance is too large for this approach 
to be usable in practice. The details are given in the 
Supplementary material, section 1.4, Estimation of the 
bias for nIS, sIS and CPO.

Implementation of nIS, sIS, and CPO Under the Normal 
Model

In the case of the normal model, it is possible to sam-
ple the parameter θ directly from the posterior distri-
bution, p(θ|X1:i) for any i (see Supplementary material, 
section 5, Analytical results under the normal model). 
The Monte Carlo implemented for the normal model 
takes advantage of this property, by sampling θt,  
t = 1 . . .T (for nIS and CPO) or θit, for i = 1 . . . n and 
t = 1 . . .T (for sIS) independently from the relevant 
posterior distribution.
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Implementation of nIS, sIS, and CPO Under the 
Phylogenetic Models

In the case of phylogenetic models, the implemen-
tation of PhyloBayesMPI was taken as a starting 
point. The basic routines of MCMC sampling defining 
a cycle were left unchanged. Naive importance sam-
pling was already implemented for joint k-fold CV, as 
a simple post-analysis routine that scans the MCMC 
chain (after burn-in) and averages the likelihood 
scores over the run. This routine was augmented to 
also output the site-wise k-fold CV, according to the 
method described above. Similarly, LOO-CV and 
the wAIC are jointly computed based on another 
post-analysis routine. The sIS method requires more 
specific additions to the current implementation: 
essentially, defining and implementing the family 
of reference distributions that are necessary for the 
variance reduction approach described above and 
implementing the routines for adding sites during the 
MCMC.

Data and General Settings

For the phylogenetic analyses, two previously pub-
lished empirical data sets were considered:

• EF2: a multiple sequence alignment of elongation factor 
2 in 30 eukaryotic species (627 aligned positions), taken 
from Lartillot and Philippe (2006);

• Metazoa: a concatenation of genes (35,371 aligned posi-
tions) across 35 metazoans, along with 2 choanoflagellates 
and 12 fungi for the outgroup (Philippe et al. 2005).

The specific details, such as data randomization and 
subsampling, or the detailed settings of the Monte 
Carlo computations, are given in the Supplementary 
material, section 2, General settings across all 
experiments.

Results

Comparing Alternative Measures of Fit on a Simple 
Analytical Example

The alternative measures of model fit that are consid-
ered in this work are marginal likelihoods, or equiva-
lently Bayes factors, leave-one-out CV (LOO-CV) and 
k-fold CV (with k = 5 and based on independent ran-
domizations of the data set), the latter in two versions: 
joint and sitewise (see Methods for details). Since they 
differ in their mathematical definition, these alternative 
measures of model fit have no reason to agree quan-
titatively, or even qualitatively, on specific real cases. 
To examine this point, and before getting into phylo-
genetic examples, the conceptual and numerical issues 
are illustrated using simulations under a simple multi-
variate normal model for which analytical results are 
available. In this subsection, only the conceptual issues 
(i.e., the differences in the exact mathematical measures 

of model fit) are considered, the numerical issues being 
examined in the next subsection.

The normal model considered here is a variant of the 
model originally due to Bartlett (1957). The simulated 
data consist of a series of n real vectors of dimension 
p, noted (Xi)i=1n, which are i.i.d. from a multivariate 
normal distribution of mean θ∗ (also a p-vector) and 
of covariance matrix Σ = σ2Ip, where Ip is the identity 
matrix. The true mean θ∗ used for simulation is chosen 
to be close to, but not equal to 0. Inference on these sim-
ulated data is conducted under two models.

In both models, the variance parameter σ2 is assumed 
known. Under model M1, the vector of means θ is fixed 
a priori to some value θ0, whereas it is re-estimated 
under model M2. Importantly, the aim is to represent 
a situation where model comparison is recruited for 
selecting the best approximating model, not the true 
model. Thus, what we want to formalize is a situation 
where the fixed parameter value θ0 defined by model 
M1 is never exactly true. Instead, θ0 may be viewed as 
a reasonably good proxy for the unknown true value 
θ∗, and the question is just whether we can hope to get 
closer to θ∗ by re-estimating θ on the data set of interest, 
thus by using M2 rather than using M1. Accordingly, 
for M1, we set θ0 = 0 (which is thus different from, but 
close to, the true value θ∗). For model M2, we assume a 
normal prior on θ, of mean 0 and of covariance Σ0 = δ2Ip
. The hyper-parameter δ is chosen to be large, so as to 
implement a vague prior on θ. Of note, when δ → ∞, 
the prior becomes improper but the posterior reaches a 
well-defined limit. We wish to evaluate the relative fit of 
model M2 against M1 on a data set of size n.

Data were more specifically simulated under the 
following settings: p = 300, σ2 = 10, θ∗ = 0.1, and n 
varying from 100 to 10,000. For model M2, two val-
ues were considered for the prior width, δ2 = 10 and 
δ2 = 1000. Then, the alternative measures of model fit 
were computed: marginal likelihood (Bayes factor), 
5-fold CV, both joint and sitewise, and leave-one-out 
CV. In all cases, the exact analytical values for the 
expected score of M2 relative to M1 were computed 
(Supplementary material, section 5, Analytical results 
under the normal model). The fit curves are displayed 
in Figure 1a, as a function of data size. Finally, an ana-
lytical formula is also available for the expected root 
mean squared error under the two models (using the 
posterior mean as the point estimate under model M2
). This expected error, which is thus a frequentist risk, 
is displayed for the two models in Fig. 1b as a func-
tion of data size.

