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By means of two-dimensional numerical simulations based on contact dynamics, we present a systematic
analysis of the joint effects of grain shape (i.e., grain elongation) and system size on silo discharge for increasing
orifice sizes D. Grains are rounded-cap rectangles whose aspect ratio are varied from 1 (disks) to 7. In order to
clearly isolate the effect of grain shape, the mass of the grains is keeping constant as well as the condition of the
discharge by reintroducing the exiting grains at the top of the silo. In order to quantify the possible size effects,
the thickness W of the silos is varied from 7 to 70 grains diameter, while keeping the silos aspect ratio always
equal to 2. We find that, as long as size effects are negligible, the flow rate Q increases as a Beverloo-like function
with D, also for the most elongated grains. In contrast, the effects of grain elongation on the flow rate depend
on orifice size. For small normalized orifice sizes, the flow rate is nearly independent with grain elongation.
For intermediate normalized orifice sizes the flow rate first increases with grain elongation up to a maximum
value that depends on the normalized size of the orifice and saturates as the grains become more elongated. For
larger normalized orifice size, the flow rate is an increasing function of grains’ aspect ratio. Velocity profiles and
packing fraction profiles close to the orifice turn out to be self-similar for all grain shapes and for the whole
range of orifice and system sizes studied. Following the methodology introduced by Janda et al. [Phys. Rev. Lett.
108, 248001 (2012)], we explain the nonlinear variation of Q with grain elongation, and for all orifice sizes,
from compensation mechanisms between the velocity and packing fraction measured at the center of the orifice.
Finally, an equation to predict the evolution of Q as a function of the aspect ratio of the grains is deduced.

DOI: 10.1103/PhysRevE.108.054901

I. INTRODUCTION

From the measurement of time in an hourglass [1] to the
storage and discharge of huge quantities of grains in different
industrial contexts [2–4], the flow of grains within a silo has
been and still is the subject of a large number of studies.
Generally speaking, in a grain column, the stress measured at
the bottom does not increase linearly with the filling height but
quickly saturates at a maximum value. The independence of
the stress explains the well-known fact that, unlike liquids, the
flow rate Q of the grains is constant. This effect has sometimes
been attributed to the presence of force chains, arguing that
the arches “support” the weight of the upper layers of grains.
But Janssen’s model [5] and its experimental verification [6]
indicate that the physical origin of stress saturation is the
mobilization of the frictional force at the walls.

Nevertheless, there are effects that cannot be explained by
macroscopic arguments of this type. For example, the flow in
a silo is continuous only when the diameter D of the orifice is
larger than a critical diameter [7]. In this case, using dimen-
sional analysis (assuming a free fall of the grains under gravity
g above the orifice [8]), it can be shown that the discharge
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rate is of the order of Q ∼ g1/2Dn+1/2, where n is 1 in two
dimensions and 2 in three.

Otherwise, if the orifice size is a few times larger than
the grains size d , metastable regimes not captured by the
dimensional analysis exist, revealing intermittent flows that
are related both to the discrete nature of the medium and to
the presence of grain arches above the orifice [9]. Avalanche
statistics (defined from the number of grains flowing through
the orifice from two metastable regimes) reveals that the prob-
ability density of avalanche size is a decreasing exponential
function independent of the orifice size. In contrast, the mean
avalanche size increases and diverges as a critical aperture
is approached [10]. Note that a number of technological
strategies have been imagined to avoid clogging for small
apertures [11–14].

From these observations, the first semiempirical equa-
tion was developed by Beverloo [8] in the form Q =
Cρg

√
g(D − κd )n+1/2, where ρg denotes the bulk density of

grains, and C and κ are material-dependent parameters. The
parameter κ was introduced in order to take into account a re-
duced orifice diameter induced by finite-size effects. Although
the fitting parameters are not well defined physically, several
numerical and experimental studies, mainly based on circular
or spherical grains [15], have proven that the Beverloo’s law is
robust for large orifice, but is failing for small orifices where
clogging prevails [16].

As far as we know, the first theoretical expression of the
flow rate is attributed to Janda et al. [17]. This was derived
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on the basis of clear physical parameters that relied on the
self-similar properties of velocity and packing fraction pro-
files close to the orifice. Using 2D experiments with circular
grains, they show that finite-size effects for small orifices do
not have to be taken into account via the ad hoc parameters
κd , but rather via the variations of the solid fraction close to
the orifice, as a function of the orifice size. This idea was
also suggested in the work of Mankok [18]. Very recently,
Benyamine et al. [19] as well as Zhou et al. [20] have ex-
tended the “Janda” model to the flow of bidispersed disks and
spheres.

While most existing work on silo discharge has been car-
ried out using model materials (i.e., disks or spheres), grains
encountered in nature and industry are rarely spherical. More-
over, it is now well reported in the literature that the qualitative
and often nontrivial behavior induced by particle shape, such
as the nonlinear dependency on strength with packing fraction
as the shape deviates from circular or spherical shape [21–24],
or the role of side-side (in two dimensions) or face-face (in
three) contacts on stress transmission and fabric properties
in sheared granular systems [23,25–27]. Thus, we can also
expect nontrivial effects induced by particle shapes in a silo
geometry.

