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ABSTRACT

A time-staggered scheme for variable density flow is presented. The compressible Navier–Stokes
equations are used by this pressure correction scheme which is implemented in the collocated finite-
volumes open-source computational fluid dynamics solver code saturne. The Helmholtz equation is
solved for the pressure increment, taking the thermodynamic pressure into account and avoiding the
acoustic time step limitation. The internal energy equation is used to compute the temperature and a
numerical analysis providing conditions ensuring the positivity of the thermodynamic variables is pro-
posed. The scheme accuracy is first verified on a 0-D pressure cooker system. Then, a discontinuous
shock problem shows its capability to reproduce shocks correctly and finally, the scheme is validated on
a natural convection numerical reference case.

1 WORK OVERVIEW

Designing time schemes for Computational Fluid Dynamics (CFD) that are able to cover both com-
pressible and incompressible regimes is a challenging [1] research topic which has been given attention
in the last decades [2][3][4][5][6]. Based on Pierce and Moin [7] finite difference time staggered scheme,
we present a finite volumes conservative second-order time scheme for variable density flow. The pro-
posed semi implicit pressure correction [8] scheme uses the compressible Navier–Stokes equations and
is designed for regular and discontinuous solutions. The latter is implemented in the open-source CFD
solver code saturne [9] and validated against analytical and reference test cases.

Inner iterations are performed for each time step, characterised by the upper-script k and the scheme
variable arrangement depends on the parameter θ (θ = 1 for Implicit Euler or 1/2 for Crank Nicolson):
for instance, the momentum equation is solved between times n−1+θ and n+θ,k:
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where ρ is the density, u the velocity, q = ρu the momentum and p|n+θ

n−1+θ
the mechanical pressure. Θ(·)

is the temporal interpolation of a given field. If θ = 1/2 the velocity location is at the centre of the
time interval [n,n+1] whereas other fields are evaluated respectively on times n and n+1 (Fig.1). The
internal energy equation is used to compute the temperature as in [10]:
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T is the temperature, cv the heat capacity and λ the thermal conductivity. Following [10], Γu2/2 is a
corrective source term derived from the discrete kinetic energy equation; for refined grids, the total energy
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is conserved. The time scheme includes the effect of the thermodynamic pressure in the correction step
by solving the following Helmholtz equation for pn+1,k:
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(3)

The acoustic waves are treated implicitly, thus removing the acoustic CFL restriction on the time step.
An upwind spatial discretization of the equations convective terms lead to a numerical analysis on the
positivity of the temperature, pressure and density of a cell c; if the following conditions are below the
unity, the positivity is preserved among time for all the aforementioned variables:
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where S f is the outward surface vector, Ṁ+
f
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mass flux and Mc the cell mass.
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Figure 1: Time discretized variables localisation. Left frame : θ = 1. Right frame : θ = 1/2.

2 RESULTS

The present scheme is verified and validated along different verification and validation cases. Note
that for all test cases, the time step is constant.



2.1 0-D Pressure cooker like cell

A single computational [1×1×1] m3 cell with no fluxes is heated by its lateral faces while others are
adiabatic. First, the scheme ability to account pressure variations is verified while conserving the mass
of the system by imposing a Neumann condition on the walls. Then, its time convergence rate is verified
through a Dirichlet condition. The exact temperature expressions for the Neumann (N) and Dirichlet (D)
case read:

TN(t) = T0

(
1+

t
τ1

)
, τ1 =

Ω ρ0 cv T0

S Qi
. TD(t) = (T0 −Tw) e−

t
τ2 +Tw, τ2 =

Ω ρ0 cv

S h
.

T0 = 300K and ρ0 = 1.177kgm−3 are the initial temperature and density. Ω is the total cell volume, cv

its heat capacity, and S the total heated wall surface. Tw = 313K denotes the wall temperature and the
interior air heat transfer coefficient h = 30Wm−2 K−1 remains constant. Simulations are performed with
a time step ∆t = 1 s and one inner iteration. For the Neumann case, the pressure, temperature and density
L2 error norm related to the exact solution are studied over time and compared to a simulation using a
Poisson equation to correct the pressure (i.e by considering ρn+1,k = ρ̃k in Eq. (3)). Figure 2, left, shows
that the pressure variation is well reproduced by the present scheme and the mass is well conserved. The
simulation using the Poisson equation led to more important errors. The increasing behaviour of errors
are to be seen as an accumulation of truncation error in the range of the solver precision (10−8). Figure
2, right, shows the pressure L2 error at t = 0.8τs for the Dirichlet boundary condition study. It is verified
that the first and second order time convergence rate are obtained when θ = 1 and 1/2, respectively.
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Figure 2: Left: L2 error norm of the density, temperature and pressure for the Neumann boundary condi-
tion case. (–) Poisson scheme. (–) presented scheme. Right: Dirichlet boundary condition case. L2 error
for the pressure at t = 0.8τ2 for a first-order implicit Euler (θ = 1) and Crank Nicolson (θ = 1/2) time
scheme.