Several observations can be made from these experi-
ments. First, for small data size, model M1 is more accu-
rate than model M2. Model M1 is technically wrong (it 
assumes that θ = 0 whereas in fact θ∗ > 0), however, for 
small data size, the estimation error under model M2 is 
much larger than the deviation between θ∗ and 0, and 
thus it is indeed more reasonable to use M1 in that case. 
When n > 1000, on the other hand, M2 is more accurate 
than M1.
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Second, by comparing the two panels of Fig. 1, one 
can see that Bayes factors are clearly conservative. For 
instance, when δ2 = 10, it takes a data set of at least 8000 
observations for Bayes factors to show a preference for 

M2. Thus, between n = 1000 and n = 8000, Bayes fac-
tors are choosing a simple model that can be up to five 
times less accurate than the more complex alternative. 
This conservativeness is more pronounced under a 

Figure 1. Theoretical fit of M2 relative to M1 (a) and mean squared estimation error (b) as a function of data size, under the normal model, 
and for two alternative priors (δ2 = 10 and 1000); vertical lines indicate the values of n for which the two models have same quadratic LOO-CV 
score or same marginal likelihood.
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broader prior (i.e., for larger δ). For δ2 = 1000, the cutoff 
at which Bayes factors switch to a preference for model 
M2 is slightly above n = 10, 000. Importantly, the pos-
terior distribution is virtually the same for these two 
values of δ2, which shows that the differences in Bayes 
factors induced by the choice of the value of δ do not 
reflect any real-world difference, in terms of estima-
tion. This conservative behavior of Bayes factors under 
vague priors is known as Jeffreys–Lindley’s paradox 
(Lindley 1957; Jeffreys 1967).

In contrast, the model chosen by CV appears to be 
more directly in proportion to estimation accuracy, 
with a cutoff very close to the tipping point (n = 1000)  
at which M2 starts to be more accurate than M1. In the 
details, k-fold CV appears a bit more conservative than 
LOO-CV, and site-wise k-fold CV is more conservative 
than both joint k-fold CV and LOO-CV. Although these 
differences are minor, they illustrate one potential prob-
lem with k-fold CV, namely, that it is not measuring the 
fit under the practically relevant data size. This limita-
tion is inherent to CV, but it is minimized in the case 
of leave-one-out, for which the training size is virtually 
indistinguishable from the practically relevant data size 
for even moderate values of n.

The asymptotic behavior of the alternative measures 
of fit explored here confirms these points. Up to an 
order 1/n, the logarithm of the Bayes factor (per site, i.e., 
1/n lnBF) and the joint k-fold (∆CVt), site-wise k-fold 
(∆CVs), and leave-one-out (∆CVl) cv scores of model 
M2 relative to M1 have the following expressions:

1
n
lnBF � p

2
θ2∗
σ2 − p

2
ln n
n

+
p
2n

Ç
1− θ2∗

σ2 − 2 ln

Ç
δ2

σ2

åå

(27)

∆CVs � p
2
θ2∗
σ2 − p

2(1− f )n (28)

∆CVt � p
2
θ2∗
σ2 − p

2n
| ln(1− f )|

f (29)

∆CVl � p
2
θ2∗
σ2 − p

2n (30)

Of note, when the set-aside fraction f  is small, then 
1/1− f � 1+ f , and | ln(1− f )| � f + 1

2 f
2, such that:

∆CVs �
p
2
θ2∗
σ2 − p

2n
(1+ f ) (31)

∆CVt �
p
2
θ2∗
σ2 − p

2n

Å
1+

f
2

ã
(32)

As for the asymptotic relative risk (i.e., difference in 
quadratic error between model M1 and M2, normalized 
here by 2σ2), it is, up to terms in 1/n:

∆R =
p
2
θ2∗
σ2 − p

2n (33)

All these equations can be obtained as simple first-or-
der developments of the exact analytical expressions 

that are provided in the Supplementary material, sec-
tion 5, Analytical results under the normal model.

From these equations, several observations can be 
made. On one hand, for sufficiently large n, all terms 
except the first vanish. Since this first term is identical, 
all measures will eventually agree and will all choose 
M2 (as also shown by Equation (15)). This asymptotic 
agreement is visible in Fig. 1a. Also visible in the figure 
is the slower convergence, in ln n/n, for the log Bayes 
factor, whereas it is in 1/n for CV under all settings. Of 
note, this mirrors the penalties of the BIC and the AIC, 
respectively.

Conversely, however, for fixed n, and considering 
increasingly vague priors by letting δ go to infinity, the 
log Bayes factor is ill-behaved, since its last term goes 
to −∞. In other words, for a given data size, and for 
arbitrary large θ∗, then, provided that the prior is suf-
ficiently broad, BF will nevertheless prefer M1—and 
this, in spite of the arbitrary large risk that this might 
entail. In contrast, CV measures are all well-behaved 
and are insensitive to δ. When the set-aside fraction f  
is small, the two versions of k-fold CV are slightly more 
conservative than LOO-CV (that is, they have a slightly 
stronger penalty), the joint version being intermediate 
between LOO-CV and the site-wise version, as seen in 
Fig. 1a. Finally, LOO-CV is asymptotically equal to the 
difference in quadratic estimation error between the 
two models. In other words, asymptotically, LOO-CV 
is exactly selecting the model that gives the most accu-
rate estimate. However, this last point is not a gen-
eral result. Instead, it is a consequence of the fact that 
a spherical covariance matrix was used in the model. 
For general covariance structures, the LOO-CV score is 
asymptotically equal to another relative quadratic risk, 
computed under the metric defined by the covariance 
matrix, that is, based on the quadratic error defined as 
LΣ = t(θ − θ∗)Σ

−1(θ − θ∗). This metric essentially gives 
less weight to the errors made on those components of 
θ for which the likelihood is less informative.

A final point not quantitatively explored here but 
worth noting: when θ∗ = 0, that is, when M1 is the true 
model, all CV methods considered here are asymptoti-
cally inconsistent, in the sense that the probability of 
choosing M1 does not converge to 1 for large n (Shao 
1993). However, whenever CV chooses M2, it will then 
estimate a value for θ very close to its true value 0 (up to a 
quadratic error in 1/n), such that the error in model selec-
tion will have a negligible impact on estimation accu-
racy. In other words, CV is not formally consistent, but 
it is effectively consistent, in the sense that the selected 
model is asymptotically equivalent to the true model in 
the Kullback–Leibler metric. Conversely, any method 
trying to be asymptotically formally consistent will have 
to be more strongly penalizing than LOO-CV. However, 
since LOO-CV is asymptotically optimal in estimation 
accuracy when the true model is not M1, such a method 
will be suboptimal for selecting the best approximating 
model in that case. The two goals of model selection, 
best approximation or true model identification, are thus 
mutually incompatible (Shibata 1986).
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Numerical Approaches: Accuracy and Computational 
Considerations

In this section, the question of the numerical evalu-
ation of the alternative measures of model fit consid-
ered above is explored, again in the normal case, for 
which the numerical estimates can be directly assessed 
against the analytically available value. The Monte 
Carlo approaches that are used here are all variations 
on importance sampling: nIS for both joint and site-
wise k-fold CV, sIS for joint k-fold CV and marginal 
likelihoods, and the cross-predictive ordinate (CPO) 
approach for LOO-CV (see Methods for details). The 
results are presented in Table 1.

