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Preface

What is this book about?
The objective of this book is to present the state of the art on games on graphs, which
is part of a larger research topic called game theory. Games on graphs is the field con-
cerned with games whose rules and evolution are represented by a graph. We mostly
focus on infinite duration games, but their study is deeply interleaved with finite dura-
tion games. They form a prominent model in two related subjects: the first is automata
theory and logic, and the second is verification and synthesis, both of which have been
very active for decades. Some of the models were introduced and studied in neighbour-
ing research communities such as optimisation, reinforcement learning, model theory,
and set theory.

This book does not claim to give a full account of all existing results or models
in the litterature, which is close to impossible for two reasons: the wealth of existing
results and the constant flow of new ones.

The primary objective in this book is algorithmic: constructing efficient algorithms
for analysing different types of games. Yet the goal is not to describe their implementa-
tion in full details but rather to explain their theoretical foundations. In this endeavour
we often need to set the stage by proving properties of the corresponding games and
most prominently of their winning strategies. So the language of this book is mathe-
matics.

This book owes a lot to two reference textbooks on games: Automata, Logics,
and Infinite Games: A Guide to Current Research, edited by Erich Grädel, Wolfgang
Thomas, and Thomas Wilke [GTW02], and Lectures in Game Theory for Computer
Scientists, edited by Krzysztof R. Apt and Erich Grädel [AG11].

How to read
All the material presented in this book is accessible to an advanced master student or
a PhD student with a background in computer science or mathematics. The goal is at
the same time to present all the basic and fundamental results commonly assumed by
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4 Preface

the research community working on games on graphs, and most of the latest prominent
advances. We assume familiarity with complexity theory and the notions of graphs and
automata but as much as possible do not rely on advanced results in these fields.

The book is divided in five parts each including two or three chapters. At the end
of each chapter is a section dedicated to bibliographic references. Chapter 1 introduces
some notations and notions used throughout the book. After that and to some extent
each part is independent. As much as possible we avoid back references but some
chapters naturally build on the previous ones in which case we clearly indicate this.

How to cite
To cite the whole book, here is a bib item.

@book{gamesbook,
title = {Games on Graphs},
author = {Nathanaël Fijalkow and
Nathalie Bertrand and
Patricia Bouyer-Decitre and
Romain Brenguier and
Arnaud Carayol and
John Fearnley and
Hugo Gimbert and
Florian Horn and
Rasmus Ibsen-Jensen and
Nicolas Markey and
Benjamin Monmege and
Petr Novotný and
Mickael Randour and
Ocan Sankur and
Sylvain Schmitz and
Olivier Serre and
Mateusz Skomra},
editor = {Nathanaël Fijalkow},
publisher = {Online},
date = {2023},

}

If you wish to only cite one chapter, here is an example.

@InCollection{timedgameschapter,
title = {Timed Games},
author = {Nicolas Markey, Ocan Sankur},
booktitle = {Games on Graphs},
editor = {Nathanaël Fijalkow},
year = {2023}

}



5

Acknowledgements
The following people have contributed to early versions of the book in different ways,
we thank them warmly for their comments, suggestions, discussions, bug fixes and re-
ports: Antonio Casares, Hugo Francon, Pierre Gaillard, Théo Matricon, Rémi Morvan,
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Chapter 1
Introduction
NATHANAËL FIJALKOW

Section 1.1 defines a first model of games, which is the common denominator of (al-
most all) models studied in this book. We introduce the computational models that
we use in Section 1.2 and briefly discuss linear programming. In Section 1.3 we list
the main objectives appearing in all chapters. A few notions will be useful throughout
the book: they are developed in this chapter. We start with the notion of automata, dis-
cussed in Section 1.4, and then memory for strategies in Section 1.5. We then show how
automata and memory structures can be used to construct reductions between games in
Section 1.6. We introduce in Section 1.7 the notions of subgames and traps.

The notion of fixed point algorithms is central to the study of games. We first
recall the main two methods for proving the existence and computing fixed points in
Section 1.8. We then give an overview of two prominent families of fixed point algo-
rithms for games: value iteration algorithms in Section 1.9 and strategy improvement
algorithms in Section 1.10.

Usual notations

We write [i, j] for the interval {i, i+1, . . . , j−1, j}, and use parentheses to exclude
extremal values, so [i, j) is {i, i+1, . . . , j−1}.

An alphabet Σ is a finite set. We let Σ∗ denote the set of finite sequences of Σ

(also called finite words), Σ+ the subset of non-empty sequences, and Σω the set of
infinite sequences of Σ (also called infinite words). For a (finite or infinite) sequence
u = u0u1 · · · , we let ui denote the ith element of u and u<i the prefix of u of length i, i.e.
the finite sequence u0u1 · · ·ui−1. Similarly u≤i = u0u1 · · ·ui. The length of u is |u|.

13



14 CHAPTER 1. INTRODUCTION

1.1 A first model of games
The first model we define is the common denominator of most models studied in this
book:

• 2-player,

• zero sum,

• turn based,

• deterministic,

• perfect information

game.

Players
The term 2-player means that there are two players. Many, many different names have
been used: Eve and Adam, Player 0 and Player 1, Player I and Player II as in descrip-
tive complexity, Éloïse and Abélard, Circle and Square, corresponding to the graphi-
cal representation, Even and Odd, mostly for parity objectives, Player and Opponent,
Pathfinder and Verifier in the context of automata, Min and Max, which makes sense
for quantitative objectives, and this is only a very partial list of names they have been
given. In the names Eve and Adam, the first letters refer to ∃ and ∀ suggesting a duality
between them. We will use the pronouns she/her for Eve and he/him for Adam, so we
can speak of her or his strategy. In this book, we will use Eve and Adam in qualitative
contexts (win / lose), and Min and Max in quantitative contexts.

We speak of 1-player games when there is only one player. In the context of
stochastic games, we refer to random as a third player, and more precisely as half a
player. Hence a 2 1

2 -player game is a stochastic game with two players, and a 1 1
2 -player

game is a stochastic game with one player.
The situation where there are more than two players is called multiplayer games.

Graphs
A (directed) graph is given by a set V of vertices and a set E of edges given by the
functions In,Out : E → V : for an edge e we write In(e) for the incoming vertex and
Out(e) for the outgoing vertex. We say that e is an outgoing edge of In(e) and an
incoming edge to Out(e). To introduce an edge, it is convenient to write e = v→ v′ to
express that v = In(e) and v′ = Out(e). A path π is a finite or infinite sequence:

π = v0→ v1→ v2 · · ·

We let first(π) denote the first vertex occurring in π and last(π) the last one if π is
finite. We say that π starts from first(π) and if π is finite that π ends in last(π). We
write π≤i for the finite path v0→ v1→ ··· → vi. We sometimes talk of a path and let
the context determine whether it is finite or infinite.
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We let Paths(G) denote the set of finite paths in the graph G, sometimes omitting G
when clear from the context. To restrict to paths starting from v we write Paths(G,v).
The set of infinite paths is Pathsω(G), and Pathsω(G,v) for those starting from v. We
naturally see sets of infinite paths as subsets of Eω .

We use the standard terminology of graphs: for instance a vertex v′ is a successor of
v if there exists e∈ E such that In(e) = v and Out(e) = v′, and then v is a predecessor of
v′, a vertex v′ is reachable from v if there exists a path starting from v and ending in v′,
the outdegree of a vertex is its number of outgoing edges, the indegree is its number of
incoming edges, a simple path is a path with no repetitions of vertices, a cycle is a path
whose first and last vertex coincide, it is a simple cycle if it does not strictly contain
another cycle, a self loop is an edge from a vertex to itself, and a sink is a vertex with
only self loops as outgoing edges.

Remark 1 (Edges as subsets of pairs of vertices). Our definition with In,Out : E→V
includes graphs where there can be multiple edges between a single pair of vertices.
Although this can be useful in some cases, we will also sometimes simply define the set
of edges as E ⊆V ×V , which implies that an edge is fully determined by incoming and
outgoing vertices.

Arenas
The arena is the place where the game is played, they have also been called game
structures or game graphs.

In the turn based setting we define here, the set of vertices is divided into vertices
controlled by each player. Since we are for now interested in 2-player games, we have
V =VEve]VAdam, where VEve is the set of vertices controlled by Eve and VAdam the set
of vertices controlled by Adam. We represent vertices in VEve by circles, and vertices
in VAdam by squares, and also say that v ∈ VEve belongs to Eve, or that Eve owns or
controls v, and similarly for Adam. An arena is given by a graph and the sets VEve and
VAdam. In the context of games, vertices are often referred to as positions.

We adapt the notations to V =VMin]VMax if the players are Min and Max. Circles
are controlled by Max and squares by Min.

The adjective finite means that the arena is finite, i.e. there are finitely many vertices
and edges. We oppose deterministic to stochastic: in the first definition we are giving
here, there is no stochastic aspect in the game. An important assumption, called perfect
information, says that the players see everything about how the game is played out, in
particular they see the other player’s moves.

We assume that all vertices have an outgoing edge. This is for technical conve-
nience, as it implies that we do not need to explain what happens when a play cannot
be prolonged.

Playing
The interaction between the two players consists in moving a token on the vertices of
the arena. The token is initially on some vertex. When the token is in some vertex v,
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v v1 v2 v3

v4 v5 v6 v7

Figure 1.1: An example of an arena. In a qualitative context, circles are controlled by
Eve and squares by Adam, and in a quantitative context circles are controlled by Max
and squares by Min.

the player who controls the vertex chooses an edge e = v→ v′ and pushes the token
along this edge to the next vertex v′. The outcome of this interaction is the sequence of
vertices and edges traversed by the token: it is a path. In the context of games a path
is also called a play and as for paths usually written π . We note that plays can be finite
(but non empty) or infinite.

Strategies
The most important notion in this book is that of strategies (sometimes called poli-
cies). A strategy for a player is a full description of his or her moves in all situations.
Formally, a strategy is a function mapping finite plays to edges:

σ : Paths→ E.

Convention 1. We use σ for strategies of Eve and Max, and τ for strategies of Adam
and Min, so when considering a strategy σ it is implicitly for Eve or Max, and similarly
τ is implicitly a strategy for Adam or Min.

We say that a play π = v0→ v1→ . . . is consistent with a strategy σ of Eve if for
all i such that vi ∈ VEve we have σ(π≤i) = vi→ vi+1. The definition is easily adapted
for strategies of Adam.

Once an initial vertex v and two strategies σ and τ have been fixed, there exists a
unique infinite play starting from v and consistent with both strategies, it is written πv

σ ,τ .
Note that the fact that it is infinite follows from our assumption that all vertices have
an outgoing edge.

Conditions
The last ingredient to wrap up the definitions is (winning) conditions, which is what
Eve wants to achieve. There are two types of conditions: the qualitative, or Boolean
ones, and the quantitative ones.

A qualitative condition is W ⊆ Pathsω : it separates winning from losing plays, in
other words a play which belongs to W is winning and otherwise it is losing. We also
say that the play satisfies W .
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A quantitative condition is f : Pathsω → R∪{±∞}: it assigns a real value (or plus
or minus infinity) to a play, which can be thought of as a payoff or a score. More
generally, we sometimes consider quantitative conditions of the form f : Pathsω → Y
with Y a totally ordered set.

Often we define W as a subset of Eω and f as f : Eω → R∪{±∞}, since Pathsω is
included in Eω .

Objectives
To reason about classes of games with the same conditions, we introduce the notions
of objectives and colouring functions. An objective and a colouring function together
induce a condition. The main point is that objectives are independent of the arenas, so
we can speak of the class of conditions induced by a given objective, and by extension
a class of games induced by a given objective, for instance parity games.

We fix a set C of colours. A qualitative objective is Ω ⊆ Cω , and a quantitative
objective is a function Φ : Cω → R∪{±∞}.

Colouring functions
The link between an arena and an objective is given by a colouring function c : E→C
labelling edges of the graph by colours. We extend c componentwise to induce c :
Pathsω →Cω mapping plays to sequences of colours:

c(e0e1 . . .) = c(e0) c(e1) . . .

A qualitative objective Ω and a colouring function c induce a qualitative condition Ω(c)
defined by:

Ω(c) = {π ∈ Pathsω : c(π) ∈Ω} .

When c is clear from the context we sometimes say that a play π satisfies Ω but the
intended meaning is that π satisfies Ω(c), equivalently that c(π) ∈Ω.

Similarly, a quantitative objective Φ : Cω → R∪{±∞} and a colouring function c
induce a quantitative condition Φ(c) : Pathsω → R∪{±∞} defined by:

Φ(c)(π) = Φ(c(π)).

We extend the notation v→ v′ in the presence of a colouring function: e = v c−→ v′

further indicates that c(e) = c. As we will see, a convenient abuse of notations consists
in identifying a colour c and the set of edges of that colour c−1(c).

Games
We can now give the following definitions.

Definition 1 (Games).

• A graph is a tuple G = (V,E, In,Out) where V is a set of vertices, E is a set of
edges, and In,Out : E→V define the incoming and outgoing vertices of edges.
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• An arena is a tuple A = (G,VEve,VAdam) where G is a graph over the set of
vertices V and V = VEve ]VAdam. In a quantitative context we use V = VMin ]
VMax.

• A colouring function is a function c : E→C where C is a set of colours.

• A qualitative condition is W ⊆ Pathsω .

• A qualitative objective is a subset Ω ⊆Cω . A colouring function c and a quali-
tative objective Ω induce a qualitative condition Ω(c).

• A qualitative game G is a tuple (A ,W ) where A is an arena and W a qualitative
condition.

• A quantitative condition is f : Pathsω → R∪{±∞}.

• A quantitative objective Φ is a function Φ : Cω → R∪{±∞}. A colouring func-
tion c and a quantitative objective Φ induce a quantitative condition Φ(c).

• A quantitative game G is a tuple (A , f ) where A is an arena and f a quantitative
condition.

To be specific, the definition above is for 2-player zero sum turn based deterministic
perfect information games. As a convention we use the condition to qualify games, so
for instance parity games are games equipped with a parity condition. This extends to
graphs: we speak of a graph with condition W for a graph equipped with a condition
W , and for instance a mean payoff graph if W is a mean payoff condition.

We often introduce notations implicitly: for instance when we introduce a qualita-
tive game G without specifying the arena and the condition, it is understood that the
arena is A and the condition W .

We always implicitly take the point of view of Eve. Since we consider zero sum
games we can easily reverse the point of view by considering the qualitative game
(A ,Pathsω \W ) and the quantitative game (A ,− f ). Indeed for the latter minimising
f is equivalent to maximising − f . The term zero sum comes from this: the total
outcome for the two players is f +(− f ), meaning zero.

We sometimes speak of a coloured graphs or a coloured arena when attaching a
colouring function to a graph or an arena.

Remark 2 (Finite graphs). Unless otherwise stated we assume that graphs are finite,
meaning that there are finitely many vertices and finitely many edges. We equivalently
say that the arena or the game is finite. Part IV will study games over infinite graphs.

Labelling edges or vertices
In our definition the colouring function labels edges: c : C→ E, and infinite paths are
infinite sets of edges. It is sometimes convenient to label vertices instead: c : C→ V ,
and in some cases it may feel more natural: for instance for reachability conditions (to
be defined in Section 1.3), the target is naturally a set of vertices rather than a set of
edges. But labelling edges is often technically easier, and more succinct, so it is the
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preferred convention in this book. There is a third option: labelling vertices with partial
colouring functions, i.e. allowing some vertices to remain uncoloured. To keep things
well defined, in that case we make the assumption that every path contains infinitely
many coloured vertices. There are two consequences to the convention of labelling
edges or vertices: the complexity of algorithms, and the memory requirements, both
(often) mildly affected by the choice.

Let us state simple and general reduction results between the three conventions.
Clearly,

vertex labelling⊆ partial vertex labelling⊆ edge labelling.

Indeed, to go from (partial) vertex labelling to edge labelling it is enough to define
c′(e) = c(In(e)): the colour of an edge is the colour of its incoming vertex. A path
induces the same sequence of colours for both c and c′, implying a strong equivalence
between the two games.

Conversely, we can reduce from edge labelling to partial vertex labelling:

Lemma 1 (From labelling edges to labelling vertices). Let G a graph with n vertices
and m edges, c : E →C an edge colouring function, we define a graph G′ with n+m
vertices and 2m edges and a partial vertex colouring function c′ : V ′→C such that there
is a one to one correspondence between infinite paths in G coloured by c and infinite
paths in G′ coloured by c′.

As a consequence, an algorithm using edge colouring functions of complexity
T (n,m) induces an algorithm for partial vertex colouring functions of complexity T (n+
m,2m).

Proof. We add edges as intermediate vertices. Both the sets of vertices and of edges
of G′ are (disjoint copies of) V ∪E. For each edge e = v→ v′ of G, we add two edges
in G′: one from v to e, and one from e to v′. The colouring function c′ is defined only
on E by c′(e) = c(e). The construction is illustrated in Figure 1.2. Infinite paths in G
and in G′ are in one to one correspondence, and the sequences of colours are the same,
since colours appear exactly every second position in every infinite path of G′.

v v′ becomes v
ε

e
c

v′

ε

c

Figure 1.2: Reduction from edge colouring to vertex colouring.

There are no easy reductions from partial vertex labelling to vertex labelling, but in
most cases an ad-hoc simple trick proves the two conventions to be (essentially) equiv-
alently. For instance, of the objective contains a neutral letter, then the construction
above can be replicated: for an objective Ω⊆Cω , we say that ε ∈C is a neutral letter
if for all ρ ∈Cω , let ρε the sequence obtained from ρ by removing all ε , then ρ ∈Ω if
and only if ρε is finite or in Ω.
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Winning in qualitative games
Now that we have the definitions of a game we can ask the main question: given a
game G and a vertex v, who wins G from v?

Let G be a qualitative game and v a vertex. A strategy σ for Eve is called winning
from v if every play starting from v consistent with σ is winning, i.e. satisfies W .
Another common terminology is that σ ensures W . In that case we say that Eve has a
winning strategy from v in G , or equivalently that Eve wins G from v. This vocabulary
also applies to Adam: for instance a strategy τ for Adam is called winning from v if
every play starting from v consistent with τ is losing, i.e. does not satisfy W .

We let WEve(G ) denote the set of vertices v such that Eve wins G from v, it is called
winning region, or sometimes winning set. A vertex in WEve(G ) is said winning for
Eve. The analogous notation for Adam is WAdam(G ).

We say that a strategy is optimal if it is winning from all vertices in WEve(G ).

Fact 1 (Winning regions are disjoint). For all qualitative games G we have WEve(G )∩
WAdam(G ) = /0.

Proof. Assume for the sake of contradiction that both players have a winning strategy
from v, then πv

σ ,τ would both satisfy W and not satisfy W , a contradiction.

It is however not clear that for every vertex v, some player has a winning strategy
from v, which symbolically reads WEve(G )∪WAdam(G ) =V . One might imagine that if
Eve picks a strategy, then Adam can produce a counter strategy beating Eve’s strategy,
and vice versa, if Adam picks a strategy, then Eve can come up with a strategy winning
against Adam’s strategy. A typical example would be rock-paper-scissors (note that
this is a concurrent game, meaning the two players play simultaneously, hence it does
not match the definitions given so far), where neither player has a winning strategy.

Whenever WEve(G )∪WAdam(G ) = V , we say that the game is determined. Being
determined can be understood as follows: the outcome can be determined before play-
ing assuming both players play optimally, since one of them can ensure to win whatever
is the strategy of the opponent.

Theorem 1 (Borel determinacy). Qualitative games with Borel conditions are deter-
mined.

The definition of Borel sets goes beyond the scope of this book. Suffice to say
that all conditions studied in this book are (very simple) examples of Borel sets, im-
plying that our qualitative games are all determined (as long as we consider perfect
information and turn based games, the situation will change with more general models
of games).

Computational problems for qualitative games
We identify three computational problems. The first is that of solving a game, which is
the simplest one and since it induces a decision problem, allows us to make complexity
theoretic statements.

Problem 1 (Solving the game).
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INPUT: A qualitative game G and a vertex v

OUTPUT: Does Eve win G from v?

The second problem extends the previous one: most algorithms solve games for all
vertices at once instead of only for the given initial vertex. This is called computing the
winning regions.

Problem 2 (Computing the winning regions).
INPUT: A qualitative game G

OUTPUT: Compute WEve(G ) and WAdam(G )

We did not specify how the winning regions or the winning strategies are repre-
sented, this will depend on the types of games we consider. The third problem is
constructing a winning strategy.

Problem 3 (Constructing a winning strategy).
INPUT: A qualitative game G and a vertex v

OUTPUT: Construct a winning strategy for Eve from v

Values in quantitative games
Let G be a quantitative game and v a vertex. Given x ∈ R called a threshold, we say
that a strategy σ for Max ensures x from v if every play π starting from v consistent
with σ has value at least x under f , i.e. f (π) ≥ x. In that case we say that Max has a
strategy ensuring x in G from v.

Note that by doing so we are actually considering a qualitative game in disguise,
where the qualitative condition is the set of plays having value at least x under f .
Formally, a quantitative condition f and a threshold x induce a qualitative condition

f≥x = {π ∈ Pathsω | f (π)≥ x} .

Analogously, we say that a strategy τ for Min ensures x from v if every play π

starting from v consistent with τ has value at most x under f , i.e. f (π)≤ x.
We let valGMax(v) denote the quantity

sup
σ

inf
τ

f (πv
σ ,τ),

where σ ranges over all strategies of Max and τ over all strategies of Min. We also
write valσMax(v) = infτ f (πv

σ ,τ) so that valGMax(v) = supσ valσMax(v). This is called the
value of Max in the game G from v, and represents the best outcome that she can
ensure against any strategy of Min. Note that valGMax(v) is either a real number, ∞, or
−∞.

A strategy σ such that valσMax(v) = valGMax(v) is called optimal from v, and it is
simply optimal if the equality holds for all vertices. Equivalently, σ is optimal from v
if for every play π consistent with σ starting from v we have f (π)≥ valGMax(v).
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There may not exist optimal strategies which is why we introduce the following
notion. For ε > 0, a strategy σ such that valσMax(v)≥ valGMax(v)−ε is called ε-optimal.
If valGMax(v) is finite there exist ε-optimal strategies for any ε > 0.

Symmetrically, we let valGMin(v) denote

inf
τ

sup
σ

f (πv
σ ,τ).

Fact 2 (Comparison of values for Min and Max). For all quantitative games G and
vertex v we have valGMax(v)≤ valGMin(v).

Proof. For any function F : X×Y → R∪{±∞}, we have

sup
x∈X

inf
y∈Y

F(x,y)≤ inf
y∈Y

sup
x∈X

F(x,y).

If this inequality is an equality, meaning

valGMax(v) = valGMin(v),

we say that the game G is determined in v, and let valG (v) denote the value in the game
G from v. Similarly as for the qualitative case, being determined can be understood
as follows: the outcome can be determined before playing assuming both players play
optimally, and in that case the outcome is the value.

We say that a quantitative objective f : Cω → R∪{±∞} is Borel if for all x ∈ R, the
qualitative objective f≥x ⊆Cω is a Borel set.

Corollary 1 (Borel determinacy for quantitative games). Quantitative games with
Borel conditions are determined, meaning that for all quantitative games G we have
valGMax = valGMin.

Proof. If valGMax(v) = ∞ then thanks to the inequality above valGMin(v) = ∞ and the
equality holds. Assume valGMax(v) = −∞ and let r be a real number. (The argument
is actually the same as for the finite case but for the sake of clarity we treat them
independently.) We consider f≥r. By definition, this a qualitative Borel condition, so
Theorem 1 implies that it is determined. Since Max cannot have a winning strategy
for f≥r, as this would contradict the definition of valGMax(v), this implies that Min has
a winning strategy for f≥r, meaning a strategy τ such that every play π starting from
v consistent with τ satisfy f (π) < r. In other words, valτMin(v) = supσ f (πv

σ ,τ) ≤ r,
which implies that valGMin(v) ≤ r. Since this is true for any real number r, this implies
valGMin(v) =−∞.

