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Abstract: Total factor productivity is used to explore the input-output efficiency of 

the economy and the driving factors behind economic growth. Although scholars have 

researched the total factor productivity approach, comparisons among different 

models in empirical research are rare and few scholars have focused on worldwide 

total factor productivity gains. Using convex and nonconvex technologies, this 

contribution investigates green productivity gains of 129 worldwide countries during 

2000-2019 based on three popular productivity measures, namely Luenberger-Hicks-

Moorsteen indicator, Luenberger productivity indicator, and Malmquist-Luenberger 

index, respectively. Inspired by a metafrontier approach, we compare their 

productivity evolutions with the energy structure among 121 economies. A negative 

relationship is expected between the change in the proportion of fossil fuel energy 

consumption and green productivity. Our results show that the Luenberger-Hicks-

Moorsteen productivity indicator under nonconvex technologies is a more convincing 

productivity measure when considering undesirable outputs in production technology. 
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1. Introduction  

Productivity, a crucial factor in economic growth, is a major concern. There is 

tremendous income inequality among countries. For instance, based on World Bank 

statistics, in 2020, Burundi had the lowest gross domestic product (GDP) per capita 

(237$), while Luxembourg had the highest (135683$), which was about 573 times 

higher than the former. The lagging economy and poverty are largely the result of 

backward production. Additionally, they may affect production once more, creating a 

vicious cycle whereby low productivity and poverty are exacerbated. Nowadays, 

many people are still experiencing extreme poverty, and the COVID epidemic further 

slows productivity growth rates and exacerbates poverty worldwide (Deaton, 2021). 

With increasing productivity, a country can get more outputs from the same inputs 

and achieve more efficient use of resources. Additionally, productivity growth can 

contribute to sustained per capita income growth and poverty reduction (Dieppe, 

2021). Productivity growth is a key concern of countries and it inspires them to strive 

for greater economic efficiency and higher income. To explore the input-output 

efficiency of the economy and the driving factor behind economic growth (Bauer, 

1990), the total factor productivity (TFP) notion is introduced and used, which is 

instrumental in achieving high-quality and long-term economic development.  

Green productivity has become a major concern in research in the last decade or 

so. Environmental issues have garnered a lot of attention recently, since climate 

change, acid rain, the decline in biodiversity, etc., have become increasingly serious 

problems (Wang et al., 2020). As reported by the IPCC, global annual average 

greenhouse gas emissions increased by 12 percent between 2010 and 2019 (from 52.5 

billion tons to 59 billion tons). Many international conferences are organized to 

discuss the climate change issue and to set up plans for reducing global emissions. 

The public’s awareness of environmental issues is promoted. Environmentally 

friendly and sustainable development models are pursued by a wide range of countries 

(Yuan et al., 2021). Traditional economic models focusing exclusively on economic 

factors when assessing productivity are insufficient. The productivity concept must be 
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enlarged to face the challenges of sustainable development. More and more 

researchers integrate environmental issues into the framework of productivity, 

measuring environmental performance under economic growth (Feng & Serletis, 

2014). Some undesirable outputs (like carbon dioxide, sulfur dioxide, and nitrous 

oxide) are used to evaluate the green productivity development of the economy. 

While fossil energy is crucial for the economic development of countries, it can 

be extremely harmful to the environment. Fossil energy has promoted the 

development of industrial industries, greatly improved productivity levels, and 

contributed significantly to economic growth (Sasana & Ghozali, 2017; Shahbaz et al., 

2020; Ivanovski et al., 2021). It performs an essential function in the production of 

each country and provides a crucial material foundation for the survival and 

development of the country (Ellabban et al., 2014). With over 80% of all energy 

consumption still coming from fossil fuels, they remain the primary source of energy. 

Without investment in fossil fuels, many industries are unable to grow, hampering 

economic growth. However, it still pollutes the environment and consumes large 

amounts of resources and energy. Higher productivity growth fueled by fossil fuels 

may not be sustainable in the long run, since they cause climate change and global 

warming, which have negative environmental effects on humans as well as other 

creatures (Rath et al., 2019). Therefore, the consumption of fossil energy cannot 

reconcile economy and ecology, affecting the development of a green economy (Cao 

et al., 2020; Danish & Ulucak, 2020; Rath et al., 2019; Yan et al., 2020). Clean energy 

is getting more and more attention as the transformation of the energy structure 

becomes the current development direction (Xie et al., 2021). However, for many 

countries, the share of fossil fuels is still growing, dominating energy consumption 

(Sasana & Ghozali, 2017). The economy is still predominantly powered by fossil 

fuels due to the rising dependence on fossil fuel usage. Thus, it is difficult to achieve a 

green economy.  

Investigating how energy consumption affects green productivity is critical to the 

future of the economy. Energy is an important resource endowment, energy structure 

evolution and its resource misallocation may lead to unbalanced development among 
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economies, thereby generating geopolitical risks. We look for a robust approach to 

modeling green productivity indices which is consistent energy structure. This study 

assumes an inverse connection between the share of fossil fuel consumption and green 

productivity. It believes that fossil fuel energy is a good indicator to test whether the 

economy has achieved green growth. Studying the correlation between fossil energy 

and the green economy can provide some empirical evidence for energy transition and 

economic growth that better supports sustainable development.  

Whether different approaches to measure TFP provide an empirically good 

estimation remains uncertain. There are multiple indicators and indices to estimate 

TFP that transform the static efficiency problem into a productivity measurement 

problem. Most existing literature has adopted ratio-based Malmquist (Krüger, 2003; 

Li & Liu, 2010) or Malmquist-Luenberger (ML) indices (Cao et al., 2020; Oh, 2010). 

Also, a difference-based Luenberger productivity indicator (LPI) (Fukuyama & Weber, 

2017) or extensions of these methods to assess productivity change are commonly 

used. However, a lot of problems exist in these approaches, making it difficult to give 

a perfect TFP estimation. The Luenberger-Hicks-Moorsteen (LHM) indicator (Briec 

& Kerstens, 2004; Shen et al., 2019), a complete additive approach, is not as widely 

used. Although some studies have compared the difference between some of these 

approaches (Kerstens et al., 2018), it is still hard to tell which model is the best, more 

realistic and has more accurate calculation results in empirical analysis.  

The main objectives of this contribution are two-fold. First, this contribution 

evaluates and compares the green total factor productivity (GTFP) of 129 countries 

under different models. Second, to compare the robustness of different approaches, it 

constructs a two-way fixed model to test the correlation between the energy 

consumption share and green TFP growth. There are several ways in which this 

contribution advances the literature in the field. First, it investigates worldwide green 

productivity gains: this deepens understanding of green productivity across countries 

and can contribute to improve green growth in different countries. Second, it adopts a 

by-production (BP) model under a metafrontier approach, which is consistent with the 

material balance principles (MBP) and better solves the problem of heterogeneity. 
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Third, it compares the LHM, Luenberger indicators, and Malmquist-Luenberger index 

under both convex and nonconvex models and determines which one is more robust. 

This provides some reference for selecting productivity indicators in future research. 

The remainder of this essay is structured as shown below. Section 2 summarizes 

the research on the TFP about its calculation, research scope, and relationship with 

energy structure. Section 3 discusses the approaches to calculating GTFP, the 

regression model, the description and selection of variables, and the data source. 

Section 4 analyzes the fossil energy consumption in different regions, green 

productivity under different models, and regression results. Finally, Section 5 draws 

conclusions and further discusses. 