Naive Importance Sampling for k-Fold CV

Naive importance sampling simply consists of 
averaging the likelihood of the data points of the 
validation set (either jointly or separately, for joint 
or site-wise k-fold CV, respectively) over a sample of 
parameter configurations drawn from the posterior 
distribution under the training set. When applied to 
joint k-fold CV, nIS works well for low dimension 
(p = 10, 30, or 100) but its performance progressively 
degrades as the dimension of the model increases 
(Table 1). For large dimension p > 300, a substantial 

downward bias is observed. In the case of p = 1000, 
the bias is sufficiently strong to change the qualitative 
outcome of model selection, leading to an apparent 
CV score in favor of model M1, whereas model M2 
has mathematically a higher CV score. As expected, 
increasing the size of the Monte Carlo sample can 
improve the situation, although very moderately. 
Under the highest dimensions considered here, it 
seems that it would take samples of very large size, 
well above 106, in order to reduce the bias down to 
reasonable values.

A key statistic that is able to issue a warning about 
the reliability of the estimation in the present case is 
the effective sample size (ESS). The ESS is a function 
of the variance of the importance weights (formally 
defined in the Supplementary material, section 1, 
Additional methods on Monte Carlo), such that the 
ESS is close to 1 when a single point of the sample 
has an overwhelming contribution to the Monte Carlo 
average (essentially, the point of the sample that 
happens to have the highest likelihood). In the case 
of k-fold CV, for high dimensions, the ESS is indeed 
close to 1, indicating that the estimator is fundamen-
tally unreliable.

In contrast to what is observed for joint k-fold CV, nIS 
works well on site-wise k-fold CV (Table 1). This is due 

Table 1. Numerical estimates of the fit of M2 (relative to M1) under various criteria and numerical approaches for the normal model 
example

  Sample size Model fit (∆ log score) Bias Error

Method Dim (p) Nominal ESS True Est.a Deb.b Truec Est.d Rawe Deb.f 

k-CV (nIS) 100 104 6.49 0.02 0.017 0.018 −0.006 −0.001 0.009 0.009
100 106 24.20 0.02 0.021 0.021 −0.002 −0.000 0.004 0.004
300 104 2.26 0.08 0.010 0.011 −0.065 −0.001 0.067 0.066
300 106 2.95 0.08 0.033 0.035 −0.042 −0.001 0.043 0.042

1000 104 1.52 0.24 −0.159 −0.157 −0.394 −0.002 0.395 0.393
1000 106 1.74 0.24 −0.091 −0.090 −0.327 −0.002 0.328 0.326

k-site-CV (nIS) 100 10 9.01 0.02 0.008 0.015 −0.007 −0.006 0.012 0.010
100 103 883.02 0.02 0.015 0.015 −0.000 −0.000 0.001 0.001
300 10 7.55 0.06 0.035 0.055 −0.020 −0.020 0.026 0.017
300 103 689.11 0.06 0.055 0.056 −0.000 −0.000 0.002 0.002

1000 10 5.15 0.16 0.063 0.127 −0.101 −0.064 0.106 0.050
1000 103 302.75 0.16 0.162 0.163 −0.002 −0.001 0.004 0.004

k-CV (sIS) 100 10 9.09 0.02 0.018 0.023 −0.006 −0.006 0.008 0.006
100 103 894.89 0.02 0.023 0.023 −0.000 −0.000 0.001 0.001
300 10 7.74 0.08 0.057 0.077 −0.018 −0.020 0.020 0.010
300 103 716.99 0.08 0.075 0.075 −0.000 −0.000 0.001 0.001

1000 10 5.39 0.24 0.153 0.236 −0.082 −0.083 0.084 0.023
1000 103 341.29 0.24 0.234 0.235 −0.001 −0.001 0.003 0.002

BF (sIS) 100 10 8.91 −0.33 −0.339 −0.331 −0.008 −0.007 0.008 0.003
100 103 871.21 −0.33 −0.331 −0.331 −0.000 −0.000 0.000 0.000
300 10 7.39 −1.00 −1.020 −0.995 −0.024 −0.025 0.024 0.005
300 103 663.74 −1.00 −0.996 −0.996 −0.000 −0.000 0.001 0.001

1000 10 4.98 −3.30 −3.420 −3.310 −0.116 −0.110 0.117 0.013
1000 103 277.90 −3.30 −3.306 −3.304 −0.002 −0.002 0.002 0.001

LOO-CV (CPO) 100 10 9.18 0.03 0.035 0.030 0.005 0.005 0.006 0.003
100 103 904.89 0.03 0.030 0.030 0.000 0.000 0.000 0.000
300 10 7.93 0.09 0.103 0.086 0.018 0.017 0.019 0.006
300 103 741.22 0.09 0.085 0.085 0.000 0.000 0.001 0.001

1000 10 5.60 0.30 0.374 0.302 0.073 0.072 0.074 0.012
1000 103 376.91 0.30 0.302 0.301 0.001 0.001 0.001 0.001

Note: aestimated; bdebiased; ctrue bias (difference between estimated and true fit); destimated bias (based on the Monte Carlo variance of 
log-likelihoods, see methods); etrue error of raw estimator; ftrue error of debiased estimator.

VOL. 72

D
ow

nloaded from
 https://academ

ic.oup.com
/sysbio/article/72/3/616/7050004 by U

C
BL SC

D
 Lyon 1 user on 06 N

ovem
ber 2023



LARTILLOT—BEST APPROXIMATING MODEL IN BAYESIAN PHYLOGENETICS2023 629

to the fact that the single-observation likelihood is much 
less peaked than the joint likelihood of multiple obser-
vations. As a result, the variance of the log-likelihood 
score under the posterior distribution is small. Of note, 
for small MCMC sample size (10 samples per site), the 
total bias of the estimator in log scale can be non-neg-
ligible. On the other hand, because this bias is a sum 
of many small contributions (one for each data point), 
each of which has a large ESS and therefore a small 
variance, it can be estimated based on a linear approx-
imation relating it to the variance observed across two 
independent runs (see “Methods” section). As a result, 
it can be worth de-biasing the estimator; although not 
perfect, doing this does increase the overall accuracy, 
quite substantially (Table 1).

