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Actor Critic Agents for Wind Farm Control

Claire Bizon Monroc, Ana Bušić, Donatien Dubuc, Jiamin Zhu

Abstract— The power output of a wind farm is influenced by
wake effects, a phenomenon in which upstream turbines facing
the wind create sub-optimal conditions for turbines located
downstream. Yaw misaligning strategies have been shown to
increase total production. Yet designing efficient methods of
cooperative control to find optimal yaw angles is a challenging
task. Classical optimization methods become intractable as the
size of the farm grows, do not recover from model inaccuracies
and ignore the dynamic propagation of the wind inflow in
real conditions. Reinforcement learning methods can provide a
model-free alternative, but raise issues of scalability when the
control is centralized. Existing decentralized RL methods have
been shown to significantly increase power production under
dynamic conditions, but relied on tabular methods with state
and action space discretization. To accelerate convergence, we
employ an actor-critic algorithm with linear function approxi-
mation for decentralized cooperative yaw control. We validate
our method in dynamic simulators for wind farms with up to
32 turbines, and show empirically that, compared to previous
tabular algorithms, our method is faster and scales to larger
wind farms.

I. INTRODUCTION

The power output of a wind farm is influenced by wake
effects, a phenomenon in which upstream turbines facing
the wind create sub-optimal conditions for turbines located
downstream. Misaligning the yaw, defined as the angle
between the rotor and the wind direction, is an efficient
strategy to deflect the wake away from downstream turbines.
This technique is known as wake steering, and has been
shown to increase total production compared to the naive
greedy strategy where all turbines face the wind [1] [2].

Designing efficient methods of cooperative control to
find optimal yaw angles is a challenging task. First, the
complexity of this optimization problem increases with the
number of turbines in the wind farm, making centralized con-
trol strategies quickly intractable for real time optimization.
Second, several classical model-based optimization methods
have been proposed [3], but they cannot recover from model
inaccuracies in the field. Finally, deployment of any control
method for real-time optimization on wind farms requires
accounting for the dynamic propagation of the wind inflow.

To address the first issue, we formulate farm power output
maximization as a multi-agent, distributed optimization prob-
lem. This solution is computationally time-efficient, has the
potential to be applied on any wind farm layout without any
change in the structure of the algorithm, and has already been
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successful in static simulations [3]. For the second issue, we
can suppress reliance on inaccurate modeling by designing
adaptive solutions that learn online. Reinforcement learning
(RL) methods provide a model-free, data-based alternative:
they learn to predict the optimal yaws from observations of
the system’s output. In a previous work, we have developed a
decentralized RL algorithm and validated it in a mid-fidelity
simulation environment under realistic dynamic conditions
[4]. To account for wake propagation times and thus address
the third issue, a delayed update component was added to
the RL method, allowing agents to take into account the
time needed for their input changes to impact neighboring
turbines. This algorithm however relies on state and control
space discretization. This comes with an important cost in
terms of parameters to learn, and raises issues regarding the
algorithm’s ability to scale to larger wind farms. We show
that more efficient learning agents can be designed under the
same principles of decentralization and delay-awareness. We
employ actor critic agents learning in parallel with linear
function approximation, and test our method in WFSim, a
control-oriented wind farm simulator that takes into account
wake propagation dynamics which has been validated against
large eddy simulations [5].

We propose a decentralized actor critic method for yaw
control of large wind farms under dynamic wake conditions.
Numerical experiments on WFSim under stationary wind
conditions for wind farms with up to 32 turbines show that
this method has great scaling potential and achieves faster
coordination and convergence than existing RL algorithms,
leading to more important increases in energy production.

The remainder of this paper is organized as follows: In
Section II, we provide background information on reinforce-
ment learning and introduce actor-critic methods. We then
show how they can be used to solve a cooperative yaw
control problem for wind farm output power maximization
in Section III. We finally introduce our simulation setup,
and present our experimental results on 4 different WFSim
simulations for various layouts and farm sizes in Section
IV. Section V summarizes our results and discusses possible
paths forward.