2. Literature review on green productivity and energy structure 

TFP can be measured by different approaches, which mainly contain two 

categories. The first category is ratio-based indices. Caves et al. (1982) propose 

Malmquist input, output, and productivity indices that do not rely on a continuous 

time assumption, but that need information on parameters to estimate. By calculating 

the geometric average of the two Malmquist or Malmquist productivity indices, the 

           or            productivity indices can be obtained, respectively, which can 

be calculated if prices and quantities are known. Bjurek (1996) proposes the Hicks-

Moorsteen index, as a ratio between Malmquist output and input quantity indices, 

which can accommodate variable returns to scale technologies. Since the Hicks-

Moorsteen index is characterized by input and output efficiency measures and the 

Malmquist productivity index is expressed by distance functions, both these methods 

ignore byproducts in production. Thus, these indices are insufficient to measure green 

productivity. Chung et al. (1997) define the ML index based on the directional 

distance function (DDF) to better treat pollution that inevitably accompanies the 

production of good outputs. This index is further discussed and developed at the 

theoretical and empirical levels (see, e.g., Cao et al., 2020; Färe et al., 2001; Kumar, 

2006; Oh, 2010).  
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The second category is difference-based indicators. The first category of indices 

has some inevitable defects, like zero observations are hard to deal with, as these 

indices are independent of change in origin (Chambers, 2002). Chambers (2002) 

proposes the LPI based on DDF, a translation measure rather than a radial 

presentation. Many scholars have further discussed and improved this indicator. For 

instance, Briec & Kerstens (2009) use this indicator to explore the infeasibilities of 

the DDF and their solution is to report any infeasibility that occurs. Balk et al. (2008) 

show how to convert the LPI to the Malmquist productivity index by selecting a 

particular directional vector for the DDF. Additionally, it has been extensively 

employed in various areas of empirical study, like manufacturing (Cao et al., 2020), 

banking (Fukuyama & Weber, 2017), healthcare (Boussemart et al., 2020), etc.  

However, it does not consist entirely of the difference between total output and input 

which is not “additively complete” and cannot be disaggregated into the parts of 

output and input growth (Ang & Kerstens, 2017). Briec & Kerstens (2004) define an 

additively complete LHM indicator. Unlike the ratio-based indices, this difference-

based indicator can overcome the problem of uncertainty of indices. Besides, it is an 

additively complete method that can capture the changes in inputs and outputs, better 

than those incomplete measures as they might cause biased results (Shen et al., 2019).  

Compared to other indicators and indices, there is less literature studying the 

LHM productivity indicator and employing it to measure efficiency changes. 

Additionally, the majority of these LHM articles are all of recent date. Shen et al. 

(2019) employ a decomposable LHM productivity indicator to explore the 

productivity change in China’s agriculture. These authors find that the rise in 

agricultural productivity in China is mostly the result of technological progress. 

Furthermore, these authors come to the conclusion that both productivity growth rates 

and the relative significance of their constituent parts vary over time and across 

provinces. Ang & Kerstens (2017) explore the productivity growth in U.S. agriculture 

by adopting the LHM indicator. The findings indicate that productivity has 

significantly increased over time, and this growth is attributable to a rise in output 

rather than a drop in input, with technical change serving as the primary motivating 
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factor. Abad & Ravelojaona (2022) define the environmental disaggregated Hicks-

Moorsteen index and LHM productivity indicator. Note that the application of these 

TFP indices does not require maintaining the traditional convexity assumption.  

Although there are many ways to calculate TFP, few studies are comparing LHM 

indicators with other productivity indicators and indices, which deserves further 

exploration. Briec & Kerstens (2004) analyze the relationship between the Hicks-

Moorsteen productivity index and the LHM indicator and discover that the logarithm 

of the former one is approximately equal to the latter. Kerstens et al. (2018) discuss 

the difference between the LHM and Luenberger productivity indicators. These 

authors suggest that these two indicators can be used to study TFP and measure local 

technical change, respectively.  

The relation between production inputs and outputs can be calculated using 

production technology. In recent years, there have been several pollution-generating 

technologies, including the weak G-disposability, the by-production model, and the 

natural and managerial disposability concepts (Dakpo et al., 2016). The first 

technology cannot describe how pollution is generated, so it is hard to make trade-offs 

between different types of outputs. Dakpo et al. (2016) point out that natural and 

managerial disposability cannot present pollution-generating technologies properly. 

Compared to other methods, the by-production model is consistent with the material 

balance principles (Førsund, 2018; Shen et al., 2021), which can better model the 

pollution-generating technologies and capture the relation between various types of 

inputs and outputs. It is superior to other approaches from this perspective. 

Distance functions are widely used to obtain production technologies. Shephard 

(1970) input- and output-oriented distance functions. Bad outputs are considered by 

Färe et al. (1993) within the context of the Shepherdian distance function. This kind 

of distance function has been further deepened and developed in subsequent studies 

(Coggins & Swinton, 1996; Hailu & Veeman, 2000). It posits that outputs change in 

the same ratio for both positive and negative outputs, inconsistent with the purpose of 

green growth, which is to improve good outputs and decrease bad ones. Directional 

distance functions allow good outputs to expand while reducing bad outputs and 
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inputs, getting more attention gradually (Chambers et al., 1996). For example, 

Watanabe & Tanaka (2007) adopt DDF to explore and compare the efficiency of 

Chinese industry. They assert that the research will produce biased conclusions if the 

bad outputs are not taken into account. Therefore, the efficiency analysis should take 

into account both good outputs and their byproducts. Zhang & Wei (2015) use non-

radial DDF to gauge the environmental performance of China’s transportation 

industry. They discover that the total factor carbon emissions grew by 6.2% between 

2000 and 2012, primarily due to technological innovation. Feng & Serletis (2014) 

develop a primal Divisia-type productivity index based on DDF to estimate the 

efficiency change in some OECD countries. They assert that if bad outputs are not 

taken into account, the efficiency assessment may be skewed, which is consistent with 

the viewpoint of Watanabe & Tanaka (2007).  

Two kinds of methods, parametric and nonparametric ones, are often employed 

to calculate the distance functions. The parametric method uses translog, quadratic, 

and other pre-defined functional forms. The specific functional form depends on the 

selection of distance functions. For instance, the Shepard distance function is 

frequently expressed using the translog functional form, whereas the DDF can be 

described using the quadratic. Then, the distance functions can then be calculated 

using stochastic frontier analysis (SFA) (Zhou et al., 2014). For example, Safiullah 

(2021) examines the financial stability efficiency of Islamic and conventional banks 

using the stochastic meta-frontier stability function. Wu et al. (2022) use SFA to 

calculate each region’s TFP levels in China. The nonparametric method is more 

flexible than the parametric method since it does not require pre-defined functional 

forms. Charnes et al. (1978) develop a typical nonparametric method, which is 

referred to as data envelopment analysis (DEA). In comparison to some methods, it 

makes fewer assumptions and can handle the relationship between multiple inputs and 

outputs better. This approach has been widely employed in subsequent studies 

measuring TFP (see, e.g., Wang et al., 2013; Baležentis et al., 2021; Shen et al., 2019). 

The literature using nonconvex production technology, also known as the free 

disposal hull (FDH) model, to study productivity is much less widespread than DEA.  
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Nonconvex technologies can occur for a wide variety of reasons (see Mas-Colell 

(1987) for an overview). First, inputs and outputs can be indivisible and cannot be 

varied continuously. Second, setup-times and setup-cost due to indivisibilities in 

initiating production may be substantial depending on the nature of technologies. 

Third, increasing returns to scale, due to indivisibilities, learning, or organizational 

advantages in the internal structure of production, lead to nonconvexities in 

production. Fourth, negative externalities can also induce nonconvexities. Fifth, 

economies of specialization (e.g., Romer (1990) on nonrival inputs in the new growth 

theory) are another source of nonconvexity. Other sources for nonconvexities exist.  

Convexity is maintained in economics and part of operations research because of 

the assumption of perfect time divisibility. For instance, Shephard (1970, p. 15) states 

clearly that convexity is “valid for time divisibly-operable technologies”. But, if time 

is only imperfectly divisible, then nonconvexities may well substantially matter for 

the analysis of production and, e.g., cost functions alike. Yuan et al. (2021) analyze 

the environmental and economic efficiency of the Belt and Road countries using DEA 

and FDH models, discovering the outliers have a more significant effect on the former 

than the latter. Balezentis et al. (2023) implement an additive LHM productivity 

indicator and report even opposite signs between convex and nonconvex technologies 

for a substantial part of the sample in each of the years in their panel. Thus, 

nonconvexity may matter substantially for empirical analysis and therefore we 

explicitly test between convex and nonconvex technologies. 