A Sequential Importance Sampling Approach for k-Fold CV 
and BF

As a way to overcome the limitations of naive IS, an 
alternative approach was implemented, based on sIS 
(see “Methods” section). When applied to the multivar-
iate normal problem, sIS gives a more reliable estimate 
of the joint k-fold CV score over the whole range of 
model dimensionalities considered here (Table 1). The 
estimate of the log marginal likelihood returned by sIS is 
also reliable, for both small and large dimensions. Here 
again, as in the site-wise case, the total bias of the esti-
mators can be substantial for small Monte Carlo sam-
ple size, but is itself well-estimated. This sIS approach, 
however, is expensive—even more expensive for CV 
than for marginal likelihood, since CV requires running 
sIS ideally over a large number of randomized repli-
cates of the original data set, whereas only two runs on 
the original non-randomized alignment are needed for 
the marginal likelihood.

Leave-One-Out Cross-Validation using Cross-Predictive 
Ordinates

An estimate of the LOO-CV score can be obtained 
very efficiently, based on a standard MCMC run under 
the posterior distribution, using the CPO approach 
(Gelfand et al. 1992; Chen et al. 2012; Lewis et al. 
2014). The CPO method gives accurate estimates of the 

LOO-CV score (Table 1). Here again, the bias can be 
substantial for small sample size but is well estimated.

Altogether, naive IS works well for site-wise k-fold 
CV, but does not work well for joint k-fold CV. Both joint 
k-fold CV and Bayes factors require computationally 
intensive MCMC approaches, such as sIS. Finally, the 
CPO approach represents a reliable and computation-
ally efficient method for estimating the LOO-CV score.

An Empirical Example using a Single-Gene Alignment

The various scores and numerical methods for com-
puting them were then implemented in PhyloBayes 
(Lartillot et al. 2009, 2013). In a phylogenetic context, 
it is natural to use the individual columns of the mul-
tiple sequence alignment as the individual data points. 
For the rest, the implementation of all of the methods is 
relatively straightforward, based on the already exist-
ing MCMC routines. All of these estimators were then 
jointly examined, in the context of a global comparison 
between alternative site-homogeneous and site-hetero-
geneous models on an empirical alignment (elongation 
factor 2 in 30 eukaryotic species, 627 aligned positions, 
see “Methods” section). The models under compari-
sons are the Poisson model (exchangeabilities between 
amino acids all equal to 1), the empirical matrices WAG 
(Whelan and Goldman 2001) and LG (Le and Gascuel 
2008), the GTR model and, finally, the CAT-Poisson 
model (Lartillot and Philippe 2004), in two alternative 
versions that differ in the base distribution used for the 
Dirichlet process over the amino acid frequency vec-
tors: either a uniform (fix-hyper) or a general (free-hy-
per) Dirichlet distribution whose hyperparameters are 
then also estimated. The latter is the version of the CAT 
model proposed by default by PhyloBayes. The results 
are presented in Table 2.

First, concerning k-fold CV, nIS, and sIS (which are 
two alternative estimators of the same mathematical 
quantity) agree with each other on simple models 
such as Poisson or WAG, but not for more complex 
models such as CAT-Poisson. The ESS clearly sug-
gests that, here also, as in the normal case, nIS is 
being unreliable. In one case, this leads to a different 
qualitative answer as to which model is best fitting. 
Thus, nIS gives an apparently higher joint k-fold CV 

Table 2. Numerical estimates of the fit (on a logarithmic scale and on a per-site basis) of alternative substitution models for the elongation 
factor alignment. Entries in bold correspond to top-ranking models

 5-fold CV

nIS (103) nIS ( 104 ) gsIS BF
sIS

LOO-CV
CPO

Model Fit (ESS) Fit (ESS) Fit (ESS) Fit (ESS) Fit (ESS) 

Poisson −30.89 (3.3) −30.88 (6.7) −30.87 (28.4) −31.49 (28.3) −31.35 (856.5)
WAG −28.18 (5.7) −28.17 (8.3) −28.16 (28.3) −28.82 (28.2) −28.68 (864.2)
LG −27.96 (5.1) −27.95 (6.2) −27.94 (28.3) −28.61 (28.3) −28.47 (864.5)
GTR −27.92 (1.8) −27.89 (2.3) −27.79 (31.6) −28.65 (31.8) −28.31 (675.2)
CAT-fix-hyper −27.54 (1.8) −27.51 (2.5) −27.34 (33.6) −28.10 (36.8) −27.80 (658.1)
CAT-free-hyper −27.66 (1.3) −27.59 (1.5) −27.18 (37.1) −28.04 (36.0) −27.67 (552.0)
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score for the version of the CAT model that uses a uni-
form base distribution (fix-hyper), whereas sIS says 
that the version with a general Dirichlet distribution 
(free-hyper) has a higher fit. Of note, fix-hyper is a 
constrained version of the free-hyper model, assum-
ing a uniform base distribution. The posterior esti-
mate of the base distribution under the unconstrained 
model, however, is very far from uniform: the poste-
rior mean estimate and 95% credible interval for the 
mean concentration parameter of the Dirichlet distri-
bution is β = 5.8(4.8, 6.8), whereas it is equal to 20 for 
the uniform distribution over the simplex. This gives 
an additional argument, independent from the ESS, 
suggesting that nIS is giving a wrong answer in the 
present case.

Second, concerning the alternative measures of model 
fit: k-fold CV and LOO-CV qualitatively agree with 
each other. The differences in predictive fit between 
models of widely differing dimension are slightly more 
pronounced for LOO-CV than for k-fold CV. Thus, for 
instance, the fit of CAT-Poisson (with free hyper-param-
eters) relative to LG is estimated at 0.80 according to 
LOO-CV, versus 0.76 according to k-fold CV. This mir-
rors the pattern seen previously in the normal case (Fig. 
1), namely, that k-fold CV, because it is trained on a sub-
set of the data, tends to underestimate the predictive fit 
of more complex models, relative to simpler ones. This 
effect is small, however, much smaller than the numeri-
cal error of nIS on joint k-fold CV (which gives a relative 
fit of 0.36, instead of 0.76, for CAT-Poisson versus LG).