Let us now assume that x = valGMax(v) is finite and let ε > 0. We consider f≥x+ε . By
definition, this a qualitative Borel condition, so Theorem 1 implies that it is determined.
Since Max cannot have a winning strategy for f≥x+ε , as this would contradict the defi-
nition of valGMax(v), this implies that Min has a winning strategy for f≥x+ε , meaning a
strategy τ such that every play π starting from v consistent with τ satisfy f (π)< x+ε .
In other words, valτMin(v) = supσ f (πv

σ ,τ)≤ x+ε , which implies that valGMin(v)≤ x+ε .
Since this is true for any ε > 0, this implies valGMin(v) ≤ valGMax(v). As we have seen
the converse inequality holds, implying the equality.
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Note that this determinacy result does not imply the existence of optimal strategies.

Computational problems for quantitative games
As for qualitative games, we identify different computational problems. The first is
solving the game.

Problem 4 (Solving the game).
INPUT: A quantitative game G , a vertex v, and a threshold x ∈Q∪{±∞}

OUTPUT: Does Max have a strategy ensuring x from v?

A very close problem is the value problem.

Problem 5 (Solving the value problem).
INPUT: A quantitative game G , a vertex v, and a threshold x ∈Q∪{±∞}

OUTPUT: Is it true that valG (v)≥ x?

The two problems of solving a game and the value problem are not quite equivalent:
they become equivalent if we assume the existence of optimal strategies.

The value problem is directly related to computing the value.

Problem 6 (Computing the value).
INPUT: A quantitative game G and a vertex v

OUTPUT: Compute valG (v)

What computing the value means may become unclear if the value is not a ratio-
nal number, making its representation complicated. Especially in this case, it may be
enough to approximate the value, which is indeed what the value problem gives us: by
repeatedly applying an algorithm solving the value problem one can approximate the
value to any given precision, using a binary search.

Lemma 2 (Binary search for computing the value). If there exists an algorithm A
for solving the value problem of a class of games, then there exists an algorithm for
approximating the value of games in this class within precision ε using log( 1

ε
) calls to

the algorithm A.

The following problem is global, in the same way as computing the winning re-
gions.

Problem 7 (Computing the value function).
INPUT: A quantitative game G

OUTPUT: Compute the value function valG : V → R∪{±∞}
Finally, we are sometimes interested in constructing optimal strategies provided

they exist.

Problem 8 (Constructing an optimal strategy).
INPUT: A quantitative game G and a vertex v

OUTPUT: Compute an optimal strategy from v

A close variant is to construct ε-optimal strategies, usually with ε given as input.
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Prefix independent objectives
A qualitative objective Ω is:

• closed under adding prefixes if for every finite sequence ρ and for every infinite
sequence ρ ′, if ρ ′ ∈Ω then ρρ ′ ∈Ω;

• closed under removing prefixes if for every finite sequence ρ and for every infi-
nite sequence ρ ′, if ρρ ′ ∈Ω then ρ ′ ∈Ω;

• prefix independent if it is closed under both adding and removing prefixes; in
other words whether a sequence satisfies Ω does not depend upon finite prefixes.

Let π be a finite play consistent with σ , we write σ|π for the strategy defined by

σ|π(π
′) = σ(ππ

′).

Fact 3 (Winning for objectives closed under removing prefixes). Let G be a qualitative
game with objective Ω closed under removing prefixes, σ a winning strategy from v,
and π a finite play consistent with σ starting from v. Then σ|π is winning from v′ =
last(π).

Proof. Let π ′ be an infinite play consistent with σ|π from v′, then ππ ′ is an infinite play
consistent with σ starting from v, implying that it is winning, and since Ω is closed
under removing prefixes the play π ′ is winning. Thus σ|π is winning from v′.

Corollary 2 (Reachable vertices of a winning strategy for objectives closed under re-
moving prefixes). Let G be a qualitative game with objective Ω closed under removing
prefixes and σ a winning strategy from v. Then all vertices reachable from v by a play
consistent with σ are winning.

In other words, when playing a winning strategy the play does not leave the winning
region.

Similarly, a quantitative objective Φ is:

• monotonic under adding prefixes if for every finite sequence ρ and for every
infinite sequence ρ ′ we have Φ(ρ ′)≤Φ(ρρ ′);

• monotonic under removing prefixes if for every finite sequence ρ and for every
infinite sequence ρ ′ we have Φ(ρ ′)≥Φ(ρρ ′);

• prefix independent if it is monotonic under both adding and removing prefixes.

The fact above extends to quantitative objectives with the same proof.

Fact 4 (Winning for objectives monotonic under removing prefixes). Let G be a quan-
titative game with objective Φ monotonic under removing prefixes, σ a strategy ensur-
ing x from v, and π a finite play consistent with σ starting from v. Then σ|π ensures x
from v′ = last(π).
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Proof. Let π ′ be an infinite play consistent with σ|π from v′, then ππ ′ is an infinite play
consistent with σ starting from v, implying that Φ(ππ ′)≥ x, and since Φ is monotonic
under removing prefixes this implies that Φ(π ′)≥ x. Thus σ|π ensures x from v′.

Corollary 3 (Comparison of values along a play). Let G be a quantitative game with
objective Φ monotonic under removing prefixes and σ an optimal strategy from v.
Then for all vertices v′ reachable from v by a play consistent with σ we have valG (v)≤
valG (v′).

In other words, when playing an optimal strategy the value is non-decreasing along
the play.

1.2 Computational models

The Random Access Machine model of computation
For complexity statements we consider the classical Turing model of computation.
However for algorithmic results the Turing model is a bit painful and unnatural hence it
is customary to use the Random Access Machine (RAM) model instead. Intuitively this
corresponds to using a standard imperative programming language on a usual computer
which can create, access, and update variables. There are variants of the RAM model;
to be specific the one we use and describe here is called ‘word RAM’. The main reason
to use the RAM model is to make our life easier by hiding some small computational
costs which are inessential for our purposes.

The memory is arranged in machine words whose size is a parameter w to be fixed
depending on the problem. A machine word is a register which stores some information
as a binary word of length w. The first key assumption of the RAM model is that
memory can be accessed in constant time. In other words, machine words are registers
with a unique address and can be accessed either directly or indirectly. A concrete
implication is that checking whether an element belongs to a set is a single operation
(if each element of the set can be stored in a single machine word).

We consider an (often implicit) set of basic operations operating on a constant num-
ber of machine words; addition, multiplication, subtraction, division, and comparison
of integers are typical examples. The second key assumption is the ‘unit cost model’,
it says that the time complexity (also called cost) of basic operations is constant. This
convention implies that we can manipulate counters for small numbers with no addi-
tional complexity, this will be useful in many situations.

We note that this is unrealistic as it means that for instance we can compute the
number 22n

by repeatedly squaring 2: the complexity is O(n) but this number uses
O(2n) bits hence cannot be generated in polynomial time using a Turing machine. We
will not make use of such weaknesses in our algorithms.

The size of an input is the number of machine words required to store it. The most
common choice for the machine word size is w = log(s) where s is the size of the input
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as we want to at least be able to store an integer x of order s in one machine word.
However in situations in which there are numerical inputs, it is reasonable to assume
that each input number fits into one machine word, leading to a potentially larger w.
Note that an algorithm in the word RAM model with machine word size w is allowed
to use numbers that are larger than 2w, but such numbers should be split among several
machine words.

The time complexity is the number of steps performed by the machine, as a function
of the input size, and the space complexity is the maximal number of machine words
used throughout the computation.

Games representations in the RAM model

The important parameters for algorithms on games are n the number of vertices and m
the number of edges. Note that our assumption that every vertex has an outgoing edge
implies that n≤ m.

The machine word size is always at least w = log(m), so that both a vertex and an
edge can be stored in one machine word. A graph is given by the list of vertices and
the list of edges, which implies that its size is O(n+m) = O(m). An algorithm can go
through all vertices, all edges, or all successors or predecessors of a given vertex, with
no additional cost for the space complexity.

An arena additionally specifies for each vertex which player controls the vertex,
which is a boolean value also stored in one machine word. The representation of con-
ditions and colouring functions is different for each and is discussed when introducing
them.

Polynomial versus strongly polynomial time algorithms

Let us consider a computational problem in which the input consists of a sequence of
N integers plus a number n of other input bits. We write L for the total number of bits
needed to encode the input integer numbers. We say that an algorithm runs in strongly
polynomial time if:

• the number of arithmetic operations is bounded by a polynomial in the number
of integers N in the input instance; and

• the space used by the algorithm is bounded by a polynomial in the size L+n of
the input.

An equivalent definition using the unit cost word RAM model is that the algorithm uses
machine word size w = L+ log(n) and runs in polynomial time.

Linear programming

We give here only the very essential definitions and results related to linear program-
ming, and refer to [BT97] for a reference book on the topic.
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A linear program (in canonical form) uses a set of real variables organised in a
vector x and is defined by

maximise cT x
subject to Ax≤ b,

where c and b are rational vectors (with cT the transpose of c) and A is a rational
matrix. More explicitly:

maximize c1x1 + . . .+ cnxn
subject to a11x1 + . . .+ a1nxn ≤ b1

...
am1x1 + . . .+amnxn ≤ bm.

Solving a linear program is finding an optimal assignment x∗ of the variables.

Theorem 2 (Linear programming). There exists a polynomial time algorithm for solv-
ing linear programs.

Note that we define here linear programs with a maximising objective, but the same
problem with minimising cT x can be easily shown to be equivalent.

The statement above says that there exists a weakly polynomial time algorithm;
whether there exists a strongly polynomial algorithm for linear programming is a long
standing open question.

1.3 Objectives
We present in this section the main objectives and their representations. An objective
may depend upon a set of parameters which are sometimes omitted when clear from
the context.

Let us recall how we define classes of conditions: we first define an objective,
for instance Safe ⊆ {Win,Lose}ω . For an arena and a colouring function c : E →
{Win,Lose} defined over this arena this induces the safety condition Safe(c). Given
an arena and a condition W over this arena we say that W is a safety condition if there
exists c such that W = Safe(c). The same terminology is used for all other objectives.

Prefix dependent qualitative objectives: safety and reachability
The safety objective is the simplest qualitative objective: the set of colours is {Win,Lose},
and safety requires that the colour Lose is never seen. Formally:

Safe=
{

ρ ∈ {Win,Lose}ω : ∀i,ρi 6= Lose
}
.

In the example represented in Figure 1.3, a play is winning if if it never visits v7.
Eve wins from the four vertices on the left and loses from all the others, which is
represented by the two dotted areas.
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v0 v1 v2 v3

v4 v5 v6 v7

v0 v1 v2 v3

v4 v5 v6 v7 Lose

Figure 1.3: An example of a safety game. The unlabelled edges are implicitly labelled
by Win. The condition of Eve is to avoid the colour Lose, hence equivalently here to
avoid vertex v7. The two dotted areas represent the winning regions of each player.

The dual of the safety objective is the reachability objective: the set of colours
is {Win,Lose}, and reachability requires that the colour Win is seen at least once.
Formally:

Reach=
{

ρ ∈ {Win,Lose}ω : ∃i,ρi = Win
}
.

Safety and reachability conditions are dual:

Pathsω \Safe(c) = Reach(c) ; Pathsω \Reach(c) = Safe(c).

where c swaps Win and Lose in c. Consequently, if the condition for Eve is a safety
condition, then the condition for Adam is a reachability condition, and conversely.

Remark 3 (Labelling vertices for safety and reachability conditions). Safety and reach-
ability conditions are most of the time defined on vertices rather than edges, as indeed
it is more natural to set as target a vertex or a set of vertices than a set of edges. How-
ever in this book we use the more general convention of labelling edges. As illustrated
in Lemma 1, labelling vertices is a special case of labelling edges. In Figure 1.3, the
condition of Eve is to avoid the colour Lose, and since this is v7 is a self loop with
colour Lose, the condition can be equivalently stated as avoiding vertex v7.

Prefix independent qualitative objectives: Büchi and Parity
Safety and reachability objectives specify which colours occur or not, hence are prefix
dependent. We now introduce objectives specifying which colours occur infinitely
many times, which will naturally be prefix independent.

The Büchi objective is over the set of colours {1,2}, it requires that the colour 2 is
seen infinitely many times. Formally:

Buchi=
{

ρ ∈ {1,2}ω : ∀ j,∃i≥ j,ρi = 2
}
.

The dual of the Büchi objective is the CoBüchi objective: the set of colours is {2,3}, it
requires that the colour 3 is seen finitely many times. Formally:

CoBuchi=
{

ρ ∈ {2,3}ω : ∃ j,∀i≥ j,ρi 6= 3
}
.
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Büchi and CoBüchi conditions are dual:

Pathsω \Buchi(c) = CoBuchi(c+1) ; Pathsω \CoBuchi(c) = Buchi(c−1).

where c+1 adds one to c (since c maps vertices to {1,2}, c+1 maps vertices to {2,3}),
and similarly for c−1. Consequently, if the condition for Eve is a Büchi condition, then
the condition for Adam is a CoBüchi condition, and conversely.

We now define the parity objectives. Let [i, j] be an interval with i, j ∈ N used as
a parameter defining the range of priorities. The parity objective with parameters i, j
uses the set of colours [i, j], which are referred to as priorities, and is defined by

Parity([i, j]) =
{

ρ ∈ [i, j]ω
∣∣∣∣ the largest priority appearing

infinitely many times in ρ is even

}
.

We made the dependence in [i, j] explicit by writing Parity([i, j]), but we will most
of the time write Parity and assume that the range of priorities is [1,d], so d is the
number of priorities. There are two possible conventions for defining parity objectives:
considering the largest priority appearing infinitely many times, or the smallest one.
They are strictly equivalent (through the transformation p 7→ 2d− p) but depending on
the situation one can be technically more convenient than the other.

We illustrate the definition on two examples.

1 2 4 7 5 7 5 3 6 3 6 3 6 3 6 · · · ∈ Parity,

because the two priorities which appear infinitely often are 3 and 6, and the largest one
is 6, which is even.

2 2 2 4 1 7 5 3 3 3 3 3 3 3 3 · · · /∈ Parity,

because the only priority which appears infinitely often is 3 and it is odd.
Two remarks are in order. First, Büchi and CoBüchi objectives are parity objectives

for the set of colours [1,2] and [2,3], respectively. Second, the parity conditions are self
dual:

Pathsω \Parity([i, j])(c) = Parity([i+1, j+1])(c+1),

where c+1 adds one to c. Hence if the condition for Eve is a parity condition, then the
condition for Adam is also a parity condition.

Figure 1.4 presents an example of a parity game. The priority of an edge is given
by its label.

Conventions
Given an objective Ω⊆Cω we use a colouring function c : E→C to induce the condi-
tion Ω(c). It is convenient to extend this notation to sets of colours, edges, and vertices
as follows.

• A set of colours F ⊆ C induces the colouring function cF : E → {Win,Lose}
defined by cF(X) = Win if c ∈ F and Lose otherwise.
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Figure 1.4: An example of a parity game. The two dotted areas represent the winning
regions of each player.

• A set of edges F ⊆ E induces the colouring function cF : E → {Win,Lose} de-
fined by cF(e) = Win if e ∈ F and Lose otherwise.

• A set of vertices F ⊆ V induces the colouring function cF : E → {Win,Lose}
defined by cF(e) = Win if In(e) ∈ F and Lose otherwise.

As a convention, we write Reach(F),Safe(F),Buchi(F), and CoBuchi(F) as a short-
hand for Reach(cF),Safe(cF),Buchi(cF), and CoBuchi(cF), respectively, for all three
cases above.

Representations for qualitative objectives
For reachability, safety, Büchi, and CoBüchi conditions we need one bit per vertex to
specify its colour, hence the machine word size w = log(m) implies that one machine
word can store either an edge or a vertex together with this one bit of information.

The situation changes for parity conditions, where each vertex has a priority in
[1,d] hence requiring log(d) bits. We then choose the machine word size w = log(m)+
log(d) in such a way that one machine word can store either an edge or a vertex together
with its priority.

Quantitative objectives
We define five quantitative objectives, which are variations of each other: shortest path,
mean payoff, total payoff, energy, and discounted payoff. For all these objectives, the
set of colours is (essentially) C = Z, the set of integers. A colour is called a weight,
interpreted as a cost. The cost of a finite path is the sum over the weights, which Max
wants to maximise and Min to minimise. The problem is that mathematically, the cost
of infinite paths may not be defined: the four definitions below can be seen as four
different ways to tackle this mathematical obstacle.

Shortest path

The following definition resolves the problem above by adding a reachability objective,
ensuring that paths of interest are finite. The shortest path quantitative objective is
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Figure 1.5: An example of a mean payoff game with threshold 0.

defined over the set of colours C = Z∪{Win} by

ShortestPath(ρ) =

{
∑

k−1
i=0 ρi for k the first index such that ρk = Win,

∞ if ρk 6= Win for all k.

Note that we are looking for a path of minimal cost, hence not necessarily the shortest
in number of edges.

Mean payoff

The mean payoff quantitative objective weights paths by their length. It comes in two
different flavours: using the supremum limit

MeanPayoff+(ρ) = limsup
k

1
k

k−1

∑
i=0

ρi.

or the infimum limit

MeanPayoff−(ρ) = liminf
k

1
k

k−1

∑
i=0

ρi.

As we shall see, in most settings the two objectives will be equivalent. For this reason,
we often use MeanPayoff to denote MeanPayoff−.

Figure 1.5 presents an example of a mean payoff game. The weight of an edge
is given by its label. In this example the threshold is 0, i.e. the induced qualitative
condition is MeanPayoff≥0 = {ρ ∈Cω : MeanPayoff(ρ)≥ 0}.

Total payoff

The following definition simply replaces limit by supremum limit. We define the total
payoff quantitative objective over the set of colours C = Z by

TotalPayoff(ρ) = limsup
n

n−1

∑
i=0

ρi
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Total payoff is closely related to mean payoff, in the sense that it refines it. In-
deed, the total payoff of a play is finite if and only if the mean payoff of this play is
null. Hence, if a vertex in a game has value 0 for mean payoff, computing its value
for total payoff gives an additional insight: it quantifies how the partial sums are fluc-
tuating around the mean payoff. For instance, this allows one to distinguish situation
1,−1,1,−1,1, . . . where the total payoff is 1 from a close situation−1,1,−1,1, . . . with
total payoff 0.

Energy

The energy quantitative objective is defined over the set of colours C = Z:

Energy(ρ) = inf

{
` ∈ N : ∀k ∈ N, `+

k−1

∑
i=0

ρi ≥ 0

}
.

The interpretation is the following: weights are energy consumptions (negative values)
and recharges (positive values), and Energy(ρ) is the smallest initial budget ` such
that all partial sums remain non-negative. In a counter-intuitive way, the objective of
Min is to collect higher (positive) weights.

We can observe that Energy(ρ)= sup
{

∑
k−1
i=0 (−ρi) : k ∈ N

}
, which motivates defin-

ing:

Energy+(ρ) = sup

{
k−1

∑
i=0

ρi : k ∈ N

}
.

The two objectives are clearly equivalent since one can reduce from one to the other by
switching the signs of every weight. The benefit of this definition is that it is intuitively
simpler: Max aims at positive weights.

Discounted payoff

The discounted payoff quantitative objective is parameterised by a discount factor λ ∈
(0,1). It is defined by:

DiscountedPayoffλ (ρ) = lim
k

k−1

∑
i=0

λ
i
ρi.

Expanding the definition: DiscountedPayoffλ (ρ) = ρ0 + λρ1 + λ 2ρ2 + . . . . Intu-
itively, the importance of the weights decrease over time: the weight ρi is multiplied
by λ i which goes to 0 as i goes to infinity. The discount factor ensures that the limit
exists for sequences with bounded weights, which holds for all plays since a (finite)
game contains finitely many different weights.

Representations for quantitative objectives
Let us consider a game G with one of the payoff conditions defined above. Let W
denote the largest weight appearing in G in absolute value.
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Choosing the machine word size w = log(m)+ log(W ) implies that either an edge
or a vertex together with its weight can be stored in one machine word and that we
can perform arithmetic operations on weights. For all payoff games except discounted
games, this means that the input size is O(m).

For discounted payoff games we additionally need to represent the discount factor
λ , which we assume is a rational number λ = a

b . Since we want to perform arithmetic
operations on λ it is convenient to store it on one machine word, hence the choice for
the machine word size w = log(m)+ log(W )+ log(b).

1.4 Automata
The study of games is deeply intertwined with automata over infinite words and trees.
We will not elaborate much on that aspect in this book, but in a few places we will use
automata. We define here (non-deterministic) automata over infinite words, and refer
to [Tho97] for a survey on automata theory over infinite objects (words and trees) and
logic, and to [Pin21] for the most recent and complete textbook on automata theory.

Definition 2 (Automata). Let Σ be an alphabet. An automaton over the alphabet Σ is
a tuple A = (Q,q0,∆,A) where:

• Q is a finite set of states,

• q0 ∈ Q is the initial state,

• ∆⊆ Q×Σ×Q is the transition relation,

• A⊆ ∆ω is the acceptance condition.

The size of A is its number of states, written |A|. We assume that automata are
complete: from any state q and letter a, there exists a transition (q,a,q′) ∈ ∆. This
mirrors the convention for games that every vertex has an outgoing edge.

We use transition based acceptance conditions instead of state based acceptance
conditions, for the same reasons as we use edge labelling colouring functions rather
than vertex labelling. This more succinct definition of automata naturally composes
with games see Section 1.6.

For a (finite or infinite) word w = w0w1 . . . , a run ρ = (q0,w0,q1)(q1,w1,q2) . . .
over w is a sequence of consecutive transitions starting from the initial state q0. An
infinite run is accepting if it belongs to A, in which case we also say that it satisfies A.
A word w is accepted if there exists an accepting run over w. We let L(A) denote the
set of accepted words and call it the language defined by A, or sometimes recognised
by A.

An automaton is deterministic if for all states q ∈ Q and letter a ∈ Σ, there exists
at most one transition (q,a,q′) ∈ ∆. In that case the transition relation becomes a
transition function δ : Q×Σ→ Q. The key property of deterministic automata is that
for every word there exists exactly one run over it.
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We use the same approach as for games for defining classes of automata with the
same conditions: an objective Ω ⊆ Cω and a colouring function c : ∆→ C induce an
acceptance condition Ω[c] ⊆ ∆ω . For deterministic automata the colouring function
becomes c : Q×Σ→ C. As for games the objective qualifies the automaton, so we
speak of a parity automaton if it uses a parity objective.

Theorem 3 (Omega-regular languages). Non-deterministic Büchi, CoBüchi, parity,
and deterministic parity automata define the same class of languages called ω-regular
languages.

1.5 Memory
A strategy can be a very complicated object, in particular it is infinite. Indeed, it is a
function σ : Paths→ E, which means that in order to choose the next move the strategy
considers everything played so far: the strategy depends upon the whole play.

An important part of the study of games is to prove that simple strategies suffice
for many purposes, and one aspect that makes strategies simple is that they use little
memory. For understanding a certain class of games a great insight is often to prove
the existence of simple winning strategies, as for instance positional or using finite
memory.

Positional strategies
Positional strategies carry no memory about the play constructed so far and in choosing
an edge only look at the current vertex. The word memoryless is sometimes used in
lieu of positional. Formally, a positional strategy for Eve is a function

σ : VEve→ E.

A positional strategy induces a strategy by σ̂(π) = σ(last(π)).
For reasoning about positional strategies it is useful to define the following notion.

Let G be a game and σ a positional strategy, we define G [σ ] the graph with condition
W induced by σ on G . The set of vertices is V and the set of edges is

E[σ ] =
{

e = v→ v′ ∈ E : v ∈VAdam or (v ∈VEve and σ(v) = e)
}
.

It is equipped with the condition W inherited from G .

