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Abstract

Minimising upper bounds on the population risk or the generalisation gap has been
widely used in structural risk minimisation (SRM) – this is in particular at the core
of PAC-Bayesian learning. Despite its successes and unfailing surge of interest in
recent years, a limitation of the PAC-Bayesian framework is that most bounds in-
volve a Kullback-Leibler (KL) divergence term (or its variations), which might ex-
hibit erratic behavior and fail to capture the underlying geometric structure of the
learning problem – hence restricting its use in practical applications. As a remedy,
recent studies have attempted to replace the KL divergence in the PAC-Bayesian
bounds with the Wasserstein distance. Even though these bounds alleviated the
aforementioned issues to a certain extent, they either hold in expectation, are for
bounded losses, or are nontrivial to minimize in an SRM framework. In this work,
we contribute to this line of research and prove novel Wasserstein distance-based
PAC-Bayesian generalisation bounds for both batch learning with independent and
identically distributed (i.i.d.) data, and online learning with potentially non-i.i.d.
data. Contrary to previous art, our bounds are stronger in the sense that (i) they
hold with high probability, (ii) they apply to unbounded (potentially heavy-tailed)
losses, and (iii) they lead to optimizable training objectives that can be used in
SRM. As a result we derive novel Wasserstein-based PAC-Bayesian learning algo-
rithms and we illustrate their empirical advantage on a variety of experiments.

1 Introduction

Understanding generalisation is one of the main challenges in statistical learning theory, and even
more so in modern machine learning applications. Typically, a learning problem is described by a
tuple (H,Z, ℓ) consisting of a hypothesis (or predictor) spaceH, a data space Z , and a loss function
ℓ : H × Z → R. The goal is to estimate the population risk of a given hypothesis h, defined as
Rµ(h) = Ez∼µ[ℓ(h, z)], where µ denotes the unknown data distribution over Z .

As µ is not known, in practice, a hypothesis h is usually built by (approximately) minimising the

empirical risk, given by R̂S(h) =
1
m

∑m
i=1 ℓ(h, zi), where S = {zi ∈ Z}mi=1 is a dataset of m data

points, independent and identically distributed (i.i.d.) from µ. We define the generalisation gap of a

hypothesis h as R̂S(h)− Rµ(h).
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Developing upper bounds on the generalisation gap, i.e., generalisation bounds has been a long-
standing topic in statistical learning. While a plethora of techniques have been introduced, the
PAC-Bayesian framework has gained significant traction over the past two decades to provide non-
vacuous generalisation guarantees for complex structures such as neural networks during the train-
ing phase (see DR17, PORPH+21, PRSS21, among others). In these works, the bounds are also
used to derive learning algorithms by minimising the right-hand side of a given bound. Beyond
neural networks, the flexibility of PAC-Bayes learning makes it a useful toolbox to derive both
theoretical results and practical algorithms in various learning fields such as reinforcement learn-
ing [FP10], online learning [HG22], multi-armed bandits [SLST+11, SLCB+12, SAC23], meta-
learning [AM18, FM21, RFJK21, RJFK22, DCL+21] to name but a few. The PAC-Bayesian bounds
focus on a randomised setting where the hypothesis is drawn from a data-dependent distribution
ρ ∈ M(H), where M(H) denotes the set of probability distributions defined on H. A classical
PAC-Bayesian result is [Mau04, Theorem 5] (the so-called McAllester bound), which states that,
with probability at least 1− δ, for any posterior distribution ρ ∈ M(H),

E
h∼ρ

[

Rµ(h)− R̂S(h)
]

≤

√

KL(ρ‖π) + ln 2
√
m

δ

2m
,

where π ∈M(H) is any data-free distribution and KL denotes the Kullback-Leibler divergence. In
analogy with Bayesian statistics, π is often called the prior, and ρ is called the posterior - we refer
to [Gue19] for a discussion on these terms.

While PAC-Bayesian bounds remain nowadays of the utmost interest to explain generalisation in var-
ious learning problems [LGGL19, MGG19, NGG20, MGW20, BG21, HGRS21, ZVM+21, BG22b,
BG22a, BZG22, CSDG22, LFK+22, FRKP22, BG23, SAC23, RACA23], they mostly rely on the
KL divergence or variants which causes two main limitations: (i) as illustrated in the generative
modeling literature, the KL divergence does not incorporate the underlying geometry or topology
of the data space Z , hence can behave in an erratic way [ACB17], (ii) the KL divergence and its
variants require the posterior ρ to be absolutely continuous with respect to the prior π. However,
recent studies [CDE+21] have shown that, in stochastic optimisation, the distribution of the iterates,
which is the natural choice for the posterior, can converge to a singular distribution, which does not
admit a density with respect to the Lebesgue measure. Moreover, the structure of the singularity
(i.e., the fractal dimension of ρ) depends on the data sample S [CDE+21]. Hence, in such a case, it
would not be possible to find a suitable prior π that can dominate ρ for almost every S ∼ µm, which
will trivially make KL(ρ‖π) = +∞ and the generalisation bound vacuous.

Some works have focused on replacing the Kullback-Leibler divergence with more general diver-
gences in PAC-Bayes [AG18, OH21, PWG22], although the problems arising from the presence of
the KL divergence in the generalisation bounds are actually not specific to PAC-Bayes: information-
theoretic bounds [GMGA17, XR17, RZ20] also suffer from similar issues as they are based on a
mutual information term, which is the KL divergence between two distributions. In this context,
as a remedy to these issues introduced by the KL divergence, [ZLT18, WDFC19, GBTS21, LN22]
proved analogous bounds that are based on the Wasserstein distance, which arises from the theory
of optimal transport [Mon81]. As the Wasserstein distance inherits the underlying geometry of the
data space and does not require absolute continuity, it circumvents the problems introduced by the
KL divergence. Yet, these bounds hold only in expectation, i.e., none of these bounds is holding
with high probability over the random choice of the learning sample S ∼ µm.

In the context of PAC-Bayesian learning, the recent works [AEMM22, CL21] incorporated Wasser-
stein distances as a complexity measure and proved generalisation bounds based on the Wasserstein
distance. More precisely, [AEMM22] proved a high-probability generic PAC-Bayesian bound for
bounded losses depending on an integral probability metric [Mü97], which contains the Wasserstein
distance as a special case. On the other hand, [CL21] exploited PAC-Bayesian tools to obtain learn-
ing strategies with their associated regret bounds based on the Wasserstein distance for the online
learning setting while requiring a finite hypothesis space and do not deal with generalisation.

Contributions. The theoretical understanding of the high-probability generalisation bounds based
on the Wasserstein distance is still limited. The aim of this paper is not only to prove generalisation
bounds (for different learning settings) based on the optimal transport theory but also to propose new
learning algorithms derived from our theoretical results.
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(i) Using the supermartingale toolbox introduced in [HG23a, CWR23], we prove in Sec-
tion 3.1, novel PAC-Bayesian bounds based on the Wasserstein distance for i.i.d. data.
While [AEMM22] proposed a McAllester-like bound for bounded losses, we propose
a Catoni-like bound (see e.g., ARC16, Theorem 4.1) valid for heavy-tailed losses with
bounded order 2 moments. This assumption is less restrictive than assuming subgaussian
or bounded losses, which are at the core of many PAC-Bayes results. This assumption also
covers distributions beyond subgaussian or subexponential ones (e.g., gamma distributions
with a scale smaller than 1, which have an infinite exponential moment).

(ii) We provide in Section 3.2 the first generalisation bounds based on Wasserstein distances
for the online PAC-Bayes framework of [HG22]. Our results are, again, Catoni-like bounds
and hold for heavy-tailed losses with bounded order 2 moments. Previous work [CL21]
already provided online strategies mixing PAC-Bayes and Wasserstein distances. However,
their contributions focus on the best deterministic strategy, regularised by a Wasserstein
distance, with respect to the deterministic notion of regret. Our results differ significantly
as we provide the best-regularised strategy (still in the sense of a Wasserstein term) with
respect to the notion of generalisation, which is new.

(iii) As our bounds are linear with respect to Wasserstein terms (contrary to those of AEMM22),
they are well suited for optimisation procedures. Thus, we propose the first PAC-Bayesian
learning algorithms based on Wasserstein distances instead of KL divergences. For the first
time, we design PAC-Bayes algorithms able to output deterministic predictors (instead of
distributions over all H) designed from deterministic priors. This is due to the ability of
the Wasserstein distance to measure the discrepancy between Dirac distributions. We then
instantiate those algorithms in Section 4 on various datasets, paving the way to promising
practical developments of PAC-Bayes learning.

To sum up, we highlight two benefits of PAC-Bayes learning with Wasserstein distance. First, it
ships with sound theoretical results exploiting the geometry of the predictor space, holding for
heavy-tailed losses. Such a weak assumption on the loss extends the usefulness of PAC-Bayes with
Wasserstein distances to a wide range of learning problems, encompassing bounded losses. Second,
it allows us to consider deterministic algorithms (i.e., sampling from Dirac measures) designed with
respect to the notion of generalisation: we showcase their performance in our experiments.

Outline. Section 2 describes our framework and background, Section 3 contains our new theoret-
ical results and Section 4 gathers our experiments. Appendix A gathers supplementary discussion,
Appendix B contains all proofs of our claims, and Appendix C provides insights into our practical
results as well as additional experiments.

2 Our framework

Framework. We consider a Polish predictor space H equipped with a distance d and a σ-algebra
ΣH, a data space Z , and a loss function ℓ : H × Z → R. In this work, we consider Lipschitz
functions with respect to d. We also associate a filtration (Fi)i≥1 adapted to our data (zi)i=1,...,m,
and we assume that the dataset S follows the distributionD. In PAC-Bayes learning, we construct a
data-driven posterior distribution ρ ∈ M(H) with respect to a prior distribution π.

Definitions. For all i, we denote by Ei[·] the conditional expectation E[ · | Fi]. In this work, we
consider data-dependent priors. A stochastic kernel is a mapping π : ∪∞m=1Zm × ΣH → [0, 1]
where (i) for any B ∈ ΣH, the function S 7→ π(S, B) is measurable, (ii) for any dataset S, the
function B 7→ π(S, B) is a probability measure overH.

In what follows, we consider two different learning paradigms: batch learning, where the dataset is
directly available, and online learning, where data streams arrive sequentially.

Batch setting. We assume the dataset S to be i.i.d., so there exists a distribution µ over Z such
that D = µm. We then define, for a given h ∈ H, the risk to be Rµ := Ez∼µ[ℓ(h, z)] and its

empirical counterpart R̂S := 1
m

∑m
i=1 ℓ(h, zi). Our results aim to bound the expected generalisation

gap defined by Eh∼ρ[Rµ(h) − R̂S(h)]. We assume that the dataset S is split into K disjoint sets
S1, . . . ,SK . We consider K stochastic kernels π1, . . . , πK such that for any S, the distribution
πi(S, .) does not depend on Si.
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Online setting. We adapt the online PAC-Bayes framework of [HG22]. We assume that we have
access to a stream of data S = (zi)i=1,...,m, arriving sequentially, with no assumption on D. In
online PAC-Bayes, the goal is to define a posterior sequence (ρi)i≥1 from a prior sequence (πi)i≥1,
which can be data-dependent. We define an online predictive sequence (πi)i=1···m satisfying: (i)
for all i and dataset S, the distribution πi(S, .) is Fi−1 measurable and (ii) there exists π0 such that
for all i ≥ 1, we have πi(S, .) ≫ π0. This last condition covers, in particular, the case where H is
an Euclidean space and for any i, the distribution πi,S is a Dirac mass. All of those measures are
uniformly continuous with respect to any Gaussian distribution.

Wasserstein distance. In this paper, we focus on the Wasserstein distance of order 1 (a.k.a., Earth
Mover’s distance) introduced by [Kan60] in the optimal transport literature. Given a distance d :
A×A → R and a Polish space (A, d), for any probability measures α and β onA, the Wasserstein
distance is defined by

W(α, β) := inf
γ∈Γ(α,β)

{

E
(a,b)∼γ

d(a, b)

}

, (1)

where Γ(α, β) is the set of joint probability measures γ ∈ M(A2) such that the marginals are α
and β. The Wasserstein distance aims to find the probability measure γ ∈ M(A2) minimising the
expected cost E(a,b)∼γ d(a, b). We refer the reader to [Vil09, PC19] for an introduction to optimal
transport.