II. BACKGROUND: REINFORCEMENT LEARNING

In Reinforcement Learning (RL), agents try to directly
learn the best mapping from states to (probabilities on)
actions by interacting with an environment. Formally, we
define a Markov Decision Process (MDP) {S,A, r, P}, with
S the state space, A a discrete action space, P the matrix of
transition probabilities of the environment and r : S×A −→ R
a reward function. We write A(s) the subset of actions a ∈ A
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available in state s. An agent interacts with the environment
by following a stochastic policy a ∼ π(s), s ∈ S, a ∈ A(s),
where π(a|s) is the probability of choosing action a when
in state s. The agent’s goal is then to find a policy π∗ that
maximizes the expectation of its infinite-horizon discounted
reward, or discounted return:

max
π

E[J |d0] J :=

∞∑
k=0

βkr(sk, ak)

with d0 a distribution over initial states, 0 < β < 1 the
discount factor, s0 the initial state, and {sk, ak}k=0...∞ a
trajectory of the agent in the environment under policy π.

For a policy π, we define the state value function V as:

Vπ(s) := E

[ ∞∑
k=0

βkr(sk, ak)|s0 = s

]
with ak ∼ π(sk). For any state s, Vπ(s) is therefore the
expected value of following policy π from state s. It is a
solution of the fixed point Bellman Equation:

Vπ(s) = E [r(s, a) + βVπ(s
′) ] (1)

with a ∼ π(s) and s′ ∼ Ps,a. The state-action value function,
or q function Q, is:

Qπ(s, a) := E

[ ∞∑
k=0

βkr(sk, ak)|s0 = s, a0 = a

]
It is the expected value of taking action a in state s, and
then following policy π. We define the optimal state value
function V ∗ such that:

∀s, V ∗(s) = Vπ∗(s) = max
π

Vπ(s).

RL algorithms follow different strategies to learn an
approximation of the optimal policy π∗. State-value based
methods try to learn the optimal state-action value function
Q∗ by exploiting the fixed-point property of the Bellman
Equation (1). The optimal policy can then be extracted from
the learned value functions. Exhaustive search in the case
of continuous action spaces is however intractable. Policy
gradient methods can solve this issue by directly learning a
policy πϑ parameterized by a vector ϑ ∈ Rd. The learning
objective is then the maximization of the expectation of the
total return EJ = E[J |d0] over the parameter space of the
policy. If we can estimate the gradient of the return ∇ϑEJ at
every iteration, a simple gradient ascent would ensure conver-
gence towards a local optimum under minimal assumptions.
This can indeed be done with the Policy Gradient Theorem
[6], which rewrites this gradient as an expectation:

∇ϑEJ =

∫
S
dπ(s)

∫
A
∇ϑπ(a|s)Qπ(s, a)du da (2)

with dπ(s) =
∑∞
k=0 γ

kP (sk = s|d0, π) the discounted
state distribution under policy π [6]. Policy gradient methods
can therefore inherit strong convergence properties from the
chosen gradient ascent algorithm, but tend to suffer from
huge variance in their gradient estimates.

Actor-critic methods combine the advantages of both pol-
icy gradient and state-value based methods. Like the former,
they easily adapt to continuous action spaces through a
parameterized policy - or actor. But building on the latter,
they can exploit the value function estimator - or critic, to
decrease the variance in the policy gradients [7]. Actor-critic
methods can exploit the relationship between the gradient of
J and the state-value Q function given in (2). Indeed, since
Q is unknown, one could learn a function h : S×A −→ R to
estimate it. It is possible to design an approximation function
h such that replacing the unknown value Qπ(s, a) in (2) by
the estimate h(s, a) keeps the estimate unbiased [6]. Such
a function would have an expected value of zero for each
state, and can be thought of as an estimate of the advantage
function Aπ:

Aπ := Qπ(s, a)− Vπ(s) (3)

Intuitively, the gradient would point towards zones of the
policy parameter space associated with relative higher returns
for each state compared to a baseline given by Vπ(s). Instead
of learning this function, we can note that the Temporal
Difference - TD - error:

δ(s, r, s′) = r(s, a) + βVπ(s
′)− Vπ(s) (4)

is an unbiased estimate of Aπ since ∀(s, a), Qπ(s, a) =
E[r(s, a)+βVπ(s′)]. A new gradient estimate can be rewrit-
ten:

∇δ
ϑEJ =

∫
S
dπ(s)

∫
A
π(a|s)∇ϑ lnπ(a|s)δ(s, r, s′)du da

= Es,a∼π,Ps,a
[∇ϑ lnπ(a|s)δ(s, r, s′)]

(5)

with the switch to log probabilities allowed by the chain
rule applied to ∇ϑ lnπ(a|s). Written as an expectation,
this formula allows us to approximate gradients from sam-
ples of any trajectory following policy π: ∇̂δ

ϑE[J ] =
1
T

∑T−1
t=0 ∇ϑ lnπ(at|st)[r(st, at) + βVπ(st+1) − Vπ(st)].