For example, recent works have shown that the probabil-
ity of clogging increases with grains angularity [10] or with
grains’ elongation [28]. More disconcerting, seemingly con-
tradictory results were obtained with elongated grains, where
the flow rate may increase [28,29] or decrease [30–32] as
the grain elongation increases. Even more surprising, the flow
rate may be independent with grain elongations in frictionless
3D systems [29]. Moreover, in a narrow silo the discharge of
elongated grains is time dependent, which is not the case for
spherical grains, suggesting that size effects may dominate
with nonspherical particles [33]. The origins of the discrep-
ancy of all these results are not well understood, and in more
general terms it is unclear whether, and how, current flow
models can be extended to nonspherical particles.

The objective of this paper is to investigate in more detail
the combined effects of grain elongation and system size on
the silo discharge of 2D rigid grain assemblies by using a
discrete element method: contact dynamics (CD). The par-
ticles considered are rectangles with rounded end caps that
we call “rounded-cap rectangles” (RCRs), with aspect ratios
ranging from 1 (disks) to 7. The thickness of the silos varies
from 7 to 70 grain diameters, keeping the aspect ratio of the
silos constant and equal to 2 in order to quantify possible size
effects. Finally, in order to clearly isolate the effect of grain
shape, the mass of the grains is kept constant as well as the
discharge condition by reintroducing the outgoing grains at
the top of the silo. In this way, the only parameters that change
in our simulations are the shape of the grains and the size of
the systems.

The paper is structured as follows. In Sec. II we briefly
describe the numerical method used in the simulations, the
sample constructions, and the procedure followed to break the
arches and reintroduce the grains. Section III is devoted to
the analysis of the flow rate as a function of system size and
grain shapes. In Sec. IV we analyze the different velocity and
solid fraction profiles close to the orifice, as a function of the
system parameters. Inspired by the work of Janda et al. [17]

FIG. 1. Geometry of a rounded-cap-rectangle (RCR) grain.

we will derive a model to predict the flow as a function of
grain elongation.

We conclude with a summary of the main findings of this
work in Sec. V.

II. MODEL DESCRIPTION

A. Numerical method

For the simulations we use contact dynamics (CD), de-
veloped by Moreau and Jean, a nonsmooth discrete element
method (DEM) [34,35]. This method is based on an implicit
time integration of the equations of motion and a nonsmooth
formulation of the contact and dry friction between the grains.
No regularization is made in the calculation of the contact
forces, and the impacts are considered perfectly plastic (zero
restitution). At each time step, an iterative, nonlinear (paral-
lelized [36]) Gauss-Seidel type solution algorithm is used to
determine the set of contact forces. Due to the unconditionally
stable character of this method, it is particularly well suited to
simulate large assemblies of frictional grains of any shape.

As shown in Fig. 1, each elongated grain is modeled as a
rectangle of length � and width 2r′, whose rounded end caps
are represented by two juxtaposed disks of radius r. In what
follows, we will call this grain a “rounded end-cap rectan-
gle” (RCR) [22]. The elongation of an RCR grain is given
by the aspect ratio λ = (� + 2r′)/(2r′) = L/(2r′), where L =
� + 2r′ is the length of an RCR grain. An aspect ratio of 1
corresponds to a circle of diameter d = 2r′ (i.e., � = 0).

Basically, in RCR grain assembly three kinds of geomet-
rical contact may arise: side-side [Fig. 2(a)], which are linear
contacts, or cap-cap [Fig. 2(b)] or cap-side [Fig. 2(c)], which
are “punctual” contacts. Since an RCR grain is built as a
“cluster” of three rigid particles, the contacts are detected
separately between disk-disk or disk-polygon particles, each
of them involving a single point of contact. By construction,
linear contacts involve necessarily two disk-polygon contacts
and thus are treated by two contact points, as typically done

FIG. 2. Contact configurations in RCR grain assemblies.
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in the CD method. Thus, two forces are calculated by the
CD algorithm, but only their resultant and application points
are material. The procedure and implementation for the treat-
ment of linear contact in the framework of the CD method
are described in detail in Ref. [37]. We used the platform
LMGC90, which is a multipurpose software developed in
Montpellier, capable of modeling a collection of deformable
or undeformable particles of various shapes [38,39].

B. Sample preparation and dimensionless parameters

We consider 2D silos of rectangular shape of width W and
height H = 2W with a varying size D of the orifice.

Ng randomly oriented grains of length L are mechanically
deposited within the silo under the action of the gravity. The
friction between grains, and with the walls, is fixed to 0.4. In
order to isolate the effect of grain shape, in all the simulations
presented below, both the area Eq. 1(a) and the mass Eq. 1(b)
of one elongated grain of aspect ratio λ are kept equal to that
of disk of diameter d . Keeping mass and area constant is in
our case not the same thing since the RCR grain is numerically
built from two disks. Indeed, this translates into these two set
of equations:

Ad (d ) = Ad (2r′) + Ar (�, 2r′), (a)

ρdAd (d ) = ρr[2Ad (2r′) + Ar (�, 2r′)], (b) (1)

where Ad is the area of a disk of diameter 2r′, or d , and
Ar (�, r′) is the area of a rectangle of length � and thickness
2r′. ρr , ρd refer to the density of the RCR for λ > 1, λ = 1,
respectively. Note that Ad (2r′) is counted two times in the
left-hand expression in Eq. 1(b) to consider the numerical
construction of the RCR. Then, following simple algebra, we
get L = λd

√
π/[π + 2λ − 2)] and ρr = ρd (π + 2λ − 2)/π ,

which allow us to build the corresponding RCR grain knowing
the aspect ratio λ and the diameter d . For all systems that
will be simulated, a weak size polydispersity is considered
by varying the diameter d between dmin = 0.8〈d〉 and dmax =
1.2〈d〉, with a uniform distribution of the grain area fractions,
and 〈d〉 the mean diameter.