Fact 5 (Game induced by a positional strategy). Let G be a game with condition W, σ

a positional strategy, and v a vertex. Then the strategy σ is winning from v if and only
if all infinite paths in G [σ ] from v satisfy W.

We say that a qualitative objective Ω is positionally determined if for every game
G with objective Ω and every vertex v, either of the two players has a positional win-
ning strategy from v. We sometimes simply say that Ω is positional, and talk about a
positional determinacy result.

We also say that a qualitative objective Ω is half-positionally determined if for
every game G with objective Ω and every vertex v, if Eve has a winning strategy from
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v, then she has a positional winning strategy from v. Similarly, we sometimes shorten
to ‘Ω is half-positional’, and speak of a half-positional determinacy result.

Remark 4. Another popular terminology replaces ‘half-positionally determined’ and
‘positionally determined’ by ‘positionally determined’ and ‘bi-positionally determined’.
The best argument for the terminology we adopt in this book is that in general deter-
minacy is about both players, hence it naturally extends to positional determinacy.

As we discussed earlier, the task of solving a game does not include constructing
winning strategies. We present a general binary search technique for doing so assuming
half-positional determinacy.

Lemma 3 (Binary search for constructing positional strategies). Let Ω be a half-
positionally determined qualitative objective. If there exists an algorithm A for solving
games with objective Ω, then there exists an algorithm for constructing winning strate-
gies for Eve for games in this class using n · log(m

n ) calls to the algorithm A.

Proof. Let Ω be a half-positionally determined objective and G a qualitative game with
objective Ω. We first determine WEve(G ), which requires one call to a solving algorithm
for each vertex. We fix a vertex v ∈WEve(G ) and determine a winning positional move
from v. We let d(v) denote the outdegree of v. We choose a subset of b d(v)

2 c outgoing
edges of v, construct the game where we remove these edges, and solve it using v as
initial vertex. If Eve wins this game from v, then there is a positional winning strategy
that picks one of the remaining outgoing edges of v, otherwise we need to choose one
of the removed edges. This binary search algorithm requires O(log(d(v))) calls to
a solving algorithm for finding a winning positional move from v. Doing so for all
vertices requires

O

(
∑
v∈V

logd(v)

)
≤ n · log

(m
n

)
calls to a solving algorithm.

Positional determinacy may hold only for some class of arenas (such that finite
arenas or arenas with finite outdegree), in which case this is made explicit: positionally
determined over finite arenas.

Parity objectives are positionally determined; this will be proved in Chapter 2. We
illustrate it on Figure 1.6 by annotating Figure 1.4 with the positional winning strategies
for both players.

We say that a quantitative objective Φ is positionally determined if for every game
G with objective Φ and every vertex v, there exists a pair of positional optimal strategies
from v. Let us state the quantitative counterpart of Lemma 3. The proof is the same.

Similarly, a quantitative objective Φ is half-positionally determined if for every
game G with objective Φ and every vertex v, there exists a positional optimal strategy
for Max from v.
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Figure 1.6: The example of a parity game given in Figure 1.4 with additional positional
winning strategies for both players (corresponding to dashed edges).

Lemma 4 (Binary search for constructive winning strategies, quantitative case). Let
Ω be a half-positionally determined quantitative objective. If there exists an algorithm
A for computing the value of games with objective Ω, then there exists an algorithm
for constructing optimal positional strategies for Max for games in this class using
n · log(m

n ) calls to A.

Uniformity
A qualitative objective Ω is uniformly positionally determined if for every game G
with objective Ω, there exists a pair (σ ,τ) of positional optimal strategies: σ is win-
ning from WEve(G ), meaning from every vertex in WEve(G ), and τ is winning from
WAdam(G ). Similarly, a quantitative objective Φ is uniformly positionally determined
if for every game with objective Φ, there exists a pair (σ ,τ) of positional strategies
which are optimal from every vertex.

Being uniformly (half-)positionally determined is a stronger property than being
(half-)positionally determined, but in most cases an objective satisfies either both or
none, as for example if the objective is prefix independent.

Lemma 5 (From (half-)positional to uniformly (half-)positional prefix independent ob-
jectives). If an objective is (half-)positionally determined and prefix independent then
it is uniformly (half-)positionally determined.

Proof. Let us consider a game G with qualitative objective Ω and assume that Ω is
half-positionally determined. (The argument is exactly the same for positionally deter-
mined, and for quantitative objectives, so we will not repeat it.) For each v ∈WEve(G )
let σv be a positional winning strategy. Thanks to Fact 3 the strategy σv is winning
from all vertices reachable by a play consistent with σv starting from v. Without loss
of generality let us assume that σv is only defined on these vertices.

We fix ≤ a total order on the set of vertices1. We let σ be the positional strategy
defined by σ(u) is σv(u) where v is the least vertex (with respect to ≤) such that σv is
defined on u. We say that σ uses σv at u.

1The argument we give in this proof extends to infinite games whose set of vertices can be well ordered.
A well-order is a total order such that every non-empty subset has a least element, which is exactly the
property we need in this proof.
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We argue that σ is winning from WEve(G ). Consider a play consistent with σ

starting from some vertex in WEve(G ) and look at the sequence of strategies it uses. By
definition this sequence is non-increasing (with respect to ≤), hence it is stationary. In
other words the play is eventually consistent with some strategy σv, implying that this
suffix satisfies Ω. Since Ω is prefix independent this means that the play itself satisfies
Ω, so σ is indeed winning.

Finite memory strategies
Memoryless strategies are sometimes not enough. A more powerful class of strategies
is finite memory strategies. Intuitively, a finite memory strategy uses a finite state ma-
chine called a memory structure to store the relevant pieces of information about the
play constructed so far.

To define finite memory strategies formally, we fix a graph G. A memory structure
is M = (M,m0,δ ): the set M is a set of (memory) states, m0 ∈M is the initial state and
δ : M×E→M is the update function. The update function is extended to δ ∗ : E∗→M
by δ ∗(ε) =m0 and δ ∗(ρe) = δ (δ ∗(ρ),e). The size of a memory structure is its number
of states. Note that a memory structure is a deterministic automaton over the alphabet
E but without specifying the acceptance condition.

We define a strategy using M as a function

σ : VEve×M→ E.

It induces a strategy σ̂ via σ̂(π) = σ(last(π),δ ∗(π)). A common abuse of notations is
to write σ for σ̂ .

We note that positional strategies correspond to strategies using the trivial memory
structure consisting of only one state.

We say that a qualitative objective Ω is determined with finite memory strategies
if for every game G and every vertex v, either of the two players has a finite-memory
winning strategy. There are several variants of this definition covering cases where the
memory is constant or bounded, and uniformly over all vertices or not.

We give in Figure 1.7 an example of a game where Eve has a winning strat-
egy using two memory states but no positional winning strategy. The condition is
Buchi(Win1)∧Buchi(Win2), meaning that a play is winning if both Win1 and Win2
are visited infinitely many times. A positional strategy would either always choose
the edge labelled Win1 or the one labelled Win2, hence does not satisfy the condition.
Some memory is required to switch between the two.

Formally, let e1 be the edge labelled by Win1 and e2 be the one labelled by Win2.
We let M = ({m1,m2} ,m1,δ ) defined by δ (m1,e1) = m2 and δ (m2,e2) = m1. In
words, m1 is the memory state saying that the last chosen edge was e1 and m2 corre-
spondingly for e2. We switch from m1 to m2 when traversing e1 and conversely with e2.
Then we define σ(v0,m1) = e1 and σ(v0,m2) = e2 inducing the strategy σ̂ using M .

Let us note that to transform this example into one where colours label vertices, we
would need three states instead of one. Memory requirements for edge-labelled games
and vertex-labelled games are not equivalent.
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v0Win1 Win2

Figure 1.7: An example of a game where Eve has a winning strategy for
Buchi(Win1)∧Buchi(Win2) using two memory states but no positional winning strat-
egy.

1.6 Reductions
Automata and memory structures can be used to construct reductions between games.
Automata operate at the level of objectives, independently of the colouring function
and the arena, while memory structures work at the level of conditions, hence depend
on the graph.

Reductions between objectives using automata
Let Ω a qualitative objective over the set of colours C, and Ω′ a second qualitative
objective. We say that Ω reduces to Ω′ if there exists a deterministic automaton A over
the alphabet C with acceptance objective Ω′ defining Ω, i.e. such that L(A) = Ω.

This implies that we can transform a game G with objective Ω into an equivalent
one G ×A with objective Ω′ by composing G with A: the automaton reads the sequence
of colours from C induced by the play and produces a new sequence of colours which
is accepted if its satisfies Ω′.

Formally, let A an arena and

A = (Q,q0,δ : Q×C→ Q,Ω′(cA))

a deterministic automaton with cA : Q×C→ C′. We construct the arena A ×A as
follows. We first define the graph G×Q whose set of vertices is V ×Q and set of
edges is defined as follows: for every edge e = v c−→ v′ ∈ E and state q ∈ Q there is an

edge e[q] = (v,q)
cA(q,c)−−−−→ (v′,δ (q,c)): the second component computes the run of A

on the sequence of colours induced by the play. The arena is A ×A = (G×Q,VEve×
Q,VAdam×Q). The game is G ×A = (A ×A,Ω′(c′)).

The following lemma states two consequences to the fact that Ω reduces to Ω′.

Lemma 6 (Automata reductions). If Ω reduces to Ω′ through the automaton A, then
Eve has a winning strategy in G from v0 if and only if she has a winning strategy in
G ×A from (v0,q0).

Consequently, the following properties hold:

• Assume that there exists an algorithm for solving games with objective Ω′ with
complexity T (n,m). Then there exists an algorithm for solving games with ob-
jectives Ω of complexity T (n · |A|,m · |A|).

• If Ω′ is determined with finite memory strategies of size m, then Ω is determined
with finite memory strategies of size m · |A|.
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Since the next type of reduction extends this one and the two proofs are very similar
we will prove this lemma as a corollary of the next one.

Reductions between objectives using automata are very general: they operate at the
level of objectives and therefore completely ignore the arena.

Reductions between conditions using memory structures
Reductions between conditions using memory structures extend the previous ones, the
main difference being that the memory structure reads the sequences of edges and pro-
duces a sequence of memory states. The edges contain more information than the
sequence of colours (which is what the automaton reads), and this information is de-
pendent on the graph.

Formally, let A an arena and M a memory structure. We construct the arena
A ×M as follows. We first define the graph G×M whose set of vertices is V ×M and
set of edges EM is defined as follows: for every edge e = v→ v′ ∈ E and state m ∈M
there is an edge e[m] = (v,m)−→ (v′,δ (m,e)). The arena is A ×M = (G×M,VEve×
M,VAdam×M).

Fact 6 (Strategies with memory). There is a one to one correspondence between plays
in A from v0 and in A ×M from (v0,m0).

To the play
π = e0e1 . . . where ei = vi→ vi+1

we associate the play
π
′ = e0[m0] e1[m1] . . . ,

where for all i we define inductively mi+1 = δ (mi,ei[mi]).
Let W be a condition on A and W ′ a condition on A ×M . We say that W reduces

to W ′ (through M ) if for all plays π in A , we have

π ∈W ⇐⇒ π
′ ∈W ′.

Let M and M ′ two memory structure over the same graph, we let M ×M ′ denote
the memory structure obtained by direct product.

Lemma 7 (Memory structure reductions). If W reduces to W ′ through the memory
structure M , then Eve has a winning strategy in G = (A ,W ) from v0 if and only if she
has a winning strategy in G ×M = (A ×M ,W ′) from (v0,m0).

More specifically, if Eve has a winning strategy in G ×M from (v,m0) using M ′

as memory structure, then she has a winning strategy in G from v using M ×M ′

as memory structure. In particular if the strategy in G ×M is memoryless, then the
strategy in G uses M as memory structure.

Proof. A winning strategy in G directly induces a winning strategy in G ×M simply
by ignoring the additional information and thanks to the equivalence above because
W reduces to W ′. For the converse implication, let σ be a winning strategy in G ×M
using M ′ as memory structure. Recall that σ is defined through the function σ : (VEve×
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M)×M′→ EM . Let p : EM → E mapping the edge em to e. We construct a strategy σ ′

in G using M ×M ′ as memory structure by

σ
′(v,(m,m′)) = p(σ((v,m),m′)).

The correspondence between plays in A and A ×M maps plays consistent with σ to
plays consistent with σ ′, which together with the fact that W reduces to W ′ implies that
σ ′ is a winning strategy in G from v.

To obtain Lemma 6 as a corollary of Lemma 7 we observe that a reduction between
objectives using an automaton induces a reduction between the induced conditions
using a memory structure. Formally, let us assume that Ω reduces to Ω′, and let A =
(Q,q0,δ ,Ω

′(cA)) such that L(A) = Ω. Let G = (A ,Ω(c)) a game.
We first define the memory structure M = (Q,q0,δ

′). The transition function is
δ ′ : Q×E → Q, it is defined by δ ′(q,e) = δ (q,c(e)). We consider the arena A ×M ,
and define the colouring function c′(eq) = cA(q,c(e)).

We note that Ω(c) reduces to Ω′(c′): for all plays π in A , we have π ∈Ω(c) if and
only if π ′ ∈Ω′(c′): this is a reformulation of the fact that L(A) = Ω.

We construct the game G ′ = (A ×M ,Ω′(c′)). Thanks to Lemma 7 the two games
have the same winner and a strategy in the latter induce a strategy in the former by
composing with the memory structure M , implying Lemma 6.

1.7 Traps and subgames
Let us consider a game G and a set X of vertices. Assume that for every v ∈ X there
exists v→ v′ ∈ E such that v′ ∈ X , then we can define the game G [X ] by restricting G
to the vertices in X and say that G [X ] is the subgame of G induced by X . Formally,
the arena is A [X ] with X the set of vertices and E[X ] is the set of edges such that
both incoming and outgoing vertices are in X . The assumption on X ensures that every
vertex of G [X ] has an outgoing edge. Both the colouring function and the conditions
are naturally induced from G to G [X ].

We say that X is a trap for Adam if

• for every v ∈ X ∩VEve, there exists v→ v′ ∈ E with v′ ∈ X , and

• for every v ∈ X ∩VAdam, for all v→ v′ ∈ E, we have v′ ∈ X .

Intuitively, a trap for Adam is a subset of vertices which Eve can decide to stay in while
Adam cannot force to leave. The same notion can be defined for Eve. Traps satisfy the
property above so if X is a trap then the game G [X ] described above is well defined,
meaning that every vertex has an outgoing edge.

Fact 7 (Traps induce subgames). Let G be a game, X a trap for Adam, and σ a winning
strategy for Eve in the subgame G [X ]. Then σ induces a winning strategy in G .

Proof. Any play consistent with σ in G stays forever in X because X is a trap for
Adam, hence is winning.
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The notion of traps is very useful when decomposing games. We present some
simple facts about traps, here stated for Adam but easily transposed for Eve.

Fact 8 (Traps). Let G a game.

• Let P,Q two traps for Adam in the game G , then P is a trap for Adam in the
subgame of G induced by Q (but P∩Q may not be a trap in G ).

• Let P a trap for Eve in the game G and Q a trap for Adam in the game G , then
P∩Q is a trap for Eve in the subgame of G induced by Q.

• Let P a trap for Adam in the game G and Q a trap for Adam in the subgame of
G induced by X, then Q is a trap for Adam in G .

1.8 Generic fixed point algorithms
Let X be a set and O : X → X a function that we call an operator, we say that x ∈ X is
a fixed point of O if O(x) = x. Fixed points will appear extensively in this book. We
describe here two general approaches for computing them: Kleene and Banach fixed
point theorems.

Kleene fixed point theorem
Let us consider a lattice (X ,≤): the binary relation ≤ is a partial order, and every pair
of elements has a least upper bound and a greatest lower bound. It is a complete lattice
if every set has a least upper bound and a greatest lower bound. A lattice is finite if the
set X is finite. Note that finite lattices are always complete.

We write ⊥ for the least element in X and > for the greatest element. An operator
O : X → X is monotonic if for all x,y ∈ X such that x ≤ y we have O(x) ≤ O(y), and
preserves suprema if O(supn xn) = supnO(xn) for all increasing sequences (xn)n∈N.
The twin notion preserves infima is defined accordingly.

We say that x is a pre-fixed point if O(x)≤ x and a post-fixed point if O(x)≥ x.

Theorem 4 (Kleene fixed point theorem). Let (X ,≤) be a complete lattice and O :
X → X a monotonic operator, then O has a least fixed point which is also the least
pre-fixed point.

Furthermore:

• if X is finite the sequence defined by u0 =⊥ and uk+1 =O(uk) is stationary and
its limit is the least fixed point of O;

• if O preserves suprema then the least fixed point of O is sup
{
Ok(⊥) : k ∈ N

}
.

Under the same assumptions O has a greatest fixed point which is the greatest post-
fixed point and can be computed in similar ways, replacing ‘preserves suprema’ by
‘preserves infima’.

The typical example of a complete lattice and one that we will use often in this
book is the powerset of a set equipped with the inclusion between subsets. The least
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element is the empty set, the greatest element the full set, and least and greatest upper
bounds are given by union and intersection. An example of an infinite complete lattice
is R∪{±∞} equipped with the natural order.

Banach fixed point theorem
Let us consider a set X equipped with some norm ‖ · ‖. It is called a complete space
if all Cauchy sequences converge. The typical example of a complete space is Rd for
some d ∈ N equipped with the infinity norm ‖x‖= maxi∈[1,d] |xi|.

An operator O : X → X is contracting if there exists λ < 1 such that for all x,y ∈ X
we have ‖O(x)−O(y)‖ ≤ λ · ‖x− y‖.

Theorem 5 (Banach fixed point theorem). Let (X ,‖ · ‖) be a complete space and O :
X → X a contracting operator, then O has a unique fixed point x∗. For any x0 ∈ X, the
sequence (Ok(x0))k∈N converges towards x∗ and the rate of convergence is given by

‖Ok(x0)− x∗‖ ≤
λ k

1−λ
· ‖O(x0)− x0‖.

1.9 Value iteration algorithms
In this section and the next we discuss two families of fixed point algorithms for solving
games. The goal is to highlight the main ingredients for constructing algorithms in
these two families. If the descriptions below are too abstract it may be useful to see
concrete instantiations, referenced below.

Quantitative games
Let us consider a quantitative game G with condition f = Φ[c]. Assuming that G is
determined it admits a value function

valG : V → R∪{±∞} ,

which is defined as

valG = sup
σ

inf
τ

f (πv
σ ,τ) = inf

τ
sup

σ

f (πv
σ ,τ),

where σ ranges over strategies of Max, τ over strategies of Min, and πv
σ ,τ is the play

consistent with σ and τ from v. In particular we write valσ (v) for infτ f (πv
σ ,τ) and

valτ(v) for supσ f (πv
σ ,τ).

Let us write Y = R∪{±∞}, and note that Y is a total order (and a fortiori a lattice)
for the usual order over the reals.

Qualitative games
For a qualitative game G there is no notion of a value function so the first step in con-
structing a value iteration algorithm is to define a meaningful notion of value function.
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Let us assume that the condition is Ω[c] over the set of colours C. The first ingredient
is a lattice (Y,≤) together with a function f : Cω → Y for evaluating plays. The value
function is valG : V → Y defined as

valG (v) = sup
σ

inf
τ

f (πv
σ ,τ),

where σ ranges over strategies of Max, τ over strategies of Min, and πv
σ ,τ is the play

consistent with σ and τ from v. As above we write valσ (v) for infτ f (πv
σ ,τ) and valτ(v)

for supσ f (πv
σ ,τ).

We let > denote the largest element in Y , and ⊥ for the smallest. The following
principle implies that computing the value function in particular yields the winning
regions, relating the condition Ω to the function f :

Property 1 (Characterisation of the winning regions). For all games G , for all vertices
v, Eve wins from v for the qualitative objective Ω[c] if and only if valG (v) 6=>.

This implies that the goal is now to compute or approximate the value function
valG : V → Y . Indeed choosing Y = R∪{±∞} covers the quantitative case.

Fixed point
Let us consider a game G . We let FV denote the set of functions V → Y , it is a lattice
when equipped with the componentwise (partial) order induced by Y : we say that µ ≤
µ ′ if for all vertices v we have µ(v) ≤ µ ′(v). The main ingredient is an operator OG :
FV → FV . The intent is to obtain the function valG as a fixed point of the operator OG ,
using the two different approaches for fixed points we introduced above. Whenever G
is clear from the context, we simply write O instead of OG .

Fixed point through monotonicity
The first family of algorithms is based on Kleene fixed point theorem as stated in The-
orem 4.

Property 2 (Fixed point through monotonicity). For all games G , the operator OG is
monotonic, and valG is the least fixed point of OG .

Remark 5 (Greatest versus least fixed point). Whenever technically convenient or
more intuitive, we will obtain the value function as the greatest fixed point of OG . For
value iteration algorithms, only small adjustments are necessary. This will be different
for strategy improvement algorithms, in the next section.

Theorem 4 further states that valG is the limit of the sequence (Ok(⊥))k∈N. The
pseudocode is given in Algorithm 1.1.

Theorem 6 (Generic value iteration algorithm through monotonicity). Assume Prop-
erty 2 (fixed point through monotonicity) and that Y is finite. Then the generic value
iteration algorithm outputs valG within at most n · |Y | iterations.

A concrete instantiation of this theorem is for energy games, see Section 4.3.
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Algorithm 1.1: A generic value iteration algorithm based on fixed point
through monotonicity – naive version.

for v ∈V do
µ(v)←⊥

repeat
µ ←OG (µ)

until µ =OG (µ)
return µ

Proof. If Y is a finite lattice then so is FV . For each v, the sequence (Ok(µ)(v))k∈N
is non-decreasing, so it can be strictly decreased at most |Y | times. At each iteration
the value of at least one vertex is strictly decreased. Hence there are at most n · |Y |
iterations.

If Y is not finite then the sequence (Ok(µ))k∈N converges towards valG but further
analysis is required to evaluate the convergence speed.

Fixed point through contraction
The second family of value iteration algorithms is based on Banach fixed point theorem
as stated in Theorem 5, let us fix as a goal to approximate valG . We equip FV with a
norm ‖ · ‖.

Property 3 (Fixed point through contraction). The operator OG is contracting in the
complete space (FV ,‖ · ‖), and valG is the unique fixed point of OG .

The pseudocode of the algorithm is given in Algorithm 1.2.

Algorithm 1.2: A generic value iteration algorithm based on fixed point
through contraction – naive version.

Data: Desired precision ε .
Choose µ ∈ FV
repeat

µ ←OG (µ)
until ‖OG (µ)−µ‖ ≤ ε · (1−λ )
return µ

Theorem 7 (Generic value iteration algorithm through contraction). Assume Prop-
erty 3 (fixed point through contraction). Then the generic value iteration algorithm
computes an ε-approximation of valG within at most O

(
log(ε)
log(λ )

)
iterations, where λ ∈

(0,1) is the contraction factor of OG .

A concrete instantiation of this theorem is for stochastic reachability games, see Sec-
tion 6.3.
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Proof. Thanks to Theorem 5, for any µ we have

‖Ok(µ)−valG ‖ ≤ λ k

1−λ
· ‖OG (µ)−µ‖.

Let us write µk =Ok(µ0), and set the number of iterations to be k =
log
(

ε·(1−λ )2

‖OG (µ0)−µ0‖

)
log(λ ) .

It has been chosen so that

λ k

1−λ
· ‖OG (µ0)−µ0‖ ≤ ε · (1−λ ).

Thanks to the inequality above for µ = µ0, this implies that ‖OG (µk)−µk‖ ≤ ε · (1−
λ ). Again thanks to the inequality above for µ = µk this implies that ‖µk−valG ‖ ≤ ε .
Thus, after k iterations, the algorithm outputs an ε-approximation of valG .

Wrap up
Let us wrap up this section: to construct a value iteration algorithm, one needs:

• for qualitative games, a notion of values induced by a function f : Cω →Y satis-
fying Property 1;

• in all cases, either a monotonic operator satisfying Property 2 or a contracting
operator satisfying Property 3.