Much literature discusses TFP growth in different countries or regions. The 

research range in the literature includes Europe (Baležentis et al., 2021), OECD (Cui 

et al., 2022), the Belt and Road (Yuan et al., 2021), and some individual countries, 

like China (Shen et al., 2019), US (Ang & Kerstens, 2017), and Australia (Li & Liu, 

2010). The research estimating TFP globally is more limited than the regional and 

national studies. Krüger (2003) adopts the Malmquist index to explore the TFP of 87 

countries from 1960 to 1990 and discovers that the pace of capital accumulation 

influences productivity significantly in different regions worldwide. Espoir & Ngepah 

(2021) investigate the correlation between income inequality and TFP in 88 countries, 
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concluding that compared to developed nations, income disparity presents a higher 

and more significant influence on the TFP in developing nations. 

Some literature explores the correlation between the energy structure and TFP, 

and the results present differences. Rath et al. (2019) reveal that renewable energy 

consumption and fossil fuel have the opposite impact on TFP growth. The effect in the 

former one is positive, while the latter one is negative. Xie et al. (2021) claim that the 

percentage of renewable energy consumption, which represents the energy transition, 

exhibits an inverse “N” nonlinear relationship with green TFP. The connection 

between the energy transition and TFP has been discussed in some literature, but the 

relation between consumption of fossil fuels and green growth has received less 

attention. Since the green economy is the key direction of future development, greater 

focus should be given to the impact of the energy revolution.  

To sum up, a lot of literature discusses the measurement of TFP theoretically. 

Besides, there are some empirical studies corresponding to each method. However, 

comparisons among different models in empirical research are rare and few scholars 

have considered the worldwide TFP gains. The correlation between the transformation 

of energy structure and green TFP deserves further consideration. Given that the green 

economy is gaining more and more attention, this contribution measures and 

compares the GTFP using the Malmquist-Luenberger index, LHM, and Malmquist 

indicators under convex and nonconvex by-production technologies based on a 

metafrontier approach. Then it tests the correlation between the share of fossil fuel 

energy consumption and GTFP and determines which model is the most robust. 

3. Materials and Methods  

3.1. The calculation of GTFP growth 

3.1.1. Production technology and directional distance function 

Production technology, also referred to as benchmark performance, is often expressed 

by production function, which specifies the highest output a certain input can achieve. 

The by-production model, proposed by Murty & Russell (2002) and Murty et al. 
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(2012), can introduce the set of production possibilities constraint by economic 

axioms. In this model, there are two different types of inputs: nonpolluting c
x  and 

polluting inputs d
x , and two kinds of outputs: desirable y  and undesirable outputs z . 

Polluting inputs will result in externalities during production while nonpolluting 

inputs will not contaminate the environment. As a result, undesirable outputs, also 

known as by-products, are always produced alongside desirable outputs during the 

production process. Among different inputs and outputs, there is a relationship that 

polluting inputs and nonpolluting inputs can contribute to desirable outputs, while 

only polluting inputs produce undesirable outputs. Two sub-technologies 
1

T  and 
2

T  

simulate the above relationship as 
1

T  describes the process in that all inputs are 

transformed into desirable outputs and 
2

T  reflects how polluting inputs produce 

undesirable outputs. The BP model, which combines these two sub-technologies, 

solves the limitation of traditional efficiency analysis in which only the desirable 

output is taken into account by including externalities in the production. The specific 

form of BP technology is as follows:  
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where  f g  and  g g  are two continuously differentiable functions of inputs and 

outputs. The dimensions C , D , M , and J  represent the quantity of nonpolluting 

inputs, polluting inputs, desirable outputs, and undesirable outputs, which equal 2, 1, 

1, and 1 in the empirical part of this contribution, respectively. 
1

T  set satisfies the free-

disposability properties, while the costly disposability property is imposed on 
2

T  

(Murty et al., 2012), which needs the substitution of inputs from the production of 

desirable outputs to reduce the amount of already-produced byproducts (Ray et al., 
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2018). There is joint disposability between polluting inputs and bad outputs 

(Baležentis et al., 2021). Without reducing polluting inputs, undesirable outputs 

cannot be reduced (Shen et al., 2021). 

Conventional literature asserts that good and bad outputs are positively 

correlated. To model this positive relationship, these studies treat by-products as 

inputs on a free disposability basis or outputs based on the weak disposability and 

null-jointness properties (Murty et al., 2012). According to the weak disposability 

assumption, bad outputs can only be decreased by raising inputs or lowering good 

outputs (Ray et al., 2018). Besides, under the null-jointness condition, two kinds of 

outputs should be decreased proportionally. Thus, good output is inseparable from the 

generation of by-products. Desirable outputs will also be zero if the undesirable 

outputs are, reflecting that by-products are difficult to dispose of completely 

(Baležentis et al., 2021). Under the methodologies mentioned above, some errors in 

the trade-offs of inputs and outputs could happen that are inconsistent with the 

material balance principles. BP technology assumes costly disposability in polluting 

inputs and pollution, allowing inefficiencies in the production process, which is 

congruent with the MBP. Based on the above discussion, the by-production method is 

selected to introduce bad outputs into our study. 

Besides, convex and nonconvex production technologies are adopted in this 

contribution. The point in the production frontier must be a real country for free 

disposal hull technology, a nonconvex technology introduced by Deprins et al. (1984), 

whereas it is not necessarily real under the convex DEA approach. Due to the 

additivity and divisibility of the DEA method, the FDH method is a more general 

model dropping the convexity assumption with estimators consistent with convex and 

nonconvex production sets.  In some cases, some decision-making units (DMUs) are 

in the frontier under nonconvex technology, but there is still some room for 

advancement in convex technology. Thus, the inefficiency scores in the FDH are 

usually lower than those in the DEA method, which might be underestimated as the 

linear combination of two values in the frontier is not allowed under the FDH model. 
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The production technology can be expressed by the DDF and also can be 

understood as inefficiency scores (Chambers et al., 1996), which can quantify the 

discrepancy between observed values and the production frontier. The points in the 

production frontier can be regarded as a “model” for other DMUs. Therefore, the 

calculated distance can indicate a particular path for improvement for the points that 

are not on the production frontier. The setting DDF contains several types, like input-

oriented, output-oriented, and input/output-oriented directional distance functions. 

These generalized DDFs which are in the period   , 1p t t   while the production 

technology exists in the period  , 1q t t  , are defined as follows, respectively: 

 , ; , 0 , 0 ,( , ) m a x : ( , ) ( )
q p p p p p p

x

p

x
D x y z g x g y z T q    ¡  (2) 

 , ; 0 , , , ,( , ) m a x : ( ) ( )
q p p p p p p

y z

p p

y z
D x y z g g x y g z g T q     ¡  (3) 

 , ; , , , ,( , ) m a x , : ( ) ( )
q p p p p p p p p p

x y z

p p p

x y z
D x y z g g g x g y g z g T q        ¡  (4) 

where 
x

g , 
y

g , and 
z

g  describe the directional vectors of inputs, good, and bad 

outputs, respectively.   and   measure the maximum optimization of inputs and 

outputs.      , , 1 , 1p q t t t t     allows the estimation of productivity change in 

mixed periods. In practice, we choose the evaluated observations as the directional 

vectors. This not only guarantees a proportional interpretation of the DDF: see Briec 

(1997). Furthermore, this proportional distance function (PDF) also guarantees that 

productivity measurement satisfies a generalized commensurability property, which is 

not the case under a DDF with some general direction vector: see Briec et al. (2022) 

for details.  