The width of a silo is quantified as a function of the di-
ameter d̄ ≡ L of the circumscribed circle of the RCR grain
by W = ξ d̄ , with ξ the parameter measuring the size of the
silo with respect to grain diameter. In addition to the dimen-
sionless parameters ξ and λ, we also consider the normalized
orifice size by α = D/d̄ . Thus, by combining ξ and α, we
can also build the dimensionless number η = ξ/α = W/D as
the ratio between the width of the silo and the size of the
orifice. As far as we know, this dimensionless number is often
referred to in the experimental work of Nedderman [40] and
Brown [41], who show that size effects in sphere assemblies
disappear if η � 2.5. The main notations are summarized in
Table I.

C. “Perpetual” flow in a silo and parametric study

As also done in [42], in order to keep the discharge condi-
tions constant under the action of gravity g, the grains falling
through the orifice are reintroduced into the top of the silo with
zero velocity and random orientation, as illustrated in Fig. 3.
Thus, the total number of grains remains constant during the

TABLE I. Parameter summary.

Parameter Formula

Silo width and height W , H = 2W
Orifice size D
Diameter of disks d
RCR thickness and length 2r′, L
Circumscribing diameter of RCR d̄ ≡ L
Grain elongation ratio λ = L/(2r′)
Silo width to grain length ratio ξ = W/d̄
Aperture width to grain length ratio α = D/d̄
Silo width to aperture ratio η = W/D

discharge. The difficulty is then to remove an arch when a
clog appears to continue the flow. In practice, an arch can be
considered stable only when all particles are at rest. Other-
wise, a metastable arch located just above the orifice can exist
and can be destabilized only by the movement of other grains.
Thus, in practice we will assume that if the normalized mean
kinetic energy 〈Eg

c /E0〉Np , where E0 = 0.5m〈d〉/g the typical
free-fall kinetic energy, is below 0.005, during a normalized
time t/t0 = 25, where t0 = √

d/g, then the flow is stopped.
In order to restart the flow, the arch obstructing the orifice is
destabilized by removing the grain closest to the center of the
orifice and reintroducing it at the top of the silo. This grain
will be treated as a “passing grain” (grain leaving the silo).
This simple procedure is always enough to restart the flow.

In this work, we aim to quantify the effects of the geometri-
cal parameters (λ, ξ, α, η) defined previously on the flow rate
Q. Thus, we performed several sets of simulations, changing
one parameter each time while all the other parameters are
maintained constant. In order to analyze the effect of system
width with respect to the mean grain size, the ξ parameter is
varying in the range [7,15,22,44,70], and to analyze the effect

FIG. 3. Illustration of the recirculation mechanism, for λ = 2
and ξ = 22.

054901-3



BIGNON, RENOUF, SICARD, AND AZÉMA PHYSICAL REVIEW E 108, 054901 (2023)

FIG. 4. Examples of the generated packings at the initial state for
extremal values of ξ and λ = [1, 5]. The insets show a grain-scale
views of the packings.

of system width with respect to orifice size, the η-parameter
is varied between 1 to 15, and finally, to analyze the effect
of grain elongation, the λ parameter is varied in the range
[1,2,3,4,5,6,7].

Although the number Ng of grain remains constant for a
fixed couple (λ, ξ ), it increases from 100 for (λ, ξ ) = (1, 7) to
10 000 for (λ, ξ ) = (1, 70), and from 417 for (λ, ξ ) = (5, 7)
to 41 037 for (λ, ξ ) = (5, 70). Figure 4 displays snapshots of
the silo for the extreme values of ξ and λ = [1, 5].

Finally, it is important to note that to have “good” statistics
in terms of a clogging event, typical packing fraction, or
velocity close to the orifice, very long simulations are needed
so that the standard deviations measured around the mean
values do not change by adding new data. For example, the
total time of simulation goes from 40 000t0 for (λ, ξ ) = (1, 7)
to 8000t0 for (λ, ξ ) = (1, 70). For elongated grains it goes
from 2200t0 for (λ, ξ ) = (5, 7) to 1500t0 for (λ, ξ ) = (5, 70).
A total of 150 simulations were performed for different values
of (λ, ξ, α, η)

III. FLOW RATE

A. Flow description (main features)

The flow rate is measured by considering the time series
of the cumulative number N (t ) of grains passing through the

FIG. 5. Number of grain discharge (left and black y axis) and
normalized kinetic energy (only for ξ = 22; right and gray y axis)
as a function of t/t0 for (λ, ξ, D/d̄ ) = (1, [15, 22], 4.9) (a) and
(λ, ξ, D/d̄ ) = (5, [15, 22], 4.9) (b); inset shows a zoom of the data
only for ξ = 22.