Local operator
In the general case above where nothing is known about the operator OG , we cannot
hope for a finer analysis. However in most cases the operator is defined in the following
way, called ‘local’. Fix a game G . Let us consider a function δ : Y ×C→Y , which can
be though of as the transition function of a deterministic automaton whose set of states
is Y and which reads colours. It induces an operator OG : FV → FV defined by:

OG (µ)(u) =

max
{

δ (µ(v),c) : u c−→ v ∈ E
}

if u ∈VMax,

min
{

δ (µ(v),c) : u c−→ v ∈ E
}

if u ∈VMin.

A first interesting fact about this family of operators is that if δ is monotonic, meaning
for all y,y′ ∈ Y , c ∈C, if y ≤ y′ then δ (y,c) ≤ δ (y′,c), then OG is monotonic. Let us
formulate this assumption explicitly:

Property 4 (Monotonicity of the δ function). The function δ is monotonic.

Let us examine the property that valG is a fixed point of OG . We give sufficient
conditions in the following lemma:

Lemma 8. Let G a game. Assume that:

• For all ρ ∈Cω and c ∈C, we have f (c ·ρ) = δ ( f (ρ),c).
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• The function δ is monotonic and continuous.

Then valG is a fixed point of OG .

Proof. We show that valG ≥OG (valG ). Let u ∈VMax, we consider σ ,τ two strategies
from v. We write σ(u) = u c−→ v. We let σ ′,τ ′ denote the strategies induced by σ ,τ after
playing u c−→ v, π

σ ,τ
u the play consistent with σ and τ from u, and π

σ ′,τ ′
v the play con-

sistent with σ ′ and τ ′ from v. The first property implies that f (πσ ,τ
u ) = δ ( f (πσ ′,τ ′

v ),c).
Carefully using infimum and supremum as well as monotonicity and continuity of δ ,
we obtain the series of inequalities:

f (πσ ,τ
u ) = δ ( f (πσ ′,τ ′

v ),c)
f (πσ ,τ

u ) ≥ infτ ′ δ ( f (πσ ′,τ ′
v ),c) = δ (infτ ′ f (πσ ′,τ ′

v ),c)
infτ f (πσ ,τ

u ) ≥ δ (infτ ′ f (πσ ′,τ ′
v ),c)

supσ infτ f (πσ ,τ
u ) ≥ δ (infτ ′ f (πσ ′,τ ′

v ),c)
supσ infτ f (πσ ,τ

u ) ≥ supσ ′ δ (infτ ′ f (πσ ′,τ ′
v ),c) = δ (supσ ′ infτ ′ f (πσ ′,τ ′

v ),c)

valG (u) ≥ max
{

δ (valG (v) : u c−→ v ∈ E
}
.

The reasoning is similar for u ∈VMin, and the converse inequality is also proved along
the same lines.

Saying that valG is a fixed point of OG defined this way is tightly related to the
fact the G is positionally determined, but not equivalent. Indeed, the fact that valG =
OG (valG ) means that from a vertex u, the value valG (u) can be computed locally,
i.e. by considering the maximum or the minimum over all outgoing edges. It is very
tempting to define the argmax and argmin (positional) strategies as follows

u ∈VMax : σ(u) ∈ argmax
{

δ (valG (v),c) : u c−→ v ∈ E
}
,

u ∈VMin : τ(u) ∈ argmin
{

δ (valG (v),c) : u c−→ v ∈ E
}
.

and to claim that they are optimal. This is unfortunately often not the case, and one
needs to be more careful to define optimal positional strategies. We refer to Figure 6.2
for a counter-example for the case of (stochastic) reachability games.

Let us discuss Property 2, which states that valG is the least fixed point of OG , and
specifically how to prove that such a property holds. Under the asumptions of Lemma 8
we already know that valG is a fixed point of OG , which implies that valG is larger than
the least fixed point. Let us mention another approach for proving this inequality: we
define a sequence of objectives ( fk)k∈N and show the following two properties.

• Writing valG , fk for the values of the game equipped with objective fk, we have
valG , fk =Ok(µ0), meaning that the kth iteration of O computes the values for fk.

• We have f0 ≤ f1 ≤ ·· · ≤ fk ≤ f .
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The second property directly implies that valG , f0 ≤ valG , f1 ≤ ·· · ≤ valG , fk ≤ valG .
Since the least fixed point of O is the limit of Ok(µ0), by the inequality above it is
smaller than valG . This approach is not easier to use than Lemma 8, but it may be use-
ful as it explains what are the iterations of OG . We refer to Lemma 35 for an example.

Now let us discuss how to prove that valG is the least fixed point. For this, we
consider a fixed point µ of OG , and argue that valG ≤ µ . To this end, we extract from
µ a strategy τ for Min, and show that valτ ≤ µ; since we know that valG ≤ valτ , this
implies valG ≤ µ . Again we refer to Lemma 35 for an example.

Refined complexity analysis
The definition of local operators allows us to refine the complexity analysis for the
generic value iteration algorithm. Let us say that u c−→ v ∈ E is incorrect if µ(u) <
δ (µ(v),c), and that u is incorrect if either u∈VMin and all outgoing edges are incorrect,
or u ∈VMax and there exists an incorrect outgoing edge. The algorithmic improvement
of the upcoming algorithm over the naive implementations above is that instead of ap-
plying the operator OG to all vertices at each iteration we can keep track of incorrect
vertices and only update them. This computes exactly the same sequence of functions,
but at a lesser computational cost. For u ∈ VMax, it is easy to determine whether it is
incorrect, as it relies on the existence of a single outgoing edge. This is more compli-
cated for u ∈VMin: the idea here is not to keep track of all incorrect edges, but rather to
count them.

Let us write ∆ for the complexity of computing δ (y,c) for given y ∈ Y and c ∈C,
and of determining whether y≤ y′ for y,y′ ∈ Y .

Theorem 8 (Complexity analysis of the refined generic value iteration algorithm based
on fixed point through monotonicity). Assume Properties 2 and 4 (fixed point through
monotonicity and monotonicity of δ ), and that Y is finite. Then the generic value it-
eration algorithm outputs valG within at most n · |Y | iterations. The computational
cost of a single iteration is O(m ·∆), so the running time of the whole algorithm is
O(nm ·∆ · |Y |).

The data structure consists of the following objects:

• an element of Y for each vertex, representing the current function µ : V → Y ;

• a set Incorrect of vertices (the order in which vertices are stored and retrieved
from the set does not matter);

• a table Count storing for each vertex of Min a number of edges.

The invariant of the algorithm satisfied before each iteration of the repeat loop is
the following:

• for u ∈ VMin, the value of Count(u) is the number of incorrect outgoing edges
of u;

• Incorrect is the set of incorrect vertices.
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The invariant is satisfied initially thanks to the function Init. Let us assume that
we choose and remove u from Incorrect. Since we modify only µ(u) the only
potentially incorrect vertices are in Incorrect (minus u) and the incoming edges of
u; for the latter each of them is checked and added to Incorrect′ when required. By
monotonicity, incorrect vertices remain incorrect so all vertices in Incorrect (minus
u) are still incorrect. Hence the invariant is satisfied.

The invariant implies that the algorithm indeed implements Algorithm 1.3 hence
returns the least fixed point, but it also has implications on the complexity. Indeed one
iteration of the repeat loop over some vertex u involves

O
(
(|In−1(u)|+ |Out−1(u)|) ·∆

)
operations, the first term corresponds to updating µ(u) and Incorrect, which re-
quires for each outgoing edge of u to compute δ , and the second term corresponds to
considering all incoming edges of u and treating the incorrect ones. Thus the overall
complexity for a single iteration is

O

(
∑
u∈V

(|In−1(u)|+ |Out−1(u)|) ·∆

)
= O(m ·∆).

The pseudocode for the case of fixed point through monotonicity is given in Al-
gorithm 1.3. It can be easily adapted to the case of fixed point through contraction by
adding a stopping criterion when ‖OG (µ)−µ‖ is small enough.

The correctness of the algorithm is a consequence of the following invariant: for
µ ∈ FY , if Incorrect is the set of incorrect vertices and for all u ∈VMin, Count(u)
the number of incorrect outgoing edges of u, then applying Treat(u) and Update(u)
to all vertices u ∈ Incorrect results in updating µ to OG (µ) and correctly updating
Incorrect and Count. The counting trick is valid because the edge v c−→ u is con-
sidered at most once in calls to the function Update between two calls to Update(u).

Theorem 9 (Complexity analysis of the refined generic value iteration algorithm based
on fixed point through contraction). Assume Properties 3 and 4 (fixed point through
contraction, monotonicity of δ ). Then the generic value iteration algorithm computes
an ε-approximation of valG within at most O

(
log(ε)
log(λ )

)
iterations, where λ ∈ (0,1) is

the contraction factor of OG . The computational cost of a single iteration is O(m ·∆),
so the running time of the whole algorithm is O(nm ·∆ · |Y |).

1.10 Strategy improvement algorithms
Value iteration algorithms manipulate value functions and never construct any strategy,
at least explicitly. This is a key difference with strategy improvement algorithms (also
called policy iteration algorithms) whose fundamental idea is to maintain and improve
a strategy. Let us consider a ‘local’ operator OG , induced by a function δ : Y ×C→Y :

OG (µ)(u) =

max
{

δ (µ(v),c) : u c−→ v ∈ E
}

if u ∈VMax,

min
{

δ (µ(v),c) : u c−→ v ∈ E
}

if u ∈VMin.
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Algorithm 1.3: A generic value iteration algorithm based on fixed point
through monotonicity – refined version.

Function Init():
for u ∈V do

µ(u)←⊥
for u ∈VMin do

for u c−→ v ∈ E do
if incorrect: µ(u)< δ (µ(v),c) then

Count(u)← Count(u)+1

if Count(u) = Degree(u) then
Add u to Incorrect

for u ∈VMax do
for u c−→ v ∈ E do

if incorrect: µ(u)< δ (µ(v),c) then
Add u to Incorrect

Function Treat(u):
if u ∈VMax then

µ(u)←max
{

δ (µ(v),c) : u c−→ v ∈ E
}

if u ∈VMin then
µ(u)←min

{
δ (µ(v),c) : u c−→ v ∈ E

}
Function Update(u):

if u ∈VMin then
Count(u)← 0

for v c−→ u ∈ E do
if v c−→ u is incorrect then

if v ∈VMin then
Count(v)← Count(v)+1
if Count(v) = Degree(v) then

Add v to Incorrect′

if v ∈VMax then
Add v to Incorrect′

Function Main():
Init ()
for i = 0,1,2, . . . do

Incorrect′← /0
for u ∈ Incorrect do

Treat (u)
Update (u)

if Incorrect′ = /0 then
return µ

else
Incorrect← Incorrect′
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Let us recall from the previous section that we consider two scenarios:

• in the quantitative case, we start from a quantitative condition f : Cω → R∪
{±∞},

• in the qualitative case, we assume the existence of a function f : Cω → Y , and
thanks to Property 1 computing the value function valG yields the winning re-
gions.

For value iteration algorithms it was enough for Y to be a lattice. Here we need a
stronger assumption: Y is a total order.

Let us consider a game G and set as a goal to construct an optimal strategy for
Max. The key idea behind strategy improvement is to use valσ to improve the strategy
σ by switching edges, which is an operation that creates a new strategy. This involves
defining the notion of improving edges: let us consider a vertex u ∈ VMax, we say that
e : u c−→ v is an improving edge if

δ (valσ (v),c)> valσ (u).

Intuitively: according to valσ , playing e is better2 than playing σ(u).
Given a strategy σ and a set of improving edges S (for each u ∈VMax, S contains at

most one outgoing edge of u), we write σ [S] for the strategy

σ [S](u) =

{
e if there exists e = u c−→ v ∈ S,
σ(v) otherwise.

The difficulty is that an edge being improving does not mean that it is a better move
than the current one in any context, but only according to the value function valσ , so it
is not clear that σ [S] is better than σ . Strategy improvement algorithms depend on the
following two principles:

• Progress: updating a strategy using improving edges is a strict improvement,

• Optimality: a strategy which does not have any improving edges is optimal.

The pseudocode of the algorithm is given in Algorithm 1.4. The algorithm is non-
deterministic, in the sense that both the initial strategy and at each iteration, the choice
of improving edge can be chosen arbitrarily. A typical choice, called the “greedy all-
switches” rule, choosing for each u ∈VMax a maximal improving edge, meaning

argmax
{

δ (valσ (v),c) : u c−→ v ∈ E
}
.

Let us write σ ≤ σ ′ if for all vertices v we have valσ (v) ≤ valσ
′
(v), and σ < σ ′

if additionally ¬(σ ′ ≤ σ). Unfortunately, there are no generic correctness proofs for
the progress property for this algorithm (we refer to the reference section for further
discussion). However, the optimality property can be proved at this level of generality,

2We need Y to be totally ordered here.
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Algorithm 1.4: The generic strategy improvement algorithm.
Choose an initial strategy σ0 for Max
for i = 0,1,2, . . . do

Compute valσi and the set of improving edges
if σi does not have improving edges then

return σi
Choose a non-empty set Si of improving edges
σi+1← σi[Si]

for the two approaches for fixed point computations: this is the object of the next two
subsections.

We refer to Section 4.3 for a concrete instantiation for energy games using mono-
tonic fixed point computations, and to Section 4.4 for discounted payoff games using
contracting fixed point computations.

Fixed point through monotonicity

Let us start with an important remark: Property 2 (fixed point through monotonicity)
assumes that the value function is computed as the least fixed point of the monotonic
operator OG . It is very important in the developments below that this is a least fixed
point, and not a greatest fixed point: the proof cannot be easily adapted to this latter
case.

Theorem 10 (Optimality property for strategy improvement algorithms based on fixed
point through monotonicity). Assume Properties 2 and 4 (fixed point through mono-
tonicity, monotonicity of δ ). Let σ a strategy that has no improving edges, then σ is
optimal.

Proof. We prove the contrapositive: assume that σ is not optimal, we show that it must
have some improving edge. The fact that σ is not optimal means that valσ < valG .
Since valG is the least fixed point of OG , it is also its least pre-fixed point. Therefore
valσ is not a pre-fixed point: ¬(valσ ≥OG (valσ )). Hence there exists u ∈V such that
valσ (u)<OG (valσ )(u).

We rule out the case that u ∈ VMin: since valσ is a fixed point of OG [σ ], this im-
plies that for u ∈ VMin we have valσ (u) = min

{
δ (valσ (v),c) : u c−→ v ∈ E

}
, equal to

OG (valσ )(u). Therefore u∈VMax, implying that there exists u c−→ v such that valσ (u)<
δ (valσ (v),c). This is the definition of u c−→ v being an improving edge.

Fixed point through contraction

Theorem 11 (Optimality property for strategy improvement algorithms based on fixed
point through contraction). Assume Property 3 (fixed point through contraction). Let
σ be a strategy that has no improving edges, then σ is optimal.
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Proof. Let σ be a strategy that has no improving edges. We claim that valσ is a fixed
point of OG , which thanks to Property 3 implies that valσ = valG , meaning that σ is
optimal.

Thanks to Property 3 valσ is the unique fixed point of OG [σ ], so for u ∈ VMin we
have valσ (u) = min

{
δ (valσ (v),c) : u c−→ v ∈ E

}
.

The fact that σ has no improving edges reads: for all u ∈VMax, for all u c′−→ v′ ∈ E,
δ (valσ (v′),c′) ≤ δ (valσ (v),c) where σ(u) = u c−→ v. Since valσ (u) = δ (valσ (v),c),
this implies that valσ (u) = max

{
δ (valσ (v′),c) : u c−→ v′ ∈ E

}
.

The two equalities above witness that valσ is the unique fixed point of OG .

Bibliographic references

The study of games, usually called game theory, has a very long history rooted in
mathematics, logic, and economics, among other fields. Foundational ideas and notions
emerged from set theory with for instance backward induction by Zermelo [Zer13],
and topology with determinacy results by Martin [Mar75] (stated as Theorem 1 in this
chapter), and Banach-Mazur and Gale-Stewart games [GS53].

The topic of this book is a small part of game theory: we focus on infinite dura-
tion games played on graphs. In this chapter we defined deterministic games, mean-
ing games with no source of randomness, which will be the focus of Part I. Part II
introduces stochastic games, which were initially studied in mathematics. We refer
to Section 6.6.3 for more bibliographic references on stochastic games, and focus in
this chapter on references for deterministic games.

The model presented in this chapter emerged from the study of automata theory
and logic, where it is used as a tool for various purposes. Let us first discuss the role of
games in two contexts: for solving the synthesis problem of reactive systems and for
automata and logic over infinite trees.

The synthesis problem for non-terminating reactive systems was formulated in gen-
eral terms by Church [Chu57, Chu62] and is therefore also called Church’s problem:
from a specification of a step-by step transformation of an input stream given in some
logical formalism, construct a system satisfying the specification. The first published
paper solving Church’s problem for monadic second-order logic was written by Büchi
and Landweber [BL69], following a paper by Landweber [Lan67] (then Büchi’s PhD
student) focussing on solving games. However, the idea of casting the synthesis prob-
lem as a game between a system and its environment is due to McNaughton: in the
technical report [McN65] McNaughton attempted to give a solution to the synthesis
problem using games, initiating many of the most important ideas for analysing games.
Unfortunately the proof contained an error which Landweber detected and communi-
cated to McNaughton, who then decided to let Landweber publish his complete solu-
tion. One of the most difficult step in the solution of Church’s problem for monadic
second-order logic by Büchi and Landweber [BL69] is the determinisation procedure
from Büchi to Muller automata due to McNaughton [McN66]. We refer to Thomas’
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survey [Tho09] for more details on some historical and technical aspects of the early
papers on Church’s synthesis problem.

Games emerged in another aspect of automata theory: for understanding the diffi-
cult result of Rabin [Rab69a] saying that automata over infinite trees can be effectively
complemented. This is the key step for proving Rabin’s seminal result that the monadic
second-order theory of the infinite binary tree is decidable. The celebrated paper of
Gurevich and Harrington [GH82] revisits Rabin’s result by reducing the complementa-
tion question to a determinacy result for games. Interestingly, they credit McNaughton
for ‘airing the idea’ of using games in this context and then for exploiting it to Landwe-
ber [Lan67], Büchi and Landweber [BL69], and Büchi [Büc77].

Both lines of work have been highly influential in automata theory and logic; we
refer to the reference section in Chapter 2 for more bibliographic references on this
connection. They bind automata theory and logic to the study of games on graphs and
provide motivations and questions many of which are still open today.

Beyond these two examples there are many applications of games in theoretical
computer science and logic in particular. The following quote is due to Hodges [Hod93]:

An extraordinary number of basic ideas in model theory can be ex-
pressed in terms of games.

Let us mention model checking games, which are used for checking whether a model
satisfies a formula. They often form both a theoretical tool for understanding the model
checking problem and proving its properties, as well as an algorithmic backend for ef-
fectively deciding properties of a logical formalism (we refer to [Grä02] for a survey on
model checking games). Another important construction of a game for understanding
logical properties is the Ehrenfeucht-Fraïssé games [Ehr61, Fra50, Fra53] whose goal
is to determine whether two models are equivalent against a logical formalism.

Value iteration and strategy improvement algorithms are the most common families
of algorithms. The latter are also often called policy improvement or policy iteration.
There are many frameworks presenting them in generic terms as we did in this chap-
ter, see for instance [CFGO22] for value iteration and [Ohl21, Koz21] for strategy
improvement algorithms. The PhD thesis [Ohl21] shows a generic argument for the
progress property to hold in the setting of monotonic universal graphs, but it considers
the restricted version where only one edge can be switched at a time.
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Chapter 2
Regular Games
NATHANAËL FIJALKOW, FLORIAN HORN

This chapter considers the so-called regular games, which from the easiest to the most
complicated are: reachability, Büchi, parity, Rabin, and then Muller games. We de-
velop in Section 2.1 the notion of attractors for solving reachability games. This is the
main building block for constructing algorithms throughout the book. The next step is
Büchi games in Section 2.2. We then construct a conceptually simple exponential time
recursive algorithm for solving parity games in Section 2.3. Section 2.4 is a short di-
gression about a general result for proving positional determinacy of qualitative games.
We come back to regular games in Section 2.5, extending the recursive algorithm of
parity games to Muller games, and discuss the computational complexities of solving
Rabin, Streett, and Muller games. Finally, Section 2.6 is devoted to the combinato-
rial notion of the Zielonka tree, which beautifully explains the memory requirements
for Muller games and gives additional insights into the structures of Rabin and parity
objectives.

Remark 6 (Finite versus infinite games). As in the rest of the book unless otherwise
specified we consider finite games. However all positionality and finite memory deter-
minacy results proved in this chapter hold for infinite games. In all cases the proofs
we give use the finiteness of the games. In many cases, the proofs can be extended to
infinite games with a technical overhead involving in particular a transfinite induction.
The difficulty is illustrated before the proof of Theorem 12.

2.1 Reachability games
Recall that the objective Reach requires that the colour Win appears at least once and
Safe requires that the colour Lose never appears. We identify the colour Win with
c−1(Win) the set of edges labelled Win, so we write e ∈Win when c(e) = Win, and
similarly for Lose. Therefore Reach(c) can equivalently can described as Reach(Win).

59
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Theorem 12 (Positional determinacy and complexity of reachability games). Reacha-
bility objectives are uniformly positionally determined. There exists an algorithm for
computing the winning regions of reachability games in linear time and space. More
precisely the time and space complexity are both O(m).

The positional determinacy result holds for infinite arenas.
The complexity results are stated in the unit cost RAM model with machine word

size w = log(m) with m the number of edges. We refer to Section 1.2 for more de-
tails about the model, which is in subtle ways different than the Turing model. The
complexity would be slightly different in the Turing model: an additional log(m) fac-
tor would be incurred for manipulating numbers of order m, which the unit cost RAM
model allows us to conveniently hide.

In the literature the complexity O(n+m) is often reported for solving reachability
games. Since we make the assumption that every vertex has an outgoing edge this
implies that n≤ m, so O(n+m) = O(m).

Reachability and safety games are most often defined labelling vertices than edges.
As explained in Section 1.1, labelling edges is slightly more general than labelling
vertices. To improve readability, let us first consider the case where we label vertices,
and then explain how this (seamlessly) extends to labelling edges. The condition is
Reach(Win) with Win a set of vertices. Let us introduce some notations. For a subset
X ⊆ V , we let PreEve(X) ⊆ V the set of vertices from which Eve can ensure that the
next vertex is in X :

PreEve(X) = {u ∈VEve : ∃u−→ v ∈ E,v ∈ X}
∪ {u ∈VAdam : ∀u−→ v ∈ E, v ∈ X} .

Let us define an operator on subsets of vertices:

X 7→Win∪PreEve(X).

We note that this operator is monotonic when equipping the powerset of vertices with
the inclusion preorder: if X ⊆ X ′ then PreEve(X) ⊆ PreEve(X ′). Hence Theorem 4
applies: this operator has a least fixed point which we call the attractor of Win for
Eve and write AttrEve(Win), and it is computed by the following sequence: we let
Attr0

Eve(Win) = Win and

Attrk+1
Eve (Win) = Win ∪ PreEve(Attrk

Eve(Win)).

This constructs a sequence (Attrk
Eve(Win))k∈N of non-decreasing subsets of V . If the

game is finite and n is the number of vertices, the sequence stabilises after at most n−1
steps, i.e. Attrn−1

Eve (Win) = Attrn
Eve(Win) = AttrEve(Win).

Let us drop the finiteness assumption: if the game is infinite but has finite outde-
gree, meaning that for any vertex there is a finite number of outgoing edges, then the
operator above preserves suprema so thanks to Theorem 4 we have AttrEve(Win) =⋃

k∈N Attrk
Eve(Win). In full generality the operator does not preserve suprema and the

use of ordinals is necessary: we define the sequence (Attrα
Eve(Win)) indexed by or-

dinals up to the cardinal of G , the case of a limit ordinal α being Attrα
Eve(Win) =
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⋃
β<α Attrβ

Eve(Win). We then show that AttrEve(Win) is the union of all elements in
this sequence. We do not elaborate further this most general case but note that the
overhead is mostly technical, the proof below of Lemma 9 can be adapted with little
changes using a transfinite induction.