2.2 Sod shock case

The Sod [11] 1-D Riemann problem is considered to test the scheme accuracy related to singular
solutions. Simulations are performed on a tube of length L = 400m with 2m × 800 cells, 0 ≤ m ≤ 5.
An interface at the middle of the tube is used to initialise the right (R) and left (L) states as following:
ρL = 1.0kgm−3, ρR = 0.125kgm−3, pL = 100000Pa and pR = 10000Pa. Walls are considered as
symmetries except the two end faces of the tube, set as outlets. While refining the mesh at two CFL
numbers, the variables L1 error norm at t = 0.3s are studied for both θ values. For each time step, three
inner iterations are performed. Figure 3 shows, for a 3200 mesh and θ= 1, the different fields at t = 0.3s.
The exact solution, in black lines, is accurately reproduced by the simulation using the source term based
on the kinetic energy equation (red lines). Even if the density, pressure and velocity fields are close to



the exact solution, the temperature plateau is not achieved without the source term (blue lines). Figure 4
shows for each configuration the variables L1 error norm related to the exact solution. It is well known
that even even second order schemes can not achieve a second order accuracy for irregular solutions.
When reducing the cells distance, the time convergence rates tend to 0.5 for the density and temperature
and to 1.0 for the pressure and velocity, which are in agreement with these available in the compressible
solvers literature [10][12]. Lastly, the presented new CFL like conditions (Eq.4), represented in Figure
5, are shown to be less restraining than the speed based CFL condition.
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Figure 3: Sod case results at t = 0.3s for θ= 1 using a 3200 cells mesh. (–) exact solution (- -) simulation
using the source term Γu2/2 (- -) simulation without the source term Γu2/2 .
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Figure 4: L1 error convergence for the SOD case for two values of CFL and θ.

2.3 Natural convection case

A heated cavity numerical benchmark case presented in [13] is studied. The system of characteristic
length L = 0.4603m presents a steady flow driven by buoyancy effects at Ra = 106. The side lateral
walls difference of temperature (Th = 960K and Tc = 240K) is responsible for the cavity motion and
the fluid properties are constant. Other walls are considered adiabatic. A 740× 740 cells mesh is used
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Figure 5: CFLx numbers for the SOD case for two different velocity based CFL simulations with θ = 1.
Left frame: CFL = 0.04. Right frame: CFL = 1.0.

and the mean Nusselt number Nu =
1
L

∫ y=L
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Nu(y)dy evaluated on the cold and hot walls (with Nu(y) =

L
(Th −Tc)

λ
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∂T
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w
(y)), and the cavity normalised mean pressure p/p0 are compared to their reference

values. λ0 = µ0γR/((1−γ)Pr), with Pr = 0.71, µ0 = 1.68×10−5 kgm−1 s−1 and R= 287Jkg−1 K−1. The
time step is fixed to ∆t = 0.0025s and three inner iterations are performed. To accelerate the convergence
to the steady state, the cavity temperature is initialised as T0 = 600K. Figure 6, left, shows that the steady
state is reached after 10 s of simulation. Moreover, the normalised density stays constant and equal to the
unity, proving the scheme’s system mass conservation. The mean pressure reaches as well its reference
value of 0.856. Furthermore, the Nusselt number profiles are in agreement to the reference (Figure 6,
right), which is reflected by the correct reproduction of the centrelines velocity profiles (Figure 7).
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Figure 6: Left: relative domain-averaged quantities ψ/ψ0 over time. Right: Nusselt number profiles for
the hot and cold walls compared to the reference [14].

3 CONCLUSIONS

A staggered time scheme has been proposed, validated and verified against analytical and benchmark
problems. A numerical analysis has provided new conditions to insure the positivity of the thermody-
namic variables. The latter were shown to be less constraining than the material CFL condition. Further-
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Figure 7: Distribution of the velocity on the centrelines of the convective cavity compared to the reference
[14].

more, the presented scheme had good accuracy on accounting pressure variations and reproducing shock
and natural convection solutions. An extension of this time scheme to moist-air is in development and
further work shall focus on applying the presented scheme to more complex industrial studies.
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[9] F. Archambeau, N. Méchitoua, & M. Sakiz. Code Saturne: A finite volume code for the computation of
turbulent incompressible flows-Industrial applications. International Journal on Finite Volumes, 1.
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