orifice, as illustrated in Fig. 5 for λ = 1 and λ = 5 respec-
tively, for the same orifice size α = 4.9 and different silo size
ξ . In the same figure, we also show the typical time evolu-
tion of the normalized kinetic energy of the grains 〈Eg

c /E0〉
for ξ = 22. The flow starts instantaneously and, as typically
observed [43], N (t ) increases nearly linearly with the time
for both disks and the most elongated grains assemblies. In
general terms the N (t ) curves nearly coincide with each other
except when ξ declines toward small values. Indeed, when ξ

declines while keeping α constant, the parameter η declines
too, leading to a flow equivalent to that in a pipe. For the
particular case of (ξ, λ) = (10, 5), we see that N (t ) separates
from the other curves from t � 2000t0 but still showing a lin-
ear evolution with a larger slope. Figure 6(d) shows a snapshot
of this case after that time, and we can see that the grains
close to the walls are organized in columns and do not flow
anymore, reducing “artificially” the value of the η parameter.

We can also observe that during the flow, the kinetic energy
is a very fluctuating quantity which decreases more frequently
towards 0 when the grains are most elongated. These fluctu-
ations are largely related to reactivation of the flow during
the formation of nonstable arches [see Figs. 6(a) and 6(b)].
This reactivation process is more frequent in elongated grain
assemblies which are more likely to be jammed, explaining
the small oscillations in the evolution of N (t ).
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FIG. 6. Formation of dynamical (cases a and b) and static (case c)
arcs for (λ, ξ ) = (5, 22). Illustration of RCR pile (case d) for
(λ, ξ ) = (5, 7).

Sometimes the dynamic arches turn into static ones, caus-
ing the flow to stop [see Fig. 6(c)]. In this case, as shown on
the inset in Figs. 5(a) and 5(b), N (t ) is constant, the kinetic
energy drops to 0, indicating that the flow is not reactivated.
This results in intermittent discharge. Nevertheless, between
two static arches (where the flow is reactivated following the
procedure described in Sec. II), the flow can be considered
stationary, for both disk and elongated grain assemblies. N (t )
maintains a similar slope, which suggests that each flow pe-
riod can be considered as an independent experiment. We note
also that both the plateaus in kinetic energy and number of
grains do not exactly start and end at the same time. This is
only because the kinetic energy is computed over all grains,
and thus, when a clog occurs few grains are still crossing
the orifice. Thus, with a good approximation we can define
the flow rate as the derivative of the linear regression on the
interval where the flow is stationary:

Q = dN

dt
. (2)

In the case where static arches are formed, we eliminate the
stop periods to reconstruct a new stationary discharge curve.

B. Effects of system parameters on the flow rate

1. System size (ξ; η)

Before starting any analysis, it is important to quantify to
what extent the measured flow rate Q depends on the size
of the system considered. In general terms, size effects are
naturally quantified according to the size of the grains; this is
the ξ parameter. But in silo geometry the size effects are also
intimately correlated to the η parameter. Indeed, let’s consider
two silos of different size, but with the same aperture D. The
one whose W is close to D (η → 1) is more like a flow in a
pipe leading to faster flow dynamics than in the W 
 D case.

Thus, in Fig. 7 we plot the evolution of Q, normalized
by Qη→15, the value of Q for the larger η at a given α,
as a function of η for the two cases λ = 1 [Fig. 7(a)] and
λ = 5 [Fig. 7(b)] and for different normalized aperture sizes
α. We note that, regardless of the shape of the grains, the data
collapse quite well on an exponential curve which diverges
when η → 1 (see legend).

FIG. 7. Flow rate Q, normalized by Qη→15 the value of Q for the
larger η at a given α, as a function of η for λ = 1 (a) and λ = 5
(b) and for different values of aperture size α. The inset in (b) shows
the same data as (b) by correcting the value of η for some points
according to visual inspection (see text). The dashed line is the best
exponential fit of the data by Q ∼ C1e−C2η + 1, where C1 and C2

are constant values calculated with the least square method. Gray
zones about the horizontal lines indicate data with less than 20% of
dispersion with respect with Q/Qη→15 = 1 that will be retained.

Nevertheless, for λ = 5, three points escape this rule:
(η, α) = {(3.8, 1.75); (4, 1.5); (4.7, 1.37)}. As illustrated by
Fig. 6(d), detailed analysis of these three flows reveals a
columnar structuring of the grains near the orifice. We can
then estimate an equivalent η by arguing that these columns
of grains induce a reduction of the silo thickness. The inset
of Fig. 7(b) shows the evolution of Q accounting for such a
correction, allowing one to shift these three points towards
smaller values of η.

In the following, and for all the other sets of simulations
that will be carried out, we make the (arbitrary) choice to keep
only the data presenting a maximum dispersion of 20% around
Q/Qη→15 = 1 [gray zone in Fig. 7(a) and inset of Fig. 7(b)].
The intersection between the gray zone and the exponential
fit of the data allows us to define an η0 above which the
size effects become negligible. Simulations for values of λ

between 1 and 7 have been conducted, and we observe that
η0 varies approximately linearly between 1.43 and 2.01 with
λ. Note that, for the retained data, the maximum relative error
obtained by comparing linear regressions and data is at most
5%, for the point belonging to the gray zone.