3 Wasserstein-based PAC-Bayesian generalisation bounds

We present novel high-probability PAC-Bayesian bounds involving Wasserstein distances instead
of the classical Kullback-Leibler divergence. Our bounds hold for heavy-tailed losses (instead of
classical subgaussian and subexponential assumptions), extending the remits of [AEMM22, Theo-
rem 11]. We exploit the supermartingale toolbox, recently introduced in PAC-Bayes framework by
[HG23a, CWR23, JJKO23], to derive bounds for both batch learning (Theorems 1 and 2) and online
learning (Theorems 3 and 4).

3.1 PAC-Bayes for batch learning with i.i.d. data

In this section, we use the batch setting described in Section 2. We state our first result, holding for
heavy-tailed losses admitting order 2 moments. Such an assumption is in line, for instance, with
reinforcement learning with heavy-tailed reward (see, e.g., LZ11, LWHZ19, ZS21).

Theorem 1. We assume the loss ℓ to be L-Lipschitz. Then, for any δ ∈ (0, 1], for any sequence of
positive scalar (λi)i∈{1,...,K}, with probability at least 1− δ over the sample S, the following holds

for the distributions πi,S := πi(S, .) and for any ρ ∈M(H):

E
h∼ρ

[

Rµ(h)− R̂S(h)
]

≤
K
∑

i=1

2|Si|L
m

W(ρ, πi,S) +
1

m

K
∑

i=1

ln
(

K
δ

)

λi
+

λi

2

(

E
h∼πi,S

[

V̂|Si|(h) + V|Si|(h)
]

)

,

where πi,S does not depend on Si. Also, for any i, |Si|, we have V̂|Si|(h) =
∑

z∈Si
(ℓ(h, z)−Rµ(h))

2
and V|Si|(h) = ESi

[

V̂|Si|(h)
]

.

The proof is deferred to Appendix B.1. While Theorem 1 holds for losses taking values in R, many
learning problems rely in practice on more constrained losses. This loss can be bounded as in the
case of, e.g., supervised learning or the multi-armed bandit problem [Sli19], or simply non-negative
as in regression problems involving the quadratic loss (studied, for instance, in Cat16, CG17). Using
again the supermartingale toolbox, we prove in Theorem 2 a tighter bound holding for heavy-tailed
non-negative losses.

Theorem 2. We assume our loss ℓ to be non-negative and L-Lipschitz. We also assume that, for any
1 ≤ i ≤ K , for any datasetS, we have Eh∼πi(.,S),z∼µ

[

ℓ(h, z)2
]

≤ 1 (bounded order 2 moments
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for priors). Then, for any δ ∈ (0, 1], with probability at least 1− δ over the sample S, the following
holds for the distributions πi,S := πi(S, .) and for any ρ ∈ M(H):

E
h∼ρ

[

Rµ(h)− R̂S(h)
]

≤
K
∑

i=1

2|Si|L
m

W(ρ, πi,S) +
K
∑

i=1

√

2|Si| ln K
δ

m2
,

where πi,S does not depend on Si.

Note that when the loss function takes values in [0, 1], an alternative strategy allows tightening the
last term of the bound by a factor 1/2. This result is rigorously stated in Theorem 6 of Appendix B.3.

High-level ideas of the proofs. Theorems 1 and 2 are structured around two tools. First, we exploit
the Kantorovich-Rubinstein duality [Vil09, Remark 6.5] to replace the change of measure inequal-
ity [Csi75, DV76]; this allows us to consider a Wasserstein distance instead of a KL term. Then,
we exploit the supermartingales used in [HG23a, CWR23] alongside Ville’s inequality (instead of
Markov’s one) to obtain a high probability bound holding for heavy-tailed losses. Combining those
techniques provides our PAC-Bayesian bounds.

Analysis of our bounds. Our results hold for Lipschitz losses and allow us to consider heavy-tailed
losses with bounded order 2 moments. While such an assumption on the loss is more restrictive
than in classical PAC-Bayes, allowing heavy-tailed losses is strictly less restrictive. While Theo-
rem 1 is our most general statement, Theorem 2 allows recovering a tighter result (without empirical
variance terms) for non-negative heavy-tailed losses. An important point is that the variance terms
are considered with respect to the prior distributions πi,S and not ρ as in [HG23a, CWR23]. This is
crucial as these papers rely on the implicit assumption of order 2 moments, holding uniformly for all
ρ ∈M(H), while we only require this assumption for the prior distributions (πi,S)i=1,...,K . Such an
assumption is in line with the PAC-Bayesian literature, which often relies on bounding an averaged
quantity with respect to the prior. This strength is a consequence of the Kantorovich-Rubinstein
duality. To illustrate this, consider i.i.d. data with distribution µ admitting a finite variance bounded
by V and the loss ℓ(h, z) = |h − z| where both h and z lie in the real axis. Notice that in this
particular case, we can imagine that z is a data point and h is a hypothesis outputting the same scalar
for all data. To satisfy the assumption of Theorem 2, it is enough, by Cauchy Schwarz, to satisfy
Eh∼πi,S ,z∼S [ℓ(h, z)2] ≤ E[h2]+2V E[|h|]+V 2 ≤ 1 for all πi,S . On the contrary, [HG23a, CWR23]
would require this condition to hold for all ρ, which is more restrictive. Finally, an important point
is that our bound allows us to consider Dirac distributions with disjoint support as priors and poste-
riors. On the contrary, KL divergence forces us to consider a non-Dirac prior for our bound to be
non-vacuous. This allows us to retrieve a uniform-convergence bound described in Corollary 7.

Role of data-dependent priors. Theorems 1 and 2 allow the use of prior distributions depending
possibly on a fraction of data. Such a dependency is crucial to control our sum of Wasserstein terms
as we do not have an explicit convergence rate. For instance, for a fixed K , consider a compact

predictor space H, a bounded loss and the Gibbs posterior defined as dρ(h) ∝ exp
(

−λR̂S(h)
)

dh

where λ > 0. Also define for any i and S, the distribution dπi,S(h) ∝ exp
(

−λRS/Si
(h)
)

dh. Then,

by the law of large numbers, when m goes to infinity, for any h, both RS(h) and (RS/Si
(h))i=1,...,m

converge to Rµ(h). This ensures, alongside with the dominated convergence theorem, that for any i,
the Wasserstein distance W(ρ, πi,S) goes to zero as m goes to infinity.

Comparison with the literature. [AEMM22, Theorem 11] establishes a PAC-Bayes bound with
Wasserstein distance valid for bounded losses being Lipschitz with high probability. While we
circumvent the first assumption, the second one is less restrictive than actual Lipschitzness and can
also be used in our setting. Also [AEMM22, Theorem 12] proposes an explicit convergence for finite
predictor classes. We show in Appendix A that we are also able to recover such a convergence.

Towards new PAC-Bayesian algorithms. From Theorem 2, we derive a new PAC-Bayesian algo-
rithm for Lipschitz non-negative losses:

argmin
ρ∈M(H)

E
h∼ρ

[

R̂S(h)
]

+

K
∑

i=1

2|Si|L
m

W(ρ, πi,S). (2)

Equation (2) uses Wasserstein distances as regularisers and allows the use of multiple priors. We
compare ourselves to the classical PAC-Bayes algorithm derived from [Cat07, Theorem 1.2.6]
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(which leads to Gibbs posteriors):

argmin
ρ∈M(H)

E
h∼ρ

[

R̂S(h)
]

+
KL(ρ, π)

λ
. (3)

Considering a Wasserstein distance in Equation (2) makes our algorithm more flexible than in Equa-
tion (3), the KL divergence implies absolute continuity w.r.t. the prior π. Such an assumption is not
required to use Equation (2) and covers the case of prior Dirac distributions. Finally, Equation (2)
relies on a fixed value K whose value is discussed below.

Role of K . We study the cases K = 1,
√
m, and m in Theorem 2. We refer to Appendix A for

a detailed treatment. First of all, when K = 1, we recover a classical batch learning setting where
all data are collected at once. In this case, we have a single Wasserstein with no convergence rate

coupled with a statistical ersatz of
√

ln(1/δ)/m. However, similarly to [AEMM22, Theorem 12], in
the case of a finite predictor class, we are able to recover an explicit convergence rate. The case
K =

√
m provides a tradeoff between the number of points required to have good data-dependent

priors (which may lead to a small
∑

√
m

i=1 W(ρ, πi)) and the number of sets required to have an explicit
convergence rate. Finally, the case K = m leads to a vacuous bound as we have the incompressible

term
√

ln (m/δ), which makes the bound vacuous for large values of m. This means that the batch
setting is not fitted to deal with a data stream arriving sequentially. To mitigate that weakness, we
propose in Section 3.2 the first online PAC-Bayes bounds with Wasserstein distances.

3.2 Wasserstein-based generalisation bounds for online learning

Here, we use the online setting described in Section 2 and derive the first online PAC-Bayes bounds
involving Wasserstein distances in Theorems 3 and 4. Online PAC-Bayes bounds are meant to derive
online counterparts of classical PAC-Bayesian algorithms [HG22], where the KL-divergence acts as
a regulariser. We show in Theorems 3 and 4 that it is possible to consider online PAC-Bayesian
algorithms where the regulariser is a Wasserstein distance, which allows us to optimise on measure
spaces without a restriction of absolute continuity.

Theorem 3. We assume our loss ℓ to be L-Lipschitz. Then, for any δ ∈ (0, 1], with probability at
least 1− δ over the sample S, the following holds for the distributions πi,S := πi(S, .) and for any
sequence (ρi)i=1···m ∈M(H)m:

m
∑

i=1

E
hi∼ρi

[

E[ℓ(hi, zi) | Fi−1]− ℓ(hi, zi)
]

≤ 2L

m
∑

i=1

W(ρi, πi,S)

+
λ

2

m
∑

i=1

E
hi∼πi,S

[

V̂i(hi, zi) + Vi(hi)
]

+
ln(1/δ)

λ
,

where for all i, V̂i(hi, zi) = (ℓ(hi, zi) − Ei−1[ℓ(hi, zi)])
2 is the conditional empirical variance at

time i and Vi(hi) = Ei−1[V̂ (hi, zi)] is the true conditional variance.

The proof is deferred to Appendix B.4. We also provide the following bound, being an online
analogous of Theorem 2, valid for non-negative heavy-tailed losses.

Theorem 4. We assume our loss ℓ to be non-negative and L-Lipschitz. We also assume that, for any
i,S, Eh∼πi(.,S)

[

Ei−1[ℓ(h, zi)
2]
]

≤ 1 (bounded conditional order 2 moments for priors). Then, for

any δ ∈ (0, 1], with probability at least 1−δ over the sample S, any online predictive sequence (used
as priors) (πi)i≥1, we have with probability at least 1 − δ over the sample S ∼ µ, the following,
holding for the data-dependent measures πi,S := πi(S, .) and any posterior sequence (ρi)i≥1:

1

m

m
∑

i=1

E
hi∼ρi

[

E[ℓ(hi, zi) | Fi−1]− ℓ(hi, zi)
]

≤ 2L

m

m
∑

i=1

W(ρi, πi,S) +

√

2 ln
(

1
δ

)

m
.

The proof is deferred to Appendix B.5.

Analysis of our bounds. Theorems 3 and 4 are, to our knowledge, the first results involving Wasser-
stein distances for online PAC-Bayes learning. They are the online counterpart of Theorems 1 and 2,
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and the discussion of Section 3.1 about the involved assumptions also apply here. The sum of Wasser-
stein distances involved here is a consequence of the online setting and must grow sublinearly for the
bound to be tight. For instance, when (ρi = δhi

)i≥1 is the output of an online algorithm outputting
Dirac measures and πi,S = ρi−1, the sum of Wasserstein is exactly

∑m
i=1 d(hi, hi−1). This sum

has to be sublinear for the bound to be non-vacuous, and the tightness depends on the considered
learning problem. An analogous of this sum can be found in dynamic online learning [Zin03] where
similar sums appear as path lengths to evaluate the complexity of the problem.

Comparison with literature. We compare our results to existing PAC-Bayes bounds for martin-
gales of [SLCB+12]. [SLCB+12, Theorem 4] is a PAC-Bayes bound for martingales, which controls
an average of martingales, similar to our Theorem 1. Under a boundedness assumption, they recover
a McAllester-typed bound, while Theorem 1 is more of a Catoni-typed result. Also, [SLCB+12, The-
orem 7] is a Catoni-typed bound involving a conditional variance, similar to our Theorem 4. They
require to bound uniformly the variance on all the predictor sets, while we only assume averaged
variance with respect to priors, which is what we required to perform Theorem 4.