The following lemma shows how the attractor yields a solution to reachability
games and directly implies Theorem 12.

Lemma 9 (Characterisation of the winning region of reachability games using attrac-
tors). Let G a reachability game. Then WEve(G ) = AttrEve(Win), and:

• there exists a uniform positional strategy σ for Eve called the attractor strat-
egy defined on AttrEve(Win) which ensures to reach Win from any vertex in
AttrEve(Win), with the property that for any k ∈ N all plays consistent with σ

from Attrk
Eve(Win) reach Win within k steps and remain in AttrEve(Win) until do-

ing so;

• there exists a uniform positional strategy τ for Adam called the counter-attractor
strategy defined on V \AttrEve(Win) which ensures never to reach Win from any
vertex in V \AttrEve(Win), with the property that all plays consistent with τ re-
main in V \AttrEve(Win).

The following definition is very important: for v ∈ V , the rank of v is the smallest
k ∈ N such that v ∈ Attrk

Eve(Win).

Proof. We first show that AttrEve(Win) ⊆WEve(G ). We use the rank to define a posi-
tional strategy σ for Eve. Let u ∈ VEve of rank k+ 1, then u ∈ PreEve(Attrk

Eve(Win)),
so there exists u−→ v ∈ E such that v ∈ Attrk

Eve(Win), define σ(u) = u−→ v. If u ∈VEve
has rank 0, meaning u ∈Win, the game is already won.

We argue that σ ensures Reach(Win). By construction in any play consistent with
σ at each step either we are in Win or the rank decreases by at least one. Thus any play
consistent with σ from AttrEve(Win) reaches Win.

We now show that WEve(G )⊆ AttrEve(Win). For this we actually show

V \AttrEve(Win)⊆WAdam(G ).

Indeed, WAdam(G )⊆V \WEve(G ), because Eve and Adam cannot have a winning strat-
egy from the same vertex. This property is clear and holds for any game, it should not
be confused with determinacy.

We define a positional strategy τ for Adam from V \AttrEve(Win). Let u ∈ VAdam
in V \AttrEve(Win), there exists u −→ v ∈ E such that v ∈ V \AttrEve(Win), define
τ(u) = u −→ v. Similarly, if u ∈ VEve in V \AttrEve(Win), then for all u −→ v ∈ E,
we have v ∈ V \AttrEve(Win). It follows that any play consistent with τ remain in
V \AttrEve(Win) hence never reaches Win, in other words τ ensures Safe(Win) from
V \AttrEve(Win).

Let us note that the proof above extends very easily to the edge labelling case. Let
Win a set of edges, we define:

Win′= {u ∈VEve : ∃e = u−→ v ∈ E, e ∈Win}∪{u ∈VAdam : ∀e = u−→ v ∈ E, e ∈Win} .
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Eve has a winning strategy for Reach(Win) if and only if she has one for Reach(Win′),
which reduces edge labelling to vertex labelling for reachability games. In the pseu-
docode of Algorithm 2.1 we use the (more general) edge labelling convention. Algo-
rithm 2.1 is an efficient implementation of the attractor computation, and more pre-
cisely it computes the ranks of all vertices: it returns a function µ : V → N∪{∞} such
that µ(u) is the rank of u, as stated in the following theorem.

Theorem 13 (Computing ranks for reachability games). There exists an algorithm for
computing the ranks of all vertices in reachability games in linear time and space.
More precisely the time and space complexity are both O(m).

In Section 4.5 we will generalise this algorithm to a quantitative setting, considering
the shortest path objective. We invite the reader to compare this algorithm to the generic
value iteration algorithm presented in Algorithm 1.3: it is indeed the instantiation of
this framework for the quantitative shortest path objective with all weights equal to
one.

The correctness of the algorithm hinges on the following invariant: for i≥ 1, before
the ith iteration in the Main function,

• µ has correctly computed the ranks of vertices strictly less than i,

• Incorrect is the set of vertices of rank i−1,

• for each v ∈ VAdam, Count(v) is the number of outgoing edges of v to vertices
of ranks strictly less than i.

The function Init ensures these properties for i = 1. To see that the invariant is
preserved, note that each vertex v is updated at most once, and therefore each edge
u −→ v is considered at most once, so Count is correctly updated. To get the overall
O(m) complexity, we note that each vertex v is updated at most once over the course of
the algorithm.

Remark 7 (RAM versus Turing models of computation). We note that in the complex-
ity analysis the cost of manipulating (and in particular incrementing) the counters for
the number of edges is constant, which holds in the unit cost RAM model of compu-
tation. The same algorithm analysed in the Turing model of computation would have
an additional O(log(n)) multiplicative factor in the time complexity to take this into
account.

Subgames
Additionally to solving reachability games, the notion of attractors induces a common
way of constructing traps and subgames. This discussion is very closely related to the
notion of traps defined in Section 1.7, but some extra care is required because of the
edge labelling convention.

Let G a game and F ⊆ E a subset of edges. By definition of the attractor:

• for every u ∈ VAdam \AttrEve(F), there exists u→ v ∈ E which is not in F and
v ∈V \AttrEve(F), and
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Algorithm 2.1: The linear time algorithm for reachability games.
Data: A reachability game
Function Init():

for u ∈V do
µ(u)← ∞

if u ∈VAdam then
Count(u)← 0

for u ∈VEve do
for u Win−−→ v ∈ E do

µ(u)← 0
Add u to Incorrect

for u ∈VAdam do
for u Win−−→ v ∈ E do

Count(u)← Count(u)+1
if Count(u) = Degree(u) then

µ(u)← 0
Add u to Incorrect

Function Update(u):
for v−→ u ∈ E do

if v ∈VAdam then
Count(v)← Count(v)+1
if Count(v) = Degree(v) then

Add v to Incorrect′

if v ∈VEve then
Add v to Incorrect′

Function Main():
Init ()
for i = 1,2, . . . do

Incorrect′← /0
for u ∈ Incorrect do

µ(u)← i
Update (u)

if Incorrect′ = /0 then
return µ

else
Incorrect← Incorrect′
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• for every u ∈ VEve \AttrEve(F), for all e = u→ v ∈ E, we have e /∈ F and v ∈
V \AttrEve(F).

This means that we can define the subgame G \AttrEve(F) as follows: the set of vertices
is V \AttrEve(F), and the set of edges G to the subset of E \F where both incoming
and outgoing vertices are in V \AttrEve(F). The colouring function and the condition
are naturally induced from G to G \AttrEve(F).

Let us emphasise a subtlety here: indeed V \AttrEve(F) is a trap for Eve, so we can
define the subgame induced by the set of vertices V \AttrEve(F). But it is not the same
as G \AttrEve(F): in the latter we remove the edges in F , which may still be present in
the induced subgame.

Lemma 10 (Attractors induce subgames – statement for Adam). Let τ a strategy for
Adam in the subgame G \AttrEve(F), it induces a strategy τ ′ in G such that plays con-
sistent with τ in G \AttrEve(F) are in one-to-one correspondence with plays consistent
with τ ′ in G , in particular any play consistent with τ ′ stays forever in G \AttrEve(F).

This very useful lemma is very heavily used when decomposing games, and in a
small abuse of notations we identify the strategies τ and τ ′.

The analogous statement can be made for the subgame G \AttrAdam(F):

Lemma 11 (Attractors induce subgames – statement for Eve). Let σ a strategy for Eve
in the subgame G \AttrAdam(F), it induces a strategy σ ′ in G such that plays consistent
with σ in G \AttrAdam(F) or in one-to-one correspondence with plays consistent with
σ ′ in G , in particular any play consistent with σ ′ stays forever in G \AttrAdam(F).

2.2 Büchi games
Recall that the objective Buchi requires that the colour Win appears infinitely many
times and CoBuchi requires that the colour Lose appears finitely many times.

Theorem 14 (Positional determinacy and complexity of Buchi games). Büchi objec-
tives are uniformly positionally determined1. There exists an algorithm for computing
the winning regions of Büchi games in quadratic time, more precisely O(mn), and lin-
ear space, more precisely O(m).

We present two different yet very similar algorithms.

A first algorithm
The following lemma implies Theorem 14.

Lemma 12 (Fixed point characterisation of the winning region for Büchi games). Let
G be a Büchi game.

• If AttrEve(Win) =V , then WEve(G ) =V .

1See Remark 6 for the case of infinite games.
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• If AttrEve(Win) 6= V , let G ′ = G \AttrAdam(V \AttrEve(Win)), then WEve(G ) =
WEve(G

′).

Proof. We prove the first item. Let σ be an attractor strategy ensuring to reach Win
from AttrEve(Win)=V . We argue that σ ensures Buchi(Win). Indeed a play consistent
with σ can be divided into infinitely many finite plays, each of them consistent with σ

until reaching Win, and starting from scratch from the next vertex onwards. Thus σ is
winning from V .

We now look at the second item. We first prove that AttrAdam(V \AttrEve(Win))⊆
WAdam(G ). Let τa denote an attractor strategy ensuring to reach V \AttrEve(Win) from
AttrAdam(V \AttrEve(Win)), and τc a counter-attractor strategy ensuring to never reach
Win from V \AttrEve(Win). We construct the strategy τ as the disjoint union of τa
and τc:

τ(v) =

{
τa(v) if v ∈ AttrAdam(V \AttrEve(Win))\ (V \AttrEve(Win)),
τc(v) if v ∈V \AttrEve(Win).

Any play consistent with τ is first consistent with τa until reaching V \AttrEve(Win)
and then is consistent with τc and stays there forever. In this second phase it does not
visit Win, implying that the play visits Win finitely many times, so it is winning. Thus
we have proved that AttrAdam(V \AttrEve(Win)) ⊆WAdam(G ), implying WEve(G ) ⊆
V \AttrAdam(V \AttrEve(Win)).

We now show that WEve(G
′) ⊆WEve(G ), which implies the converse inclusion.

Consider a winning strategy from WEve(G
′) in G ′, thanks to Lemma 11 it induces a

winning strategy in G .

The algorithm is presented in pseudocode in Algorithm 2.2. For the complexity
analysis, the algorithm performs at most n recursive calls and each of them involves
two attractor computations, implying the time complexity O(mn).

Algorithm 2.2: The first quadratic time algorithm for solving Büchi games.
Data: A Büchi game.
Function Solve(G):

X ← AttrEve(Win)
if X =V then

return V
else

Let G ′ = G \AttrAdam(V \X)
return Solve(G ′)

Let us see how uniform positional determinacy follows from Lemma 12. The short-
est proof is by induction on the number of vertices, and remark that in both cases
in Lemma 12 this number decreases.

A more instructive proof proceeds by unfolding the fixed point computation. Let
G0 =G the original game, and applying the computation yields a sequence of subgames
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G1,G2, . . . ,Gp. Let us write Vk for the set of vertices of Gk, we have AttrGp
Eve(Win) =

Vp. Thanks to the lemma, we have WEve(G ) = Vp. The proof constructs a positional
uniform winning strategy in Gp from WEve(G ), which thanks to Lemma 11 induces a
positional uniform winning strategy in G from WEve(G ).

The case of Adam is a bit more complicated. For v /∈Vk, the rank of v is the smallest
k ∈ N such that v ∈V \Vk. Equivalently, v ∈Vk−1 \Vk.

For each k, let τa,k denote an attractor strategy ensuring to reach Vk \AttrGk
Eve(Win)

from AttrGk
Adam(Vk \AttrGk

Eve(Win)), and τc,k a counter-attractor strategy ensuring to never
reach Win from Vk \AttrGk

Eve(Win). We construct the strategy τ in G as the disjoint union
of all τa,k and τc,k:

τ(v) =

{
τa,k(v) if rank(v) = k and v /∈Vk \AttrGk

Eve(Win),
τc,k(v) if rank(v) = k and v ∈Vk \AttrGk

Eve(Win).

and argue that it ensures CoBuchi(Win). Note that τ is the disjoint union of positional
strategies, it is positional. Consider a play consistent with τ starting from a vertex of
rank k. In the first phase, the play is consistent with τa,k. If we were playing in Gk,
this would go on until reaching V \AttrGk

Eve(Win). But since we are here playing in G ,
there is another possibility: that Eve chooses an edge leading outside of Gk. In that case
necessarily the next vertex is in Gk−1, so it has smaller rank. In the second phase, which
starts upon reaching V \AttrGk

Eve(Win), the play is consistent with τc,k, and again two
things can happen. Either the play remains in Gk, so it is consistent with τc,k forever,
in which case it never sees Win and therefore satisfies CoBuchi(Win), or it exists Gk,
necessarily to reach Gk−1, meaning that it reaches a vertex of smaller rank. Along any
play consistent with τ the rank never increases, implying that it is eventually consistent
with some τc,k hence satisfies CoBuchi(Win).

A second algorithm
The following lemma induces a different algorithm with the same complexity. We
define the operator PreWin

Eve on subsets of vertices: for Y ⊆V ,

PreWin
Eve (Y ) =

{
v ∈VE : ∃v Win−−→ v′ ∈ E,v′ ∈ Y

}
∪
{

v ∈VA : ∀v Win−−→ v′ ∈ E, v′ ∈ Y
}
.

Lemma 13 (Second fixed point characterisation of the winning region for Buchi games).
Let G a Büchi game. Then WEve(G ) is the greatest fixed point of the monotonic opera-
tor

Y 7→ AttrEve
(
PreWin

Eve(Y )
)
.

Proof. Thanks to Theorem 4 the greatest fixed point is also the greatest post-fixed
point, so we need to show two properties:

• WEve(G ) is a post-fixed point, meaning WEve(G )⊆ AttrEve
(
PreWin

Eve (WEve(G ))
)
.

• For all post-fixed points Y , we have Y ⊆WEve(G ).
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We first show that WEve(G ) ⊆ AttrEve
(
PreWin

Eve (WEve(G ))
)
. We actually show that

V \AttrEve
(
PreWin

Eve (WEve(G ))
)
⊆WAdam(G ), implying the inclusion by complement-

ing. Let τ be a counter-attractor strategy ensuring never to reach PreWin
Eve (WEve(G )) from

V \AttrEve
(
PreWin

Eve (WEve(G ))
)
. We additionally require that τ chooses Lose edges over

Win edges whenever possible: for each v ∈ VAdam ∩ (V \AttrEve
(
PreWin

Eve (WEve(G ))
)
),

if there exists v Lose−−→ v′ with v′ /∈ AttrEve
(
PreWin

Eve (WEve(G ))
)
, define τ(v) = v Lose−−→ v′.

Let τ ′ a winning strategy from WAdam(G ). We play the following strategy: play τ ′

from WAdam(G ) and τ otherwise. Let us consider a play consistent with this strategy

from V \AttrEve
(
PreWin

Eve (WEve(G ))
)
, and assume that it reaches an edge v Win−−→ v′. If v∈

VEve, since v /∈ PreWin
Eve (WEve(G )) this implies that v′ ∈WAdam(G ). If v ∈VAdam, the ad-

ditional property of τ ′ ensures that v′ ∈WAdam(G ). Hence after reaching Win we switch
to a winning strategy, so the strategy is winning from V \AttrEve

(
PreWin

Eve (WEve(G ))
)
.

Let Y a post-fixed point, meaning Y ⊆AttrEve
(
PreWin

Eve (Y )
)
. We show that WEve(G )⊆

Y . Let σa be an attractor strategy ensuring to reach PreWin
Eve (Y ) from Y . We also define

a strategy σp: for v ∈VEve, if v ∈ PreWin
Eve (Y ) there exists v Win−−→ v′ ∈ E such that v′ ∈ Y ,

let us define σp(v) = v−→ v′. We define the strategy σ as follows:

σ(v) =

{
σa(v) if v ∈ AttrEve(PreWin

Eve (Y ))\PreWin
Eve (Y ),

σp(v) if v ∈ PreWin
Eve (Y ).

We argue that σ ensures Buchi(Win) from Y . Indeed a play consistent with σ can be
divided into infinitely many finite plays, each of them consistent with σa until reaching
PreWin

Eve (Y ), then one step consistent with σp reaching Win, before starting from scratch
in Y .

Lemma 12 directly transfers to Algorithm 2.3. We could also obtain uniform posi-
tional determinacy from Lemma 13, using a similar unfolding as for Lemma 12.

Algorithm 2.3: The second quadratic time algorithm for solving Büchi
games.

Data: A Büchi game.
Y ←V
repeat

Y ← AttrEve
(
PreWin

Eve (Y )
)

until Y = AttrEve
(
PreWin

Eve(Y )
)
;

return Y

Remark 8 (Comparison of the two algorithms). Both algorithms have the same com-
plexity but they are not equivalent: the number of recursive calls of the first algorithm
may be strictly smaller than the number of iterations of the repeat loop in the sec-
ond algorithm. Both can be extended into (different) algorithms for parity games and
beyond; in this chapter we will work with the first algorithm.
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2.3 Parity games
Recall that the parity objective extends Büchi and coBüchi objectives:

Parity= {ρ ∈ [1,d]ω | the largest priority appearing infinitely often in ρ is even} .

Theorem 15 (Positional determinacy and complexity of parity games). Parity objec-
tives are uniformly positionally determined2. There exists an algorithm for computing
the winning regions of parity games in exponential time, and more precisely of com-
plexity O(mnd−1). The space complexity of O(nd).

Furthermore, solving parity games is in NP∩ coNP.

To prove Theorem 15 we first construct a recursive algorithm for computing the
winning regions of parity games. The algorithm is often called Zielonka’s algorithm,
or more accurately McNaughton Zielonka’s algorithm. We refer to the reference sec-
tion Section 2.6 for a discussion on this nomenclature. The NP∩ coNP complexity
bounds will be discussed at the end of this section.

The following lemma induces (half of) the recursive algorithm. Identifying a colour
and its set of vertices we write d for the set of vertices of priority d.

Lemma 14 (Fixed point characterisation of the winning regions for parity games). Let
G be a parity game with priorities in [1,d], and d even. Let G ′ = G \AttrEve(d).

• If WAdam(G
′) = /0, then WEve(G ) =V .

• If WAdam(G
′) 6= /0, let G ′′=G \AttrAdam(WAdam(G

′)), then WEve(G )=WEve(G
′′).

Note that G ′ has priorities in [1,d−1] and that if WAdam(G
′) 6= /0, then G ′′ has less

vertices than G .

Proof. We prove the first item. Let σd be an attractor strategy ensuring to reach d
from AttrEve(d). Consider a winning strategy for Eve from V \AttrEve(d) in G ′, it in-
duces a strategy σ ′ in G . We construct a strategy σ in G as the disjoint union of σd
on AttrEve(d) and of σ ′ on V \AttrEve(d). Any play consistent with σ either enters
AttrEve(d) infinitely many times, or eventually remains in V \AttrEve(d) and is eventu-
ally consistent with σ ′. In the first case it sees infinitely many times d, which is even
and maximal, hence satisfies Parity, and in the other case since σ ′ is winning the play
satisfies Parity. Thus σ is winning from V .

We now look at the second item. Let τa denote an attractor strategy ensuring to
reach WAdam(G

′) from AttrAdam(WAdam(G
′)). Consider a winning strategy for Adam

from WAdam(G
′) in G ′, it induces a strategy τ ′ in G . Thanks to Lemma 10 τ ′ is

a winning strategy in G . Consider now a winning strategy in the game G ′′ from
WAdam(G

′′), it induces a strategy τ ′′ in G . The set V \AttrAdam(WAdam(G
′)) is not

a trap for Eve, so we cannot conclude that τ ′′ is a winning strategy in G , and it indeed
may not be. We construct a strategy τ in G as the (disjoint) union of the strategy τa on
AttrAdam(WAdam(G

′))\WAdam(G
′), the strategy τ ′ on WAdam(G

′) and the strategy τ ′′ on
WAdam(G

′′). We argue that τ is winning from AttrAdam(WAdam(G
′))∪WAdam(G

′′) in G .

2See Remark 6 for the case of infinite games.
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Indeed, any play consistent with this strategy in G either stays forever in WAdam(G
′′)

hence is consistent with τ ′′ or enters AttrAdam(WAdam(G
′)), hence is eventually consis-

tent with τ ′. In both cases this implies that the play is winning. Thus we have proved
that AttrAdam(WAdam(G

′))∪WAdam(G
′′)⊆WAdam(G ).

We now show that WEve(G
′′) ⊆WEve(G ), which implies the converse inclusion.

Consider a winning strategy from WEve(G
′′) in G ′′, it induces a strategy σ in G . Thanks

to Lemma 11, any play consistent with σ stays forever in WEve(G
′′), implying that σ is

winning from WEve(G
′′) in G .

To get the full algorithm we need the analogous lemma for the case where the
maximal priority is odd. We do not prove the following lemma as it is the exact dual
of the previous lemma, and the proof is the same swapping the two players.

Lemma 15 (Dual fixed point characterisation of the winning regions for parity games).
Let G be a parity game with priorities in [1,d], and d odd. Let G ′ = G \AttrAdam(d).

• If WEve(G
′) = /0, then WAdam(G ) =V .

• If WEve(G
′) 6= /0, let G ′′ = G \AttrEve(WEve(G

′)), then WAdam(G ) =WAdam(G
′′).

The algorithm is presented in pseudocode in Algorithm 2.4.
The proofs of Lemma 14 and Lemma 15 also imply that parity games are position-

ally determined. Indeed, winning strategies are defined as disjoint unions of strategies
constructed inductively.

We now perform a complexity analysis. Let us write f (n,d) for the number of re-
cursive calls performed by the algorithm on parity games with n vertices and priorities
in [1,d]. We have f (n,1) = f (0,d) = 0, with the general induction:

f (n,d)≤ f (n,d−1)+ f (n−1,d)+2.

The term f (n,d− 1) corresponds to the recursive call to G ′ and the term f (n− 1,d)
to the recursive call to G ′′. We obtain f (n,d) ≤ n · f (n,d − 1) + 2n, so f (n,d) ≤
2n(1+ n+ · · ·+ nd−2) = O(nd−1). In each recursive call we perform two attractor
computations so the number of operations in one recursive call is O(m). Thus the
overall time complexity is O(mnd−1).

We finish the proof of Theorem 15 by sketching the argument that solving parity
games is in NP∩ coNP. The first observation is that computing the winning regions
of the one player variants of parity games can be done in polynomial time through a
simple graph analysis that we do not detail here. The NP and coNP algorithms are
the following: guess a winning positional strategy, and check whether it is winning
by computing the winning regions of the one player game induced by the strategy.
Guessing a strategy for Eve is a witness that the answer is yes so it yields an NP

algorithm, and guessing a strategy for Adam yields a coNP algorithm.
Chapter 3 is devoted to the study of advanced algorithms for parity games.
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Algorithm 2.4: A recursive algorithm for computing the winning regions of
parity games.

Data: A parity game G with priorities in [1,d]
Function SolveEven(G):

G ′← G \AttrGEve(d)
X ← SolveOdd(G ′) // G ′ has one less priority
if X = /0 then

return V
else

G ′′← G \AttrGAdam(X)
return SolveEven(G ′′) // G ′′ has less vertices

Function SolveOdd(G):
if d = 1 then

return V
G ′← G \AttrGAdam(d)
X ← SolveEven(G ′) // G ′ has one less priority
if X = /0 then

return V
else

G ′′← G \AttrGEve(X)
return SolveOdd(G ′′) // G ′′ has less vertices

if d is even then
SolveEven(G)

else
SolveOdd(G)
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2.4 Proving half-positional determinacy for qualitative
games

We define here a generic approach to proving half-positional determinacy results for
qualitative objectives. Let us say that an objective Ω is submixing if:

if ρ1 = ρ0
1 ρ1

1 · · · ρ`
1 · · · /∈Ω

and ρ2 = ρ0
2 ρ1

2 · · · ρ`
2 · · · /∈Ω,

then: ρ1 1 ρ2 = ρ0
1 ρ0

2 ρ1
1 ρ1

2 · · · ρ`
1 ρ`

2 · · · /∈Ω.