3.1.2. Luenberger-Hicks-Moorsteen, Luenberger productivity indicators, and 

Malmquist-Luenberger index  

While the above distance functions can calculate the inefficiency scores, some 

productivity indicators or indices can help us change efficiency problems into 

productivity analysis. This contribution adopts the LHM, Luenberger indicators, and 

Malmquist-Luenberger index to study productivity growth. We explore the difference 
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between the three ways to express productivity to have a better understanding of 

productivity measurement.  

The LHM productivity indicator is considered firstly, described as the difference 

between the input and output. To prevent picking a base period at random, t  and 1t   

periods are selected. There are S  DMUs. The following is a LHM indicator for the 

base period t :  

1 1 1 1

1 1

[ ( ; ) ( ; ) ]

[ ( ; ) ( ; ) ]

t t t t t t t t t t t t

s s s y z s s s y zt

t t t t t t t t t t
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 
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  
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x , y , z g , 0 , 0 x , y , z g , 0 , 0

 (5) 

where the first and second production technologies in the brackets indicate the 

distance along the output direction to the frontier, while the third and fourth terms 

denote the distances from the production frontier along the input direction. Similarly, 

for the base period 1t  , the LHM indicator is expressed as:  
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To avoid an arbitrary base period, it is custom to take the arithmetic average value of 

LHM indicators for periods t  and 1t  : 
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The change in productivity from the previous year can be shown in the rise or 

fall of TFP. Productivity increases when the TFP growth rate exceeds zero; it 

decreases when it is less than zero. For the LPI based on difference, this likewise 

holds. The LPI allows inputs and outputs to be optimized simultaneously and is 

widely used, which is defined as follows: 

1 1 1 1 1 1

, 1

1 1 1 1 1 1 1 1

( ; , ) ( ; , )1

2 ( ; , ) ( ; , )

t t t t t t t t t t t t t t

s s s x y z s s s x y zt t

t t t t t t t t t t t t t t

s s s x y z s s s x y z

D D

L P I

D D

     



       

 

 
  
 

x , y , z g g , g x , y , z g g , g

x , y , z g g , g x , y , z g g , g

 (8) 



14 

 

Chung et al. (1997) propose a ML productivity index that asymmetrically treats 

good and bad outputs (Kumar, 2006). However, it is noncircular and may have 

infeasible issues with linear programming when calculating the inter-term DDF (Färe 

et al., 2001; Oh, 2010). Different from LHM and Luenberger productivity indicators, 

for this index, if the value is larger than 1, there are gains in productivity. If it is less 

than 1, productivity declines. The Malmquist-Luenberger productivity index has the 

following form: 

 

 

 

 

1 2
1

, 1

1 1 1 1 1 1 1 1 1 1 1 1 1
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D x y z g g g D x y z g g g

M L
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



            

  
  

  
 

 (9) 

The details on the calculation of the proportional distance functions are presented 

in the Appendix. 

3.1.3. Estimation strategy: Inspired by the metafrontier method 

Productivity varies significantly between 129 nations due to variations in the 

economies, environments, institutional settings, and other factors. If only one 

production technology is used, some deviations may occur. For instance, it is difficult 

to gauge efficiency in some nations because they are too far from the production 

frontier. Thus, this contribution adopts the metafrontier method which is an 

unrestricted technology set following O’Donnell et al. (2008). The samples are 

divided into three groups, each containing 43 countries, based on average GDP levels 

during 2000-2019. The production technologies are estimated using three group 

frontiers. The contemporaneous production frontier of the group h  in the period t  is 

described as  

    : ,  c a n  p ro d u c e  ;   c a n  g e n e ra te  ,  w h e re  1,, , , ,
t c d tt d

h

c d t t
x x yT x x y x z tz T  K . 

The intertemporal production technology of the group h  is expressed as  

1 2I T

h h h h
T T T T   K . The global production technology set is described as 

1 2

G I I I

H
T T T T   K , which is an envelope curve of group frontiers and consists of 

all observations made across all groups and periods (O’Donnell et al. (2008)). The 
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union operator does not preserve convexity results (Kerstens et al., 2019). Thus, the 

metafrontier of convex groep technologies is nonconvex, and also the metafrontier of 

nonconvex groep technologies is nonconvex (in a different way from the preceding 

one).  

Figure 1 presents the metafrontier method under both DEA and FDH models. In 

the nonconvex group technologies, the technologies 
1

t
T , 

2

t
T , and 

3

t
T  are represented 

by the horizontal axis and the polyline 1 1 1 1 1 1 1
A B C D E F G , 2 2 2 2 2 2 2

A B C D E F G , and 

3 3 3 3 3 3 3
A B C D E F G , respectively. The metafrontier of three group technologies is the 

union of three group technologies and consists of all points between the polyline 

1 1 2 3 3 3 2 2 2 3 3
A B H B IB C D J D E F K F G  and the horizontal axis. Convex group frontiers 

1

t
T , 

2

t
T , and 

3

t
T are shown by the horizontal axis and the polyline 1 1 1 1 1

A B C D E , 

2 2 2 2 2
A B C D E , and 3 3 3 3 3

A B C D E , respectively. According to Jin et al. (2020), some 

points can only be reached under the convexification strategy, like the projection point 

''

1
R  of 1

R . If we do not assume the convexity of metafrontier, the point 
''

1
R  is 

infeasible. In general, the convexification method of assuming a convex metaset 

yields erroneous results (see Kerstens et al., 2019; Jin et al., 2020). Thus, the 

metafrontier of 
1

t
T , 

2

t
T , and 

3

t
T  should be the region between the polyline 

1 1 2 2 3 3 3 3
A B F B C G B C D E  and the horizontal axis.  

In line with our research interest, in the remainder we estimate separate group 

technologies using convex and nonconvex specifications. But, we are not interested as 

such in the estimation of the nonconvex metatechnology. This simply serves as a 

conceptual framework underscoring the importance of testing for convexity and 

nonconvexity at the group technology level.  
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Fig. 1. (a) Nonconvex and (b) convex group technologies and nonconvex metatechnologies 

3.2. Regression model  

Considering that the fixed-effect model is more robust because it is always consistent 

no matter whether invariant omitted estimators are correlated with error terms, this 

contribution uses a fixed-effect model to explore the correlation between the share of 

fossil fuel energy consumption and green TFP. To control individual and time 

heterogeneity, this contribution chooses a two-way fixed effect model. The regression 

model is specified as follows: 

     ln ln ln
i t i t i t i t i t

C G T F P fo ss il X          (10) 

where 
i t

C G T F P  is the cumulative green productivity. The cumulative green TFP has 

some small values that are sometimes negative. Thus, we add two to each GTFP value 

and take the logarithm. The coefficient   represents the impact of the fossil fuel 

energy consumption share on the cumulative GTFP and   is the effect of control 

variables on the cumulative GTFP. 
i t

fo s s i l  is the share of fossil fuel energy 

consumption. 
i t

X  consists of a set of control variables, containing GDP per capita 

i t
p g d p , industrial structure se c

i t
in d , trade openness 

i t
tra d e , population density 

i t
d e n ., 

foreign direct investment
i t

fd i ., and government intervention 
i t

g o v . 
i

  is the country 

fixed effect, 
t

  is the year fixed effect, and i t  is a random error term. To avoid 

problems when taking logarithms, we add two to all variables before taking 
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logarithms.  

3.3. Variables 

3.3.1. Explained Variable 

The calculation of GTFP consists of four parts——nonpolluting input, polluting input, 

desirable output, and undesirable output. In this study, the nonpolluting inputs contain 

capital stock and labor force. Energy consumption is considered a type of polluting 

input. They all contribute to the creation of GDP, which is a type of good output. The 

emission of carbon dioxide is regarded as an undesirable output. The detailed 

definition and descriptive statistics are presented in Table 1. 

Table 1 Descriptive statistics for inputs and outputs 

Indicator Variable Definition N Mean S.D. Min Max 

Nonpolluting 

input 

K Capital stock at current PPPs (in mil. 