A new online algorithm. [HG22] derived from their main theorem, an online counterpart of Equa-
tion (3), proving it comes with guarantees. Similarly, we exploit Theorem 4 to derive the online
counterpart of Equation (2), from the data-free initialisation ρ1

∀i ≥ 1, ρi ∈ argmin
ρ∈M(H)

E
h∼ρ

[ℓ(hi, zi)] + 2LW(ρ, πi,S). (4)

We highlight the merits of the algorithm defined by Equation (4), alongside with the one from
Equation (2), in Section 4.

4 Learning via Wasserstein regularisation

Theorems 2 and 4 are designed to be informative on the generalisation ability of a single hy-
pothesis even when Dirac distributions are considered. In particular, our results involve Wasser-
stein distances acting as regularisers on H. In this section, we show that a Wasserstein reg-
ularisation of the learning objective, which comes from our theoretical bounds, helps to better
generalise in practice. Inspired by Equations (2) and (4), we derive new PAC-Bayesian algo-
rithms for both batch and online learning involving a Wasserstein distance (see Section 4.1), we
describe our experimental framework in Section 4.2 and we present some of the results in Sec-
tion 4.3. Additional details, experiments, and discussions are gathered in Appendix C due to space
constraints. All the experiments are reproducible with the source code provided on GitHub at
https://github.com/paulviallard/NeurIPS23-PB-Wasserstein.

4.1 Learning algorithms

Classification. In the classification setting, we assume that the data spaceZ = X×Y is composed of
a d-dimensional input space X = {x ∈ R

d | ‖x‖2 ≤ 1} and a finite label space Y = {1, . . . , |Y|}
with |Y| labels. We aim to learn models hw : Rd → R

|Y| parameterised by a weight vector w
that outputs, given an input x ∈ X , a score hw(x)[y

′] ∈ R for each label y′. This score allows
us to assign a label to x ∈ X ; to check if hw classifies correctly the example (x, y), we use the
classification loss defined by ℓc(hw, (x, y)) := 1 [hw(x)[y]−maxy′ 6=y hw(x)[y

′] ≤ 0], where 1
denotes the indicator function.

Batch algorithm. In the batch setting, we aim to learn a parametrised hypothesis hw ∈ H that
minimises the population classification risk Rµ(hw) = E(x,y)∼µ ℓ

c(hw, (x, y)) that we can only

estimate through the empirical classification risk RS(hw) = 1
m

∑m
i=1 ℓ

c(hw, (xi, yi)). To learn the
hypothesis, we start from Equation (2), when the distributions ρ and π1, . . . , πK are Dirac masses,
localised at hw, hw1

, . . . hwK
∈ H respectively. Indeed, in this case, W(ρ, πi,S) = d(hw, hwi

)
for any i. However, the loss ℓc(., z) is not Lipschitz and the derivatives are zero for all examples
z ∈ X × Y , which prevents its use in practice to obtain such a hypothesis hw. Instead, for the

population risk Rµ(h) and the empirical risk R̂S(h) (in Theorem 2 and Equation (2)), we consider

the loss ℓ(h, (x, y)) = 1
|Y|
∑

y′ 6=y max(0, 1−η(h[y]−h[y′])), which is η-Lipschitz w.r.t. the outputs

h[1], . . . , h[|Y|]. This loss has subgradients everywhere, which is convenient in practice. We go a
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step further by (a) setting L = 1
2 and (b) adding a parameter ε > 0 to obtain the objective

argmin
hw∈H

{

R̂S(hw) + ε

[

K
∑

i=1

|Si|
m

d (hw, hwi
)

]}

. (5)

To (approximately) solve Equation (5), we propose a two-step algorithm. First, PRIORS LEARN-
ING learns K hypotheses hw1

, . . . , hwK
∈ H by minimising the empirical risk via stochastic

gradient descent. Second, POSTERIOR LEARNING learns the hypothesis hw ∈ H by minimis-
ing the objective associated with Equation (5). More precisely, PRIORS LEARNING outputs the
hypotheses hw1

, · · · , hwK
, obtained by minimising the empirical risk through mini-batches. Those

batches are designed such that for any i, the hypothesis hwi
does not depend on Si. Then, given

hw1
, . . . , hwK

∈ H, POSTERIOR LEARNING minimises the objective in Equation (5) with mini-
batches. Those algorithms are presented in Algorithm 1 of Appendix C. While ε is not suggested
by Equation (2), it helps to control the impact of the regularisation in practice. Equation (5) then

optimises a tradeoff between the empirical risk and the regularisation term ε
∑K

i=1
|Si|
m d(hw, hwi

).

Online algorithm. Online algorithms output, at each time step i ∈ {1, . . . ,m}, a new hypoth-
esis hwi

. From Equation (4), particularised to a sequence of Dirac distributions (localised in
hw1

, · · · , hwK
), we design a novel online PAC-Bayesian algorithm with a Wasserstein regulariser:

∀i ≥ 1, hi ∈ argmin
hw∈H

ℓ(hw, zi) + d
(

hw, hwi−1

)

s.t. d
(

hw, hwi−1

)

≤ 1. (6)

According to Theorem 4, such an algorithm aims to bound the population cumulative classification
loss Cµ =

∑m
i=1 E[ℓ

c(hwi
, zi) | Fi−1]. Note that we added the constraint d

(

hw, hwi−1

)

≤ 1 com-
pared to Equation (4). This constraint ensures that the new hypothesis hwi

is not too far from hwi−1

(in the sense of the distance ‖ · ‖2). Note that the constrained optimisation problem in Equation (6)
can be rewritten in an unconstrained form (see [BV04]) thanks to a barrierB(·) defined by B(a) = 0
if a ≤ 0 and B(a) = +∞ otherwise; we have

∀i ≥ 1, hi ∈ argmin
hw∈H

ℓ(hw, zi) + d
(

hw, hwi−1

)

+B(d
(

hw, hwi−1

)

− 1). (7)

When solving the problem in Equation (7) is not feasible, we approximate it with a log barrier
of [KDY+22] (suitable in a stochastic gradient setting); given a parameter t > 0, the log barrier

extension is defined by B̂(a) = − 1
t ln(−a) if a ≤ − 1

t2 and B̂(a) = ta − 1
t ln(

1
t2 ) +

1
t otherwise.

We present in Appendix C Algorithm 2 that aims to (approximately) solve Equation (7). To do
so, for each new example (xi, yi), the algorithm runs several gradient descent steps to optimise
Equation (7).

4.2 Experimental framework

In this part, we assimilate the predictor space H to the parameter space R
d. Thus, the distance d is

the Euclidean distance between two parameters: d (hw, hw
′) = ‖w−w′‖2. This implies that the

Lipschitzness of ℓ has to be taken w.r.t. w instead of hw.

Models. We consider that the models are either linear or neural networks (NN). Linear models are
defined by hw(x) = Wx+b, whereW ∈ R

|Y|×d is the weight matrix, b ∈ R
|Y| is the bias, and w =

vec({W, b}) its vectorisation; the vector w with the zero vector. Thanks to the definition of X , we

know from Lemma 8 (and the composition of Lipschitz functions) that the loss is
√
2η-Lipschitz w.r.t.

w. For neural networks, we consider fully connected ReLU neural networks with L hidden layers
and D nodes, where the leaky ReLU activation function ReLU : RD → R

D applies elementwise
x 7→ max(x, 0.01x). More precisely, the network is defined by hw(x) = WhL(· · ·h1(x))+b where

W ∈ R
|Y|×D, b ∈ R

|Y|. Each layer hi(x) = ReLU(Wix + bi) has a weight matrix Wi ∈ R
D×D

and bias bi ∈ R
D except for i = 1 where we have W1 ∈ R

D×d. The weights w are also the
vectorisation w = vec({W,WL, . . . ,W1, b, bL, . . . , b1}). We have precised in Lemma 9 that our
loss is Lipschitz w.r.t. the weights w. We initialise the network similarly to [DR17] by sampling
the weights from a Gaussian distribution with zero mean and a standard deviation of σ = 0.04; the
weights are further clipped between −2σ and +2σ. Moreover, the values in the biases b1, . . . , bL
are set to 0.1, while the values for b are set to 0. In the following, we consider D = 600 and L = 2;
more experiments are considered in the appendix.
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Optimisation. To perform the gradient steps, we use the COCOB-Backprop optimiser [OT17] (with
parameter α = 10000).2 This optimiser is flexible as the learning rate is adaptative and, thus, does
not require hyperparameter tuning. For Algorithm 1, which solves Equation (5), we fix a batch size
of 100, i.e., |U| = 100, and the number of epochs T and T ′ are fixed to perform at least 20000
iterations. Regarding Algorithm 2, which solves Equation (7), we set t = 100 for the log barrier,
which is enough to constrain the weights and the number of iterations to T = 10.

Datasets. We study the performance of Algorithms 1 and 2 on UCI datasets [DG17] along with
MNIST [LeC98] and FashionMNIST [XRV17]. We also split all the data (from the original train-
ing/test set) in two halves; the first part of the data serves in the algorithm (and is considered as a
training set), while the second part is used to approximate the population risks Rµ(h) and Cµ (and
considered as a testing set).

4.3 Results

We present in Table 1 the performance of Algorithms 1 and 2 compared to the Empirical Risk
Minimisation (ERM) and the Online Gradient Descent (OGD) with the COCOB-Backprop optimiser.
Tables 1a and 1c present the results of Algorithm 1 for the i.i.d. setting on linear and neural networks
respectively, while Tables 1b and 1d present the results of Algorithm 2 for the online case.

Analysis of the results. In batch learning, we note that the regularisation term brings generalisation
improvements compared to the empirical risk minimisation. Indeed, our batch algorithm (Algo-
rithm 1) has a lower population risk Rµ(h) on 11 datasets for the linear models and 9 datasets for
the neural networks. In particular, notice that NNs obtained from Algorithm 1 are more efficient
than the ones obtained from ERM on MNIST and FASHIONMNIST, which are the more challeng-
ing datasets. This suggests that the regularisation term helps to generalise well. For the online case,
the performance of the linear models obtained from our algorithm (Algorithm 2) and by OGD are
comparable: we have a tighter population classification risk Rµ(h) on 5 datasets over 13. However,
notice that the risk difference is less than 0.05 on 6 datasets. The advantage of Algorithm 2 is more
pronounced for neural networks: we improve the performance in all datasets except ADULT and SEN-
SORLESS. Hence, this confirms that optimising the regularised loss ℓ(hw, zi) + ‖w−wi−1‖ brings
a good advantage compared to the loss ℓ(hw, zi) only. A possible explanation would be that OGD
suffers from underfitting (with a high empirical risk Cµ) while we are able to control overfitting
through a regularisation term. Indeed, only one gradient descent step is done for each new datum
(xi, yi), which might not be sufficient to decrease the loss. Instead, our method solves the problem
associated with Equation (7) and constrains the descent with the norm ‖w−wi−1‖.

5 Conclusion and Perspectives

We derived novel generalisation bounds based on the Wasserstein distance, both for batch and on-
line learning, allowing for the use of deterministic hypotheses through PAC-Bayes. We derived new
learning algorithms which are inspired by the bounds, with remarkable empirical performance on a
number of datasets: we hope our work can pave the way to promising future developments (both the-
oretical and practical) of generalisation bounds based on the Wasserstein distance. Given the mostly
theoretical nature of our work, we do not foresee an immediate negative societal impact, although
we hope a better theoretical understanding of generalisation will ultimately benefit practitioners of
machine learning algorithms and encourage virtuous initiatives.
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Table 1: Performance of Algorithms 1 and 2 compared respectively to ERM and OGD on different
datasets on linear and neural network models. For the i.i.d. setting, we consider ε = 1/m and
ε = 1/

√
m and with K = 0.2

√
m. For each method, we plot the empirical risk RS(h) or CS with

its associated test risk Rµ(h) or Cµ. The risk in bold corresponds to the lowest one among the ones
considered. For the online case, the two population risks are underlined when the absolute difference
is lower than 0.05.

