A variational bayesian clustering approach to acoustic emission interpretation including soft labels - Archive ouverte HAL
Communication Dans Un Congrès Année : 2022

A variational bayesian clustering approach to acoustic emission interpretation including soft labels

Résumé

We investigate Gaussian Mixture Models (GMM) with uncertain parameters to evaluate whether this model can help in interpreting acoustic emission data used in non-destructive testing. This model, called VBGMM (variational Bayesian GMM) allows the end-user to automatically determine the number of clusters which makes it relevant for this type of application where clusters are related to damages. In this work, we modify the training procedure to include prior knowledge about clusters. Experiments are made on a recently published bench-mark, ORION-AE, that aims at estimating the tightening levels in a bolted structure under vibrations. Preliminary results of the VBGMM with soft priors (VBGMM-SOFT) show good improvement over the standard VBGMM.
Fichier principal
Vignette du fichier
2cfaa9ee-722a-44e8-ad94-1d9753618cbc-author.pdf (409.7 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04273689 , version 1 (07-11-2023)

Identifiants

Citer

Martin Mbarga Nkogo, Emmanuel Ramasso, Patrice Le Moal, Gilles Bourbon. A variational bayesian clustering approach to acoustic emission interpretation including soft labels. 7th International Conference on Belief Functions ( BELIEF 2022 ), Oct 2022, Paris, France. pp 23-32, ⟨10.1007/978-3-031-17801-6_3⟩. ⟨hal-04273689⟩
23 Consultations
46 Téléchargements

Altmetric

Partager

More