054901-5



BIGNON, RENOUF, SICARD, AND AZÉMA PHYSICAL REVIEW E 108, 054901 (2023)

FIG. 8. Flow rate Q as a function of α for λ = 1 (blue dot) and
λ = 5 (green dot) and for ξ ∈ [7, 15, 22, 44, 70] (color scale). The
dashed line is an approximation by the Beverloo law in the form
Q = Cρg

√
g(α − κd )3/2, with C = 408 and κ = 1.20 for λ = 1 and

C = 279 and κ = 2.74 for λ = 5. Inset: Same data but in a log scale.

Figure 8 shows, for the same set of parameters as in Fig. 7,
the variation of Q as a function of α for ξ ∈ [7, 15, 22, 44, 70]
for both λ = 1 and λ = 5. Note that afterwards the data
where η < η0(λ) have been excluded. As typically observed,
Q increases with increasing orifice size α. Our data are well
approximated by Beverloo’s law including for very elongated
grains (dashed lines; see legend). Most importantly, we find
that Q is independent of the silo size ξ even for the most
elongated grains, and at least for the silo sizes simulated in this
work. We also note that the flow rate is higher for elongated
grains than for disks. This last observation is discussed with
more detail in the next section in the light of the normalization
used for α.

2. Grain shape and orifice size

Once we show that Q is independent of the silo size, we can
fix ξ to study the effect of grains’ elongation on the flow rates.
We choose an intermediate value to combine the possibility of
a large aperture range satisfying η > η0(λ) and shorter time of
simulation. We take ξ = 44, while increasing both the grain
aspect ratio λ and the normalized orifice size α. As shown in
Fig. 8, we find that for all shapes Q is an increasing function
of α. After having shown that our data are well approximated
by Beverloo’s equation (see Fig. 8), we evidence here that, for
all shapes, our data are also well fitted by the Janda model
[Eq. (12); dashed lines in Fig. 9], whose development will
be discussed in more detail in Sec. IV in correlation with
the velocity and packing fraction profiles. Also, and as a
general observation, we find that the flow rate is higher with
increasing λ. It is consistent with some previous work [29] but
contrasts with others [30]. In fact, the increasing or decreasing
behavior of Q with grain elongation is mainly due to the way
the orifice size is normalized. To support this statement, in
the inset of Fig. 9 we display the same data as a function of
ᾱ = D/〈d〉 corresponding to the orifice size normalized by the
mean diameter of disks. In this case, consistently with [44], Q
is a decreasing function of λ. Having identified the origin of
the discrepancy observed in the literature, in the following we
continue with the α parameter.

FIG. 9. Flow rate Q as a function of α for ξ = 44 and increasing
λ ∈ [1, 2, 3, 4, 5, 6, 7]. The dashed lines are approximations given
by Eq. (12) (see Sec. IV C). The inset shows the same data all plotted
as a function of ᾱ = D/〈d〉, i.e., the orifice size normalized by the
mean disk diameter 〈d〉 instead of normalizing by L for λ > 1.

Figure 10 displays the variation of Q as a function of λ for
increasing values of α. For small orifice size (i.e., for α below
∼6.5), Q is relatively independent of λ. For intermediate val-
ues of α, typically α ∈ [∼ 7,∼ 12], Q first increases with λ

but saturates toward an α-dependent value as grains become
more elongated. Finally, for larger values of α > 12, Q is an
increasing function of λ. Note that for identical ᾱ an opposite
behavior is obtained. This behavior is quite surprising as it
suggests that a “small” departure from circular shape has
stronger effects on Q than larger shape deviations.

This point is discussed in more detail below, when we
analyze the velocity and packing fraction profiles close to the
orifice.

IV. FLOW PATTERNS

In this section we focus on the effects of system parameters
on velocity and packing fraction profiles close to the orifice.
The corresponding profiles are obtained according to a similar
methodology presented in [17]. Basically, for the velocity pro-
files a fictitious zone of length D and thickness d̄ is considered

FIG. 10. Flow rate Q as a function of λ for various
α = D/d̄ . Dashed lines are the approximations given by Eq. (13)
(see Sec. IV C).
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FIG. 11. Area of calculation for velocity profile (a) and packing
fraction profile (b).

around the orifice and divided into nc columns; see Fig. 11(a).
When a grain crosses this zone (identified by its center of
mass), both its velocity and its position are recorded. For
the packing fraction, and in order to have a better statistical
description, a square fictitious zone of length D, divided into
nc columns, is used; see Fig. 11(b). The packing fraction for
each subcolumn is obtained by computing the exact surface
of the grains crossing the corresponding subcolumn. For both
the velocity and packing fraction profiles, nc is fixed to D

0.1<d>
.

The final velocity and packing fraction profiles are achieved
by time averaging the profiles over all recorded data.