Theorem 16 (Submixing property implies uniform half-positional determinacy). Ev-
ery prefix independent submixing objective is uniformly half-positionally determined
over finite arenas.

Proof. We proceed by induction over the following quantity: total outdegree of vertices
controlled by Eve minus number of vertices controller by Eve. Since we assume that
every vertex has an outgoing edge, the base case is when each vertex of Eve has only
one successor. In that case Eve has only one strategy and it is positional, so the property
holds.

In the inductive step, we consider a game G where Eve has a winning strategy σ .
Let v ∈ VEve with at least two successors. We partition the outgoing edges of v in two
non-empty subsets which we call Ev

1 and Ev
2 . Let us define two games G1 and G2: the

game G1 is obtained from G by removing the edges from Ev
2 , and symmetrically for G2.

We claim that Eve has a winning strategy in either G1 or G2. Let us assume towards
contradiction that this is not the case: then there exist τ1 and τ2 two strategies for Adam
which are winning in G1 and G2 respectively. We construct a strategy τ for Adam in G
as follows: it has two modes, 1 and 2. The initial mode is 1, and the strategy simulates
τ1 from the mode 1 and τ2 from the mode 2. Whenever v is visited, the mode is
adjusted: if the outgoing edge is in Ev

1 then the new mode is 1, otherwise it is 2. To be
more specific: when simulating τ1 we play ignoring the parts of the play using mode
2, so removing them yields a play consistent with τ1. The same goes for τ2.

Consider a play π consistent with σ and τ . Since σ is winning, the play π is
winning. It can be decomposed following which mode the play is in:

mode 1
π0

1︷ ︸︸ ︷
v0 · · ·v

π1
1︷ ︸︸ ︷

v · · ·v · · ·
mode 2 v · · ·v︸ ︷︷ ︸

π0
2

v · · ·v︸ ︷︷ ︸
π1

2

· · ·

where π1 = π0
1 π1

1 · · · is consistent with τ1 and π2 = π0
2 π1

2 · · · is consistent with τ2. Since
τ1 and τ2 are winning strategies for Adam, π1 and π2 do not satisfy Ω.

There are two cases: the decomposition is either finite or infinite. If it is finite we
get a contradiction: since π is winning and Ω is prefix independent any suffix of π is
winning as well, contradicting that it is consistent with either τ1 or τ2 hence cannot be
winning. In the second case, the submixing property directly yields a contradiction:
neither π1 nor π2 satisfy Ω, yet their shuffle π does.
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2.5 Rabin, Streett, and Muller games
The prefix independent objectives we studied so far are Büchi, CoBüchi, and their joint
extension the parity objectives. The definition of the latter may seem a bit arbitrary;
the study of Muller objectives will show how parity objectives naturally emerge as a
well-behaved class of objectives.

Let us start with a very general class of infinitary objectives, where infinitary means
that the objective only considers the set of colours appearing infinitely many times. For
a sequence ρ , we let Inf(ρ) denote the set of colours appearing infinitely many times
in ρ . The Muller objective is over the set of colours C = [1,d] and is parametrised by
some F ⊆ 2C, i.e. a family of subsets of C. The objective is defined as follows:

Muller(F ) = {ρ ∈Cω : Inf(ρ) ∈F} .

Muller objectives include any objective specifying the set of colours appearing in-
finitely often. There are different possible representations for a Muller objective, for
instance using logical formulas or circuits. We will here consider the most natural one
which simply consists in listing the elements of F . Note that F can have size up
to 22d

, and each element of F (which is a subset of C) requires up to d bits to be
identified, so the representation of F can be very large.

We note that the complement of a Muller objective is another Muller objective:
Cω \Muller(F ) = Muller(2C \F ). In particular if Eve has a Muller objective then
Adam also has a Muller objective.

To define subclasses of Muller objectives we make assumptions on F ⊆ 2C. We
say that F is closed under union if whenever X ,Y ∈ F then X ∪Y ∈ F . Let us
define Streett objectives as the subclass of Muller objectives given by F closed under
union. The following purely combinatorial lemma gives a nice characterisation of these
objectives.

Lemma 16 (Characterisation of Streett among Muller objectives). A collection F ⊆ 2C

is closed under union if and only if there exists a set of pairs (Ri,Gi)i∈[1,d] with Ri,Gi ⊆
C such that X ∈F is equivalent to for all i ∈ [1,d], if X ∩Ri 6= /0 then X ∩Gi 6= /0.

We will see in Section 2.6 a natural and optimised way to construct these pairs
using the Zielonka tree. In the meantime let us give a direct proof of this result.

Proof. Let F closed under union. We note that for any S /∈F , either no subsets of
S are in F or there exists a maximal subset S′ of S in F : indeed it is the union of
all subsets of S in F . It directly follows that for a subset X we have the following
equivalence: X ∈ F if and only if for any S /∈ F , if X ⊆ S then X ⊆ S′. This is
rewritten equivalently as: if X ∩ (C \S′) 6= /0 then X ∩ (C \S) 6= /0. Hence a suitable set
of pairs satisfying the required property is {(C \S′,C \S) : S /∈F}.

Thanks to this lemma we can give a direct definition of Streett objectives. The set
of colours is C = [1,d], and we consider a family of subsets G1,R1, . . . ,Gd ,Rd ⊆C.

Streett= {ρ ∈Cω : ∀i ∈ [1,d], Ri∩Inf(ρ) 6= /0 =⇒ Gi∩Inf(ρ) 6= /0} .
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It is customary to call Ri the ith request and Gi the corresponding response; with this
terminology the Streett objective requires that every request made infinitely many times
must be responded to infinitely many times.

The Rabin objectives are the complement of the Streett objectives:

Rabin= {ρ ∈Cω : ∃i ∈ [1,d], Ri∩Inf(ρ) 6= /0∧Gi∩Inf(ρ) = /0} .

McNaughton algorithm: an exponential time algorithm for Muller
games
Theorem 17 (Finite memory determinacy and complexity for Muller games). Muller
objectives are determined with finite memory strategies of size d!3. There exists an
algorithm for computing the winning regions of Muller games in exponential time, and
more specifically of complexity O(dm(dn)d−1), and in polynomial space, and more
specifically O(dm).

The complexity will be improved later in this chapter. The presentation of the
recursive algorithm for computing the winning regions of Muller games follows the
exact same lines as for parity games: indeed, the Muller objective extends the parity
objective, and specialising the algorithm for Muller games to parity games yields the
algorithm we presented above.

The following lemma induces the recursive algorithm for computing the winning
regions of Muller games.

Lemma 17 (Fixed point characterisation of the winning regions for Muller games).
Let G be a Muller game such that C ∈F . For each c ∈C, let Gc = G \AttrEve(c).

• If for all c ∈C, we have WAdam(Gc) = /0, then WEve(G ) =V .

• If there exists c ∈C such that WAdam(Gc) 6= /0, let G ′ = G \AttrAdam(WAdam(Gc)),
then WEve(G ) =WEve(G

′).

Proof. We prove the first item.
For each c ∈C, let σc be an attractor strategy ensuring to reach c from AttrEve(c),

and consider a winning strategy for Eve from V \AttrEve(c) in Gc, it induces a strategy
σ ′c in G . We construct a strategy σ in G which will simulate the strategies above in
turn; to do so it uses C as top-level memory states. (We note that the strategies σ ′c may
use memory as well, so σ may actually use more memory than just C.) The strategy
σ with memory c simulates σc from AttrEve(c) and σ ′c from V \AttrEve(c), and if it
ever reaches c it updates its memory state to c+1 and 1 if c = d. Any play consistent
with σ either updates its memory state infinitely many times, or eventually remains in
V \AttrEve(c) and is eventually consistent with σ ′c. In the first case it sees each colour
infinitely many times, and since C ∈F the play satisfies Muller(F ), and in the other
case since σ ′c is winning the play satisfies Muller(F ). Thus σ is winning from V .

We now look at the second item.
Let τa denote an attractor strategy from AttrAdam(WAdam(Gc)) \WAdam(Gc). Con-

sider a winning strategy for Adam from WAdam(Gc) in Gc, it induces a strategy τc in
3See Remark 6 for the case of infinite games.
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G . Thanks to Lemma 10, this implies that τc is a winning strategy in G . Consider
now a winning strategy in the game G ′ from WAdam(G

′), it induces a strategy τ ′ in G .
The set V \AttrAdam(WAdam(Gc)) may not be a trap for Eve, so we cannot conclude
that τ ′ is a winning strategy in G , and it indeed may not be. We construct a strategy
τ in G as the (disjoint) union of the strategy τa on AttrAdam(WAdam(Gc))\WAdam(Gc),
the strategy τc on WAdam(Gc) and the strategy τ ′ on WAdam(G

′). We argue that τ is
winning from AttrAdam(WAdam(Gc))∪WAdam(G

′) in G . Indeed, any play consistent
with this strategy in G either stays forever in WAdam(G

′) hence is consistent with τ ′ or
enters AttrAdam(WAdam(Gc)), so it is eventually consistent with τc. In both cases this
implies that the play is winning. Thus we have proved that AttrAdam(WAdam(Gc))∪
WAdam(G

′)⊆WAdam(G ).
We now show that WEve(G

′) ⊆WEve(G ), which implies the converse inclusion.
Consider a winning strategy from WEve(G

′) in G ′, it induces a strategy σ in G . Thanks
to Lemma 11, any play consistent with σ stays forever in WEve(G

′), implying that σ is
winning from WEve(G

′) in G .

To get the full algorithm we need the analogous lemma for the case where C /∈F .
We do not prove it as it is the exact dual of the previous lemma, and the proof is the
same swapping the two players.

Lemma 18 (Dual fixed point characterisation of the winning regions for Muller games).
Let G be a Muller game such that C /∈F . For each c ∈C, let Gc = G \AttrAdam(c).

• If for all c ∈C, we have WEve(Gc) = /0, then WAdam(G ) =V .

• If there exists c ∈C such that WEve(Gc) 6= /0, let G ′ = G \AttrEve(WEve(Gc)), then
WAdam(G ) =WAdam(G

′).

The algorithm is presented in pseudocode in Algorithm 2.5. We only give the case
where C ∈F , the other case being symmetric. The base case is when there is only one
colour c, in which case Eve wins everywhere if F = {c} and Adam wins everywhere
if F = /0.

We now perform a complexity analysis of the algorithm. Let us write f (n,d) for the
number of recursive calls performed by the algorithm on Muller games with n vertices
and d colours. We have f (n,1) = f (0,d) = 0, with the general induction:

f (n,d)≤ d · f (n,d−1)+ f (n−1,d)+d +1.

The term d · f (n,d− 1) corresponds to the recursive calls to Gc for each c ∈ C and
the term f (n−1,d) to the recursive call to G ′. We obtain f (n,d) ≤ dn · f (n,d−1)+
(d+1)n, so f (n,d)≤ (d+1)n(1+dn+(dn)2+ · · ·+(dn)d−2) = O((dn)d−1). In each
recursive call we perform d +1 attractor computations so the number of operations in
one recursive call is O(dm). Thus the overall time complexity is O(dm(dn)d−1).

The proofs of Lemma 17 and Lemma 18 also imply that Muller games are deter-
mined with finite memory of size d!. We do not make it more precise here because an
improved analysis of the memory requirements will be conducted in Section 2.6 using
a variant of this algorithm.
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Algorithm 2.5: A recursive algorithm for computing the winning regions of
Muller games.

Data: A Muller game G over C
Function SolveIn(G):

// Assumes C ∈F
if C = {c} then

return V
for c ∈C do

Gc← G \AttrGEve(c)
if C \{c} ∈F then

WEve(Gc)← SolveIn(Gc) // Gc has one colour less

else
WEve(Gc)← SolveOut(Gc) // Gc has one colour less

if ∀c ∈C,WAdam(Gc) = /0 then
return V

else
Let c such that WAdam(Gc) 6= /0
G ′← G \AttrGAdam(WAdam(Gc))
return SolveIn(G ′) // G ′ has less vertices

Function SolveOut(G):
// Symmetric to SolveIn, assumes C /∈F

if C ∈F then
SolveIn(G)

else
SolveOut(G)



76 CHAPTER 2. REGULAR GAMES

Half-positional determinacy for Rabin games
Theorem 18 (Half-positional determinacy for Rabin games). Rabin games are uni-
formly half-positionally determined.

Theorem 18 is a direct corollary of Theorem 16, since the Rabin objective is prefix
independent and submixing. Indeed, let (ρ`

1)`∈N and (ρ`
2)`∈N such that:

ρ1 = ρ0
1 ρ1

1 · · · ρ`
1 · · · /∈ Rabin

and ρ2 = ρ0
2 ρ1

2 · · · ρ`
2 · · · /∈ Rabin,

then: ρ1 1 ρ2 = ρ0
1 ρ0

2 ρ1
1 ρ1

2 · · · ρ`
1 ρ`

2 · · · /∈ Rabin.

Since neither ρ1 nor ρ2 satisfy Rabin, in both for all i ∈ [1,d] if Ri∩Inf(ρ) 6= /0, then
Gi∩Inf(ρ) 6= /0. Since Inf(ρ1 1 ρ2) = Inf(ρ1)∪Inf(ρ2), this implies that ρ1 1 ρ2
does not satisfy Rabin.

Theorem 18 holds for infinite games. However the proof using the submixing prop-
erty only applies to finite games and does not easily extend to infinite ones. A differ-
ent approach is required to obtain the positional determinacy result for infinite games,
see Theorem 25.

The complexity of solving Rabin games
Theorem 19 (Complexity of solving Rabin games). Solving Rabin games is NP-complete.

Proof. The proof that solving Rabin games is in NP follows the same lines as for
solving parity games: the algorithm guesses a positional strategy and checks whether
it is indeed winning. This requires proving that solving Rabin games where Adam
control all vertices can be done in polynomial time, which is indeed true and easy to
see so we will not elaborate further on this.

To prove the NP-hardness we reduce the satisfiability problem for boolean formulas
in conjunctive normal form (SAT) to solving Rabin games.

Let Φ be a formula in conjunctive normal form with n variables x1 . . .xn and m
clauses C1 . . .Cm, where each C j is of the form ` j1 ∨ ` j2 ∨ ` j3 :

Φ =
m∧

j=1

` j1 ∨ ` j2 ∨ ` j3 .

A literal ` is either a variable x or its negation x̄, and we write ¯̀ for the negation of
a literal. The question whether Φ is satisfiable reads: does there exist a valuation
v : {x1, . . . ,xn}→ {0,1} satisfying Φ.

We construct a Rabin game G with m+1 vertices (one per clause, all controlled by
Eve, plus a unique vertex controlled by Adam), 4m edges (4 per clause), and 2n Rabin
pairs (one per literal). We will show that the formula Φ is satisfiable if and only if Eve
has a winning strategy in the Rabin game G .

We first describe the Rabin condition. There is a Rabin pair (R`,G`) for each
literal `, so the Rabin condition requires that there exists a literal ` such that R` is
visited infinitely many times and G` is not. Let us now describe the arena. A play
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x∨ y∨ z

x∨ ȳ∨ z̄

x̄∨ y∨ z̄

Rx

Gx̄

Ry
Gȳ

Rz
Gz̄

RxGx̄

RȳGy

Rz̄Gz

Rx̄

Gx

Ry

Gȳ

Rz̄

Gz

Figure 2.1: The Rabin game for Φ = (x∨ y∨ z)
∧
(x∨ ȳ∨ z̄)

∧
(x̄∨ y∨ z̄).

consists in an infinite sequence of rounds, where in each round first Adam chooses a
clause and second Eve chooses a literal in this clause. When Eve chooses a literal ` she
visits R` and G ¯̀. This completes the description of the Rabin game G , it is illustrated
in Figure 2.1. Let us now prove that this yields a reduction from SAT to solving Rabin
games.

Let us first assume that Φ is satisfiable, and let v be a satisfying assignment: there is
a literal ` in each clause satisfied by v. Let σ be the memoryless strategy choosing such
a literal in each clause. We argue that in any play consistent with σ there is at least one
literal ` that Eve chooses infinitely many times without ever choosing ¯̀: this implies
that R` is visited infinitely often and G` is not. Indeed, some clause is chosen infinitely
many times, so the corresponding literal chosen by Eve is also chosen infinitely many
times. Since all the literals chosen by Eve satisfy the same assignment v she does not
choose both a literal and its negation, so she never chooses ¯̀. It follows that σ is a
winning strategy for Eve.

Conversely, let us assume that Eve has a winning strategy. Thanks to Theorem 18
she has a positional winning strategy σ . We argue that σ cannot choose some literal
` in some clause C and the literal ¯̀ in another clause C′. If this would be the case,
consider the strategy of Adam alternating between the two clauses C and C′ and play it
against σ : both ` and ¯̀ are chosen infinitely many times, and no other literals. Hence
R`,G`,R ¯̀, and G ¯̀ are all visited infinitely many times, implying that this play does not
satisfy Rabin, contradicting that σ is winning.

There exists a valuation v which satisfies each literal chosen by Eve, implying that
it satisfies Φ which is then satisfiable.
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The complexity of solving Muller games

Theorem 20 (Complexity of solving Muller games). Solving Muller games is PSPACE-
complete.

As for the previous reduction, in the Muller game constructed in the reduction
below we label edges rather than vertices, and some edges have more than one colour.
As for Rabin games this can be reduced to the original definition of colouring functions
(labelling vertices with exactly one colour each) with a polynomial increase in size.

Proof. The PSPACE algorithm was constructed in Theorem 17.
To prove the PSPACE-hardness we reduce the evaluation of quantified boolean for-

mulas in disjunctive normal form (QBF) to solving Muller games.
Let Ψ be a quantified boolean formula in disjunctive normal form with n variables

x1 . . .xn and m clauses C1 . . .Cm, where each C j is of the form ` j1 ∧ ` j2 ∧ ` j3 :

Ψ = ∃x1,∀x2, . . . ,∃xn, Φ(x1, . . . ,xn) and Φ(x1, . . . ,xn) =
m∨

j=1

` j1 ∧ ` j2 ∧ ` j3 .

We construct a Muller game G with m+ 1 vertices (one per clause, all controlled
by Adam, plus a unique vertex controlled by Eve), 4m edges (4 per clause), and 2n
colours (one per literal). We will show that the formula Ψ evaluates to true if and only
if Eve has a winning strategy in the Muller game G .

We first describe the Muller condition. The set of colours is the set of literals. We
let x denote the lowest quantified variable such that x or x̄ is visited infinitely many
times. The Muller condition requires that:

• either x is existential and only one of x and x̄ is visited infinitely many times,

• or x is universal and both x and x̄ are visited infinitely many times,

and for all variables y quantified after x, both y and ȳ are visited infinitely many times.
Formally, let S>i =

{
xq, x̄q : q > p

}
and:

F =
{

S>p,
{

xp
}
∪S>p,

{
x̄p
}
∪S>p : xp existential

}
∪
{

S≥p : xp universal
}
.

Note that F contains O(n) elements.
Let us now describe the arena. A play consists in an infinite sequence of rounds,

where in each round first Eve chooses a clause and second Adam chooses a literal ` in
this clause corresponding to some variable xp, and visits the colour ` as well as each
colour in S>p.

The reduction is illustrated in Figure 2.2. Note that the edges from the vertex con-
trolled by Eve to the other ones do not have a colour, which does not fit our definitions.
For this reason we introduce a new colour c and colour all these edges by c. We define
a new Muller objective by adding c to each set in F : since every play in the game visit
c infinitely many times, the two games are equivalent. We note that this construction
works for this particular game but not in general.
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For a valuation v : {x1, . . . ,xn} → {0,1} and p ∈ [1,n], we write Ψv,p for the for-
mula obtained from Ψ by fixing the variables x1, . . . ,xp−1 to v(x1), . . . ,v(xp−1) and
quantifying only over the remaining variables. Let us say that a valuation v is positive
if for every p ∈ [1,n], the formula Ψv,p evaluates to true, and similarly a valuation is
negative if for every p ∈ [1,n], the formula Ψv,p evaluates to false.

Let us first assume that Ψ evaluates to true. We construct a winning strategy σ for
Eve. It uses positive valuations over the variables x1, . . . ,xn as memory states. Note
that the fact that Ψ evaluates to true implies that there exists a positive valuation. Let
us choose an arbitrary positive valuation as initial valuation. We first explain what the
strategy σ does and then how to update its memory.

Assume that the current valuation is v, since it is positive there exists a clause
satisfying v, the strategy σ chooses such a clause. Therefore, any literal that Adam
chooses is necessarily true under v.

The memory is updated as follows: assume that the current valuation is v and that
Adam chose a literal corresponding to the variable xp. If xp is existential the valuation
is unchanged. If xp is universal, we construct a new positive valuation as follows. We
swap the value of xp in v and write v[xp] for this new valuation. Since v is positive and
xp is universally quantified, the formula Ψv[xp],p+1 evaluates to true, so there exists a
positive valuation vp+1 :

{
xp+1, . . . ,xn

}
→ {0,1} for this formula. The new valuation

is defined as follows:

v′(xq) =


v(xq) if q < p,

v(xq) if q = p,
vp+1(xq) if q > p,

it is positive by construction.
Let π be a play consistent with σ and xp be the lowest quantified variable chosen

infinitely many times by Adam. First, all colours in S>p are visited infinitely many
times (when visiting x or x̄). Let us look at the sequence (vi(xp))i∈N where vi is the
valuation in the ith round. If xp is existential, the sequence is ultimately constant as
it can only change when a lower quantified variable is visited. If xp is universal, the
value changes each time the variable xp is chosen. Since any literal that Adam chooses
is necessarily true under the current valuation, this implies that in both cases π satisfies
Muller(F ).

For the converse implication we show that if Ψ evaluates to false, then there exists
a winning strategy τ for Adam. The construction is similar but using negative valua-
tions. The memory states are negative valuations. The initial valuation is any negative
valuation. If the current valuation is v and Eve chose the clause C, since the valuation
is negative v does not satisfy C, the strategy τ chooses a literal in C witnessing this
failure. The memory is updated as follows: assume that the current valuation is v and
that the strategy τ chose a literal corresponding to the variable xp. If xp is universal the
valuation is unchanged. If xp is existential, we proceed as above to construct another
negative valuation where the value of xp is swapped.

Let π be a play consistent with τ and x be the lowest quantified variable chosen
infinitely many times by Adam. As before, we look at the sequence (vi(x))i∈N where
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x∨ y∨ z

x∨ ȳ∨ z̄

x̄∨ y∨ z̄

x S>x

y
S>yz

S>z
x

S>x

ȳS>y

z̄S>z

x̄

S>x

y

S>y

z̄

S>z

Figure 2.2: The Muller game for Ψ = ∃x,∀y,∃z,(x∧y∧ z)
∨
(x∧ ȳ∧ z̄)

∨
(x̄∧y∧ z̄). For

a variable v we write S>v for the set of literals corresponding to variables quantified
after v, so for instance S>x = {y, ȳ,z, z̄}.

vi is the valuation in the ith round. If x is existential, the value changes each time the
variable x is chosen. If x is universal, the sequence is ultimately constant. Since any
literal that Adam chooses is necessarily false under the current valuation, this implies
that in both cases π does not satisfy Muller(F ).

2.6 Zielonka tree
The Zielonka tree is a combinatorial structure associated with a Muller objective which
very neatly exposes its properties. As a warm-up we first present its predecessor the
LAR construction, and then show the properties of Zielonka trees. As we will see, the
key feature of the Zielonka tree of a Muller objective Muller(F ) is to characterise its
exact memory requirements.

The latest appearance record

Muller objectives can be reduced to parity objectives, see Section 1.6 for an introduc-
tion to reductions between objectives.