If LOO-CV and k-fold CV qualitatively agree with 
each other, on the other hand, they differ somewhat 

from the Bayes factor, which tends to be more conserva-
tive. In one case, BF and CV give a qualitatively differ-
ent outcome, concerning the choice between GTR and 
empirical matrices: whereas all CV methods choose 
GTR, BF gives a higher score to the LG model on this 
EF2 data set.

LOO-CV, BF, and Estimation Accuracy in a Phylogenetic 
Context

The experiment above on EF2 suggests that BF can 
sometimes disagree with CV in real cases. To fur-
ther investigate this point, another experiment was 
conducted, consisting of comparing LG and GTR on 
increasingly large subsets of an empirical superma-
trix of 35 metazoan species (Philippe et al. 2005), using 
either BF or LOO-CV. The k-fold CV approach was not 
considered, owing to its computational cost. Of note, 
here as above (Table 2), the prior on the renormalized 
exchangeabilities (constrained to sum to 1) of the GTR 
model is uniform, thus uninformative.

The results of this experiment are summarized in Fig. 
2. For sufficiently large data sets, BF and LOO-CV both 
favor the GTR model over LG, while for smaller data 
sets, the LG model tends to be favored. This point is 
expected, and confirms that, for sufficiently large data 
size, there is an opportunity for getting better estimates 
of the relative exchangeabilities than those proposed by 
LG. However, if both methods agree on this dichotomy 
between small versus large data sets, they differ sub-
stantially concerning the exact cutoff, in terms of data 
size, at which they switch from LG to GTR: whereas 

Figure 2. Fit of GTR, relative to LG, as a function of data size (number of aligned positions), on empirical data (10 random jackknife 
subsamples of the metazoan data set), using BF and LOO-CV. Error bars: standard deviation across jackknife replicates.
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BF favors GTR over LG only starting from alignments 
made of more than 600 sites, LOO-CV does so for data 
sets as small as 200 sites.

The analytical results presented above under the nor-
mal model suggested that CV is more in phase with 
estimation accuracy than Bayes factors. To investigate 
whether this conclusion is also valid in the present case, 
the following simulation experiment was conducted. 
First, data were simulated under LG and under empir-
ically calibrated branch lengths and parameter values, 
using the posterior predictive formalism and with the 
metazoan alignment as a template (see Supplementary 
material, section 2, General settings across all exper-
iments). Then, model selection was implemented, 
between JTT and GTR. Importantly, the true model 
(LG) was not included in the set of models being com-
pared. This omission is meant to represent the fact that, 
in reality, the true exchange rates (or, more accurately, 
the asymptotic exchange rates, that is, the ones that 
would be eventually estimated on a sufficiently large 
alignment obtained from this empirical source) are not 
equal to any of the empirical models that are available. 
The difference between JTT and LG is thus meant as a 
representation, in our simulation experiment, of the dif-
ference between LG and the true exchange rates in the 
empirical experiment.

The Bayes factors and CV scores obtained on these 
simulated data (Fig. 3a) reproduce the pattern observed 
on the empirical data (Fig. 2) as a function of data size, 
with GTR being ultimately favored by both BF and 
LOO-CV, although for a larger cutoff data size for BF 
(700) than for LOO-CV (200). Of note, both the cutoffs 
and the absolute fit values are very similar to those 
obtained in the original empirical experiment (Fig. 2), 
suggesting that the simulation experiment is mimick-
ing the true empirical situation relatively well.

Along with model fit, the error (root-mean-square 
deviation or RMSD) in the estimation of the rela-
tive exchange rates was also quantified (Fig. 3b). In 
the case of the JTT model, this error is trivially con-
stant (quadratic deviation between JTT and LG). For 
the GTR model, this error decreases with data size. 
On sufficiently small alignments, on the other hand 
(smaller than 200), the estimation error under GTR can 
be larger than the difference between JTT and the true 
exchange rates (LG). Thus, for small alignments, we 
are in a case where the most accurate model is in fact 
JTT, and this, in spite of the fact that JTT is not the true 
model.

Finally, comparing RMSD with both BF and 
LOO-CV shows that LOO-CV provides a good pre-
dictor of which model is more accurate for parame-
ter estimation, with a cutoff at around 200 aligned 
positions. BF, in contrast, imposes a stronger penalty 
and still chooses JTT for data sets up to 600 sites, thus 
well within the regime of alignment size where GTR 
is in fact already returning a substantially more accu-
rate estimation. Transposing these observations to 
the empirical case suggests that LG is in fact not so 
good and GTR is better, even for small alignments of 

about 200 sites and 50 taxa. It also confirms the point 
already demonstrated in the normal case, namely that 
LOO-CV gives a more reliable predictor of estimation 
accuracy than BF.

Asymptotics of LOO-CV and the Widely Applicable 
Information Criterion (wAIC)

The asymptotic equivalence between the wAIC and 
LOO-CV (Watanabe 2010a) was empirically assessed 
by conducting a scaling experiment, consisting of ran-
domly subsampling a large phylogenomic data set and 
plotting the fit (LOO-CV and wAIC) of the GTR, CAT-
Poisson, and CAT-GTR models (relative to LG), as a 
function of data size (Fig. 4).

Overall, LOO-CV and the wAIC give very similar 
results. The discrepancy between them decreases as the 
data size becomes larger, giving nearly indistinguish-
able numerical estimates for the largest data sizes con-
sidered here. Even for smaller data size, the difference 
between LOO-CV and the wAIC is visible but small 
compared to the difference in fit between the models.

The numerical stability and the accuracy of the two 
estimators were investigated in more detail, using a 
combination of several approaches. First, several statis-
tics were monitored: the estimated bias and standard 
deviation, and the distribution of effective sample sizes 
(ESS) across sites. Second, the impact of MCMC sam-
ple size was assessed, by using either the full sample 
(of size T = 1000) or by thinning down to T = 100 sam-
ples from the posterior. On practical grounds, thinning 
represents a particularly attractive option in the case of 
mixture models, for which the numerical evaluation of 
the likelihood, as a sum over mixture components, is 
computationally intensive and turns out to be the limit-
ing factor for estimating the fit. Third, as an alternative 
to CPO, the Pareto smoothed importance sampling esti-
mator PS-LOO-CV (see “Methods” section and Vehtari 
et al. 2016) was also used, and the associated quality 
checks were monitored.