A. Velocity profiles

The vertical velocity profiles, vy(x), for different normal-
ized orifice sizes α and for increasing system sizes ξ are
presented in Fig. 12 for λ = 1(column left) and λ = 5 (col-
umn right). Regardless of the value of ξ , the velocity profiles
show a parabolic-like profile as observed for assemblies of
disks [17] or slightly elongated grains [44]. The velocity at
the center of the orifice (i.e., for x = 0), vc, increases as the
normalized orifice size increases. The self-similar behavior
of the velocity profiles is verified by normalizing vy by vc

and x by R = 0.5αd̄ . We find that for both disks and for

FIG. 12. Velocity profiles (first row) and normalized velocity
profiles (second row) vy(x)/vc measured close to the orifice for λ = 1
(left column) and λ = 5 (right column) with increasing orifices size
α. The second row illustrates the self-similarity of the profiles as a
function of system size for all α. Continuous lines are the approxi-
mations given by Eq. (3).

FIG. 13. Normalized velocity profiles for ξ = 44, α = 6.17 and
increasing λ.

λ = 5, all data collapse on a master curve, proving that the
main features of the velocity profiles are not influenced by the
size of the system or by the size of the orifice. Concerning
the effects of grain shape, we find that the velocity profiles
become narrower around the center of the orifice as grain
become more elongated; see Fig. 13. The velocity at the edges
of the orifice decreases with grain elongation, mainly due to
the columnar arrangement of the grains near the bottom (as
shown in Fig. 6), thereby reducing flow velocities.

In agreement with previous work [45], the normalized ve-
locity profiles are fitted by the following equation:

v(x) = vc(α, λ)

[
1 −

( x

R

)2
]−μλ

, (3)

where R = 0.5αd̄ , μλ is a fitting parameter that depends only
on λ (see Table II), and vc depends on α and λ.

Figure 14 shows the evolution of vc as a function of α

for different values of λ. In general terms, for all shapes,
vc is an increasing function of α. Assuming a free-fall of
the grains of a typical height of the order of the effective
cross section, we see that vc ∝ γ

√
2gR = γ

√
gαd̄ , with γ

a fitting parameter. Although this prediction is well verified
for quasimonodisperse disk flows [17], it seems to be less
accurate in size-disperse systems [20] or when grain shape
deviates, even slightly, from circular shape [44]. This is also
the case in our simulations as shown in the inset of Fig. 14 for
λ = 1 and λ = 4, in which a slight, but nonzero, deviation
of the prediction with respect to our data is observed. A
plausible explanation, as suggested by the snapshots in Fig. 6
and investigated in more detail by Börzsönyi et al. [46], is that
arches’ heights depend on both grain shapes and grain sizes,
challenging the hypothesis of a constant typical height during
the ballistic fall. Following the work of Zhou et al. [20], we
can propose, for a fixed value of λ, a better approximation of

TABLE II. Fitting parameters entering in Eq. (3) and in Eq. (4).

λ 1 2 3 4 5 6 7

μλ 1.98 2.19 1.99 1.67 1.59 1.40 1.38
γλ 1.50 1.40 1.34 1.33 1.33 1.32 1.31
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FIG. 14. Velocity vc measured at the center of the orifice as a
function of α for all λ (a) and as a function of λ for various orifices
size α (b) both for ξ = 44. The values of vc for various ξ are also
shown in color scale only for λ = 1 and λ = 5. The dashed lines are
the approximations given by Eq. (4) (a) and Eq. (5) (b). The inset
in (a) shows the same data as the main plot approximated by the
free-fall arches model γ

√
gαd̄ , with γ the “best” fitting parameter

minimizing the error between the data and the prediction.

vc as a function of α:

vc(α) = γλ

√
gd̄α(1 − β1e−β2α ), (4)

with γλ, β1, and β2 as fitting parameters, where γλ declines
from 1.52 to 1.32 as λ increases (see Table II), while β1 and
β2 are found to be independent of λ and equal to 0.45 and
0.13, respectively. These values are not so far from the ones
obtained by Gao et al. [44] with weakly elongated ellipses.

The effect of grain shape on arch height is also well cap-
tured when we plot vc as a function of λ for different α; see
Fig. 14(b). Interestingly, vc evolves in a nonlinear way with
λ: vc first increases with λ from vα,1

c (i.e., the velocity at the
orifice center measured in disk flows case at different α), and
then saturates towards an α-dependent value vα,∞

c ; see also
Table II. For all α, our numerical data are well fitted by the
exponential function

vc(λ) = vα,1
c + (

vα,∞
c − vα,1

c

)[
1 − e−(λ−1)/λα

c
]
, (5)

with λα
c a fitting parameter that varies between 1.88 and 3.42

as α increases.
The increase of vc with λ and its saturation indicates that,

on average, the height of the arches increases when the shapes
slightly deviate from circular ones, but a critical size of the

FIG. 15. Packing fraction profiles φ(x) measured close to the
orifice for λ = 1 (a) and λ = 5 (b) with increasing orifice size α

and system size ξ (color level). Normalized packing fraction profiles
φ(x)/φc all α and ξ (c).

arches cannot be exceeded even by strongly increasing the
aspect ratio of the grains.