Theorem 21 (Latest Appearance Record (LAR) construction). Let C = [1,d] be a set
of colours and Muller(F ) a Muller objective. There exists a deterministic parity
automaton LARF over the alphabet C defining Muller(F ). It has d! states and has
priorities in [1,2d].

LAR stands for Latest Appearance Record. In the literature the number of states
is often d · d! instead of d!, the multiplicative factor d is saved since we consider
transition-based acceptance conditions for automata.
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Proof. We define the automaton LARF . The set of states is the set of lists of all
colours of C without repetitions. We represent a list by (c1, . . . ,cd). The initial state is
irrelevant because Muller(F ) is prefix independent. The transition function is defined
as follows: δ (`,c) is `′ obtained from ` by pushing c to the first position (hence shifting
to the right the elements to the left of c). This is best understood on an example:

δ ((4,1,2,3),2) = (2,4,1,3).

Let j be the position of c in `, the priority of this transition is defined by:

c((`,c, `′)) =

{
2 j if `([1, j]) ∈F ,

2 j−1 otherwise.

We now show that the automaton LARF defines Muller(F ). Let ρ = c0c1 . . . be
an infinite word over the alphabet C. Let us consider the run of LARF over ρ:

(`0,c0, `1)(`1,c1, `2) . . .

Let us write ji for the position of ci in `i. We consider Inf(ρ) the set of colours
appearing infinitely many times and write j for its cardinal. From some point onwards
the lists `i are of the form

(c1, . . . ,c j︸ ︷︷ ︸
Inf(ρ)

, c j+1, . . . ,cd︸ ︷︷ ︸
C\Inf(ρ)

).

From this point on ji is smaller than or equal to j, and it reaches j infinitely many
times. It follows that the largest priority appearing infinitely many times in the run is
2 j if Inf(ρ) ∈F and 2 j−1 if Inf(ρ) /∈F . Thus ρ is accepted by LARF if and only
if Inf(ρ) ∈F , as desired.

The Zielonka tree

Theorem 21 implies a reduction from Muller games to parity games as explained in
Section 1.6. This yields a small improvement from the complexity results we already
obtained for Muller games in Theorem 17, but not for the memory requirements. One
weakness of the LAR construction is that its size depends only on the number of
colours, and not on the properties of F . The Zielonka tree is an improved take on
the LAR.

Definition 3 (Zielonka tree). Let Muller(F ) be a Muller objective over the set of
colours C. The Zielonka tree TF of Muller(F ) is a rooted tree with nodes labelled by
subsets of colours, it is constructed inductively as follows:

• the root is labelled C,

• the children of a node labelled S are the maximal subsets S1, . . . ,Sk of S such that
Si ∈ Muller(F )⇐⇒ S /∈ Muller(F ).
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{1,2,3,4}

{1,2,3}

{1,2}

{1}

{1,3}

{1}

{1,2,4}

{1,2}

{1}

{4}

{3,4}

{3} {4}

1

2

3

4

Figure 2.3: The Muller tree for Muller(F ). By convention nodes labelled by a set
in F are represented by a circle and the others by a square. The numbers on the right
hand side and the dashed nodes (describing a branch) are both used in the proof of
Theorem 22.

Figure 2.3 represents the Zielonka tree for Muller(F ) with

F = {{2} ,{3} ,{4} ,{1,2} ,{1,3} ,{1,3,4} ,{2,3,4} ,{1,2,3,4}} .

We note that there are two nodes labelled {1}; in general there may be several nodes
with the same label. Also, not all branches have the same length.

The first use of the Zielonka tree is to induce an improved reduction from Muller
to parity objectives. A branch in a tree is a path from the root to a leaf.

Theorem 22 (Reduction from Muller to parity games using the Zielonka tree automa-
ton). Let C = [1,d] be a set of colours and Muller(F ) a Muller objective. There exists
a deterministic parity automaton ZielonkaF over the alphabet C defining Muller(F ).
Its number of states is the number of branches of TF and its parity condition uses d
priorities.

Here again we take advantage of the fact that the acceptance conditions on automata
are transition based; using stated based transitions we would have added a multiplica-
tive factor d.

Proof. Without loss of generality C ∈F : if this is not the case we consider the com-
plement Muller(2C \F ). We number the levels of TF from the leaves to the root such
that nodes labelled by sets in F are even and the other ones odd (this will be used for
defining the parity condition). See Figure 2.3 for a possible numeration of the levels
(on the right hand side), the other options being shifts of this numeration by an even
number.

The set of states of ZielonkaF is the set of branches of TF . We represent a branch
by (S1, . . . ,Sk) where S1 is the set labelling the root and Sk the set labelling a leaf. Note
that k ≤ d. For the sake of simplicity we identify nodes with their labels, which is an
abuse since two different nodes may have the same label but will be convenient and
harmless in our reasoning.
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The initial state is irrelevant because Muller(F ) is prefix independent. We define
the support supp(b,c) of a branch b and a colour c to be the lowest node of b which
contains c. The transition function is defined as follows: δ (b,c) is the next branch (in
the lexicographic order from left to right and in a cyclic way) which coincides with b
up to supp(b,c). The priority of this transition is given by the level on which supp(b,c)
sits.

This is best understood on an example: on Figure 2.3 consider the branch b rep-
resented by dashed nodes, reading the colour 2 we consider branches starting with
({1,2,3,4} ,{1,2,3}) because supp(b,2) = {1,2,3}.

The next branch after b is ({1,2,3,4} ,{1,2,3} ,{1,2} ,{1}) (because we cycle: the
node after {1,3} is {1,2}). The priority of this transition is 3 corresponding to the level
where {1,2,3} sits.

We now show that the automaton ZielonkaF defines Muller(F ). Let ρ = c0c1 . . .
be an infinite word over the alphabet C. Let us consider the run of ZielonkaF over ρ:

(b0,c0,b1)(b1,c1,b2) . . .

We consider Inf(ρ) the set of colours appearing infinitely many times. Let us look
at the largest prefix (S1, . . . ,Sp) of a branch which is eventually common to all the
branches bi. We make two claims:

• Inf(ρ) is included in Sp;

• Inf(ρ) is not included in any child of Sp.

For the first claim, let c∈ Inf(ρ), since eventually the branch bi starts with (S1, . . . ,Sp),
the support of bi and c is lower than or equal to Sp, meaning that c ∈ Sp.

For the second claim, we first note that by maximality of (S1, . . . ,Sp) the support
of bi and ci is infinitely many times Sp. Indeed from some point onwards it is lower
than or equal to Sp, and if it would be eventually strictly lower then the corresponding
child of Sp would be common to all branches bi from there on. This implies that all
children of Sp appear infinitely many times in the branches bi: each time the support
of bi and ci is Sp, the branch switches to the next child of Sp. Now since each child
Sp+1 of Sp is left infinitely many times this implies that there exists c ∈ Inf(ρ) with
c /∈ Sp+1. Hence Inf(ρ) is not included in Sp+1.

By definition of the Zielonka tree, this implies that Inf(ρ) ∈ F if and only if
Sp ∈F , thus ρ is accepted by ZielonkaF if and only if Inf(ρ) ∈F , as desired.

Since Theorem 22 is a reduction from Muller to parity objectives, it implies a re-
duction from Muller games to parity games as explained in Section 1.6, improving
over Theorem 21. Since solving parity games is in NP∩ coNP, if we represent the
Muller condition by a Zielonka tree then the automaton constructed in Theorem 22 is
of polynomial size, implying the following result.

Theorem 23 (Complexity of solving Muller games represented by the Zielonka tree).
Solving Muller games where the condition is represented by a Zielonka tree is in NP∩
coNP.
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As observed above different nodes of the Zielonka tree may be labelled by the
same set of colours. Hence it is tempting to represent a Muller condition not with its
Zielonka tree but rather with the Zielonka DAG (Directed Acyclic Graph) where nodes
labelled by the same set of colours are identified. However with this representation
solving Muller games is again PSPACE-complete:

Theorem 24 (Complexity of solving Muller games represented by the Zielonka DAG).
Solving Muller games where the condition is represented by a Zielonka DAG is PSPACE-
complete.

The algorithm presented in Theorem 17 runs in polynomial space for this repre-
sentation. To obtain the PSPACE-hardness we observe that in the reduction from QBF
constructed in Theorem 20, the Muller objective is of polynomial size when repre-
sented by a Zielonka DAG (but of exponential size when represented by a Zielonka
tree).

The exact memory requirements
The second and most interesting use of the Zielonka tree is for characterising the mem-
ory requirements.

Note that a node in the Zielonka tree TF represents another Muller objective, over
the set of colours labelling this node. For instance in Figure 2.3 the node labelled
{1,2,3} corresponds to Muller(F ′) with F ′ = {{2} ,{3} ,{1,2} ,{1,3}}.

Definition 4 (Memory requirements for Muller objectives). Let Muller(F ) be a Muller
objective over the set of colours C. We define mF by induction:

• if the tree consists of a single leaf, then mF = 1;

• otherwise, let F1, . . . ,Fk be the families induced by the children of the root,
there are two cases:

– if C ∈F , then mF is the sum of mF1 , . . . ,mFk ;

– if C /∈F , then mF is the maximum of mF1 , . . . ,mFk .

For the Muller objective represented in Figure 2.3, we have mF = 3.

Theorem 25 (Memory requirements for Muller games). Muller objectives Muller(F )
are determined with finite memory strategies of size mF . This bound is tight: there
exists a game with objective Muller(F ) where Eve wins using mF memory states but
not with less.

We will not construct the lower bound, meaning the game where Eve needs mF

memory states to win. However, we will now prove the upper bound. To this end
we revisit the recursive algorithm presented in Lemma 17 and Lemma 18. This algo-
rithm was removing colours one by one and relying on the recursive solutions. We
show that we can adapt the algorithm to follow instead the structure of the Zielonka
tree: for solving a Muller game, it is enough to recursively solve the induced Muller
games corresponding to the children of the root of the Zielonka tree. The following
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lemma is an improved variant of Lemma 17. The corresponding pseudocode is given
in Algorithm 2.6.

Lemma 19 (Fixed point characterisation of the winning regions for Muller games using
the Zielonka tree). Let G be a Muller game with objective Muller(F ) such that C ∈
F . Let C1, . . . ,Ck be the maximal subsets of C such that Ci /∈F . We let F1, . . . ,Fk
be the corresponding induced families, and define Gi be the subgame of G induced by
V \AttrEve(Ci) with objective Muller(Fi).

• If for all i ∈ [1,k], we have WAdam(Gi) = /0, then WEve(G ) =V .

• If there exists i ∈ [1,k] such that WAdam(Gi) 6= /0, let G ′ be the subgame of G
induced by V \AttrAdam(WAdam(Gi)), then WEve(G ) =WEve(G

′).

We will prove the memory requirement at the same time inductively. Note that by
duality, the case where C /∈F corresponds to the memory requirement for Adam when
C ∈F :

m2C\F = max
i∈[1,k]

m2Ci\Fi
.

Proof. We prove the first item.
For each i∈ [1,k], let σi be an attractor strategy ensuring to reach Ci from AttrEve(Ci),

and consider a winning strategy for Eve from V \AttrEve(Ci) in Gi, it induces a strategy
σ ′i in G . We construct a strategy σ in G which will simulate the strategies above in
turn; to do so it uses [1,k] as top-level memory states. (We will look at more closely at
the memory structure at the end of the proof.) The strategy σ with memory i simulates
σi from AttrEve(Ci) and σ ′i from V \AttrEve(Ci), and if it ever reaches a vertex in Ci it
updates its memory state to i+1 and 1 if i = k. Any play consistent with σ either up-
dates its memory state infinitely many times, or eventually remains in V \AttrEve(Ci)
and is eventually consistent with σ ′i . In the first case it sees a colour from each Ci
infinitely many times, so by definition of the Ci’s and since C ∈F the play satisfies
Muller(F ), and in the other case since σ ′i is winning the play satisfies Muller(F ).
Thus σ is winning from V .

Let us now discuss how many memory states are necessary to implement the strat-
egy σ . By induction hypothesis, each of the strategies σ ′i uses mFi memory states.
Using a disjoint union of the memory structures we implement σ using ∑i∈[1,k] mFi
memory states, corresponding to the definition of mF .

We now look at the second item.
Consider a winning strategy for Adam from WAdam(Gi) in Gi, it induces a strat-

egy τi in G . Thanks to Lemma 10 τi is a winning strategy in G . Let τa denote
an attractor strategy from AttrAdam(WAdam(Gi)) \WAdam(Gi). Consider now a win-
ning strategy in the game G ′ from WAdam(G

′), it induces a strategy τ ′ in G . The
set V \AttrAdam(WAdam(Gi)) may not be a trap for Eve, so we cannot conclude that
τ ′ is a winning strategy in G , and it indeed may not be. We construct a strategy τ

in G as the (disjoint) union of the strategy τa on AttrAdam(WAdam(Gi)) \WAdam(Gi),
the strategy τi on WAdam(Gi) and the strategy τ ′ on WAdam(G

′). We argue that τ is
winning from AttrAdam(WAdam(Gi))∪WAdam(G

′) in G . Indeed, any play consistent
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with this strategy in G either stays forever in WAdam(G
′) hence is consistent with τ ′ or

enters AttrAdam(WAdam(Gi)), so it is eventually consistent with τi. In both cases this
implies that the play is winning. Thus we have proved that AttrAdam(WAdam(Gc))∪
WAdam(G

′)⊆WAdam(G ).
We now show that WEve(G

′) ⊆WEve(G ), which implies the converse inclusion.
Consider a winning strategy from WEve(G

′) in G ′, it induces a strategy σ in G . Thanks
to Lemma 11 σ is winning from WEve(G

′) in G .
Let us now discuss how many memory states are necessary to implement the strat-

egy τ . By induction hypothesis, the strategy τi uses m2Ci\Fi
memory states and the

strategy τ ′ uses max j 6=i m
2Cj \F j

memory states. Since τ is a disjoint union of strategies
the memory can be reused so we can implement τ using maxi∈[1,k] m2Ci\Fi

memory
states, corresponding to the definition of m2C\F .

The corresponding lemma when C /∈F is stated below, its proof is analogous to
the previous one by swapping the two players.

Lemma 20 (Dual fixed point characterisation of the winning regions for Muller games
using the Zielonka tree). Let G be a Muller game such that C /∈F . Let C1, . . . ,Ck be
the maximal subsets of C such that Ci ∈F . We let F1, . . . ,Fk be the corresponding in-
duced Muller objectives, and define Gi be the subgame of G induced by V \AttrAdam(Ci)
with objective Muller(Fi).

• If for all i ∈ [1,k], we have WEve(Gi) = /0, then WAdam(G ) =V .

• If there exists i∈ [1,k] such that WEve(Gi) 6= /0, let G ′ be the subgame of G induced
by V \AttrEve(WEve(Gi)), then WAdam(G ) =WAdam(G

′).

Revisiting Streett, Rabin, and parity objectives
Let us look at the Streett, Rabin, and parity objectives under the new light shed by The-
orem 25. It is instructive to look at the Zielonka tree of a Rabin objective, illustrated in
Figure 2.4. It has a simple recursive structure: the Zielonka tree of the Rabin objective
for d pairs contains d copies of the Zielonka tree of the Rabin objective for d−1 pairs.
Naturally, this implies that mRabin = 1, so Theorem 25 implies the half-positional de-
terminacy result stated in Theorem 18. Note that the two proofs are very different: the
proof of Theorem 25 is by induction over the Zielonka tree and can be extended to
infinite games, while the proof of Theorem 16 applies only to finite games but gives a
general sufficient condition for half-positional determinacy.

Recall that we defined Streett objectives using closure under union, and Rabin ob-
jectives as the complement of Streett objectives.

Theorem 26 (Positionally determined Muller objectives). Let Muller(F ) be a Muller
objective.

• Muller(F ) is half-positionally determined if and only if Muller(F ) is a Rabin
objective;
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Algorithm 2.6: A recursive algorithm for computing the winning regions of
Muller games following the Zielonka tree.

Data: A Muller game G over C
Function SolveIn(G):

// Assumes C ∈F
if C = {c} then

return V
Let C1, . . . ,Ck the labels of the children of the root of the Zielonka tree of
Muller(F )

for i ∈ [1,k] do
Gi← G \AttrGEve(Ci)
WEve(Gi)← SolveOut(Gi) // The Zielonka tree of Gi

is the i-th subtree

if ∀i ∈ [1,k],WAdam(Gi) = /0 then
return V

else
Let i such that WAdam(Gi) 6= /0
G ′← G \AttrGAdam(WAdam(Gi))
return SolveIn(G ′) // G ′ has less vertices

Function SolveOut(G):
// Symmetric to SolveIn, assumes C /∈F

if C ∈F then
SolveIn(G)

else
SolveOut(G)

C

C \{G1} C \{G2} C \{G3}

C \{G1,R1} C \{G2,R2} C \{G3,R3}

Figure 2.4: The (beginning of the) Zielonka tree for Rabin with three pairs: C =
{G1,R1,G2,R2,G3,R3}.
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• Muller(F ) is positionally determined if and only if Muller(F ) is a parity
objective.

This theorem gives a characterisation of Rabin and parity objectives: they form the
class of Muller objectives which are respectively half-positional and positional.

Proof. Thanks to Theorem 25 the objective Muller(F ) is half-positionally deter-
mined if and only if mF = 1, which is equivalent to saying that all nodes labelled
S ∈F in the Zielonka tree of F have at most one child. Indeed, for such nodes the
number m is obtained as the sum of the numbers for the children, so there can be at
most one, and conversely if this is the case then mF = 1. This characterisation of the
Zielonka tree is equivalent to the complement of F being closed under union:

• Assume that the complement of F is closed under union and let S ∈ F be a
node in the Zielonka tree of F . Let S1, . . . ,Sk be the children of S, by definition
they are the maximal subsets of S such that Si /∈F . The union

⋃
i Si is a subset

of S and by closure under union of the complement of F it is in the complement
of F , implying by maximality that it is one of the children, so they are all equal
and k = 1.

• Conversely, assume that all nodes labelled S ∈ F in the Zielonka tree of F
have at most one child. Let S1,S2 /∈F , towards contradiction assume that S1 ∪
S2 ∈ F . By definition of the Zielonka tree, if S1 ∪ S2 is included into a node
S /∈F , then S1 ∪ S2 is included into one of its children. Starting from the root
and applying this we find a node S ∈F such that S1 ∪ S2 ⊆ S and S1 ∪ S2 6⊆ S′

with S′ the only child of S (the case where S does not have any children is easy
and treated separately). By definition of the Zielonka tree, since S1,S2 /∈F and
S1,S2 ⊆ S, then S1,S2 ⊆ S′, implying that S1∪S2 ⊆ S′, a contradiction.

We have proved the first equivalence: Muller(F ) is half-positionally determined if
and only if the complement of F is closed under union, which is the definition of
Rabin objectives.

For the second equivalence, we already have that Muller(F ) is positionally deter-
mined if and only if all nodes in the Zielonka tree of F have at most one child. The
Zielonka tree is in this case a chain:

S1 ⊆ S2 ⊆ S3 ⊆ S4 ⊆ ·· · ⊆ S2d−1 ⊆ S2d ⊆C,

with S2i ∈ F and S2i−1 /∈ F . Then X ∈ F is equivalent to asking that the largest
i ∈ [1,d] such that if X ∩ Si 6= /0 is even. Assigning priority i to Si we get that X ∈
Muller(F ) if and only if the largest priority appearing infinitely many times in X
is even: this is the definition of the parity objective over the set of priorities [1,2d].
Conversely, we observe that the Zielonka tree of a parity objective is indeed a chain.

Bibliographic references
The interest in reachability objectives goes beyond automata theory and logic. The
attractor computation presented in Section 2.1 is inspired by the backward induction
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principle due to Zermelo [Zer13], which was used to show that well founded games
(i.e. where all plays are finite) are determined. The word ‘attractor’ (together with
‘traps’ and ‘subgames’) first appeared in Zielonka’s work on Muller games [Zie98],
but without the algorithmic point of view. A naive implementation of the attractor
would have a quadratic time complexity. It is difficult to give credit for the linear time
algorithm since the problem being very natural it has appeared in several contexts, for
instance in database theory as an inference algorithm by Beeri and Bernstein [BB79]
or in the framework of computing least fixed points over transition systems by Arnold
and Crubillé [AC88].

The other objectives studied in this chapter are called ω-regular, let us discuss their
relevance in automata theory and logic. An important application of automata theory is
to make logic effective: by translating, sometimes called compiling, a logical formula
into an equivalent automaton, we can solve problems such as satisfiability or model-
checking by reducing them to analysing automata and in particular their underlying
graph structures. In this context, the reachability objective is used for automata over fi-
nite words: the classical definition is that a run is accepting if the last state is accepting.
Monadic second-order logic over finite words can be effectively translated into finite
automata, marking the beginning of a close connection between logic and automata
theory.

Considering logics over infinite structures led to the study of automata over infi-
nite structures such as words and trees. The first objective to be studied in this con-
text was Büchi objective, introduced by Büchi [Büc62]: a run is accepting if it visits
infinitely many times an accepting state. Unfortunately the class of languages of infi-
nite words recognised by deterministic Büchi automata is not closed under projection
(corresponding in logic to existential quantification), said differently non-deterministic
Büchi automata are strictly more expressive than deterministic ones hence not equiva-
lent to monadic second-order logic over infinite words. Muller [Mul63] introduced the
Muller objectives and attempted to prove the closure under projection for deterministic
Muller automata. Alas, the proof had a flaw. The first correct proof of the result is due
to McNaughton [McN66].

The correspondence between monadic second-order logic and Muller automata was
extended from infinite words to infinite binary trees by Rabin [Rab69a], yielding the
celebrated decidability of monadic second-order logic over infinite trees. Rabin intro-
duced and worked with Rabin objectives; his proof is arguably very complicated and
a lot of subsequent works focussed on finding the right notions and tools for better
understanding his approach. Streett [Str81] suggested to use the complement of Ra-
bin objectives, now called Streett objectives, for translating temporal logics to Streett
automata. As discussed in Section 1.10, a key step was made by applying determi-
nacy results for games to complementation results for automata. The parity objectives
appeared in this context as a (and in fact, the) subclass of Muller objectives which is po-
sitionally determined. They have been defined (with some variants) independently by
several authors: Wagner [Wag79], Mostowski [Mos84] who called them ‘Rabin chain’,
Emerson and Jutla [EJ91] who first used the name parity, and McNaughton [McN93].
The idea can be traced back to the ‘difference hierarchy’ by Hausdorff [Hau14]. The
proof of the positionality was obtained independently by Mostowski [Mos91], Emer-
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son and Jutla [EJ91], and McNaughton [McN93] (the latter proof is for finite games).
Later Walukiewicz [Wal02] gave another very elegant proof.

McNaughton [McN93] introduced the idea of solving Muller games by induction
on the colours, leading to McNaughton algorithm as presented in Section 2.5. To some
extent, the algorithms for solving Büchi, CoBüchi, and parity games are all special
cases of McNaughton algorithm. Taking a step back in time, McNaughton already pro-
posed the Latest Appearance Record (LAR) discussed in Section 2.6 for solving Muller
games in his flawed attempt to solve the synthesis problem [McN65] (see Section 1.10).
The LAR was later used by Gurevich and Harrington [GH82] as memory for winning
strategies in Muller games. Thomas [Tho95] showed that the LAR can be used to re-
duce Muller games to parity games. Zielonka [Zie98] greatly contributed to the study
of Muller objectives and their subclasses through his illuminating analysis of Zielonka
trees. One of the many contributions of Zielonka’s landmark paper [Zie98] was to fol-
low McNaughton’s approach for constructing a recursive algorithm for solving parity
games, and show that it implies their positionality. We follow in Section 2.3 Zielonka’s
presentation of the algorithm, which is sometimes called Zielonka algorithm but more
accurately McNaughton Zielonka algorithm. The characterisation result showing how
Zielonka tree captures the exact memory requirements of Muller objectives is due to
Dziembowski, Jurdziński, and Walukiewicz [DJW97].