2017US$) 

2580 2932.49 8270.45 16.42 101544.20 

L Number of persons engaged (in millions) 2580 22.34 80.38 0.14 799.31 

Polluting input E Energy use (100 tons of oil equivalent) 2580 926.13 3078.84 6.76 33691.07 

Desirable 

output 

GDP Output-side real GDP at current PPPs (in mil. 

2017US$) 

2580 714.32 2096.14 7.02 20566.03 

Undesirable 

output 

CO2 Total CO2 emissions (thousand metric tons of 

CO2 excluding Land-Use Change and 

Forestry) 

2580 225.60 864.68 0.66 10416.59 

3.3.2. The core explanatory variable 

The core explanatory variable is the use of fossil fuel energy, measured as the share of 

fossil fuel energy consumption. Currently, the energy structure is accelerating to 

diversify, clean, and low-carbon, and developing towards high efficiency and 

integration. In this transition process, the share of renewable energy will increase 

progressively, gradually replacing fossil energy in the energy source. However, fossil 

energy has been the main energy source for many years, and the prospects for 

achieving the transition are grim. It is essential for us to study the specific effect 

between the use of fossil energy and green growth.  

3.3.3. Control Variables 

Following Xie et al. (2021), Yan et al. (2020), and Rath et al. (2019), this contribution 

selects several control variables. The first control variable is GDP per capita (PGDP), 

measured as constant 2015 US$. The area can afford to pursue a green transition more 
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when GDP per capita rises in the area. The second control variable is industrial 

structure (SECIND), with the definition being as the share of industry value added 

including construction to GDP. Although the development of the industry can drive 

economic growth, it also consumes a lot of resources and causes environmental 

pollution, influencing green growth. The third control variable is trade openness 

(TRADE), the sum of imports and exports of goods and services divided by the GDP. 

On the one hand, the “Pollution haven” argument claims that trade openness and 

pollution are positively correlated because enterprises with major pollution problems 

frequently invest in regions with lax environmental regulations. This lowers costs but 

worsens pollution levels. On the other hand, the development of green trade will also 

promote green growth, reducing environmental pollution and improving economic 

efficiency. The fourth factor is population density (DEN), measured as the number of 

people per square kilometer of land area. More human capital can help the economy 

thrive, however, when population density increases, resource waste and 

environmental deterioration problems worsen. The fifth control variable is foreign 

direct investment (FDI), defined as the total foreign investment inflows as a 

percentage to GDP. The country's opening to the outside can improve economic 

efficiency and facilitate financial inflows, but it also inexorably results in pollution 

issues (Cao et al., 2020). The final control variable is government intervention (GOV) 

which is expressed as the ratio of government fiscal expenditure to GDP. Government 

intervention can compensate for the market failure that exists in the area of green 

development. Government investment can not only promote the transformation of 

highly polluting and energy-consuming enterprises, but also provide policy support 

for the development of environmentally friendly enterprises. Consequently, the 

government is crucial in advancing green development (Xie et al., 2020; Xie et al., 

2021). 

3.4. Data Sources  

This study uses panel data from 2000-2019 of global 129 countries. Countries are 

categorized into high, middle, and low GDP groups based on their average GDP 
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levels during the sample period. There are 43 high GDP countries, such as Canada, 

Germany, China, Australia, France, and India. Furthermore, there are 43 middle-

income countries like Denmark, Finland, New Zealand, Sudan, Syria, Ireland, etc. 

Finally, low GDP countries contain 43 countries, including Mongolia, Nepal, Bolivia, 

Zambia, and Zimbabwe. Detailed information of these three groups is presented in 

Table 2.  

The data of labor force, capital stock, and GDP are collected from Penn World 

Table 10.0. The data relevant to energy use, total CO2 emissions, the share of fossil 

fuel energy consumption, industry value added, trade, GDP per capita, population 

density, and government intervention are collected from the World Development 

Indicators of the World Bank. Foreign direct investment is collected from the 

UNCTAD database. Due to data availability issues, this contribution excludes eight 

countries from the regression analysis (Ivory Coast, Ethiopia, Kuwait, Myanmar, 

Trinidad and Tobago, Venezuela, Yemen, and Zambia).  

Table 2 High, middle, and low GDP groups of 129 countries 

Low GDP  Middle GDP High GDP 

Costa Rica Mozambique Chile Sudan United States Egypt 

Cameroon Nicaragua Kazakhstan Slovakia China Argentina 

Paraguay Albania Czech Dominican India Pakistan 

Nepal Armenia Greece Kenya Japan Nigeria 

Slovenia Gabon Venezuela  Oman Germany South Africa 

Bolivia North Macedonia Portugal Ethiopia Russia United Arab Emirates 

Uruguay Cyprus Ireland Bulgaria France Philippines 

Democratic Republic of 

Congo 

Mongolia Peru Tunisia Brazil Malaysia 

Latvia Kyrgyzstan Denmark Ghana United Kingdom Colombia 

Cambodia Mauritius Israel Azerbaijan Italy Switzerland 

Senegal Moldova Uzbekistan Guatemala Mexico Algeria 

Zambia Benin Finland Serbia Indonesia Belgium 

Georgia Tajikistan Hungary Syrian South Korea Sweden 

Honduras Jamaica Qatar Tanzania Canada Ukraine 

Luxembourg Congo Morocco Croatia Spain Viet Nam 

Trinidad and Tobago Haiti Kuwait Lebanon Turkey Bangladesh 

Bosnia and Herzegovina Niger Sri Lanka Panama Saudi Arabia Austria 

El Salvador Namibia Myanmar Ivory Coast Iran  Norway 

Zimbabwe Iceland Belarus Jordan Australia Romania 

Estonia Malta New Zealand Yemen Thailand Singapore 

Brunei Darussalam Togo Angola Lithuania Poland Iraq 

Botswana  Ecuador  Netherlands  

Note: Considering the huge differences in national input and output at different levels of GDP, 

countries in the high, middle, and low GDP groups are ranked according to the average GDP level 

during 2000-2019 from the highest to the bottom. 
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4. Results  

4.1. Ratio of fossil fuel energy consumption in different regions 

Figure 2 represents the ratio of fossil fuel energy consumption in total energy use 

in different regions from 2000 to 2019. It can be seen that the proportion and trend of 

fossil energy among different regions are quite different. In terms of proportion, in the 

Middle East & North Africa the proportion of fossil energy is the highest (exceeding 

90%). This is followed by North America, East Asia & Pacific, Europe & Central Asia, 

and Latin America & Caribbean: there is little difference in the proportion of fossil 

energy in these areas, which is all situated in the range of 65%-85%. There is a certain 

gap between South Asia and Sub-Saharan Africa and other regions in the proportion 

of fossil energy. Sub-Saharan Africa has the lowest proportion of fossil energy, which 

is situated below 40%. The share of fossil energy in South Asia increases slowly 

before 2013 (it is below 54%). After 2013, it increases rapidly, reaching the highest 

point of 66% in 2019. The proportion of fossil energy in all countries together has not 

changed much: it has even grown a bit from 67% in 2000 to 71% in 2019.  

These results reflect a large gap between the relatively high proportion of fossil 

energy in economically developed regions or major producers of fossil energy and the 

relatively low proportion of fossil fuels in economically backward regions. 

Economically backward countries still urgently need to address the issue of economic 

development, and the proportion of fossil energy still may have a lot of room for 

growth. Regarding the trend, the proportion of fossil energy shows a downward trend 

in the Middle East & North Africa, North America, Europe & Central Asia, and an 

upward trend in the other regions, especially in South Asia and Sub-Saharan Africa. 

The proportion of fossil energy in all countries is on the rise.  

This phenomenon supports the conclusions of Zou et al. (2016). These authors 

discover that while demand from emerging economies in the Asia-Pacific region is 

growing quickly, it is stable in the United States, Europe, and other developed nations. 

Fossil energy consumption shows a downward trend in North America and Europe. 