This is a one-step equivalent of the approach used in Ad-
vantage Actor Critic (A2C) [8].

The state value function of the current policy Vπ can be
estimated by a function Vθ, parameterized by θ ∈ Rb. Recall
that Vπ satisfies (1), so that the learning objective for Vθ can
be defined by the minimization of the squared TD error (4)
for any state transition (s, r, s′):

Lθ = δ(s, r, s′)2 (6)

with a ∼ π(s) and s′ ∼ Ps,a.
Taking a gradient ascent step with regard to θ and ϑ at

every iteration, we derive the update rules of an actor-critic
algorithm:

δk = rk + βVθk(sk+1)− Vθk(sk)

θk+1 = θk + lv,kδk∇θVθk(sk)

ϑk+1 = ϑk + lq,kδk∇ϑ lnπϑk
(ak|sk)

(7)

with lv,k and lq,k the deterministic, non-increasing learning
rates of respectively the critic and the actor.



III. APPLICATION TO WIND FARM CONTROL

We consider a wind farm with M turbines. Each tur-
bine’s position can be described by a pair of coordinates:
(Cx,i, Cy,i), i = 1 . . .M . At each time step k, we assume
that the freestream wind conditions wk = (u∞k , ϕk) are
measured at the entrance of the farm, with u∞k the speed and
ϕk the direction of the wind. For a space of admissible angles
Y , each turbine i has current yaw γi,k ∈ Y and generates
power Pi,k. We want to maximize the total power output of
the wind farm.

A. A multi-agent optimization problem

This problem can be seen as a distributed optimization
task, where every turbine is an agent interacting with the
environment and all maximize a common objective. It should
be noted that in a wind farm, sensor data is usually central-
ized, so it can be assumed that there is full communication
of all relevant information between agents. A decentralized
approach can however allow us to turn a hard to scale,
high dimension optimization problem into several tractable
ones. Within a reinforcement learning framework, we have
M agents learning local optimal policies to maximize a
shared reward: this is known as cooperative multi-agent
reinforcement learning (MARL) [9]. As learning agents
all concurrently interact with the same environment, the
stationarity assumptions supporting convergence guarantees
for any individual RL learner no longer hold. Yet running
single-agent algorithms in parallel on every agent has been
empirically shown to converge to a good equilibrium in
certain settings [10], and a good proof-of-concept of this
approach has been provided by [11] for Q-learning on the
wind farm optimization case.

In this cooperative MARL formalization, each agent ob-
serves his local state and action, and receives information
about the production of other turbines through the shared
reward function. We therefore consider M state spaces
Si,1≤i≤M , Si = Y × R2, and M action spaces Ai,1≤i≤M ,
Ai = [−δγ,+δγ] ∈ R. δγ serves as an upper bound on the
difference in yaws for an agent between two timesteps, and
matches the real constraints and limitations on turbine yaw
actuation. At every timestep k, the agent i observes the local
state:

si,k = [γi,k,wk]
T , γi,k ∈ Y,

and every chosen action ai,k ∈ Ai leads to an update in the
agent’s yaw: γi,k+1 = γi,k + ai,k. The learning algorithm
governs the choice of the action.

B. Delayed Reward

Because of wake propagation time, the impact of an
agent’s action on other turbines in the farm is not imme-
diately observable. The agents therefore act in a delayed
reward environment: the reward associated to an action taken
at timestep k cannot be collected until after the next timestep.
We define rd the reward delay, or number of timesteps
before a reward becomes available. If rd is known and
deterministic, we can simply restore temporal matching by

delaying algorithm updates accordingly, as shown in [12] in
the case of tabular Q-learning with delayed actions. A similar
strategy has been tested for wind farm control under dynamic
conditions on a previous paper from the authors [4].