(a) Linear model – batch learning

Alg. 1 ( 1

m
) Alg. 1 ( 1√

m
) ERM

Dataset RS (h) Rµ(h) RS (h) Rµ(h) RS (h) Rµ(h)

ADULT .165 .166 .165 .167 .166 .167
FASHIONMNIST .128 .151 .126 .148 .139 .153

LETTER .285 .297 .287 .296 .287 .297
MNIST .200 .216 .066 .092 .065 .091

MUSHROOMS .001 .001 .001 .001 .001 .001
NURSERY .766 .773 .760 .773 .794 .807

PENDIGITS .049 .059 .050 .061 .052 .064
PHISHING .063 .067 .065 .069 .064 .067
SATIMAGE .144 .200 .138 .201 .148 .209

SEGMENTATION .057 .216 .164 .386 .087 .232
SENSORLESS .129 .129 .131 .131 .134 .136
TICTACTOE .388 .299 .013 .021 .228 .238

YEAST .527 .497 .524 .504 .470 .427

(b) Linear model – online learning

Alg. 2 OGD
CS Cµ CS Cµ

.230 .236 .248 .248

.223 .282 .540 .548

.919 .935 .916 .926

.284 .310 .378 .397

.218 .222 .082 .087

.794 .807 .789 .805

.342 .484 .589 .600

.226 .242 .226 .220

.669 .938 .635 .888

.749 .803 .738 .893

.906 .910 .825 .830

.443 .468 .390 .303

.699 .713 .667 .708

(c) NN model – batch learning

Alg. 1 ( 1

m
) Alg. 1 ( 1√

m
) ERM

Dataset RS (h) Rµ(h) RS (h) Rµ(h) RS (h) Rµ(h)

ADULT .164 .164 .166 .165 .165 .163
FASHIONMNIST .159 .163 .156 .160 .163 .167

LETTER .259 .272 .250 .260 .258 .270
MNIST .112 .120 .084 .094 .119 .127

MUSHROOMS .000 .000 .000 .000 .000 .000
NURSERY .706 .719 .706 .719 .706 .719

PENDIGITS .009 .023 .021 .032 .009 .022
PHISHING .042 .050 .039 .054 .046 .055
SATIMAGE .132 .184 .149 .172 .141 .189

SEGMENTATION .145 .250 .189 .373 .174 .389
SENSORLESS .076 .079 .077 .079 .075 .078
TICTACTOE .392 .301 .000 .038 .000 .023

YEAST .679 .666 .487 .478 .644 .682

(d) NN model – online learning

Alg. 2 OGD
CS Cµ CS Cµ

.241 .254 .248 .248

.096 .327 .397 .446

.829 .945 .958 .963

.092 .265 .470 .521

.082 .122 .202 .217

.800 .805 .793 .806

.323 .537 .871 .879

.164 .222 .331 .318

.401 .763 .626 .857

.619 .857 .739 .913

.899 .910 .622 .633

.388 .309 .397 .309

.662 .720 .702 .720

(EPSRC) under grant number EP/R013616/1. B.G. acknowledges partial support from the French
National Agency for Research, grants ANR-18-CE40-0016-01 and ANR-18-CE23-0015-02.
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The supplementary material is organized as follows:

(i) We provide more discussion about Theorems 1 and 2 in Appendix A;

(ii) The proofs of Theorems 1 to 4 are presented in Appendix B;

(iii) We present in Appendix C additional information about the experiments.

A Additional insights on Section 3.1

In Appendix A.1, we provide additional discussion about Theorem 1 while Appendix A.2 discuss
about the convergence rates for Theorem 2.

A.1 Supplementary discussion about Theorem 1

[HG23b, Corollary 10] proposed PAC-Bayes bounds with Wasserstein distances on a Euclidean
predictor space with Gaussian prior and posteriors. The bounds have an explicit convergence rate of

O(
√

dW1(ρ,π)/m) where the predictor space is Euclidean with dimension d. While our bound does
not propose such an explicit convergence rate, it allows us to derive learning algorithms as described
in Section 4. A broader discussion about the role of K is detailed in Theorem 2. Furthermore, our
bound holds for any Polish predictor space and does not require Gaussian distributions. Furthermore,
our result exploits data-dependent priors and deals with the dimension only through the Wasserstein
distance, which can attenuate the impact of the dimension.

A.2 Convergence rates for Theorem 2

In this section, we discuss more deeply the values of K in Theorem 2. This implies a tradeoff
between the number of sets K and the cardinal of each Si. The tightness of the bound depends
highly on the sets S1, . . . ,SK .

Full batch setting K=1. When S1 = S with K = 1, the bound of Theorem 2 becomes, with
probability 1− δ, for any ρ ∈M(H)

E
h∼ρ

[

Rµ(h)− R̂S(h)
]

≤ 2LW(ρ, π) + 2

√

ln 1
δ

m
,

where π = π1 is data-free. This bound can be seen as the high-probability (PAC-Bayesian) version
of the expected bound of [WDFC19]. Furthermore, in this setting, we are able, through our proof
technique, to recover an explicit convergence rate similar to the one of [AEMM22, Theorem 12]. It
is stated below.

Corollary 5. For any distribution µ onZ , for any finite hypothesis spaceH equipped with a distance
d, for any L-Lipschitz loss function ℓ : H×Z → [0, 1], for any δ ∈ (0, 1], we have, with probability
1− δ over the sample S, for any ρ ∈M(H):

E
h∼ρ

[

Rµ(h)− R̂S(h)
]

≤ L

√

2 ln
(

4|H|2/δ
)

m
W(ρ, π) + 2

√

ln (2/δ)

m

where π is a data-free prior.

Proof. We exploit [AEMM22, Equation 35] to state that with probability at least 1 − δ/2, for any
(h, h′) ∈ H2:

∣

∣

∣

∣

∣

1

m

m
∑

i=1

[ℓ (h′, zi)− ℓ (h, zi)]− E
z∼µ

[ℓ (h′, z)− ℓ(h, z)]

∣

∣

∣

∣

∣

≤ L

√

√

√

√

2 ln
(

4|H|2
δ

)

m
d (h, h′) .

So, with high probability, we can exploit the Kantorovich-Rubinstein duality with this new Lipschitz
constant: with probability at least 1− δ/2:

E
h∼ρ

[

Rµ(h)− R̂S(h)
]

≤ L

√

√

√

√

2 ln
(

4|H|2
δ

)

m
W(ρ, π) + E

h∼π

1

m

[

m
∑

i=1

Rµ(h)− ℓ(h, zi)

]

,
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To conclude, we control the quantity on the right-hand side the same way as in Theorem 1 and
Theorem 2. We then have, with probability at least 1− δ/2, for a loss function in [0, 1]:

1

m

m
∑

i=1

Rµ(h)− ℓ(h, zi) ≤ 2

√

ln K
δ

m
.

Taking the union bound concludes the proof.

Mini-batch setting K =
√
m. When a tradeoff is desired between the quantity of data we want

to infuse in our priors and an explicit convergence rate, a meaningful candidate is when K =
√
m.

Theorem 2’s bound becomes, in this particular case:

E
h∼ρ

[

Rµ(h)− R̂S(h)
]

≤ 2L√
m

√
m
∑

i=1

W(ρ, πi) + 2

√

ln
√
m
δ√
m

. (8)

Towards online learning: K = m. When K = m, the sets Si contain only one example. More
precisely, we have for all i ∈ {1, . . . ,m} the set Si = {zi}. In this case, the bound becomes:

E
h∼ρ

[

Rµ(h)− R̂S(h)
]

≤ 2L

m

m
∑

i=1

W(ρ, πi) + 2

√

ln
m

δ
.

This bound is vacuous since the last term is incompressible, hence the need for a new technique
detailed in Section 3.2 to deal with it.

B Proofs

The proof of Theorem 1 is presented in Appendix B.1. Appendices B.2 and B.3 introduce two proofs
of Theorem 2. Theorem 3’s proof is presented in Appendix B.4. Appendix B.5 provides the proof
of Theorem 3.

B.1 Proof of Theorem 1

Theorem 1. We assume the loss ℓ to be L-Lipschitz. Then, for any δ ∈ (0, 1], for any sequence of
positive scalar (λi)i∈{1,...,K}, with probability at least 1− δ over the sample S, the following holds

for the distributions πi,S := πi(S, .) and for any ρ ∈M(H):

E
h∼ρ

[

Rµ(h)− R̂S(h)
]

≤
K
∑

i=1

2|Si|L
m

W(ρ, πi,S) +
1

m

K
∑

i=1

ln
(

K
δ

)

λi
+

λi

2

(

E
h∼πi,S

[

V̂|Si|(h) + V|Si|(h)
]

)

,

where πi,S does not depend on Si. Also, for any i, |Si|, we have V̂|Si|(h) =
∑

z∈Si
(ℓ(h, z)−Rµ(h))

2
and V|Si|(h) = ESi

[

V̂|Si|(h)
]

.

Proof. For the sake of readability, we identify, for any i, πi and πi,S .

Step 1: Exploit the Kantorovich duality [Vil09, Remark 6.5]. First of all, note that for a L-
Lipschitz loss function ℓ : H×Z → [0, 1], we have

∣

∣

∣

∣

∣

(

|Si|Rµ(h1)−
∑

z∈Si

ℓ(h1, z)

)

−
(

|Si|Rµ(h2)−
∑

z∈Si

ℓ(h2, z)

)∣

∣

∣

∣

∣

≤ 2|Si|Ld(h1, h2). (9)
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Indeed, we can deduce Equation (9) from Jensen inequality, the triangle inequality, and by definition
that we have

∣

∣

∣

∣

∣

(

|Si|Rµ(h1)−
∑

z∈Si

ℓ(h1, z)

)

−
(

|Si|Rµ(h2)−
∑

z∈Si

ℓ(h2, z)

)∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

(

∑

z∈Si

Rµ(h1)−
∑

z∈Si

ℓ(h1, z)

)

−
(

∑

z∈Si

Rµ(h2)−
∑

z∈Si

ℓ(h2, z)

)
∣

∣

∣

∣

∣

≤
∑

z∈Si

E
z
′∼µ

[

|ℓ(h1, z
′)− ℓ(h2, z

′)|+ |ℓ(h2, z)− ℓ(h1, z)|
]

≤ E
z
′∼µ

∑

z∈Si

2Ld(h1, h2)

= 2|Si|Ld(h1, h2).

We are now able to upper-bound Eh∼ρ[Rµ(h)− R̂S(h)]. Indeed, we have

E
h∼ρ

[

Rµ(h)− R̂S(h)
]

=
1

m

K
∑

i=1

E
h∼ρ

[

|Si|Rµ(h)−
∑

z∈Si

ℓ(h, z)

]

≤
K
∑

i=1

2|Si|L
m

W(ρ, πi) +

K
∑

i=1

E
h∼πi

1

m

[

|Si|Rµ(h)−
∑

z∈Si

ℓ(h, z)

]

, (10)

where the inequality comes from the Kantorovich-Rubinstein duality theorem.

Step 2: Define an adapted supermartingale. For any 1 ≤ i ≤ K , we fix λi > 0 and we provide
an arbitrary order to the elements of Si := {zi,1, · · · , zi,|Si|}. Then we define for any h:

M|Si|(h) := |Si|Rµ(h)−
∑

z∈Si

ℓ(h, z) =

|Si|
∑

j=1

Rµ(h)− ℓ(h, zi,j).

Remark that, because our data are i.i.d., (M|Si|)|Si|≥1 is a martingale. We then exploit the technique
[HG23a] to define a supermartingale. More precisely, we exploit a result from [BT08] cited in
Lemma 1.3 of [HG23a] coupled with Lemma 2.2 of [HG23a] to ensure that the process

SM|Si| := E
h∼πi

[

exp

(

λiM|Si|(h)−
λ2
i

2

(

V̂|Si|(h) + V|Si|(h)
)

)]

,

is a supermartingale, where V̂|Si|(h) =
∑|Si|

j=1 (ℓ(h, zi,j)−Rµ(h))
2

and V|Si|(h) = ESi

[

V̂|Si|(h)
]

.

Step 3. Combine steps 1 and 2. We restart from Equation (10) to exploit again the Kantorovich-
Rubinstein duality.