This reflects that economically developed areas and major fossil energy producing 
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areas are increasingly pursuing green development and gradually replacing fossil 

energy with renewable energy. However, economically underdeveloped countries 

mainly pursue rapid economic development, and cannot adjust their industrial 

structure and develop clean energy in the short term. Fossil energy is still the most 

important supply for industrial development. 

 

 Fig. 2. Ratio of fossil fuel energy consumption in total energy use in different regions (2000-2019) 

4.2. GTFP growth using the Luenberger-Hicks-Moorsteen, Luenberger productivity 

indicators, and Malmquist-Luenberger index under different production 

technologies  

Table 3 represents the descriptive statistics of green productivity based on the three 

group technologies. First, the means of GTFP growth of all indicators and index under 

convex and nonconvex technologies indicate positive GTFP growth, except for the 

decline in the LHM indicator under nonconvex technology. Therefore, the LHM 

productivity indicator under different technologies seems significantly different from 

the other indicators. The LHM indicator has a higher absolute value than its LPI 

20 

30 

40 

50 

60 

70 

80 

90 

100 

Sub-Saharan Africa Latin America & Caribbean 

East Asia and Pacific Europe and Central Asia 

Middle East and North Africa North America 

South Asia Overall 



22 

 

counterpart, which is in line with Kerstens et al. (2018) and Sala-Garrido et al. (2018). 

This might be as a result of the incomplete way in which the Luenberger indicator 

measures TFP. Second, the degree of dispersion of the ML index under FDH 

technology is the largest, while the DEA model of the ML index shows the slightest 

fluctuations. The LPI's standard deviation is lower than its LHM indicator counterpart, 

which confirms the finding of Kerstens et al. (2018). Third, in the difference-based 

indicator, the LHM TFP indicator has minimum values with -0.794 and -0.620 under 

the DEA and FDH models, respectively, which are smaller than those in the 

corresponding models of the LPI. Moreover, the maximum values under the LHM 

indicator have a larger difference than that of LPI productivity under different 

technologies. In the ratio-based ML index, the difference in GTFP growth under the 

FDH model is great than that of the DEA model, with larger maximum and smaller 

minimum values. Finally, the minimum and maximum values of the LPI indicator 

under convex technology and the LHM productivity indicator under both convex and 

nonconvex technologies all occur in Venezuela in 2015 and 2017, respectively, 

showing a significant variation in Venezuela’s productivity throughout time. Under 

the LPI indicator with nonconvex technology and ML index with convex and 

nonconvex technologies, Yemen has the smallest green growth in 2015, while the 

maximum occurs in Iraq in 2006, Venezuela in 2017, and India in 2013, respectively. 

Table 3 Descriptive statistics of GTFP growth using the Luenberger-Hicks-Moorsteen, Luenberger 

productivity indicators, and Malmquist-Luenberger index under three group technologies and 

convexity and nonconvexity  

 

Variable Obs Mean Std. Dev. Min Max 

LHM_DEA 2,451 0.011 0.085 -0.794 0.544 

LHM_FDH 2,451 -0.021 0.083 -0.620 0.913 

LPI_DEA 2,451 0.002 0.047 -0.507 0.539 

LPI_FDH 2,451 0.001 0.065 -0.566 0.578 

ML_DEA 2,451 1.002 0.044 0.606 1.501 

ML-FDH 2,451 1.006 0.106 0.462 3.567 

Note: The GTFP of Iraq in 2005 using ML index under nonconvex has no value because the 

inefficiency score under the production technology of the t period and the output and output-oriented 

DDFs in the t+1 period is too small. Thus, we take this value to be 1. 
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The cumulative GTFP under three group technologies using different 

productivity models is presented in Fig.3. First, from 2000-2019, the cumulative 

GTFP under nonconvex technology with ML index shows a significant rise and hits a 

high of roughly 1.5 in 2019, which is much higher than other models. There is a 

steady increase in the LHM indicator under the DEA model, ML index under DEA 

technology, and LPI under convex and nonconvex technologies over time. On the 

contrary, the LHM indicator under the FDH model experiences a downward trend. 

Thus, the cumulative GTFP of the LHM TFP indicator shows different trends across 

various technologies. Generally, the trend of green growth in these countries cannot 

be clearly determined. This result is similar to Kerstens et al. (2018). They discover 

the only indicator with a downward trend to be the Luenberger productivity indicator 

using a nonconvex-VRS technology. Besides, the cumulative GTFP using the LHM 

indicator under different technologies shows the largest difference, followed by the 

ML index. The LPI presents a relatively small difference under DEA and FDH models. 

In addition, a slight drop of cumulative GTFP occurs in 2008 in all models, reflecting 

that the global economic recession has caused damage to green growth. Wang & Feng 

(2021) also find a decline in green growth during the financial crisis. The 

macroeconomic fluctuation is closely related to the green productivity of various 

countries. 
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Fig. 3. Cumulative GTFP with the Luenberger-Hicks-Moorsteen, Luenberger productivity 

indicators, and Malmquist-Luenberger index under three group technologies and convexity and 

nonconvexity (2000-2019) 

Table 4 displays the average GTFP growth over time for all nations based on 

different group technologies. First, the average GTFP growth rates for the different 

methods present some similar results. The years 2004-2005 and 2016-2017 

experience positive GTFP growth under all indicators and index, while the years 

2000-2001, 2008-2009, and 2013-2014 witness significant negative growth rates of 

GTFP in all models. All models’ estimates of green productivity over these years are 

consistent. Second, the signs of different indicators and index under convex and 

nonconvex production technologies also display some differences. For example, in 

2002-2003, the LHM indicator under convex technology and the ML index under 

nonconvex technology are positive, while the results of the remaining four models are 

negative. Only the GTFP growth in the nonconvex model for the LHM indicator is 

negative in 2005–2006, whilst other models show a positive growth trend. This 

somewhat supports the results of Kerstens et al. (2018), as they find that the results by 

Luenberger and LHM productivity indicators display considerable differences, 

although the cumulative growth paths seem quite similar. Third, the green TFP growth 

of the LHM indicator under the nonconvex technology is negative in most years but 
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positive in only two years. There are 14, 10, 9, 10, and 14 years positive GTFP growth 

with the LHM indicator under convex technology, LPI under DEA and FDH models, 

and ML index under both convex and nonconvex technologies, respectively. 

Compared to the LHM indicator and ML index, the green productivity growth rates 

determined by the LPI are more similar. Finally, among the LPI under convex and 

nonconvex models as well as the ML index under nonconvex technology, the average 

GTFP growth rates in 2004–2005 are the highest, whereas they are the lowest in 

2008–2009 in all models except for the LHM indicator under nonconvex production 

technology.  

Table 4 Average GTFP growth for the Luenberger-Hicks-Moorsteen, Luenberger productivity 

indicators, and Malmquist-Luenberger index under three group technologies and convexity and 