We therefore modify updates in (7): at each timestep
k, updates are performed for the action ak−rd selected at
timestep k − rd, but whose associated reward has just been
collected at timestep k. Good empirical results were achieved
by approximating the propagation delay between two tur-
bines in the farm using Taylor’s frozen wake hypothesis
[13][14]. Formally, a wake delay matrix Di,j(w) for all
0 ≤ i, j ≤ M was constructed, where every Di,j(w) is
the estimated propagation time from upstream turbine i to
downstream turbine j for wind conditions w.

Di,j(w) =

{
m
ci,j
u∞ if j downstream and ci,j ≤ dcutoff

0 otherwise
(8)

with ci,j the downwind distance between the 2 turbines, w
the freestream wind conditions at the entrance of the farm,
and dcutoff a cutoff distance reflecting the assumption that
wake effects should be negligible above a certain distance.
A safeguard multiplier m > 1 is added to correct Taylor’s
estimate ci,j

u∞ , which is bound to be an underestimation of
the real time of propagation as wind velocity decreases in
the wake. The reward delay rdi(w) for each turbine i under
wind condition w is then the number of time steps of the
largest wake delay

rdi(w) =

⌈
max
j

Di,j(w)

h

⌉
, (9)

with h the sample frequency.
We now seek to design a reward function returning rela-

tively higher values for higher increases. A reward propor-
tional to the observed output power is an intuitive solution,
but initial experiments done with such a reward were in-
conclusive. Indeed, agents operate in a highly non-stationary
environment, with several sources of uncertainty in output
measures: (1) the lack of observation of other agents at every
action choice, (2) the delayed observation of impact (3) the
influence of changing nominal power output under turbulent
or non-stationary wind conditions on the reward assignment.
To decrease the variance of the reward associated to a state-
action pair, we design a staircase function. Moreover, like
in [4], we measure the power generation of an agent’s
downstream turbines at the moment of the estimated impact,
and consider increases in percentages rather than raw values.
We therefore define our reward function, for i = 1, · · · ,M
and given reward boundaries rlb, rub such that ∀a ∈ Ai, s ∈
Si, r(si, ai) ∈ [rlb, rub].

ri,k = min(max(sign(ρ)
⌊
|ρ|
∆

⌋
, rlb)rub)

ρ =
V i2 − V i1
V i1

(10)

with ∆ > 0 a tolerance parameter controlling the size of
each step, V i1 =

∑M
j=1 Pj,k and V i2 =

∑M
j=1 Pj,k+Di,j(w).



C. Fourier Basis Actor Critic

Our goal is to learn a value function Vθ and a policy
function πϑ, parameterized by respectively θ ∈ Rd and
ϑ ∈ Rb. As detailed in II, this can be done by updating these
parameters according to (7). Several families of functions
have been used in the literature [15]. Neural networks have
become the most popular option for a growing number of
applications [16], but their performances for RL are highly
dependent on the choice of hyperparameters and require a
significant amount of tuning [17]. Moreover, as we will see in
IV, simpler methods are sufficient to obtain good empirical
results on our problem. A widely used approach has been
linear function approximations, which represent the function
of interest as a linear combination of a set of features
extracted from the observed state. The set of the non-linear
functions mapping any observed state to an extracted feature
are known as basis functions. Linear function approximation
then results in a simple update rule, even though the basis
functions may be arbitrarily complex ([18]). With a linear
parametrization for our state value function and policy, we
have:

∀s ∈ S, Vθ(s) = θTψ(s), πϑ(s) = P(ϑ, ψ(s))

with ψ = [ψ1, . . . , ψd], ψi : S −→ R a basis function, that is
a feature extraction function giving a representation of the
state, and P(ϑ, ψ(s)) a probability distribution dependent on
s and ϑ. A commonly chosen parametrization of policies for
continuous action spaces is that of Gaussian policies [8]. We
can define πϑ(s) = N (µ(s), σ2), with expectation µ(s) =
ϑTµψ(s), and σ2 a state-independent variance controlling
exploration such that ϑmu ∈ Rd, ϑ = [ϑµ, σ] ∈ Rd+1.
The design and choice of appropriate basis functions for
linear function approximation methods is a critical part of
the algorithm, and has long been discussed in the rein-
forcement learning literature [19][15]. Popular choices have
included the use of hand-designed representation, polynomial
features or boolean tile coding [15]. Good empirical results
have also been obtained with the Fourier basis on several
benchmark continuous control tasks for state-value based
methods [18][15]. After doing experiments on static sim-
ulations (FLORIS) to compare several basis on our problem,
we found the Fourier basis to achieve faster and more stable
convergence. We therefore use linear function approximation
with the Fourier basis for our actor-critic agents, and detail
its implementation in the following paragraphs.