Both estimators, of LOO-CV and of wAIC, not only 
tend to be numerically more stable for larger MCMC 
sample size but also for larger data size (Supplementary 
Table 1). For smaller data size (n ≤ 1000), there are 
warnings about a fraction of sites with critically low ESS 
(or with high values of k̂ according to PS-LOO-CV), in 
particular for the more complex model (CAT-Poisson). 
Compared to LOO-CV, the wAIC tends to show better 
quality checks based on ESS and is less sensitive to vari-
ation in the Monte Carlo sample size.

The estimators of LOO-CV, PS-LOO-CV, and the 
wAIC were further benchmarked against an indepen-
dent approach. The scaling experiment conducted here, 
through it reliance on a large data set representing a 
proxy for the population, offers an opportunity for a 
more direct operational implementation of the ideal tar-
get of CV and the wAIC, namely, by training the model 
on an independent data set of same size, before vali-
dating it (using the site-wise CV approach) on the data 
set of interest. This approach, hereafter called two-step 
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CV, is numerically more stable and shows an opposite 
numerical bias, compared to LOO-CV. For that reason, 
it represents a useful point of comparison.

This more extensive benchmark confirms the obser-
vations made above. In the case of GTR, all estima-
tors, PS-LOO-CV, LOO-CV, wAIC, and two-step CV, 
are virtually indistinguishable over the whole range 
(Supplementary figure 1). In the case of CAT-Poisson, 
larger estimation errors are observed for small data size 
(n ≤ 1000). For large data size, on the other hand, all 
estimators return very similar estimates. PS-LOO-CV 

does not seem to bring an improvement over LOO-CV 
and shows a stronger positive bias. Finally, de-biasing 
the estimators is helpful, in particular for small MCMC 
sample size, such that LOO-CV, the wAIC, and two-
step-CV end up being closer to each other after bias cor-
rection, showing differences that are small compared 
to the difference between models and to the sampling 
variance, and this, even based on a thinned sample 
of 100 points (see Supplementary material, section 3, 
Numerical stability and accuracy of LOO-CV and the 
wAIC, for a more extended analysis).

Figure 3. Fit of GTR, relative to JTT, as a function of data size under BF and LOO-CV (a), and mean quadratic error on relative exchangeability 
estimates (b) on data simulated under the LG model (using the metazoan data set as a template). Error bars: standard deviation across four 
simulation replicates.

VOL. 72

D
ow

nloaded from
 https://academ

ic.oup.com
/sysbio/article/72/3/616/7050004 by U

C
BL SC

D
 Lyon 1 user on 06 N

ovem
ber 2023

http://dx.doi.org/10.5061/dryad


LARTILLOT—BEST APPROXIMATING MODEL IN BAYESIAN PHYLOGENETICS2023 633

Discussion

In many respects, model comparison and model 
selection in Bayesian inference is still an open prob-
lem. Conceptually, in spite of a large literature on the 
question, a general agreement on the guiding principles 
has not yet been achieved. Computationally, numerical 
inaccuracies are surfacing regularly. The present work 
attempts to bring a few points of clarification, along 
with a correction concerning the numerical accuracy 
of a previously introduced importance sampling k-fold 
CV approach. In the end, some recommendations are 
suggested for improving both reliability in model selec-
tion and computational accuracy and efficiency.

The main conclusions are as follows. As suggested pre-
viously (Gelfand et al. 1992; Bernardo and Smith 1994; 
Konishi and Kitagawa 2007), Bayes factors are inade-
quate for selecting the best-approximating model, and CV 
appears to be more adequate for this purpose. Among CV 
methods, LOO-CV stands out as the best choice, both sta-
tistically and computationally. It also has a clear asymp-
totic connection with information criteria, and more 
specifically with the widely applicable (or Watanabe–
Akaike) information criterion (wAIC Watanabe 2009). For 
large data sets, wAIC is easily implemented and offers a 
good complement to LOO-CV.

Problems with Marginal Likelihoods under Vague Priors

One first fundamental reason for the conservative 
behavior of marginal likelihoods in the present case is 

the use of a vague prior over the model-specific param-
eters. From the experiments presented here, and more 
generally on conceptual grounds, marginal likelihoods 
do not represent a meaningful measure of model fit 
under a prior that is meant to be uninformative. This is 
particularly apparent in the case of the normal model. 
Under this model, when the prior over the unknown 
mean θ is uniform over the entire real line, and thus 
improper, the posterior distribution is well-defined, 
but the marginal likelihood is infinite. This problem 
has been known for a long time (Lindley 1957; Jeffreys 
1967; Gelfand et al. 1992), and it has already been noted 
in the context of phylogenetic inference that marginal 
likelihoods and Bayes factors should not be used with 
improper priors (Baele et al. 2012b). However, making 
the prior technically proper but still effectively uninfor-
mative does not solve the problem. This is again clear 
in the case of the normal model, for which model selec-
tion based on the marginal likelihood can be made arbi-
trarily stringent against the more complex model by 
playing on its width parameter δ—and this, in spite of 
the fact that the posterior distribution is virtually unaf-
fected (Fig. 1b, compare red and green dots). This prob-
lem is also well illustrated by the comparison between 
JTT and GTR. In that case, the prior over the relative 
exchangeabilities of the GTR model is proper, but 
non-informative, and the marginal likelihood is unduly 
biased in favor of JTT.

A reasonable operational consistency requirement 
in the context of best-approximating model selec-
tion would be that the criterion used for selecting 

Figure 4. LOO-CV and wAIC estimates (de-biased) for the GTR, CAT-Poisson, and CAT-GTR models (relative to LG), as a function of 
data size (number of aligned positions), on empirical data (metazoan data set). Error bars: standard deviation across four jackknife replicates.
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models should give essentially identical scores to mod-
els that give essentially identical posterior distribu-
tions. Obviously, marginal likelihoods do not fulfill this 
consistency requirement. They are notoriously sensitive 
to the prior—and more so than the posterior distribu-
tion itself. In contrast, CV, and its asymptotic equivalent 
given by information criteria such as the wAIC, are by 
construction dependent on the prior only through the 
posterior distribution. Thus, they are guaranteed to be 
operationally consistent.