nonconvexity 

Year Luenberger-Hicks-Moorsteen Luenberger Malmquist-Luenberger 

 Convex Nonconvex Convex Nonconvex Convex Nonconvex 

2000-2001 -0.0116 -0.0202 -0.0089 -0.0075 0.9909 0.9933 

2001-2002 0.0107 -0.0083 0.0010 0.0029 1.0000 1.0051 

2002-2003 0.0018 -0.0260 -0.0035 -0.0023 0.9963 1.0012 

2003-2004 0.0200 -0.0174 0.0034 0.0110 1.0028 1.0141 

2004-2005 0.0505 0.0014 0.0219 0.0299 1.0198 1.0519 

2005-2006 0.0228 -0.0323 0.0068 0.0042 1.0058 1.0035 

2006-2007 0.0198 -0.0289 0.0081 -0.0021 1.0067 1.0030 

2007-2008 0.0135 -0.0455 -0.0033 -0.0128 0.9969 0.9900 

2008-2009 -0.0353 -0.0445 -0.0198 -0.0234 0.9815 0.9760 

2009-2010 0.0223 -0.0295 0.0062 -0.0025 1.0058 1.0001 

2010-2011 0.0538 -0.0128 0.0219 0.0110 1.0219 1.0160 

2011-2012 0.0093 -0.0165 -0.0003 -0.0065 1.0000 0.9952 

2012-2013 -0.0131 -0.0239 -0.0086 0.0024 0.9928 1.0234 

2013-2014 -0.0050 -0.0293 -0.0048 -0.0177 0.9957 0.9813 

2014-2015 -0.0112 -0.0216 -0.0092 -0.0023 0.9944 1.0043 

2015-2016 0.0133 -0.0139 0.0055 -0.0004 1.0059 1.0037 

2016-2017 0.0315 0.0053 0.0128 0.0217 1.0118 1.0313 

2017-2018 0.0102 -0.0126 0.0046 0.0080 1.0045 1.0100 

2018-2019 0.0039 -0.0214 0.0000 0.0106 1.0001 1.0160 

Table 5 provides an illustration of the regional annual average cumulative GTFP 

growth rates under three group technologies. First, the overall annual green growth 

rates range from -2.31% to 2.37%, reflecting significant differences between the 

results of different indicators and index under different technologies. The annual 

GTFP growth rates also present similarities. Only the annual growth rates of the LHM 

indicator under nonconvex technology are negative, while other models show positive 

annual growth. Generally, there is an upward trend in worldwide green productivity. 
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Second, the annual green growth rates in Sub-Saharan Africa are all negative, while 

other regions experience different degrees of progress in green growth. The sub-

Saharan region has always lagged in terms of green productivity, and this gap is 

getting worse with respect to other regions. The most productive area varies under 

different approaches. But overall, Europe & Central Asia are the area with the greatest 

growth momentum, as its annual green growth rates are ranked first under most 

models. This result partly supports the study of Wang & Feng (2021). These authors 

discuss green growth of different income level countries and conclude that the green 

productivity performance in the high-income group and the upper middle-income 

group is better than that of the lower middle-income group. This result demonstrates 

that green productivity performs better in economically developed regions than it does 

in economically underdeveloped regions. Third, the annual green productivity growth 

rates of the LHM indicator under nonconvex technology are all negative among all 

regions, while most calculated by other approaches are positive. The green growth of 

East Asia & Pacific (11.78%) and South Asia (19.2%) calculated by the Malmquist-

Luenberger index under the nonconvex approach is far more than those calculated by 

different approaches in other regions. The annual GTFP growth rates determined by 

the ML index using nonconvex technology in various regions vary more than those 

determined by other methods.  

Table 5 Annual GTFP growth in different regions for the Luenberger-Hicks-Moorsteen, 

Luenberger productivity indicators, and Malmquist-Luenberger index three different group 

technologies and convexity and nonconvexity (%) 

Region Luenberger-Hicks-Moorsteen Luenberger Malmquist-Luenberger 

 Convex Nonconvex Convex Nonconvex Convex Nonconvex 

Sub-Saharan Africa -0.93 -4.32 -0.94 -0.52 -0.37 -1.29 

Latin America & Caribbean 0.88 -2.71 0.43 0.83 0.74 -0.31 

East Asia & Pacific 1.12 -3.28 0.17 2.48 0.18 11.78 

Europe & Central Asia 2.55 -0.15 1.12 1.98 1.16 1.15 

Middle East & North Africa 1.05 -3.26 -1.11 1.47 -0.70 0.72 

North America 0.34 -0.56 0.38 3.10 0.47 2.25 

South Asia 0.59 -5.65 0.44 3.35 0.78 19.20 

Overall 1.18 -2.31 0.20 1.41 0.44 2.37 
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4.3. Regression analysis 

Table 6 provides the regression results of the LHM, Luenberger productivity 

indicators, and Malmquist-Luenberger index under FDH and DEA models. The 

dependent variable is always the logarithm of the cumulative productivity concept 

being considered. The use of fossil energy can pollute the environment and exacerbate 

climate change, failing to reconcile the economy and environment well, which 

inhibits the TFP that considers the undesirable outputs. Interestingly, different models 

present some insightful results. Strong evidence of a negative correlation between the 

fossil fuel energy consumption and productivity of the LHM indicator under DEA and 

FDH models is found in the first and second columns, respectively, which is in line 

with our assumption, and it supports the findings of Danish & Ulucak (2020), Yan et 

al. (2020), and Rath et al. (2019). Furthermore, the negative effect of the consumption 

of fossil fuel on the LHM indicator under the FDH model is greater than that under 

the DEA model. As for the LPI, the share of fossil fuel energy use and the green 

growth of the economy under the nonconvex technology are negatively correlated at 1% 

significance level. However, the contrary results occur under the DEA model, 

inconsistent with the assumption. The LPI indicator under different production 

technologies presents contradictions. To some extent, the accuracy and robustness of 

this model are questionable. Likewise, the Malmquist-Luenberger index shows 

similar results with the LPI indicator, with positive and negative influences under 

DEA and FDH models, respectively. Besides, the correlation between fossil fuel 

energy consumption and the ML index is not significant. Generally speaking, the 

LHM productivity indicator is the best with the most consistent results, most in line 

with the actual situation, while the results calculated by the other two methods under 

convex and nonconvex models present contradictory results. From the perspective of 

convex and nonconvex technologies, the nonconvex specification consistently obtains 

the right negative significant sign for each GTFP. However, only the right effect can 

be observed from the LHM productivity indicator under a convex technology. The 
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effect of LPI and ML index under a convex model both show opposite and 

insignificant effects.  

Table 6 Regression results using the Luenberger-Hicks-Moorsteen, Luenberger productivity 

indicators, and Malmquist-Luenberger index under three group technologies and convexity and 

nonconvexity 

 Regression Models 

 LHM_DEA LHM_FDH LPI_DEA LPI_FDH ML_DEA ML_FDH 

lnfossil -0.033*** -0.052*** 0.003 -0.044*** 0.007 -0.026 

 (0.010) (0.011) (0.006) (0.008) (0.005) (0.018) 

lnpgdp 0.112*** -0.045*** 0.053*** 0.029*** 0.059*** 0.014 

 (0.013) (0.014) (0.008) (0.010) (0.006) (0.023) 

lnsecind -0.108*** -0.031* -0.025*** -0.047*** -0.021*** -0.006 

 (0.015) (0.016) (0.009) (0.012) (0.007) (0.026) 

lntrade -0.048*** -0.069*** -0.034*** 0.010 -0.028*** 0.031** 

 (0.008) (0.009) (0.005) (0.007) (0.004) (0.014) 

lnden -0.180*** -0.591*** -0.224*** -0.072*** -0.142*** -0.076** 

 (0.018) (0.021) (0.011) (0.015) (0.009) (0.033) 

lnfdi -0.091*** -0.132*** -0.050*** -0.088*** -0.047*** -0.093* 

 (0.030) (0.033) (0.018) (0.025) (0.015) (0.053) 

lngov 0.004 -0.095*** 0.007 -0.012 -0.005 0.012 

 (0.012) (0.014) (0.007) (0.010) (0.006) (0.022) 

Constant 1.677*** 4.919*** 1.832*** 1.544*** 1.401*** 1.355*** 

 (0.164) (0.185) (0.100) (0.137) (0.083) (0.295) 

Time FE  Yes Yes Yes Yes Yes Yes 

Individual FE Yes Yes Yes Yes Yes Yes 

Observations 2,420 2,420 2,420 2,420 2,420 2,420 

R-squared 0.732 0.820 0.775 0.717 0.771 0.667 

Notes: Robust Standard errors are in parentheses; * p < 0.1, ** p < 0.05, *** p < 0.01.  