The nth degree Fourier expansion of a function f of period
T is:

Sn(f)(x) =
a0
2

+

n∑
k=1

[
ak cos

(
k
2π

T
x

)
+ bk sin

(
k
2π

T
x

)]
with {ak, bk}k∈Z the Fourier coefficients, which can be
computed as a function of f . If we desire to estimate f ,
the coefficients can be considered as unknown parameters
that we need to learn. When f is not known to be periodic
but is bounded, one can rescale x to [0, 1], and restrict
the approximation to [−1, 1]. Moreover, this scaled even

function can then be approximated only with cosine terms.
For f : Rm −→ R a multivariate function of dimension m,
the nth order Fourier Basis is then defined by:

∀i ∈ {0, . . . , (n+ 1)m}, ψi(x) = cos(πci · x) (11)

where ci = [c1, . . . , cm], cj ∈ {0, . . . , n}.
Each extraction function ψi in the basis corresponds

to a weight vector ci that attributes an integer weight to
every element of the input vector x. The design of these
weight vectors can be the product of careful engineering
[15]. However, a more systematic approach is to use every
possible combination for a given order n, and let the learning
algorithm find the appropriate weights. For any set of integers
[n] = {0, . . . , n}, we write [n]m the set of all n-tuples -
allowing for repetition - from [n] to Nm. We define a Fourier
basis matrix Fψn ∈ Mm×(n+1)m whose columns are made
of integer weight vectors:

Fψn = [c1, . . . , c(n+1)m ]

st. ∪(n+1)m

i=1 ci = [n]m
(12)

The basis vector used for the function approximation of
the value function and policy can then be written as:

s̄ =
s− slb

sub − slb

ψ(s) = cos(πs̄ · Fψ)
(13)

for ∀s ∈ S , with slb, sub respectively the lower and upper
bound vectors on S . We have θ ∈ Rd, ϑ ∈ Rd+1, with
d = (n + 1)m. The number of possible features therefore
grows exponentially in the size of the state-space, which
would make this approach intractable for large farms if
the size of the state space concurrently increased with the
number of turbines. But our decentralized approach allows
us to keep small local state spaces, each of which can then be
represented by a vector encoding all possible Fourier features
for a given order.

Using the basis defined by (13)-(12), we approximate the
critic and the gaussian actor with the following parametriza-
tion: ∀si ∈ Si, and s̄i ∈ [0, 1]3 the scaled state defined in
(13).

Vi,θ(si) = θTψ(si) = θT cos(πFψn · s̄i)
πi,ϑ(si) = N (ϑTµψ(si), σ

2)

= N (ϑTµ cos(πFψn · s̄i), σ2)

(14)

with θ ∈ Rd, ϑ = [ϑµ, σ], ϑµ ∈ Rd, σ ∈ Rd and σ ∈ R
parameters to learn. We update parameters θ and ϑ following
the standard actor-critic updates (7), modified to account for
the delayed rewards following the methodology introduced
in III-B:

θk+1 = θk + lv,kδk∇θVθk(sk−rd)

ϑk+1 = ϑk + lq,kδk∇ϑ lnπϑk
(ak−rd|sk−rd)

(15)

with rd defined in (9). Inserting (14) in (15), we derive
the updates of our decentralized Fourier basis actor critic



(a) Layout 2 - 7 turbines (b) Layout 3 - 16 turbines

Fig. 1: Representation of reward delay matrix for every agent
on Layout 2 with 7 turbines (a), and Layout 3 with 16
turbines. Shorter delays are represented by brighter hues. For
each row, the algorithm updates for an action are executed
when the feedback from the agent corresponding to the
darkest hue is ready.

algorithm, called DFAC in the sequel:

δi,k = ri,k + βVθk(si,k−rdi+1)− Vθk(si,k−rdi)

θi,k+1 = θi,k + lv,kδi,kψ(si,k−rdi)

ϑµ,i,k+1 = ϑµ,i,k+

lq,kδi,k
1

σ2
ψ(si,k−rdi)

T [ai,k−rdi − ϑTµψ(si,k−rdi)]

σi,k+1 = σi,k+

lq,k
1

σ

(ai,k−rdi − ϑTµψ(si,k−rdi)

σ

)2

− 1


(16)

Algorithm DFAC (16) runs in parallel at every agent, and
is able to adapt to any wind farm irrespective of size or layout
without any change in structure. Its decentralized approach
reduces the dimension of the search space for all agents,
making it fit for real-time online optimization. We now turn
towards evaluating the performance of DFAC on wind farm
simulations under dynamic wake conditions.