Importantly, all this does not imply that using unin-
formative priors is in itself problematic. Uninformative 
priors do have a good theoretical justification, as a 
bet-hedging strategy, whose aim is to minimize the 
worst-case error over all possible values the unknown 
parameter might have (Berger 1985). As such, they are 
generally proposed as default priors, meant to guaran-
tee some robustness in the context of automatic appli-
cation of the inference method to an arbitrary series of 
practical cases (Berger 2006). They are thus particularly 
useful as routine priors, in particular for the global 
parameters of the model, which are at the top of the 
hierarchy. However, model selection methods should 
then be compatible with these priors.

Cost of Learning versus Accuracy, and the Two Aims of 
Model Selection

Intuitively, another fundamental problem of marginal 
likelihoods in the present context is that they penalize 
models in proportion to how much information has 
been extracted from the data and how well it agrees 
with the prior (essentially, the relative width and posi-
tion of the posterior, compared to the prior), and not 
in proportion to how accurately this information has 
been learned. Yet, for selecting the best-approximating 
model, only the second point is relevant. The penalty 
induced by CV, on the other hand, is directly and exclu-
sively related to how well the fitted model predicts new 
data. As a result, it is more directly related to the accu-
racy of the end result of the estimation, leaving out any 
consideration about the total cost of parameter fitting.

The sIS formalism gives another intuition of the same 
idea. With sIS, the logarithm of the marginal likelihood 
is obtained by starting from the prior, adding sites 
incrementally, and summing up their individual contri-
butions. By the chain rule (Equation (21)), the overall 
marginal likelihood score is a sum over the total learn-
ing curve, and as a result, it penalizes models in propor-
tion to the total learning work done upon going from 
the prior to the posterior. In contrast, leave-one-out CV 
considers only the last step of the procedure and there-
fore penalizes in proportion to the marginal surprise 
of the last data point (taken as a proxy for the average 
future observation).

On the other hand, the total cost of fitting and, more 
generally, the sensitivity of the marginal likelihood to 
the prior, is potentially relevant for hypothesis testing. 
For instance, an alternative hypothesis may explain the 
data better than does the null, but only under an effect 

size that is very small compared to the typical effect 
sizes that would be a priori expected if the alternative 
were true. This a priori unlikely event will represent a 
cost that marginal likelihoods will incorporate in their 
evaluation of the fit, making them more inclined to 
select the null hypothesis in that case. Marginal likeli-
hoods will thus be useful in a hypothesis testing con-
text, although this requires careful design of the priors 
over effect sizes and over alternative hypotheses, so as 
to ensure a correct calibration of the test. This point, 
and more generally the question of Bayesian hypothe-
sis testing and its application to phylogenetic problems, 
certainly deserve further investigation.

In contrast, CV, being insensitive to the cost medi-
ated by the prior on the effect size, will often incorrectly 
choose the alternative in this hypothesis testing exam-
ple. More generally, CV will often fail at suppressing 
minor but irrelevant fluctuations and redundancies 
from the output and, as a result, will not be asymptoti-
cally consistent in true model identification (Shao 1993). 
However, this may be the price to pay, in order to obtain 
a model selection criterion that is sufficiently flexible in 
other contexts and for other purposes, such as fitting 
a sufficiently fine-grained mixture to a complex distri-
bution of random effects. The different aims of model 
selection, testing hypotheses or finding the best-ap-
proximating model, just entail different compromises 
(Shibata 1986).

Implications for Bayesian Model Averaging

Model averaging is a powerful feature of Bayesian 
inference, making it possible to consider large combi-
natorial spaces of model configurations, while integrat-
ing uncertainty over models, effect sizes, and nuisances 
(Hoeting et al. 2000; Fragoso et al. 2017). However, 
Bayesian model averaging implicitly relies on marginal 
likelihoods. Therefore, when used in combination with 
uninformative priors, it will also be biased in favor of 
the simpler models, just like marginal likelihoods and 
Bayes factors in the context of explicit model selection. 
This potentially concerns several previously intro-
duced approaches, implementing model averaging 
over nucleotide substitution models (Huelsenbeck et 
al. 2004), over the number of components of a mixture 
(Evans and Sullivan 2012), or over the number of change 
points of a non-homogeneous substitution model along 
the phylogeny (Blanquart and Lartillot 2006). In the 
cases just cited, an uninformative prior is used, not just 
for the global parameters of the model but also for the 
replicated items (the exchange rates, the mixture com-
ponents, or the effect sizes associated with each change 
point). As a result, there is a tendency to over-penalize 
the more complex model configurations, in spite of the 
fact that those might be empirically more adequate.

Over-penalization in the context of Bayesian model 
averaging can be mitigated by the use of a hierarchi-
cal prior over the replicated items. For instance, in the 
case of mixture models, using a hyper-parameterized 
prior over component-specific parameters will make 
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the model averaging approach less conservative and 
thus empirically better fitting—as can be seen when 
comparing the hierarchical (free-hyper) version of the 
CAT model with its non-hierarchical (fix-hyper) ver-
sion (Table 2). Similarly, under the change-point model, 
hyperparameterizing the distribution of the effect sizes 
upon each transition will result in a more flexible and 
empirically more adequate model.

All of these points certainly need further exploration 
and formalization. They also raise a more fundamen-
tal question. As mentioned above, marginal likelihoods 
incorporate a component corresponding to the total 
cost of fitting, or equivalently, to the total learning work 
done upon going from the prior to the posterior. The use 
of hierarchical priors in Bayesian model averaging, by 
borrowing strength across replicated items, essentially 
reduces the distance between the prior and the poste-
rior at the level of the replicated items, and thus reduces 
the cost of fitting. However, it is not clear whether it 
suppresses this cost entirely. If not, then this suggests 
that Bayesian model averaging might have a general 
tendency to be over-penalizing, compared to what 
could be achieved using more aggressive non-Bayesian 
model fitting approaches.

Cross-Validation and wAIC: Numerical Considerations

In contrast to the marginal likelihood, CV appears 
to be relatively well-behaved, if the aim is to select the 
most accurate model. However, it requires some care, 
both for defining the specific details of the CV procedure 
and for implementing a reliable numerical approach. In 
this respect, joint k-fold CV gives reasonable results, but 
it is impractical. There are numerical issues with the nIS 
approach, which can lead to a serious underestimation 
of the CV score, in particular for higher-dimensional 
models.