E
h∼ρ

[

Rµ(h)− R̂S(h)
]

=
1

m

K
∑

i=1

E
h∼ρ

[

|Si|Rµ(h)−
∑

z∈Si

ℓ(h, z)

]

≤
K
∑

i=1

2|Si|L
m

W(ρ, πi) +
K
∑

i=1

1

mλi
λi E

h∼πi

[

|Si|Rµ(h)−
∑

z∈Si

ℓ(h, z)

]

,

=

K
∑

i=1

2|Si|L
m

W(ρ, πi) +

K
∑

i=1

1

mλi
E

h∼πi

[

λiM|Si||
]

,

≤
K
∑

i=1

2|Si|L
m

W(ρ, πi) +
K
∑

i=1

1

mλi
ln
(

SM|Si|
)

+
1

m

K
∑

i=1

E
h∼πi

[

λi

2

(

V̂|Si|(h) + V|Si|(h)
)

]

.
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The last line holds thanks to Jensen’s inequality. We now apply Ville’s inequality (see e.g., Section
1.2 of [HG23a]). We have for any i:

P
Si∼µ|Si|

(

∀|Si| ≥ 1, SM|Si| ≤
1

δ

)

≥ 1− δ.

Applying an union bound and authorising λi to be a function of |Si| (thus the inequality does not
hold for all |Si| simultaneously) finally gives with probability at least 1− δ, for all ρ ∈ M(H) :

E
h∼ρ

[

Rµ(h)−R̂S(h)
]

≤
K
∑

i=1

2|Si|L
m

W(ρ, πi)+
K
∑

i=1

ln
(

K
δ

)

λim
+

λi

2m
E

h∼πi

[

V̂|Si|(h) + V|Si|(h)
]

.

B.2 Proof of Theorem 2

Theorem 2. We assume our loss ℓ to be non-negative and L-Lipschitz. We also assume that, for any
1 ≤ i ≤ K , for any datasetS, we have Eh∼πi(.,S),z∼µ

[

ℓ(h, z)2
]

≤ 1 (bounded order 2 moments

for priors). Then, for any δ ∈ (0, 1], with probability at least 1− δ over the sample S, the following
holds for the distributions πi,S := πi(S, .) and for any ρ ∈ M(H):

E
h∼ρ

[

Rµ(h)− R̂S(h)
]

≤
K
∑

i=1

2|Si|L
m

W(ρ, πi,S) +
K
∑

i=1

√

2|Si| ln K
δ

m2
,

where πi,S does not depend on Si.

Proof. For the sake of readability, we identify, for any i, πi and πi,S .

Step 1: Exploit the Kantorovich duality [Vil09, Remark 6.5]. First of all, note that for a L-
Lipschitz loss function ℓ : H×Z → [0, 1], we have

∣

∣

∣

∣

∣

(

|Si|Rµ(h1)−
∑

z∈Si

ℓ(h1, z)

)

−
(

|Si|Rµ(h2)−
∑

z∈Si

ℓ(h2, z)

)∣

∣

∣

∣

∣

≤ 2|Si|Ld(h1, h2). (11)

Indeed, we can deduce Equation (11) from Jensen inequality, the triangle inequality, and by defini-
tion that we have

∣

∣

∣

∣

∣

(

|Si|Rµ(h1)−
∑

z∈Si

ℓ(h1, z)

)

−
(

|Si|Rµ(h2)−
∑

z∈Si

ℓ(h2, z)

)∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

(

∑

z∈Si

Rµ(h1)−
∑

z∈Si

ℓ(h1, z)

)

−
(

∑

z∈Si

Rµ(h2)−
∑

z∈Si

ℓ(h2, z)

)
∣

∣

∣

∣

∣

≤
∑

z∈Si

E
z
′∼µ

[

|ℓ(h1, z
′)− ℓ(h2, z

′)|+ |ℓ(h2, z)− ℓ(h1, z)|
]

≤ E
z
′∼µ

∑

z∈Si

2Ld(h1, h2)

= 2|Si|Ld(h1, h2).

We are now able to upper-bound Eh∼ρ[Rµ(h)− R̂S(h)]. Indeed, we have

E
h∼ρ

[

Rµ(h)− R̂S(h)
]

=
1

m

K
∑

i=1

E
h∼ρ

[

|Si|Rµ(h)−
∑

z∈Si

ℓ(h, z)

]

≤
K
∑

i=1

2|Si|L
m

W(ρ, πi) +
K
∑

i=1

E
h∼πi

1

m

[

|Si|Rµ(h)−
∑

z∈Si

ℓ(h, z)

]

, (12)

where the inequality comes from the Kantorovich-Rubinstein duality theorem.
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Step 2: Define an adapted supermartingale. For any 1 ≤ i ≤ K , we fix λi > 0 and we provide
an arbitrary order to the elements of Si := {zi,1, · · · , zi,|Si|}. Then we define for any h:

M|Si|(h) := |Si|Rµ(h)−
∑

z∈Si

ℓ(h, z) =

|Si|
∑

j=1

Rµ(h)− ℓ(h, zi,j).

Remark that, because our data are i.i.d., (M|Si|)|Si|≥1 is a martingale. We then exploit the technique
[CWR23] to define a supermartingale. More precisely, we exploit [CWR23, Lemma A.2 and Lemma
B.1] to ensure that the process

SM|Si| := E
h∼πi

[

exp

(

λiM|Si|(h)−
λ2
i

2
L|Si|(h)

)]

,

is a supermartingale, where, because our data are i.i.d., L|Si|(h) = ES
[

∑|Si|
j=1 ℓ(h, zi,j)

2
]

=

|Si|Ez∼µ[ℓ(h, z)
2].

Step 3. Combine steps 1 and 2. We restart from Equation (12) to exploit the Kantorovich-
Rubinstein duality again.

E
h∼ρ

[

Rµ(h)− R̂S(h)
]

=
1

m

K
∑

i=1

E
h∼ρ

[

|Si|Rµ(h)−
∑

z∈Si

ℓ(h, z)

]

≤
K
∑

i=1

2|Si|L
m

W(ρ, πi) +
K
∑

i=1

1

mλi
λi E

h∼πi

[

|Si|Rµ(h)−
∑

z∈Si

ℓ(h, z)

]

,

=

K
∑

i=1

2|Si|L
m

W(ρ, πi) +

K
∑

i=1

1

mλi
E

h∼πi

[

λiM|Si||
]

,

≤
K
∑

i=1

2|Si|L
m

W(ρ, πi) +
K
∑

i=1

1

mλi
ln
(

SM|Si|
)

+
1

m

K
∑

i=1

E
h∼πi

[

λi

2
L|Si|(h)

]

.

The last line holds thanks to Jensen’s inequality. We now apply Ville’s inequality (see e.g., section
1.2 of [HG23a]). We have for any i:

P
Si∼µ|Si|

(

∀|Si| ≥ 1, SM|Si| ≤
1

δ

)

≥ 1− δ.

Applying an union bound and authorising λi to be a function of |Si| (thus the inequality does not
hold for all |Si| simultaneously) finally gives with probability at least 1− δ, for all ρ ∈ M(H) :

E
h∼ρ

[

Rµ(h)− R̂S(h)
]

≤
K
∑

i=1

2|Si|L
m

W(ρ, πi) +

K
∑

i=1

ln
(

K
δ

)

λim
+

λi

2m
E

h∼πi

[L|Si|(h)] .

Finally, using the assumption Eh∼πi
Ez∼µ[ℓ(h, z)

2] ≤ 1 gives, with probability at least 1 − δ, for
all ρ ∈M(H):

E
h∼ρ

[

Rµ(h)− R̂S(h)
]

≤
K
∑

i=1

2|Si|L
m

W(ρ, πi) +

K
∑

i=1

ln
(

K
δ

)

λim
+

λi[Si|]
2m

.

Taking for each i, λi =
√

2 ln(K/δ)
|Si| concludes the proof.

B.3 Alternative proof of Theorem 2

We state here a slightly tighter version of Theorem 2 for bounded losses, which relies on an ap-
plication of McDiarmid’s inequality instead of supermartingale techniques. This is useful for the
numerical evaluations of our bound.
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Theorem 6. We assume our loss ℓ to be in [0, 1] and L-Lipschitz. Then, for any δ ∈ (0, 1], with
probability at least 1−δ over the sample S, the following holds for the distributions πi,S := πi(S, .)
and for any ρ ∈M(H):

E
h∼ρ

[

Rµ(h)− R̂S(h)
]

≤
K
∑

i=1

2|Si|L
m

W(ρ, πi,S) +
K
∑

i=1

√

|Si| ln K
δ

2m2

where πi does not depend on Si.

Proof. For the sake of readability, we identify, for any i, πi and πi,S .

First of all, note that for a L-Lipschitz loss function ℓ : H×Z → [0, 1], we have
∣

∣

∣

∣

∣

(

|Si|Rµ(h1)−
∑

z∈Si

ℓ(h1, z)

)

−
(

|Si|Rµ(h2)−
∑

z∈Si

ℓ(h2, z)

)∣

∣

∣

∣

∣

≤ 2|Si|Ld(h1, h2). (13)

Indeed, we can deduce Equation (13) from Jensen’s inequality, the triangle inequality, and by defini-
tion that we have

∣

∣

∣

∣

∣

(

|Si|Rµ(h1)−
∑

z∈Si

ℓ(h1, z)

)

−
(

|Si|Rµ(h2)−
∑

z∈Si

ℓ(h2, z)

)∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

(

∑

z∈Si

Rµ(h1)−
∑

z∈Si

ℓ(h1, z)

)

−
(

∑

z∈Si

Rµ(h2)−
∑

z∈Si

ℓ(h2, z)

)∣

∣

∣

∣

∣

≤
∑

z∈Si

E
z
′∼µ

[

|ℓ(h1, z
′)− ℓ(h2, z

′)|+ |ℓ(h2, z)− ℓ(h1, z)|
]

≤ E
z
′∼µ

∑

z∈Si

2Ld(h1, h2)

= 2|Si|Ld(h1, h2).

We are now able to upper-bound Eh∼ρ[Rµ(h)− R̂S(h)]. Indeed, we have

E
h∼ρ

[

Rµ(h)− R̂S(h)
]

=
1

m

K
∑

i=1

E
h∼ρ

[

|Si|Rµ(h)−
∑

z∈Si

ℓ(h, z)

]

≤
K
∑

i=1

2|Si|L
m

W(ρ, πi) +

K
∑

i=1

E
h∼πi

1

m

[

|Si|Rµ(h)−
∑

z∈Si

ℓ(h, z)

]

, (14)

where the inequality comes from the Kantorovich-Rubinstein duality theorem. Let f(Si) =
Eh∼πi

1
m

[

|Si|Rµ(h)−
∑

z∈Si
ℓ(h, zi)

]

, the function has the bounded difference inequality, i.e., for

two datasets Si and S ′i that differs from one example (the k-th example, without loss of generality),
we have

|f(Si)− f(S ′i)| =

∣

∣

∣

∣

∣

∣

E
h∼πi

1

m

[

|Si|Rµ(h)−
∑

z∈Si

ℓ(h, z)

]

− E
h∼πi

1

m



|Si|Rµ(h)−
∑

z
′∈S′

i

ℓ(h, z′)





∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

E
h∼πi





1

m
|Si|Rµ(h)−

1

m

∑

z∈Si

ℓ(h, z)− 1

m
|Si|Rµ(h) +

1

m

∑

z
′∈S′

i

ℓ(h, z′)





∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

E
h∼πi





1

m

∑

z
′∈S′

i

ℓ(h, z′)− 1

m

∑

z∈Si

ℓ(h, z)





∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

E
h∼πi

[

1

m
ℓ(h, z′k)−

1

m
ℓ(h, zk)

]∣

∣

∣

∣

≤ 1

m
.
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Hence, from Mcdiarmid’s inequality, we have with probability at least 1− δ
K over S ∼ µm

E
h∼πi

1

m

[

|Si|Rµ(h)−
∑

z∈Si

ℓ(h, z)

]

≤ E
S∼µm

E
h∼πi

1

m

[

|Si|Rµ(h)−
∑

z∈Si

ℓ(h, z)

]

+

√

|Si| ln K
δ

2m2

= E
Sc
i
∼µm−|Si|

E
Si∼µ|Si|

E
h∼πi

1

m

[

|Si|Rµ(h)−
∑

z∈Si

ℓ(h, z)

]

+

√

|Si| ln K
δ

2m2

= E
Sc
i
∼µm−|Si|

E
h∼πi

1

m

[

|Si|Rµ(h)− E
Si∼µ|Si|

∑

z∈Si

ℓ(h, z)

]

+

√

|Si| ln K
δ

2m2

= E
Sc
i
∼µm−|Si|

E
h∼πi

1

m

[

|Si|Rµ(h)− |Si|Rµ(h)
]

+

√

|Si| ln K
δ

2m2

=

√

|Si| ln K
δ

2m2
.