Regarding the other control variables, productivity is found to positively 

correlate with per capita GDP under most models. However, the LHM indicator under 

the FDH production technology shows the opposite correlation. which is consistent 

with Yan et al. (2020), as they state that low-income regions would have larger 

development potential for green growth. The percentage of value added by industries 

to GDP and the economy’s green growth are negatively associated. Moreover, the 

negative effect of the LHM productivity indicator under convex technology is larger 

than that of the LPI and ML index. This negative effect differs from Yan et al. (2020): 

the latter find a positive but insignificant relationship between industrial structure and 

green productivity in China. This result illustrates the fact that modernizing and 

transforming industrial structures is a common trend that might support sustainable 

growth.  
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The ratio of trade to GDP has a negative impact on productivity under LHM-

DEA, LHM-FDH, LPI-DEA, and ML-DEA methods, while a positive impact is 

observed from LPI-FDH and ML-FDH models. This effect is uncertain as the trade 

may bring pollution or promote the transformation of economic structure and increase 

the region’s competitiveness. According to Cui et al. (2022), international trade is 

positively correlated with green growth in OECD countries, as it can contribute more 

effectively to the flow of goods and the division of labor. Yan et al. (2020) find that 

trade has a positive but insignificant impact on the growth rate of green productivity. 

Rath et al. (2019) conclude that trade openness contributes positively to TFP growth 

as it can stimulate innovation. 

There is an apparent negative relationship between population density and green 

growth, with negative coefficients presented in all models. Among the results, the 

population density contributes most to the productivity measured by the LHM-FDH 

model. An increasing population can bring adverse effects on the resources and 

environment, influencing green growth. This negative effect is supported by the 

discovery of Xie et al. (2021).  

Green growth and foreign direct investment are found to be inversely correlated. 

Therefore, even while foreign investment will help the economies of these countries 

grow, it is particularly detrimental to the environment and inhibits overall green 

development. This finding somewhat confirms the study of Cao et al. (2020) which 

finds that foreign direct investment inhibits green growth in low-pollution industries. 

However, according to Rath et al. (2019), FDI is observed to contribute positively to 

the growth of TFP with more technology being introduced.  

Government intervention has a negative effect only on the GTFP calculated by 

the LHM indicator under FDH technology. This may be due to the fact that if the 

government gets too involved, it will exacerbate the mismatch of resources in the 

green industry and prevent the rational flow of resources, thus inhibiting the 

development of the green industry. This effect differs from Xie et al. (2020) and Xie 

et al. (2021) as these authors find government plays an active role in green economic 
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development among 27 EU member countries. Government intervention has no 

significant effect on the ones calculated by other models. 

Note that the standard errors of the estimated regression coefficients are robust. 

In particular, we have been using the procedure available in Stata to robustify the 

regression results. 

5. Conclusions 

If an insufficient energy supply appears in an economy, this nation has to rely on 

external energy imports. The stable development of the economy will be impacted by 

energy prices, and then affected by geopolitical risks, resulting in misallocation of 

regional resources and fluctuations in energy supply. For example, the recent Russo-

Ukraine war has led to volatility in energy prices in Europe. Furthermore, whether 

productivity indicators are consistent with the country's energy structure can affect the 

measurement of green growth. Inspired by the metafrontier approach, this 

contribution measures the green productivity gains of 129 countries using the LHM, 

Luenberger productivity indicators, and Malmquist-Luenberger index under both 

convex and nonconvex by-production models. Then, it tests the robustness of different 

indicators and indices through a two-way fixed effect model regression between the 

GTFP and the share of fossil fuel energy consumption for 121 countries. The findings 

have provided a deeper insight into the selection of models for measuring GTFP in 

empirical analysis. The results gained from this study may assist in facilitating energy 

transition and sustainable development. We are now in a position to summarize the 

main findings. 

First, the results indicate that there are large differences in the share and trend of 

fossil energy in different regions. Generally speaking, the share of fossil energy in 

economically developed areas, such as North America, Europe & Central Asia, and 

major energy producing countries, such as the Middle East & North Africa, is high 

and is declining. Economically disadvantaged regions, such as South Asia and Sub-

Saharan Africa, have a smaller and rapidly increasing share of fossil energy compared 

to other regions. This reflects that economically developed regions and major fossil 
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energy producing regions are increasingly seeking green development. However, 

economically less developed countries are mainly focusing on rapid economic 

development and fossil energy is apparently the most important energy source for 

industrial development. 

Second, GTFP calculated from various indicators and index present significant 

differences, which is consistent with Kerstens et al. (2018) and Sala-Garrido et al. 

(2018). The green productivity using the LHM indicator under nonconvex group 

technologies presents opposite results to other models. The annual growth rates of 

GTFP vary between regions. There is an upward trend in worldwide green 

productivity. The annual green growth rates in Sub-Saharan Africa are all negative. 

Europe and Central Asia are the most productive regions according to most models. 

Productivity decline is closely related to poverty. Therefore, it is urgent for lagging 

countries to increase productivity and escape poverty.  

Third, fossil fuel energy inhibits green economic growth. Thus, there is a need to 

strengthen and innovate energy regulation and promote clean energy development. 

The regression model illustrates that the LHM indicator is the most robust and 

consistent in the empirical analysis since the LPI and ML indices results are 

contradictory under convexity and nonconvexity. This result confirms the research of 

Kerstens et al. (2018) that the LHM indicator is an optimal method for measuring TFP, 

while the Luenberger productivity indicator does not maintain a TFP interpretation by 

approximation. Theoretically, the LHM indicator can solve the problem that the 

Malmquist-Luenberger index cannot handle values at or near 0 and the problem that 

the Luenberger indicator cannot be separated into output and input growth (Balk et al., 

2008; Ang & Kerstens, 2017; Shen et al., 2019). Therefore, in theory, the LHM 

indicator is also the best measure of TFP among the three methods. The empirical 

results present consistent results with the theory. Given our framework that explicitly 

tests for convexity, our contribution shows that the LHM productivity indicator under 

a nonconvex technology is slightly more convincing when considering undesirable 

outputs compared to the convex alternative. 
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Despite the great advantages mentioned above, there are some pitfalls. The first 

is the selection of methods for measuring TFP. We just consider a few popular 

methods containing LHM indicator, LPI, and ML index, but do not include additional 

indicators and indices. There are numerous ways to calculate the TFP. Future 

researchers should consider more approaches to gain a more comprehensive 

understanding and comparison of TFP measurement. Second, only the share of fossil 

fuel energy consumption is selected as the core explanatory variable and then 

regression analysis is performed with GTFP to explore the robustness of the model. 

More variables could be incorporated to test the robustness of different approaches 

under convexity and nonconvexity. Choosing the proper methods to measure TFP can 

better capture economic growth and drive long-term economic growth. Third, this 

contribution is unable to include all countries in the regression analysis due to missing 

data on some of the control variables. Later, if more data become available, then more 

countries can be included in the regression analysis to present a more complete and 

convincing conclusion. 
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Appendix 

Through linear programming, the PDFs can be estimated for expressions (7), (8), and 

(9). As for the LHM productivity indicator, the output-oriented PDFs can be obtained 

from (LP1) and (LP3), respectively. The input-oriented proportional distance 

functions are calculated through (LP2) and (LP4).   
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The programs (LP1) and (LP2) estimate the convex production technologies, and the 

nonconvex technologies can be obtained from (LP3) and (LP4). The activity or 

intensity vector 
1

s
   and 

2

s
  are related to subtechnologies 

1
T  and 

2
T , respectively. 

The scalars   and   represent the maximum optimizations of outputs and inputs 

defined by  0 , ,
p p

y z
g g  and  , 0 , 0

p

x
g  at the period  , 1p t t  . 

Similarly, the input/output-oriented DDFs of the Luenberger productivity 

indicator can be calculated from the LP5 and LP6. From the linear programming of 

LP7 and LP8, the DDFs of the Malmquist-Luenberger productivity index are obtained.  
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The scalars   and   are the maximum optimizations of inputs and outputs of DDFs 

under the Luenberger indicator and Malmquist-Luenberger index, respectively.  

 