IV. SIMULATION RESULTS

In this section, we run several experiments to validate
our new approach. We first compare the performance of our
new algorithm DFAC to the decentralized tabular Q-learning
algorithm DADQ previously proposed in [4] on a small 3
turbines layout. We then evaluate both algorithms on various
wind farm layouts of increasing size, assessing their ability
to scale to large wind farms with up to 32 turbines.

A. Simulation Setup

The choice of a wind farm simulator is a trade-off between
computation complexity and fidelity of the predicted wind
fields. Steady-state models like the ones used in the FLORIS
simulator [20] estimate the time-averaged features of the
wind flow while ignoring the dynamics of short-term effects.
WFSim provides a higher fidelity simulation environment by
accounting for time-varying non-linear wake dynamics, and
has been validated against high-fidelity large eddy simulators
[5]. All our subsequent experiments are done on WFSim.

We consider four farms of NREL offshore 5-MW turbines
with a diameter D = 126m. On the first farm (Layout
1), 3 turbines are spread in a row in the center of the
farm, separated by a distance of 4D meters. The second
farm (Layout 2) has 7 turbines arranged along a diagonal,
each downstream turbine slightly shifted with regard to its
most upstream neighbor. It is a layout inspired from a real
operating onshore wind farm located in France [21]. The two
remaining layouts (Layout 3, 4) have 16 and 32 turbines
respectively, spread on 5 columns. A snapshot of the 3
last simulations can be seen on the first row of Figure
3. Experiments are run under stationary wind conditions
with a wind inflow of an average freestream velocity of
u∞k = 12m/s. The wind is directed orthogonally to the axis
of the turbine rows, i.e ϕk = 0◦. The sampling period of the
simulation is set to 20s and the space of available yaws Y
is [−40◦, 40◦].

For our actor critic algorithm, we use a Fourier Basis of
order n = 8, which corresponds to parameters θ and ϑµ of
dimension d = 81. In practice, accounting for an added bias
term for the two linear regressions, as well as the policy’s
standard deviation variable learned separately, this raises the
number of parameters to learn to M×165, with M being the
number of turbines. The parameters are randomly initialized
following a uniform law on [−0.1, 0.1].

For DADQ, we discretize the action space into 3 bins
corresponding to 3 options (increase yaw, decrease yaw, stay
still), and learn a Q-table of dimension 81×3 for every agent,
a total of M×243 parameters. We use a constant Boltzmann
exploration strategy during the training, and all values in the
Q-table are initialized at q0 = 0.15.

For all experiments, the discount factor is β = 0.75, and
an averaging window of λ = 2min is used. To evaluate the
performance of the algorithm without any prior knowledge,
the yaws are initialized at 0◦, which corresponds to a naive
greedy strategy where all turbines are made to face the wind.
The frequency of the algorithm, that is the time between two
actions are taken, is a multiple of the simulator sampling
frequency h. Since the frequency of updates is in any case
limited by the delay described in III-B, we are encouraged to
take a slower frequency. We follow the heuristic of choosing
the median of all unique values in the delay matrix D.

B. Results

The comparative results of our 2 algorithms under sta-
tionary conditions for Layout 1 are reported on Figure 2,
and a summary of both average energy produced and final
performance at convergence can be found in table I. The
two algorithms are run for 200ks, which corresponds to
104 iterations. Compared to the greedy strategy baseline,
both algorithms greatly increase the power output of the
farm, by 44.76% for the tabular Q-learning, and 45, 8% for
Fourier actor-critic. The latter reaches convergence earlier,
needing 50k seconds as opposed to 75k for the Q-learning.
It is also more stable: it exhibits much less oscillatory
behavior, both in terms of total power and turbine yaws.
Both algorithms converge towards the same strategy: with



(a) Total farm power output (b) Individual turbine power production (c) Turbine yaws

Fig. 2: Comparing DFAC with a DADQ on a 3-turbine wind farm simulated on WFSim. Algorithms run without two-step
warm start. Evolution of total power output [W], individual turbine power [W], and turbine yaws [◦]. Power measures are
averaged over 1 hour.