The joint k-fold CV approach implemented by naive 
IS has been used previously for comparing site-hetero-
geneous and site-homogeneous models (e.g., Philippe 
et al. 2011; Pisani et al. 2015; Simion et al. 2017). In most 
cases, site-heterogeneous models have been found 
as the best-fitting models. Importantly, the effective 
numerical bias of nIS is in favor of less parameter-rich 
models. This bias, combined with the fact that training 
has been conducted on data sets of size smaller than 
the working size, implies that the fit of the site-hetero-
geneous models has been underestimated thus far. As 
seen in the case of the elongation-factor data set (Table 
1), the numerical error is the primary cause of the under-
estimation, although under-training could represent a 
more substantial contribution in those cases where CV 
was applied to small subsets of the original data matrix.

The alternative numerical approach used here for 
computing the joint k-fold CV score, based on sIS, is 
much more accurate than nIS. However, it is compu-
tationally prohibitive. Of note, there are more sophis-
ticated approaches than the one recruited here for 
implementing sIS, based on particle filters (Wang et al. 
2016), which have better Monte Carlo properties than 

the naive version explored here. However, the sin-
gle-site importance sampling variance observed here 
suggests that such particle filters will require many 
particles and will thus be computationally expensive 
on data sets of realistic size. More fundamentally, joint 
k-fold CV does not bring any advantage, compared to 
its site-wise counterpart, which is numerically much 
more stable and has a better conceptual justification 
(see Supplementary material, section 4, Additional the-
oretical results on the expected predictive fit).

Leave-one-out CV stands out as the computation-
ally most efficient and most easily implemented CV 
approach. LOO-CV also has a clear asymptotic con-
nection with information criteria, and more specifically 
with wAIC. Both can be obtained from a single pass over 
the MCMC sample, and the numerical errors appear to 
be globally well-controlled. However, as it stands, the 
approach is not completely tight. Under small data size, 
and especially for complex models (here, CAT), there 
is a non-negligible fraction of sites for which the qual-
ity checks for LOO-CV issue a warning about a pos-
sible risk of numerical instabilities. Although this did 
not seem to have any meaningful impact in the pres-
ent case, nevertheless, these are by nature rare events, 
which may have been missed in the context of the lim-
ited benchmark conducted here and could have a big-
ger impact in other instances.

One possible workaround for this problem would 
be to complement LOO-CV and wAIC with site-wise 
k-fold CV whenever the fraction of sites with low-qual-
ity checks is high or if a particularly tight evaluation 
is needed. This approach would present several advan-
tages. Site-wise k-fold CV is more stable than LOO-CV. 
In addition, LOO-CV is numerically biased in favor of 
more parameter-rich models, whereas site-wise k-fold 
CV is biased in favor of less parameter-rich models, 
both for numerical reasons and because it relies on a 
smaller training data set. These opposite biases would 
make it possible to obtain tighter bounds on the rela-
tive fit of any pair of models. With k = 5, the impact 
of under-sized training should be rather moderate, and 
it would multiply the overall computational cost by a 
factor at most 6.

In the end, the following practical recommendations are 
proposed for finding the best approximating model. In the 
non-problematic cases, LOO-CV and the wAIC represent 
the most practical and reliable approaches. LOO-CV may 
require larger MCMC sample sizes (or less thinning) than 
wAIC to pass the quality checks. Thus, if the data set is 
sufficiently large (n > 5000 aligned positions), the wAIC 
could be used by default, whereas if the data set is small, 
then LOO-CV should be preferred. In terms of quality 
checks, reasonable criteria for good (reasonably good) 
estimation of the relative fit between two models would 
be that the mean ESS across sites should be at least 500 
(50) for the two models, and that the proportion of sites 
with low-quality measures (ESS 10 or k̂ > 0.7) should be 
at most 5% (10%) for the two models. When those quality 
requirements are not met, then site-wise k-fold CV could 
be used as a double-check.
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Practical Consequences and Perspectives

The arguments exposed here in favor of LOO-CV 
and wAIC over Bayes factors for model approximation 
purposes are at odds with the general perception in the 
applied Bayesian community that Bayes factors repre-
sent a general gold standard for model selection (Kass 
and Raftery 1995; Lartillot and Philippe 2006; Xie et al. 
2011; Oaks et al. 2019). This raises the question of the 
practical consequences of the use of Bayes factors thus 
far, in situations where CV might have represented a 
logically more adequate criterion. As illustrated by 
the analysis of the normal case (Fig. 1), for large data 
sets and for models that don’t differ too much in their 
dimensionality, all model selection approaches agree in 
their selection. Thus, in practice, previous results based 
on the application of Bayes factors on large data sets, 
such as multi-gene phylogenetic analyses, are unlikely 
to be qualitatively incorrect, although the case is less 
clear for smaller-scale analyses. In any case, perhaps a 
more fundamental contribution of the present analysis 
is just to facilitate Bayesian model selection, by provid-
ing simple guidelines, but also, by making the com-
putational problem of accurately estimating marginal 
likelihoods practically less relevant.

Still, one main limitation of the methods explored 
here is that they are valid only in the context of i.i.d. 
models. For more complex model design, in particu-
lar with gene-specific effects in a multi-gene analysis 
(Suchard et al. 2003; Fan et al. 2011), or when combining 
sequence data, fossil information, and phenotypic or 
life-history traits (Lartillot and Poujol 2011; Zhang et al. 
2016; Gavryushkina et al. 2017), it is less obvious how to 
define a correct model selection approach and a mean-
ingful asymptotic analysis.

Of note, this limitation also concerns information cri-
teria classically used in a maximum likelihood frame-
work. There have been many illegitimate applications 
of criteria such as AIC (or BIC) in non-i.i.d. settings. 
Modified versions of these two criteria have been pro-
posed for the specific case of partition models (Seo and 
Thorne 2018; Susko and Roger 2020). It would be useful 
to develop a wAIC equivalent of the modified AIC that 
was proposed in this context and, more generally, in the 
context of other non-i.i.d. settings.

Finally, and apart from the practical considerations, 
the asymptotic theory behind the development of 
information criteria such as wAIC also suggests an 
interesting frequentist perspective on Bayesian infer-
ence, opening to more general questions, such as effi-
ciently estimating the sampling bias, variance, error, 
and more general measures of the frequentist risk of 
the Bayesian estimators, all of which are worth fur-
ther exploration.
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Data available from the Dryad Digital Repository: 
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