From the union bound, we have with probability at least 1− δ over S ∼ µm, for any ρ ∈ M(H),

E
h∼ρ

[

Rµ(h)− R̂S(h)
]

≤
K
∑

i=1

2|Si|L
m

W(ρ, πi) +

K
∑

i=1

√

|Si| ln K
δ

2m2
,

which is the claimed result.

We are now able to give a corollary of Theorem 6.

Corollary 7. We assume our loss ℓ to be in [0, 1] and L-Lipschitz. Then, for any δ ∈ (0, 1], with
probability at least 1 − δ over the sample S, the following holds for the hypotheses hi,S ∈ H
associated with the Dirac distributions πi,S and for any h ∈ H:

Rµ(h) ≤ R̂S(h) +
K
∑

i=1

2|Si|L
m

d(h, hi,S) +
K
∑

i=1

√

|Si| ln K
δ

2m2
.

Such a bound was impossible to obtain from the PAC-Bayesian bounds based on a KL diver-
gence. Indeed, the KL divergence is infinite for two distributions with disjoint supports. Hence,
the PAC-Bayesian framework based on the Wasserstein distance allows us to provide uniform-
convergence bounds from a proof technique different from the ones based on the Rademacher com-
plexity [KP00, BM01, BM02] or the VC-dimension [VC68, VC74]. In Section 4, we provide an
algorithm minimising such a bound.

B.4 Proof of Theorem 3

Theorem 3. We assume our loss ℓ to be L-Lipschitz. Then, for any δ ∈ (0, 1], with probability at
least 1− δ over the sample S, the following holds for the distributions πi,S := πi(S, .) and for any
sequence (ρi)i=1···m ∈M(H)m:

m
∑

i=1

E
hi∼ρi

[

E[ℓ(hi, zi) | Fi−1]− ℓ(hi, zi)
]

≤ 2L

m
∑

i=1

W(ρi, πi,S)

+
λ

2

m
∑

i=1

E
hi∼πi,S

[

V̂i(hi, zi) + Vi(hi)
]

+
ln(1/δ)

λ
,

where for all i, V̂i(hi, zi) = (ℓ(hi, zi) − Ei−1[ℓ(hi, zi)])
2 is the conditional empirical variance at

time i and Vi(hi) = Ei−1[V̂ (hi, zi)] is the true conditional variance.
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Proof. First of all, note that for a L-Lipschitz loss function ℓ : H×Z → R, we have
∣

∣

∣

∣

(

E
i−1

[ℓ(hi, zi)]−ℓ(hi, zi)

)

−
(

E
i−1

[ℓ(h′
i, zi)]−ℓ(h′

i, zi)

)∣

∣

∣

∣

≤ 2Ld(hi, h
′
i). (15)

Indeed, we can deduce Equation (15) from Jensen inequality, the triangle inequality, and by defini-
tion that we have
∣

∣

∣

∣

(

E
i−1

[ℓ(hi, zi)]−ℓ(hi, zi)

)

−
(

E
i−1

[ℓ(h′
i, zi)]−ℓ(h′

i, zi)

)
∣

∣

∣

∣

≤ E
i−1

[

|ℓ(hi, z
′
i)− ℓ(h′

i, z
′
i)|+ |ℓ(hi, zi)− ℓ(h′

i, zi)|
]

≤ E
i−1

2Ld(hi, h
′
i) = 2Ld(hi, h

′
i).

From the Kantorovich-Rubinstein duality theorem [Vil09, Remark 6.5], we have

m
∑

i=1

E
hi∼ρi

[

E
i−1

[ℓ(hi, zi)]− ℓ(hi, zi)

]

≤ 2L
m
∑

i=1

W1(ρi, πi,S) +
m
∑

i=1

E
h∼πi,S

[Rµ(hi)− ℓ(hi, zi)] .

Now, we define Xi(hi, zi) := Ei−1[ℓ(hi, zi)] − ℓ(hi, zi). We also recall that for any i, we have

V̂i(hi, zi) = (ℓ(hi, zi)−Ei−1[ℓ(hi, zi)])
2 and Vi(hi) = Ei−1[V̂ (hi, zi)]. To apply the supermartin-

gales techniques of [HG23a], we define the following function:

fm(S, h1, ..., hm) :=
m
∑

i=1

λXi(hi, zi)−
λ2

2

m
∑

i=1

(V̂i(hi, zi) + Vi(hi)).

Now, Lemma 3.2 of [HG23a] state that the sequence (SMm)m≥1 defined for any m as:

SMm := E
(h1,··· ,hm)∼π1,S⊗···⊗πm,S

[

exp
(

fm(S, h1, ..., hm)
)]

,

is a supermartingale. We exploit this fact as follows:

m
∑

i=1

E
h∼ρi−1

[

E
i−1

[ℓ(hi, zi)]− ℓ(hi, zi)

]

= E
(h1,··· ,hm)∼π1,S⊗···⊗πm,S

[

m
∑

i=1

Xi(hi, zi)

]

=
1

λ
E

(h1,··· ,hm)∼π1,S⊗···⊗πm,S

[fm(S, h1, · · · , hm)]

+
λ

2

m
∑

i=1

E
hi∼πi,S

[

V̂i(hi, zi) + Vi(hi)
]

≤ ln (SMm)

λ
+

λ

2

m
∑

i=1

E
hi∼πi,S

[

V̂i(hi, zi) + Vi(hi)
]

The last line holds thanks to Jensen’s inequality. Now using Ville’s inequality ensures us that:

P
S

(

∀m,SMm ≤
1

δ

)

≥ 1

δ
.

Thus, with probability 1− δ, for any m we have ln (SMm) ≤ ln
(

1
δ

)

. This concludes the proof.

B.5 Proof of Theorem 4

Theorem 4. We assume our loss ℓ to be non-negative and L-Lipschitz. We also assume that, for any
i,S, Eh∼πi(.,S)

[

Ei−1[ℓ(h, zi)
2]
]

≤ 1 (bounded conditional order 2 moments for priors). Then, for

any δ ∈ (0, 1], with probability at least 1−δ over the sample S, any online predictive sequence (used
as priors) (πi)i≥1, we have with probability at least 1 − δ over the sample S ∼ µ, the following,
holding for the data-dependent measures πi,S := πi(S, .) and any posterior sequence (ρi)i≥1:

1

m

m
∑

i=1

E
hi∼ρi

[

E[ℓ(hi, zi) | Fi−1]− ℓ(hi, zi)
]

≤ 2L

m

m
∑

i=1

W(ρi, πi,S) +

√

2 ln
(

1
δ

)

m
.
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Proof. The proof starts similarly to the one of Theorem 3. Indeed, note that for a L-Lipschitz loss
function ℓ : H×Z → R, we have

∣

∣

∣

∣

(

E
i−1

[ℓ(hi, zi)]−ℓ(hi, zi)

)

−
(

E
i−1

[ℓ(h′
i, zi)]−ℓ(h′

i, zi)

)∣

∣

∣

∣

≤ 2Ld(hi, h
′
i). (16)

Indeed, we can deduce Equation (16) from Jensen inequality, the triangle inequality, and by defini-
tion that we have
∣

∣

∣

∣

(

E
i−1

[ℓ(hi, zi)]−ℓ(hi, zi)

)

−
(

E
i−1

[ℓ(h′
i, zi)]−ℓ(h′

i, zi)

)∣

∣

∣

∣

≤ E
i−1

[

|ℓ(hi, z
′
i)− ℓ(h′

i, z
′
i)|+ |ℓ(hi, zi)− ℓ(h′

i, zi)|
]

≤ E
i−1

2Ld(hi, h
′
i) = 2Ld(hi, h

′
i).

From the Kantorovich-Rubinstein duality theorem [Vil09, Remark 6.5], we have

m
∑

i=1

E
hi∼ρi

[

E
i−1

[ℓ(hi, zi)]− ℓ(hi, zi)

]

≤ 2L
m
∑

i=1

W1(ρi, πi,S) +
m
∑

i=1

E
h∼πi,S

[Rµ(hi)− ℓ(hi, zi)] .

Now, we define Xi(hi, zi) := Ei−1[ℓ(hi, zi)]− ℓ(hi, zi). To apply the supermartingales techniques
of [CWR23], we define the following function:

fm(S, h1, ..., hm) :=
m
∑

i=1

λXi(hi, zi)−
λ2

2

m
∑

i=1

E
i−1

[ℓ(hi, zi)
2].

Now, because our loss is nonnegative, [CWR23, Lemma A.2 and Lemma B.1] state that the sequence
(SMm)m≥1 defined for any m as:

SMm := E
(h1,··· ,hm)∼π1,S⊗···⊗πm,S

[

exp
(

fm(S, h1, ..., hm)
)]

,

is a supermartingale. We exploit this fact as follows:

m
∑

i=1

E
h∼ρi−1

[

E
i−1

[ℓ(hi, zi)]− ℓ(hi, zi)

]

= E
(h1,··· ,hm)∼π1,S⊗···⊗πm,S

[

m
∑

i=1

Xi(hi, zi)

]

=
1

λ
E

(h1,··· ,hm)∼π1,S⊗···⊗πm,S

[fm(S, h1, · · · , hm)]

+
λ

2

m
∑

i=1

E
hi∼πi,S

[

E
i−1

[ℓ(hi, zi)
2]

]

≤ ln (SMm)

λ
+

λ

2

m
∑

i=1

E
hi∼πi,S

[

E
i−1

[ℓ(hi, zi)
2]

]

The last line holds thanks to Jensen’s inequality. Now using Ville’s inequality ensures us that:

P
S

(

∀m,SMm ≤
1

δ

)

≥ 1

δ

Thus, with probability 1−δ, for any m we have ln(SMm)≤ ln 1
δ . We conclude the proof by ex-

ploiting the boundedness assumption on conditional order 2 moments and optimising the bound in
λ.

C Supplementary insights on experiments

In this section, Appendix C.1 presents the learning algorithm for the i.i.d. setting. We also introduce
the online algorithm in Appendix C.2. We prove the Lipschitz constant of the loss for the linear
models in Appendix C.3. Finally, we provide more experiments in Appendix C.5.
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C.1 Batch algorithm for the i.i.d. setting

The pseudocode of our batch algorithm is presented in Algorithm 1.

Algorithm 1 (Mini-)Batch Learning Algorithm with Wasserstein distances

1: procedure PRIORS LEARNING

2: h1, . . . , hK ← initialize the hypotheses
3: for t← 1, . . . , T do
4: for each mini-batch U ⊆ S do
5: for i← 1, . . . ,K do
6: Ui ← U \ Si
7: hi ← perform a gradient descent step with ∇RUi

(hi)

8: return hypotheses h1, . . . , hK

9:

10: procedure POSTERIOR LEARNING

11: h← initialize the hypothesis
12: for t← 1, . . . , T ′ do
13: for each mini-batch U ⊆ S do

14: h← perform a gradient descent step with ∇[RU (h) + ε
∑K

i=1
|Si|
m d(h, hi)]

15: return hypothesis h

PRIORS LEARNING minimises the empirical risk through mini-batches U ⊆ S for T epochs. More
precisely, for each epoch, we (a) sample a mini-batch U (line 4) by excluding the set Si from U for
each hi ∈ H (line 5-6), then (b) the hypothesesh1, . . . , hK ∈ H are updated (line 7). In POSTERIOR

LEARNING, we perform a gradient descent step (line 14) on the objective function associated with
Equation (5) for T ′ epochs in a mini-batch fashion.

C.2 Learning algorithm for the online setting

Algorithm 2 presents the pseudocode of our online algorithm.

Algorithm 2 Online Learning Algorithm with Wasserstein distances

1: Initialize the hypothesis h0 ∈ H
2: for i← 1, . . . ,m do
3: for t← 1, . . . , T do

4: hi ← perform a gradient step with∇[ℓ(hi, zi) + B̂(d(hi, hi−1)−1)] (Eq. (7) with B̂)

5: return hypotheses h1, . . . , hm

For each time step i, we perform T gradient descent steps on the objective associated with Equa-
tion (6) (line 4). Note that we can retrieve OGD from Algorithm 2 by (a) setting T = 1 and (b)

removing the regularisation term B̂(d(hi, hi−1)−1).