B. Packing fraction profiles

Along with the velocity profiles, the profiles of a packing
fraction close to the orifice, φ(x), for various normalized
orifice sizes α and for increasing system sizes ξ are shown
in Fig. 15 for λ = 1 (a) and λ = 5(b). As typically observed,
the packing fraction profiles adopt a “bell” shape with a sharp
peak φc around x = 0, which progressively widens as α in-
creases, both in disk flows and in very elongated grain flows.

Also, we find that the packing fraction increases with
increasing α, whether for λ = 1 or λ = 5. The self-similar
behavior of the packing fraction profiles is also verified by
normalizing φ(x) by φc and x by R; see Fig. 12(c). As for
the velocity profiles, for a given grain shape we find that all
data collapse on a master curve, which evidences that the main
features of the packing fraction profiles are not influenced by
the system size and orifice size. Yet grain elongation induces a
slight narrowing of the packing fraction profiles around x = 0,
as better illustrated in Fig. 16.

The normalized packing fraction profiles are fitted by the
following equation [17]:

φ(x) = φc(α, λ)

[
1 −

( x

R

)2
]−νλ

, (6)

where νλ is a fitting parameter that depends on λ (see
Table III), and φc that depends a priori on α and λ.

Figure 17 shows the evolution of φc as a function of both
α and λ. We see that, for all shapes, φc evolves asymptotically
with α towards an λ-dependent value φλ,∞

c that declines from
0.78 to 0.68 as λ increases from 1 to 7 (see details in Table III).
This result extends to the case of elongated grains a result
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FIG. 16. Normalized packing fraction profiles for ξ = 44 and
increasing λ at α = 6.17. Continuous lines are the approximations
given by Eq. (6).

previously obtained for disks [17] or for weakly elongated el-
lipses [44,47]. Consistent with previous works, our numerical
data are well approximated by the following expression [17]:

φc(α) = φλ,∞
c (1 − Aλe− αd̄

Bλ ), (7)

where Aλ and Bλ are fitting parameters summarized in
Table III.

In contrast, φc seems to be independent of λ while λ � 2,
and beyond that, φc decreases linearly with λ; and our numer-
ical data are well approximated by

φc(λ) = φα,1
c + β3(λ − 2)δλ>2, (8)

where δλ>2 is a “Kronecker-like” parameter equal to 0 if
λ ∈ [1, 2] or equal to 1 otherwise, φα,1

c is the packing fraction
for λ = 1 at a fixed value of α [see Fig. 17(a)], and β3 is a
fitting parameter found to be independent with grains elon-
gation, system size, or normalized orifice size and equal to
∼ − 0.033. It should be noted that the choice to consider φc

constant for λ ∈ [1, 2] is also motivated by several previous
works in which it is shown that the packing fraction varies
nonlinearly with grain elongation [22,48–50]: it first increases
slightly with grain elongation while λ � 2, but declines as the
grains become more elongated, as also observed in our sim-
ulations. Equation (8) could then be refined over the interval
λ ∈ [1, 2], but this is beyond the scope of this work, and we
consider it as constant.

C. Revisiting the Janda equation

The velocity and packing fraction profiles described above
are interesting not only as quantitative descriptors of local

TABLE III. Fitting parameters entering in Eq. (6) and in Eq. (7).

λ 1 2 3 4 5 6 7

νλ 4.25 4.43 4.36 3.75 2.75 2.61 3.29
Aλ 0.65 0.70 0.75 0.82 0.77 0.91 0.97
Bλ 0.055 0.074 0.081 0.092 0.103 0.102 0.115
φλ,∞

c 0.77 0.76 0.71 0.68 0.67 0.62 0.61

FIG. 17. Packing fraction φc measured at the center of the orifice
as a function of α for all λ (a) and as function of λ for various orifice
sizes α (b). The dashed lines are the approximations given by Eq. (7)
(a) and by Eq. (8) (b).

features of the flows, but more fundamentally because, as
shown by Janda et al. [17], when combined they allow one
to explain the evolution of the flow rate with α and, as we will
see, with λ too.

Indeed, let’s remark that the flow rate Q, in its regular form,
is given by

Q = 2
∫ D/2

0

1

Aφ(x)v(x) dx, (9)

where A is the mean grain surface, which is fixed constant
and equal to Ad in this study. Then, by injecting Eq. (3) and
Eq. (6) into Eq. (9), we get

Q(α, λ) = 2

Avc(α, λ)φc(α, λ)
∫ D/2

0

(
1 −

( x

R

)2
) νλ+μλ

νλμλ

dx,

(10)
Then, remarking that the integral in Eq. (10) can be rewritten
in terms of the β function as αd̄β(1/2; (νλ + μλ)/νλμλ + 1),
and recalling that R = 0.5d̄α, we obtain the following general
expression for the flow rate:

Q(α, λ) = �(λ)vc(α, λ)φc(α, λ)α, (11)

with �(λ) = 1
Aβ( 1

2 ; νλ+μλ

νλμλ
+ 1)d̄ , which remains constant

with respect with α. Note that, as shown in Fig. 18, the β func-
tion slightly evolves with λ, and thus, for the sake of simplic-
ity, we will set it equal to its mean value, β∗ ∼ 1.4. Moreover,
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FIG. 18. Evolution of the β function β( 1
2 ; νλ+μλ

νλμλ
+ 1) as a func-

tion of λ. The dashed line is the mean values β∗ of the data.