(a) Layout 2: 7 turbines (b) Layout 3: 16 turbines (c) Layout 4: 32 turbines

(d) Total farm power output (e) Total farm power output (f) Total farm power output

Fig. 3: Results of DFAC on 3 wind farms simulated on WFSim: 7 turbines (first column), 16 turbines (second column) and
32 turbines (third column) run for 200k, 600k and 800ks respectively for 3 different seeds. Evolution of total power output
[W] compared to DADQ. Power measures are averaged over 1 hour.

the two first turbines upstream of the farm yawing towards
−30◦, decreasing their own power output to deflect the wake
away from the downstream turbine.

C. Scaling Experiments

The DFAC algorithm is run on 3 other farms with re-
spectively 7, 16 and 32 turbines until convergence, for
respectively 200k, 600k and 800k simulated seconds. These
experiments use various layouts, corresponding to more
realistic wind farms scenarios and providing a challenging
test of scaling capacity in decentralized conditions. Indeed,
one way to interpret the delay matrix (8) is that every agent
delays its DFAC updates only until its impact on a pre-

TABLE I: DFAC in the 3 turbines layout case under station-
ary conditions, compared to FLORIS routine and DADQ.
Results after 200ks. Mean power output measured during
the learning period, and final percentage increase compared
to the 0◦ yaw initialization.

Method Avg Energy [MWh] Final Performance (%)

FLORIS Routine 9.0 37.5
DADQ 9.25 44.89
DFAC 9.34 45.83



TABLE II: Average energy produced during 1h on scaling
experiments with Fourier Actor-Critic agents on layout with
3, 7, 16 and 32 turbines. Increase over baseline and over
tabular Q-learning after 200ks (Layout 1, 2) and 600ks
respectively.

Layout Energy [MWh] Over baseline (%) Over Q-learning (%)

Layout 1 (3T) 9.34 45.83 2.20
Layout 2 (7T) 23.02 9.35 3.74
Layout 3 (16T) 31.44 10.99 6.86
Layout 4 (32T) 47.90 37.02 -

defined subset of other agents can be evaluated. On a farm
with two turbines, this would be equivalent to all agents
waiting until their wakes have traveled to the end of the
farm. As the number of agents increases however, this set
contains only a smaller fraction of all agents. This allows
for more frequent updates to speed up convergence, but at
the cost of making cooperation among agents much more
difficult. Examples of matrices for two different farm sizes
are illustrated on Figure 1. Larger wind farms therefore
provide an interesting test of the ability of the delay-aware
reward designed in III to induce cooperation among agents.

Because of the wider variance expected on more complex
layouts, we run each experiment with 3 different randomiza-
tion seeds for the initialization of the algorithm, and report
all results. We run the same experiments on decentralized
tabular Q-learning for comparison. The evolution of power
output and turbine yaws during learning is available on
Figure 3. Algorithms are compared on the one hour average
energy metric, comparing the average power produced during
one hour of the simulation, and averaged over the 3 seeds.
This metric summarizes overall performance by accounting
for rapidity of convergence, final performance upon conver-
gence, and stability. The Fourier basis actor-critic largely
improves over the Q-learning algorithm on Layout 2 and
3, and the magnitude of its improvement increases as the
size of the wind farm grows. Based on these results, no
further comparison was made on Layout 4. Table II sums
up the increased percentages over both the baseline and the
tabular Q-learning alternative with respect to average energy
produced during one hour.

V. CONCLUSIONS AND FUTURE WORKS

We proposed actor-critic agents for decentralized coop-
erative yaw control on wind farms. We showed that a
linear function approximation approach with a Fourier basis,
combined with a careful design of the reward function, is
sufficient to obtain fast coordination of agents on dynamic
simulations, and adapts to different layouts on wind farms
up to 32 turbines. Our method is faster than previous de-
centralized reinforcement learning algorithms for wind farm
control and uses less parameters. Experimental results point
towards a subexponential convergence time in the number of
turbines, and investigation of theoretical guarantees should
be undertaken. Future work will moreover have to address
adaptation to more realistic wind conditions, which might

require exploring more complex architectures for function
approximation.
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