C.3 Lipschitzness for the linear model

Recall that we use, in our experiments, the multi-margin loss function from the Pytorch module

defined for any linear model with weights W ∈ R
|Y|×d and biases b ∈ R

|Y|, any data point z ∈
X × Y

ℓ(W, b, z) =
1

|Y| − 1

∑

y′ 6=y

max (0, f(W, b, z, y′)) ,

where f(W, b, z, y′) = 1 + 〈W [y′] −W [y],x〉 + b[y′] − b[y], and W [y] ∈ R
d and b[y] ∈ R are

respectively the vector and the scalar for the y-th output.
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To apply our theorems, we must ensure that our loss function is Lipschitz with respect to the linear
model, hence the following lemma.

Lemma 8. For any z = (x, y) ∈ X × Y with the norm of x bounded by 1, the function W, b 7→
ℓ(W, b, z) is 2-Lipschitz.

Proof. Let (W, b), (W ′, b′) both in R
|Y|×d × R

|Y|, we have

|ℓ(W, b, z)− ℓ(W ′, b′, z)| ≤ 1

|Y| − 1

∑

y′ 6=y

|max (0, f(W, b, z, y′))−max (0, f(W ′, b′, z, y′)) |.

Note that because α 7→ max(0, α) is 1-Lipschitz, we have:

|ℓ(W, b, z)− ℓ(W ′, b′, z)| ≤ 1

|Y| − 1

∑

y′ 6=y

|f(W, b, z, y′)− f(W ′, b′, z, y′)|.

Finally, notice that:

1

|Y| − 1

∑

y′ 6=y

|f(W, b, z, y′)− f(W ′, b′, z, y′)| ≤ 1

|Y| − 1

∑

y′ 6=y

|〈(W −W ′)[y′]− (W −W ′)[y],x〉|

+
1

|Y| − 1

∑

y′ 6=y

|(b − b′)[y′]− (b− b′)[y]|

≤ 1

|Y| − 1

∑

y′ 6=y

‖(W −W ′)[y′]− (W −W ′)[y]‖ ‖x‖

+
1

|Y| − 1

∑

y′ 6=y

|(b − b′)[y′]− (b− b′)[y]|.

Because we consider the Euclidean norm, we have for any y′ ∈ Y:

‖(W −W ′)[y′]− (W −W ′)[y]‖ =
√

‖(W −W ′)[y′]− (W −W ′)[y]‖2

≤
√

2 (‖(W −W ′)[y′]‖2 + ‖(W −W ′)[y]‖2)
≤
√
2‖W −W ′‖.

The second line holding because for any scalars a, b, we have (a − b)2 ≤ 2(a2 + b2) and the last
line holding because ‖W −W ′‖2 =

∑

y∈Y ‖(W −W ′)[y]‖2. A similar argument gives

1

|Y| − 1

∑

y′ 6=y

|(b− b′)[y′]− (b− b′)[y]| ≤
√
2||b− b′||.

Then, using that ‖x‖ ≤ 1 and summing on all y′ gives:

|ℓ(W, b, z)− ℓ(W ′, b′, z)| ≤
√
2 (‖W −W ′‖+ ‖b− b′‖) .

Finally, notice that (‖W −W ′‖+‖b−b′‖)2 ≤ 2(‖W −W ′‖2+‖b−b′‖2) = 2‖(W, b)−(W ′, b′)‖2.

Thus ‖W −W ′‖+ ‖b− b′‖ ≤
√
2‖(W, b)− (W ′, b′)‖. This concludes the proof.

C.4 Lipschitzness for neural networks

Recall that we use, in our experiments, the multi-margin loss function from the Pytorch mod-
ule defined we consider the loss ℓ(h, (x, y)) = 1

|Y|
∑

y′ 6=y max(0, 1−η(h[y]−h[y′])), which is η-

Lipschitz w.r.t. the outputs h[1], . . . , h[|Y|]. For neural networks, h is the output of the neural
network with input x. Note that this loss is η-lipschitz with respect to the outputs. To apply our the-
orems, we must ensure that our loss function is Lipschitz with respect to the weights of the neural
networks, hence the following lemma with associated background.
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We define a FCN recursively as follows: for a vector W1 = vec({W1, b}), (i.e., the vectorisation of
a weight matrix W1 and a bias b) and an input datum x, FCN1(W1,x) = σ1 (W1x+ b1), where σ1

is the activation function. Also, for any i ≥ 2 we define for a vector Wi = (Wi, bi,Wi−1) (defined
recursively as well), FCNi(Wi,x) = σi (WiFCNi−1(Wi−1,x) + bi). Then, setting z = (x, y) a
datum and hi(x) := FCNi(Wi,x) we can rewrite our loss as a function of (Wi, z).

Lemma 9. Assume that all the weight matrices of Wi are bounded and that the activation functions
are Lipschitz continuous with constant bounded by Kσ. Then for any datum z = (x, y), any i,
Wi → ℓ(Wi, z) is Lipschitz continuous.

Proof. We consider the Frobenius norm on matrices as W2 is a vector as we consider the L2-norm
on the vector. We prove the result for i = 2, assuming it is true for i = 1. We then explain
how this proof generalises the case i = 1 and works recursively. Let z,W2,W

′
2, for clarity we

write FCN2(x) := FCN(W2,x) and FCN′
2(x) := FCN(W′

2,x). As ℓ is Lipschitz on the outputs
FCN2(x), FCN′

2(x). We have

|ℓ(W2, z)− ℓ(W′
2, z)| ≤ η

∥

∥FCN2(x)− FCN′
2(x)

∥

∥

≤ η
∥

∥σ2 (W2FCN1(x) + b2)− σ2

(

W ′
2FCN′

1(x) + b′2
)∥

∥

≤ ηKσ‖W2FCN1(x) + b2 −W ′
2FCN′

1(x) − b′2‖
≤ ηKσ

(

||(W2 −W ′
2)FCN1(x)|| + ||W ′

2(FCN1(x) − FCN′
1(x))‖ + ‖b2 − b′2‖

)

.

Then, we have ||(W2 −W ′
2)FCN1(x)|| ≤ ||(W2 −W ′

2)||F ||FCN1(x)|| ≤ Kx||(W2 −W ′
2)||F . The

second inequality holding as FCN1(x) is a continuous function of the weights. Indeed, as on a
compact space, a continuous function reaches its maximum, then its norm is bounded by a certain
Kx. Also, as the weights are bounded, any weight matrix has its norm bounded by a certain KW thus
‖W ′

2(FCN1(x) − FCN′
1(x)‖ ≤ ‖W ′

2‖F ‖(FCN1(x) − FCN′
1(x)‖ ≤ KW ‖FCN1(x) − FCN′

1(x)‖.
Finally, taking Ktemp = ηKσ max(Kx,KW , 1) gives:

|ℓ(W2, z)− ℓ(W′
2, z)| ≤ Ktemp

(

‖(W2 −W ′
2)‖F + ‖b2 − b′2‖+ ‖FCN1(x) − FCN′

1(x)‖
)

.

Exploiting the recursive assumption that FCN1 is Lipschitz with respect to its weights W1 gives
‖FCN1(x) − FCN′

1(x)‖ ≤ K1||W1 −W
′
1||.

If we denote by (W2, b2) the vector of all concatenated weights, notice that ‖(W2−W ′
2)‖F + ‖b2−

b′2‖ =
√

(‖(W2 −W ′
2)‖F + ‖b2 − b′2‖)2 ≤

√

2(‖(W2 −W ′
2)‖2F + ‖b2 − b′2‖2) =

√
2‖(W2, b2)−

(W ′
2, b

′
2)‖ (we used that for any real numbers a, b, (a+ b)2 ≤ 2(a2 + b2)). We then have:

|ℓ(W2, z)− ℓ(W′
2, z)| ≤ Ktemp max(

√
2,K1) (‖(W2, b2)− (W ′

2, b
′
2)‖+ ||W1 −W

′
1||)

≤
√
2Ktemp max(

√
2,K1)||W2 −W

′
2||.

The last line holds by reusing the same calculation trick. This concludes the proof for i = 2.
Then for i = 1 the same proof holds by replacing W2, b2, FCN2 by W1, b1, FCN1 and replacing
FCN1(x), FCN′

1(x) by x (we then do not need to assume a recursive Lipschitz behaviour). There-
fore the result holds for i = 1.

We then properly apply a recursive argument by assuming the result at rank i − 1 reusing the
same proof at any rank i by replacing W2, b2, FCN2 by Wi, bi, FCNi and FCN1(x), FCN′

1(x) by
FCNi−1(x), FCN′

i−1(x). This concludes the proof.

C.5 Experiments with varying number of priors

The experiments of Section 4 rely on data-dependent priors constructed through the procedure PRI-
ORS LEARNING. We fixed a number of priors K equal to 0.2

√
m. This number is an empirical

tradeoff between the informativeness of our priors and time-efficient computation. However, there
is no theoretical intuition for the value of this parameter (the discussion of Section 3.1 considered
K =

√
m as a potential tradeoff; see Appendix A). Thus, we gather below the performance of our

learning procedures for K = α
√
m, where α ∈ {0, 0.4, 0.6, 0.8, 1} (the case α = 0 being a con-

vention to denote K = 1). The experiments are gathered below, and all remaining hyperparameters
(except K) are identical to those described in Section 4.
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Analysis of our results. First, when considering neural networks, note that for any dataset except
SEGMENTATION, LETTER, the performances of our methods are similar or better when consider-
ing data-dependent priors (i.e., when α > 0). A similar remark holds for the linear models for
all datasets except for SATIMAGE, SEGMENTATION, and TICTACTOE. This illustrates the relevance
of data-dependent priors. We also remark that there is no value of α, which provides a better per-
formance on all datasets. For instance, considering neural networks, note that α = 1 gives the
better performance (i.e., the smallest Rµ(h)) for Algorithm 1 (1/√m) for the SATIMAGE dataset
while, for the same algorithm, the better performance on the SEGMENTATION dataset is attained for
α = 0.8. Sometimes, the number K does not have a clear influence: on MNIST with NNs, for Algo-
rithm 1 (1/

√
m), our performances are similar, whatever the value of K , but still significantly better

than ERM. In any case, note that for every dataset, there exists a value of K and such that our algo-
rithm attains either similar or significantly better performances than ERM on every dataset, which
shows the relevance of our learning algorithm to ensure a good generalisation ability. Moreover,
there is no obvious choice for the parameters ε. For instance, in Tables 2 and 3, for the SEGMEN-
TATION dataset, the parameters K = 1, ε = 1

m are optimal (in terms of test risks) for both models.
As K = 1 means that our single prior is data-free, this shows that the intrinsic structure of SEG-
MENTATION makes it less sensitive to both the information contained in the prior (K = 1 meaning
data-free prior) and the place of the prior itself (ε = 1/m meaning that we give less weight to the
regularisation within our optimisation procedure). On the contrary, in Table Table 1, the YEAST

dataset performs significantly better when ε = 1/
√
m(K = 0.2

√
m), exhibiting a positive impact

of our data-dependent priors.

C.6 Experiments on classical regularisation methods

We perform additional experiments to see the performance of the weight decay, i.e., the L2 regu-
larisation on the weights; the results are presented in Table 4. Moreover, notice that the ’distance
to initialisation’ ‖w − w0‖ (where w0 is the weights initialized randomly) is a particular case of
Algorithm 1 when K = 1 (i.e., we treat the data as a single batch, and the prior is the data-free
initialisation); the results are in Tables 2 and 3.

Analysis of our results. This experiment on the weight decay demonstrates that on a few datasets
(namely SENSORLESS and YEAST), when our predictors are neural nets, the weight decay regular-
isation fails to learn while ours succeeds, as shown in Table 1. In general, this table shows that,
on most of the datasets, considering data-dependent priors leads to sharper results. This shows the
efficiency of our method compared to the ’distance to initialisation’ regularisation.
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Table 2: Performance of Algorithm 1 compared to ERM on different datasets for neural network
models. We consider ε = 1/m and ε = 1/

√
m, with K = α

√
m and α ∈ {0, 0.4, 0.6, 0.8, 1}. We plot

the empirical risk RS(h) with its associated test risk Rµ(h).