it should be noted that, following the choice made to build the
particles, we get d̄/A = 2λ/[d

√
π (π + 2λ − 2). Thus, in the

following we set �(λ) � 2λβ∗/[d
√

π (π + 2λ − 2)].
Thus, it becomes easy to obtain a theoretical expression for

the flow rate Q as a function of α and for a fixed λ value, by
introducing Eqs. (4) and (7) into Eq. (11):

Qλ(α) = � ′
λ[1 − β1e−β2

α
2 ][1 − Aλe−

α
2 d̄

Bλ ]
α

2

3/2
, (12)

with � ′
λ = �(λ)φλ,∞

c γλ

√
gd̄ . The prediction given by Eq. (12)

is shown in Fig. 9. As expected, we see a fair approximation
of the evolution of the flow rate as function of α for all values
of λ. Equation (12) extends to the case of highly elongated
grains a previous model established by Janda et al. [17] for
circular grains.

In the same way, a theoretical expression for the flow rate
Q as a function of λ, and at a fixed value of α, can be obtained
by introducing Eqs. (5) and (8) into Eq. (11):

Qα (λ) = �(λ)
[
vα,1

c + (
vα,∞

c − vα,1
c

)
(1 − e−(λ−1)/λα

c )
]

× [
φα,1

c + β3(λ − 2)δλ>2
]α

2
, (13)

where �(λ) increases from ∼1/d to ∼2/d as λ is increased.
As shown in Fig. 10, Eq. (13) provides a fairly good ap-

proximation of our data for all values of α. Equation (13)
allows us to better understand the nonlinear variation of Q as a
function of λ. At small normalized orifice sizes, the decreases
in φc compensate for the increases in vc and to a lesser extent
the increases in �, explaining the near independence of Q
with λ. At larger orifice sizes, the rapid increase in Q is mainly
due to the increase in vc and �, while its saturation at larger
λ values results from the decrease in φc, which compensates
for the increase in vc and, to a lesser extent, the increase
of �.

V. CONCLUSIONS

In this paper, using 2D contact dynamics simulations, we
investigated the combined effects of grain shape and system
size on the grain flow in silo for increasing orifice sizes.
The grain shapes are rounded-cap rectangles characterized
by their aspect ratio λ that varies continuously from a 1

(disk) to 7 (thin rectangle with rounded caps). The size
of the silo is characterized by its width, which is varied
from 7 to 70 times the size of the grains. In order to iso-
late the effects of grain shape and system size, both the
mass and surface of the grains are kept constant as well
as the total mass of the system and the condition of the
discharge.

By simulating a large number of avalanches, the flow rates,
velocity profiles, and packing fraction profiles are systemat-
ically studied as a function of characteristic dimensionless
numbers, such the aspect ratio of the grains, the orifice size
normalized by the grain size, and the system size normalized
either by the orifice size or by the grain size.

A central finding of this work is that the flow rate of
elongated grain assemblies increases as a Beverloo-like or a
Janda-like function as the orifice size is increased. In contrast,
the effect of grain elongation on the flow rate depends on the
normalized orifice size. For small orifice sizes, the flow rate is
independent with grain elongation. In contrast, at larger orifice
sizes, the flow rate first increases with grain elongation, but
it may saturate or continue to increase at larger grain aspect
ratio.

In general, neither the shape of the grains nor the size of the
systems affects the general form of the packing fraction and
velocity profiles. They all present a self-similar behavior when
normalized by a critical packing fraction or a critical velocity,
respectively, measured at the center of the orifice. On the other
hand, these critical velocities and packing fraction depend
strongly on the shape of the grains. In particular, the packing
fraction at the center decreases with grain elongation, while
the velocity at the center increases and saturates at large grain
elongations. It is precisely the competition between these two
behaviors that explains the nonlinear variation of the flow
rate as a function of the grain shape and for a given orifice
size.

These results can be extended in different directions. These
results need to be validated experimentally. In this case, it
would be possible to reproduce the 2D experimental approach
developed by Janda et al. considering grains of different elon-
gations. The 2D numerical work presented here would make
it possible to calibrate the experiment sizes for each shape in
order to avoid scale effects. A question that still remains open
is the extension of the approach proposed by Janda to 3D
geometries. In this case, 3D profiles must be reconstructed.
One can imagine that the self-similarity behavior of these
profiles will continue to be verified with spheres [51]. For
elongated grains, the flow is generally more complex [52].
In silo geometry it is reported that the flow of elongated
grains is increasingly intermittent as the aspect ratio of the
grains is increased [53] given the greater possibilities offered
to the grains to orient themselves in space. As a result, pack-
ing fraction and velocity profiles could be also increasingly
correlated in time with each other not only in the bulk, but
also close to the orifice, making the integration of Eq. (8)
more complex, as time effects would have to be taken into
account. 3D simulations are currently underway with rodlike
grains to address this issue, and results will be presented in a
forthcoming publication.

We have also seen that elongated grains tend to form rigid
columns especially near the walls. It would then be useful to
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revisit these results for silos with an inclined bottom. Finally,
in this paper we have not addressed the issues of clogging
statistics (including their number and arch shape) as a func-
tion of grain shape. This analysis is in progress and will be
presented in a future publication.
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