(a) K = 1

Alg. 1 ( 1

m
) Alg. 1 ( 1√

m
)

Dataset RS(h) Rµ(h) RS(h) Rµ(h)

ADULT 0.207 0.207 0.248 0.248
FASHIONMNIST 0.160 0.164 0.158 0.164

LETTER 0.258 0.269 0.268 0.280
MNIST 0.116 0.123 0.085 0.096

MUSHROOMS 0.000 0.000 0.000 0.001
NURSERY 0.705 0.720 0.720 0.736

PENDIGITS 0.704 0.724 0.021 0.037
PHISHING 0.048 0.052 0.038 0.055
SATIMAGE 0.148 0.208 0.147 0.207

SEGMENTATION 0.141 0.176 0.248 0.385
SENSORLESS 0.907 0.911 0.907 0.911
TICTACTOE 0.000 0.042 0.000 0.033

YEAST 0.695 0.712 0.677 0.658

(b) K = 0.4
√

m

Alg. 1 ( 1

m
) Alg. 1 ( 1√

m
)

Dataset RS(h) Rµ(h) RS (h) Rµ(h)

ADULT 0.167 0.166 0.164 0.164
FASHIONMNIST 0.160 0.164 0.156 0.160

LETTER 0.263 0.275 0.252 0.263
MNIST 0.112 0.120 0.085 0.096

MUSHROOMS 0.000 0.000 0.000 0.000
NURSERY 0.705 0.720 0.706 0.719

PENDIGITS 0.011 0.025 0.010 0.022
PHISHING 0.043 0.053 0.041 0.052
SATIMAGE 0.147 0.178 0.145 0.174

SEGMENTATION 0.345 0.408 0.225 0.416
SENSORLESS 0.075 0.078 0.074 0.077
TICTACTOE 0.000 0.031 0.000 0.019

YEAST 0.450 0.480 0.695 0.712

(c) K = 0.6
√

m

Alg. 1 ( 1

m
) Alg. 1 ( 1√

m
)

Dataset RS(h) Rµ(h) RS(h) Rµ(h)

ADULT 0.165 0.163 0.165 0.164
FASHIONMNIST 0.158 0.164 0.156 0.160

LETTER 0.259 0.275 0.260 0.267
MNIST 0.112 0.121 0.084 0.094

MUSHROOMS 0.000 0.000 0.000 0.000
NURSERY 0.706 0.719 0.706 0.719

PENDIGITS 0.008 0.023 0.009 0.022
PHISHING 0.043 0.055 0.040 0.050
SATIMAGE 0.138 0.184 0.141 0.174

SEGMENTATION 0.577 0.845 0.145 0.309
SENSORLESS 0.073 0.076 0.073 0.076
TICTACTOE 0.000 0.023 0.000 0.013

YEAST 0.461 0.449 0.410 0.426

(d) K = 0.8
√

m

Alg. 1 ( 1

m
) Alg. 1 ( 1√

m
)

Dataset RS(h) Rµ(h) RS (h) Rµ(h)

ADULT 0.165 0.164 0.164 0.164
FASHIONMNIST 0.158 0.163 0.156 0.161

LETTER 0.260 0.274 0.260 0.267
MNIST 0.113 0.121 0.083 0.093

MUSHROOMS 0.000 0.000 0.000 0.000
NURSERY 0.706 0.719 0.704 0.721

PENDIGITS 0.011 0.026 0.008 0.020
PHISHING 0.042 0.054 0.048 0.063
SATIMAGE 0.136 0.174 0.128 0.183

SEGMENTATION 0.140 0.463 0.121 0.249
SENSORLESS 0.075 0.079 0.074 0.077
TICTACTOE 0.392 0.301 0.000 0.008

YEAST 0.394 0.422 0.686 0.671

(e) K =
√

m

Alg. 1 ( 1

m
) Alg. 1 ( 1√

m
)

Dataset RS(h) Rµ(h) RS(h) Rµ(h)

ADULT 0.167 0.166 0.167 0.167
FASHIONMNIST 0.159 0.164 0.157 0.162

LETTER 0.253 0.269 0.255 0.267
MNIST 0.110 0.119 0.084 0.094

MUSHROOMS 0.000 0.000 0.000 0.000
NURSERY 0.706 0.719 0.703 0.722

PENDIGITS 0.012 0.026 0.012 0.024
PHISHING 0.042 0.050 0.039 0.053
SATIMAGE 0.137 0.176 0.125 0.169

SEGMENTATION 0.162 0.398 0.153 0.387
SENSORLESS 0.075 0.077 0.073 0.076
TICTACTOE 0.000 0.035 0.000 0.008

YEAST 0.415 0.435 0.418 0.450

(f) ERM

Dataset RS (h) Rµ(h)

ADULT 0.165 0.163
FASHIONMNIST 0.163 0.167

LETTER 0.258 0.270
MNIST 0.119 0.127

MUSHROOMS 0.000 0.000
NURSERY 0.706 0.719

PENDIGITS 0.009 0.022
PHISHING 0.046 0.055
SATIMAGE 0.141 0.189

SEGMENTATION 0.174 0.389
SENSORLESS 0.075 0.078
TICTACTOE 0.000 0.023

YEAST 0.644 0.682
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Table 3: Performance of Algorithm 1 compared to ERM on different datasets for linear models.
We consider ε = 1/m and ε = 1/

√
m, with K = α

√
m and α ∈ {0, 0.4, 0.6, 0.8, 1}. We plot the

empirical risk RS(h) with its associated test risk Rµ(h).

(a) K = 1

Alg. 1 ( 1

m
) Alg. 1 ( 1√

m
)

Dataset RS(h) Rµ(h) RS(h) Rµ(h)

ADULT 0.207 0.207 0.248 0.248
FASHIONMNIST 0.142 0.155 0.126 0.149

LETTER 0.286 0.296 0.286 0.295
MNIST 0.067 0.092 0.069 0.094

MUSHROOMS 0.001 0.001 0.000 0.000
NURSERY 0.788 0.799 0.796 0.804

PENDIGITS 0.049 0.060 0.047 0.057
PHISHING 0.063 0.065 0.057 0.062
SATIMAGE 0.142 0.202 0.136 0.199

SEGMENTATION 0.053 0.151 0.079 0.176
SENSORLESS 0.907 0.911 0.907 0.911
TICTACTOE 0.013 0.021 0.013 0.021

YEAST 0.702 0.720 0.693 0.687

(b) K = 0.4
√

m

Alg. 1 ( 1

m
) Alg. 1 ( 1√

m
)

Dataset RS(h) Rµ(h) RS (h) Rµ(h)

ADULT 0.166 0.167 0.166 0.167
FASHIONMNIST 0.128 0.150 0.126 0.150

LETTER 0.285 0.296 0.286 0.297
MNIST 0.069 0.089 0.067 0.093

MUSHROOMS 0.001 0.001 0.001 0.001
NURSERY 0.760 0.778 0.769 0.781

PENDIGITS 0.050 0.061 0.048 0.061
PHISHING 0.062 0.067 0.065 0.068
SATIMAGE 0.565 0.773 0.137 0.200

SEGMENTATION 0.058 0.212 0.177 0.382
SENSORLESS 0.220 0.220 0.133 0.134
TICTACTOE 0.378 0.290 0.013 0.021

YEAST 0.488 0.478 0.492 0.478

(c) K = 0.6
√

m

Alg. 1 ( 1

m
) Alg. 1 ( 1√

m
)

Dataset RS(h) Rµ(h) RS(h) Rµ(h)

ADULT 0.166 0.167 0.166 0.167
FASHIONMNIST 0.127 0.147 0.127 0.150

LETTER 0.288 0.296 0.286 0.296
MNIST 0.067 0.092 0.067 0.093

MUSHROOMS 0.001 0.001 0.001 0.001
NURSERY 0.791 0.802 0.759 0.779

PENDIGITS 0.048 0.061 0.047 0.059
PHISHING 0.062 0.067 0.064 0.068
SATIMAGE 0.146 0.202 0.137 0.199

SEGMENTATION 0.058 0.215 0.058 0.204
SENSORLESS 0.129 0.130 0.130 0.130
TICTACTOE 0.013 0.021 0.013 0.021

YEAST 0.477 0.461 0.478 0.464

(d) K = 0.8
√

m

Alg. 1 ( 1

m
) Alg. 1 ( 1√

m
)

Dataset RS(h) Rµ(h) RS (h) Rµ(h)

ADULT 0.166 0.167 0.166 0.167
FASHIONMNIST 0.130 0.149 0.128 0.151

LETTER 0.285 0.296 0.288 0.297
MNIST 0.067 0.091 0.067 0.093

MUSHROOMS 0.001 0.001 0.001 0.001
NURSERY 0.771 0.787 0.758 0.778

PENDIGITS 0.047 0.060 0.047 0.059
PHISHING 0.062 0.066 0.065 0.068
SATIMAGE 0.168 0.216 0.137 0.199

SEGMENTATION 0.053 0.212 0.052 0.204
SENSORLESS 0.129 0.130 0.132 0.132
TICTACTOE 0.013 0.021 0.013 0.021

YEAST 0.476 0.461 0.477 0.460

(e) K =
√

m

Alg. 1 ( 1

m
) Alg. 1 ( 1√

m
)

Dataset RS(h) Rµ(h) RS(h) Rµ(h)

ADULT 0.166 0.167 0.166 0.167
FASHIONMNIST 0.354 0.361 0.127 0.151

LETTER 0.287 0.296 0.288 0.298
MNIST 0.068 0.092 0.065 0.092

MUSHROOMS 0.001 0.001 0.001 0.001
NURSERY 0.795 0.805 0.796 0.805

PENDIGITS 0.050 0.062 0.047 0.059
PHISHING 0.062 0.067 0.065 0.067
SATIMAGE 0.143 0.200 0.137 0.201

SEGMENTATION 0.055 0.210 0.055 0.212
SENSORLESS 0.130 0.130 0.131 0.132
TICTACTOE 0.013 0.021 0.392 0.301

YEAST 0.476 0.456 0.476 0.457

(f) ERM

Dataset RS (h) Rµ(h)

ADULT 0.166 0.167
FASHIONMNIST 0.139 0.153

LETTER 0.287 0.297
MNIST 0.065 0.091

MUSHROOMS 0.001 0.001
NURSERY 0.794 0.807

PENDIGITS 0.052 0.064
PHISHING 0.064 0.067
SATIMAGE 0.148 0.209

SEGMENTATION 0.087 0.232
SENSORLESS 0.134 0.136
TICTACTOE 0.228 0.238

YEAST 0.470 0.427
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Table 4: Performance of ERM with weight decay (with the L2 regularisation) for linear and neural
network models.

(a) Linear

L2 Reg. ( 1

m
) L2 Reg. ( 1√

m
)

Dataset RS(h) Rµ(h) RS(h) Rµ(h)

ADULT 0.207 0.207 0.248 0.248
FASHIONMNIST 0.141 0.149 0.127 0.150

LETTER 0.285 0.295 0.285 0.296
MNIST 0.067 0.092 0.066 0.092

MUSHROOMS 0.001 0.001 0.000 0.000
NURSERY 0.788 0.799 0.796 0.804

PENDIGITS 0.049 0.060 0.047 0.057
PHISHING 0.063 0.065 0.057 0.062
SATIMAGE 0.144 0.203 0.138 0.200

SEGMENTATION 0.058 0.157 0.075 0.177
SENSORLESS 0.907 0.911 0.907 0.911
TICTACTOE 0.013 0.021 0.013 0.021

YEAST 0.702 0.720 0.693 0.687

(b) NN

L2 Reg. ( 1

m
) L2 Reg. ( 1√

m
)

Dataset RS(h) Rµ(h) RS (h) Rµ(h)

ADULT 0.207 0.207 0.248 0.248
FASHIONMNIST 0.160 0.166 0.159 0.164

LETTER 0.261 0.275 0.256 0.269
MNIST 0.116 0.125 0.084 0.095

MUSHROOMS 0.000 0.000 0.000 0.000
NURSERY 0.704 0.721 0.770 0.788

PENDIGITS 0.009 0.022 0.012 0.026
PHISHING 0.042 0.050 0.054 0.059
SATIMAGE 0.150 0.215 0.143 0.205

SEGMENTATION 0.141 0.216 0.198 0.371
SENSORLESS 0.907 0.911 0.907 0.911
TICTACTOE 0.000 0.046 0.000 0.021

YEAST 0.662 0.674 0.693 0.683
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