The NP-completeness stated in Theorem 19 for solving Rabin games is due to
Emerson and Jutla [EJ88]. The study of the complexity of solving Muller games is
due to Dawar and Hunter [HD05]. The PSPACE-completeness results stated in The-
orems 20 and 24 only concern two representations for Muller objectives. There are
several others, which are not equally succinct. For all representations but one the
PSPACE-completeness result holds; the only exception is the explicit representation
where the condition is specified by listing all sets of vertices in F . Surprisingly, solv-
ing Muller games with the explicit representation is in P as shown by Horn [Hor08].

The complexity results stated for Muller games are not optimal, as they predate
the quasi-polynomial time algorithms for parity games. The state of the art for Rabin
and Muller games in terms of theoretical complexity is obtained by extending these
algorithms.

Theorem 16 stating that submixing prefix independent objectives are half-positionally
determined over finite arenas is inspired by the fairly mixing property of Gimbert and
Zielonka [GZ04]. The word ‘concave’ is used in lieu of ‘submixing’ by Kopczyński [Kop06,
Kop08]. Gimbert and Zielonka [GZ05] further refined the submixing property to give
a characterisation of objectives which are positionally determined over finite games
(they work in the more general framework of preference relations, which includes both
qualitative and quantitative objectives). We refer to Section 4.1 for general approaches
for proving half-positional determinacy for quantitative objectives.



1

1 2

2

33

3 3

4

PARITY 
GAMES



92 CHAPTER 2. REGULAR GAMES



Chapter 3
Parity Games
JOHN FEARNLEY, NATHANAËL FIJALKOW

We will construct several algorithms for solving parity games.

• We start in Section 3.1 with an exponential time strategy improvement algorithm.
The algorithm constructs a sequence of improving strategies until reaching an
optimal strategy.

• We continue in Section 3.2 by constructing a quasi-polynomial time algorithm
attractor decomposition algorithms, which decompose a game through a se-
quence of attractor computations. The first and archetypical example is Mc-
Naughton Zielonka algorithm defined in Section 2.3, which we improve here to
obtain a quasi-polynomial runtime.

• We introduce in Section 3.3 the framework of separating automata and give a
quasi-polynomial time algorithm as an instantiation of it. Separating automata
formalise a family of algorithms for reducing parity games to safety games. The
algorithm has mildly smaller runtime than the algorithm from the previous sec-
tion.

• We proceed in Section 3.4 with the construction of a quasi-polynomial time and
quasi-linear space value iteration algorithms, which finds an optimal strategy
through the computation of a value function. This is based on the notion of
universal trees.

As a conclusion Section 3.5 discusses the relationships between the different algo-
rithms: in what sense are separating automata and value iteration algorithms equivalent
through the notion of universal trees, and how does this family compare to the other
two families of algorithms described above.

Remark 9 (Positional determinacy). We already proved in Theorem 15 that parity
games are positionally determined, so in this chapter when considering a strategy we
implicitly assume that it is positional.
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3.1 An exponential time strategy improvement algorithm
Theorem 27 (Strategy improvement). There exists a strategy improvement algorithm
for solving parity games in exponential time.

One can identify from the literature at least four strategy improvement algorithms
for solving parity games, all running in exponential time. Two of them are better ex-
plained as consequences of their counterparts for energy games and discounted payoff
games: we first reduce parity games to the corresponding games, and apply the strategy
improvement algorithm in that setting. We refer the reader to Chapter 4 for them. The
other two are specific to parity games, although they are closely related to the first two
algorithms.

In a nutshell: the algorithm constructs a sequence of strategies, the next one being
an improvement over the current one, until reaching an optimal strategy.

Adding the option of stopping the game. Let G a parity game with n vertices and
priorities in [1,d]. Let us give Eve an extra move − that indicates that the game should
stop and that she can play from any vertex of hers. So a strategy for Eve is now a
function σ : VEve→ E∪{−} where σ(v) =− indicates that Eve has chosen to stop the
game, and σ(v) 6=− should be interpreted as normal. Adam is not allowed to stop the
game, so strategies for Adam remain unchanged. We say that a play ending with − is
stopped.

Evaluating a strategy. The first question is: given a strategy σ , how to evaluate
it? Let Y = Nd ∪{>}. We first explain how to evaluate plays, using a function f :
[1,d]ω ∪ [1,d]∗→ Y :

• Stopped plays: if ρ ∈ [1,d]∗, then f (ρ) is the tuple (x1,x2, . . . ,xd) where xp is
the number of times that priority p appears in ρ .

• Infinite plays: if ρ ∈ [1,d]ω , then f (ρ) is >.

The evaluation for finite plays can be computed using an automaton as follows: we
define δ : Y × [1,d]→ Y by

δ ((x1,x2, . . . ,xd), p) = (x1,x2, . . . ,xp +1,xp+1, . . . ,xd)

and δ (>, p) =>. Extending to δ : Y × [1,d]∗→ Y , we obtain the following fact.

Fact 9. For ρ ∈ [1,d]∗ we have f (ρ) = δ ((0, . . . ,0),ρ).

We now define a total order ≤ on Y making it a complete lattice. First, > is the
greatest element. For t, t ′ ∈ Nd , we say that t < t ′ if and only if p is the largest index
such that tp 6= t ′p and

• either p is even and tp < t ′p,

• or p is odd and tp > t ′p.
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Then ≤ is the reflexive closure of <: we have t ≤ t ′ if t < t ′ or t = t ′. These conditions
specify which priorities Eve likes to see along a play. Given a choice, Eve would prefer
to see even priorities and to avoid odd priorities, but these preferences are hierarchical:
assuming that d is even, Eve would like to see as many edges of priority d as possible.
If two plays see d the same number of times, Eve prefers the play that visits the fewest
vertices of priority d− 1, and if two plays see d and d− 1 the same number of times,
then Eve would like to maximise the number of times that d− 2 is visited, and so on
recursively.

We can now define the value of a strategy σ :

valσ (v) = inf
τ

f (πσ ,τ
v ),

where τ ranges over (general) strategies for Adam.
Since Y is totally ordered, we can naturally cast the computation of the value func-

tion as a shortest path problem: valσ (v) is the value of the shortest path1 (with respect
to Y ) in G [σ ]. Thus, any algorithm for the shortest path problem can be applied, such
as the Bellman-Ford algorithm. In particular computing valσ can be done in cubic time,
and even more efficiently through a refined analysis which we do not perform here.

Recall that we say that a parity graph (without stopping option) satisfies parity
from v if all infinite paths from v satisfy parity. Then a strategy σ is winning from v if
and only if the parity graph G [σ ] satisfies parity from v. We extend this definition to
parity graphs with the stopping option: a strategy σ satisfies parity if all infinite plays
consistent with σ satisfy parity. Crucially, this does not require anything of stopped
plays. We say that a cycle is even if the maximal priority along the cycle is even, and it
is odd otherwise. The characterisation of satisfying parity using cycles extends to this
setting:

Fact 10 (Strategy satisfying parity in the presence of stopped plays). A strategy σ

satisfies parity if and only if all cycles in G [σ ] are even.

The algorithm will only manipulate strategies satisfying parity.

Improving a strategy. We reach the last item in the construction of the algorithm:
the notion of improving edges. Let σ a strategy. Let us consider a vertex u ∈VEve, we
say that e : u

p−→ v is an improving edge if

δ (valσ (v), p)> valσ (u).

Intuitively: according to valσ , playing e is better than playing σ(u). Given a strategy
σ and a set of improving edges S, we write σ [S] for the strategy

σ [S](u) =

{
e if there exists e = u

p−→ v ∈ S,
σ(u) otherwise.

1We use the usual albeit sometimes confusing terminology from graph algorithms: “shortest path”
means of smallest value with respect to Y , not in number of edges.
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The algorithm. The algorithm starts with a specified initial strategy, which is the
strategy σ0 where σ0(v) =− for all vertices v ∈VEve. It may not hold that σ0 satisfies
parity since G may contain odd cycles fully controlled by Adam. This can be checked
in linear time and the attractor to the corresponding vertices removed from the game.
After this preprocessing σ0 indeed satisfies parity.

The pseudocode of the algorithm is given in Algorithm 3.1.

Algorithm 3.1: The strategy improvement algorithm for parity games.
Data: A parity game G
for v ∈VEve do

σ0(v)←−
C←{v ∈V : v contained in an odd cycle in G [σ0]}
G ← G \AttrAdam(C)
repeat

for i = 0,1,2, . . . do
Compute valσi and the set of improving edges
if σi does not have improving edges then

return {v ∈V : valσi(v) =>}
Choose a non-empty set Si of improving edges
σi+1← σi[Si]

Proof of correctness. As per usual for strategy improvement algorithms, the correct-
ness depend on the following two principles:

• Progress: updating a strategy using improving edges is a strict improvement,

• Optimality: a strategy which does not have any improving edges is optimal.

The difficulty is that an edge being improving does not mean that it is a better move
than the current one in any context, but only according to the value function valσ , so it
is not clear that σ [S] is better than σ . Let us write σ ≤ σ ′ if for all vertices v we have
valσ (v)≤ valσ

′
(v), and σ < σ ′ if additionally ¬(σ ′ ≤ σ).

We start by stating a very simple property of δ .

Fact 11 (Key property of δ ). Let t ∈ Y and p1, . . . , pk ∈ [1,d] with δ (t, p1 . . . pk) 6=>.
The following holds:

• t 6= δ (t, p1 . . . pk).

• t < δ (t, p1 . . . pk) if and only if max{p1, . . . , pk} is even.

• t > δ (t, p1 . . . pk) if and only if max{p1, . . . , pk} is odd.

The following lemma states the two important properties of (Y,≤) and δ .

Lemma 21. Let G a parity graph (with no stopping option).
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• If there exists µ : V → Y such that for all vertices u we have µ(u) 6= > and for
all edges u

p−→ v ∈ E we have µ(u)≤ δ (µ(v), p), then G satisfies parity.

• If there exists µ : V → Y such that for all vertices v we have µ(u) 6= > and for
all edges u

p−→ v ∈ E we have µ(u)≥ δ (µ(v), p), then G satisfies the complement
of parity.

Proof. We prove the first property, the second is proved in exactly the same way.
Thanks to the characterisation using cycles it is enough to show that all cycles in G
are even. Let us consider a cycle in G:

π = v0
p0−→ v1

p1−→ v2 · · ·vk−1
pk−1−−→ v0.

For all i ∈ [0,k− 1] we have µ(vi) ≤ δ (µ(vi+1 mod k), pi). By monotonicity of δ this
implies µ(v0) ≤ δ (µ(v0), pk−1 · · · p0). Thanks to Fact 11 this implies that the maxi-
mum priority in {p0, . . . , pk−1} is even.

Let us fix a strategy σ . We let Fσ
V denote the set of functions µ : V → Y such that

µ(v) = (0, . . . ,0) if σ(v) = −, it is a lattice when equipped with the componentwise
(partial) order induced by Y : we say that µ ≤ µ ′ if for all vertices v we have µ(v) ≤
µ ′(v). We then define an operator Oσ : Fσ

V → Fσ
V by

Oσ (µ)(u) =


min

{
δ (µ(v), p) : u

p−→ v ∈ E
}

if u ∈VAdam,

δ (µ(v), p) if u ∈VEve and σ(u) = u
p−→ v,

(0, . . . ,0) if u ∈VEve and σ(u) =−.

Lemma 22. For all σ satisfying parity, valσ is a fixed point of Oσ . Further, valσ (u) =
> if and only if all paths consistent with σ from u are infinite, and if valσ (u)<>, then
there exists π stopped play such that valσ (u) = f (π).

We now rely on Lemmata 21 and 22 to prove the two principles: progress and
optimality.

Lemma 23 (Progress). Let σ a strategy satisfying parity and S a set of improving
edges. We let σ ′ denote σ [S]. Then σ ′ satisfies parity and σ < σ ′.

Proof. We first argue that σ ′ satisfies parity. To this end let us consider the parity graph
G [σ ′]. We claim that for all edges e= u

p−→ v in G [σ ′], we have valσ (u)≤ δ (valσ (v), p):

• Either e is an edge in G [σ ] and this is because valσ is a fixed point of Oσ ,

• Or e was an improving edge, in which case valσ (u)< δ (valσ (v), p).

Since σ satisfies parity, for all vertices u such that valσ (u) => all paths starting from
u satisfy parity. Let us write G for the graph obtained from G [σ ′] by removing all
such vertices. The first item of Lemma 21 implies that G satisfies parity, hence G [σ ′]
satisfies parity.
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At this point we know that σ ′ satisfies parity, let us show that valσ ≤ valσ
′
. Let

u0 ∈ V , let π ′ consistent with σ ′ from u0 such that valσ
′
(u0) = f (π ′), we show that

valσ (u0)≤ f (π ′).
If f (π ′) = > this is clear, so let us assume that f (π ′) < >, meaning π ′ is fi-

nite. We reason by induction on the number of improving edges in π ′. If there are
none, then π ′ is consistent with σ and we are done. Let us consider the induction
step: we write π ′ = π ′1 · u1

p1−→ v1 · π ′2 with u1
p1−→ v1 the first improving edge in π ′.

By definition of an improving edge we have valσ (u1) < δ (valσ (v1), p1). Note that
valσ

′
(v1) = f (π ′2), by induction hypothesis this implies that valσ (v1) ≤ f (π ′2). Since

valσ
′
(u1) = δ (valσ

′
(v1), p1), we obtain valσ (u1) ≤ valσ

′
(u1). Since π ′1 does not con-

tain any improving edges, it is consistent with σ , hence an easy induction implies that
valσ (u0)≤ valσ

′
(u0).

We now show that valσ < valσ
′
. Let us consider e = u

p−→ v an improving edge.
Using valσ (v) ≤ valσ

′
(v) and the monotonicity of δ we obtain that δ (valσ (v), p) ≤

δ (valσ
′
(v), p). Since valσ

′
is a fixed point of Oσ ′ we have valσ

′
(u) = δ (valσ

′
(v), p)

and since e is improving we have valσ (u)< δ (valσ (v), p). This implies that valσ (u)<
valσ

′
(u).

Lemma 24 (Optimality). Let σ a strategy satisfying parity that has no improving
edges, then σ is winning from all vertices of WEve(G ).

Proof. The fact that σ satisfies parity means that it is a winning strategy from all ver-
tices v such that valσ (v) = >. We now prove that Adam has a winning strategy from
all vertices v such that valσ (v) 6=>. We construct a strategy of Adam by

∀u ∈VAdam, τ(u) ∈ argmin
{

δ (valσ (v), p) : u
p−→ v ∈ E

}
.

We argue that τ ensures the complement of parity from all vertices v such that valσ (v) 6=
>. Let us consider G the subgraph of G [τ] restricted to such vertices. We argue that
for all edges u

p−→ v in G, we have valσ (u) ≥ δ (valσ (v), p). Once this is proved we
conclude using the second item of Lemma 21 implying that G satisfies the complement
of parity.

The first case is when u ∈ VEve. Let σ(u) = u
p′−→ v′. Consider an edge e = u

p−→ v,
since it is not improving we have δ (valσ (v), p)≤ δ (valσ (v′), p′). Since valσ is a fixed
point of Oσ we have valσ (u) = δ (valσ (v′), p′), implying the desired inequality.

The second case is when u ∈VAdam, it holds by definition of τ and because valσ is
a fixed point of Oσ .

Complexity analysis. One aspect of the algorithm we do not elaborate on here is
the choice of improving edges at each iteration. Many possible rules for choosing this
set have been studied, as for instance the greedy all-switches rule, choosing maximal
improving edges. This impacts the number of iterations of the algorithm, meaning the
length of the sequence σ0,σ1, . . . . It is at most exponential since it is bounded by the
number of strategies (which is bounded aggressively by mn). There are lower bounds
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showing that the sequence can be of exponential length, which apply to different rules
for choosing sets of improving edges. Hence the overall complexity is exponential

The other strategy improvement algorithm for parity games. The main drawback
of the algorithm we constructed is that it requires the initial strategy to be the one
stopping at every vertex. This is in contrast with many practical scenarios, where the
fact that the algorithm can be initialised with any strategy (hence a potentially good
one) is a key factor for performances. As discussed at the beginning of this section,
there are several other strategy improvement algorithms. All but one are obtained by
reducing parity games to another class of games and applying a strategy improvement
algorithm there. The remaining one is defined directly on parity games. The valuation
of a play is a triple:

• the maximum priority p seen infinitely many times,

• the set of higher priorities seen before the first occurrence of p,

• the length of the prefix before the first occurrence of p.

The key benefit of this algorithm is that it can be initialised with any strategy. We do
not present here a correctness proof. Let us note that the algorithm is actually closely
related to the one we built here, in the sense that after adding a stopping option the two
algorithms coincide. Both algorithms have exponential complexity, with exponential
lower bounds on the number of iterations.

3.2 A quasi-polynomial time attractor decomposition
algorithm

Theorem 28 (Quasi-polynomial McNaughton Zielonka algorithm). There exists a quasi-
polynomial time algorithm for solving parity games, and more specifically of complex-
ity nO(logn).

We revisit the exponential recursive algorithm presented in Section 2.3. We refer to
Algorithm 3.2 for an equivalent presentation of this algorithm, where we make explicit
all recursive calls involving the maximal priority d. The benefit of doing this is to make
the following observation: during the ith recursive call for d, the algorithm removes
from the game G the subset Xi = AttrGAdam(WAdam(Gi)). Note that Xi is a trap for Eve
in G and a subset of the winning region of Adam in G : we say that Xi is a dominion
for Eve. More generally, given a game G , a set X of vertices is a dominion for Eve if it
is a trap for Adam and a subset of the winning region of Eve.

Let i∞ be the final value of i, the sets X0, . . . ,Xi∞−1 are disjoint. The key idea is that
this implies that at most one of them can have size more than half the total size.

To take advantage of this, we change the specification of the algorithm: the new
algorithm takes as input a parity game and two parameters sEve and sAdam. As before,
they are two mutually recursive procedures, SolveE and SolveA. At an intuitive level,
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Algorithm 3.2: The recursive algorithm for computing the winning region of
parity games.

Data: A parity game G with priorities in [1,d]
Function SolveEven(G):

i←−1
V0←V
repeat

i← i+1
Let Gi the subgame of G induced by Vi \AttrGi

Eve(d)
WEve(Gi)← SolveOdd(Gi)
Vi+1←Vi \AttrGAdam(WAdam(Gi))

until WAdam(Gi) = /0
return Vi

Function SolveOdd(G):
if d = 1 then

return V
i←−1
V0←V
repeat

i← i+1
Let Gi the subgame of G induced by Vi \AttrGi

Adam(d)
WAdam(Gi)← SolveEven(Gi)
Vi+1←Vi \AttrGEve(WEve(Gi))

until WEve(Gi) = /0
return Vi

if d is even then
return SolveEven(G)

else
return SolveOdd(G)
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the objective of SolveE(G ,sEve,sAdam) is to return a (non-empty whenever possible)
dominion for Eve of size at most sEve.

We spell out the pseudocode of SolveE in Algorithm 3.3, leaving out the perfectly
symmetric SolveA. The base cases are when there is only one priority, in which case
Eve wins everywhere if the priority is even, and Adam wins everywhere if the priority
is odd.

Algorithm 3.3: A recursive quasi-polynomial algorithm for computing the
winning regions of parity games – the procedure SolveE.

Data: A parity game G with priorities in [1,d], and d even, two parameters
sEve and sAdam

Let i = 0 and V0 =V
Let H0 the subgame of G induced by V0

Let G0 the subgame of H0 induced by V0 \AttrH0
Eve(d)

Function Treat(Xi):
Let Vi+1 =Vi \AttrHi

Adam(Xi)
Let Hi+1 the subgame of Hi induced by Vi+1

Let Gi+1 the subgame of Hi+1 induced by Vi+1 \AttrHi+1
Eve (d)

i = i+1

// recursive calls for small dominions
while Xi = SolveA(Gi,sEve,bsAdam/2c) 6= /0 do

Treat (Xi)
// one recursive call for a large dominion
if Xi = SolveA(Gi,sEve,sAdam) 6= /0 then

Treat (Xi)
// recursive calls for small dominions
while Xi = SolveA(Gi,sEve,bsAdam/2c) 6= /0 do

Treat (Xi)
return Vi

We need three simple facts about traps.

Fact 12 (Facts about traps).

• Let S be a trap for Eve in the game G and X a set of vertices, then S\AttrEve(X)
is a trap for Eve in the subgame of G induced by V \AttrEve(X).

• Let S be a trap for Eve in the game G and X a set of vertices such that S∩X = /0,
then S⊆V \AttrAdam(X) and S is a trap for Eve in the subgame of G induced by
V \AttrAdam(X).

• Let S be a trap for Eve in the game G and Z a trap for Eve in the subgame of G
induced by S, then Z is a trap for Eve in G .

The following lemma implies the correctness of the algorithm.
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Lemma 25 (Correctness of the quasi-polynomial McNaughton Zielonka algorithm).

• For all dominions S for Eve, if |S| ≤ sEve, then S⊆ SolveE(G ,sEve,sAdam).

• For all dominions S for Adam, if |S| ≤ sAdam, then S∩SolveE(G ,sEve,sAdam) = /0.

Indeed, WEve(G ) and WAdam(G ) are dominions for Eve and Adam in G , so Lemma 25
implies that SolveE(G ,n,n) =WEve(G ).

Proof. The proof is by induction on the number of priorities: indeed all recursive calls
to SolveA are for games with one less priority. It follows that by induction hypothesis
the following two properties hold, for all i.

• For all dominions S in Gi for Adam, if |S| ≤ sAdam, then

S⊆ SolveA(Gi,sEve,sAdam).

• For all dominions S in Gi for Eve, if |S| ≤ sEve, then

S∩SolveA(Gi,sEve,sAdam) = /0.

Since there will be an induction inside this induction, we refer to the induction above
as the external induction, and the second one as the internal induction.

We write i∞ for the final value of i, i.e. such that SolveE(G ,sEve,sAdam) =Vi∞ . Note
that the first item reads S⊆Vi∞ .

Let S be a dominion for Eve in G such that |S| ≤ sEve. We show by internal induc-
tion on i that S⊆Vi.

For i = 0 this is by definition. We now assume that S ⊆ Vi. Recall that Gi is the
subgame of Hi induced by Vi \AttrHi

Eve(d). It follows from the first item of Fact 12 that
S \AttrHi

Eve(d) is a dominion for Eve in Gi. Since S \AttrHi
Eve(d) has size at most sEve,

the second item of the external induction hypothesis implies that S \AttrGi
Eve(d) has

an empty intersection with Xi = SolveA(Gi,sEve,sAdam), implying that S∩Xi = /0. It
follows from the second item of Fact 12 that S⊆Vi \AttrHi

Adam(Xi) =Vi+1. This finishes
the internal induction, and implies the first item.

We now prove the second item.
Let S be a (non-empty) dominion for Adam in G such that |S| ≤ sAdam. We write

Si = S∩Vi. Note that the second item reads Si∞ = /0.
We first show by internal induction on i that Si is a dominion for Adam in Hi. For

i = 0 this is by definition. We now assume that Si is a dominion for Adam in Hi.
Recall that Hi+1 is the subgame of Hi induced by Vi+1 =Vi \AttrHi

Adam(Xi). It follows
from the first item of Fact 12 applied to Si (swapping the roles of Eve and Adam) that
Si \AttrHi

Adam(Xi) = Si+1 is a dominion for Adam in Hi+1. This finishes the internal
induction.

We showed that Si is a dominion for Adam in Hi for each i. To apply the external
inductive hypothesis, we need to exhibit dominions for Adam in Gi for each i. We
consider H ′

i the subgame of Hi induced by Si. Let Zi =WH ′
i

Adam(Parity∪Reach(d)):
in words, Zi is the subset of vertices of Si from where Adam can ensure that the parity
objective is not satisfied and never to see priority d. We prove two properties:
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• If Zi = /0, then Si = /0.

The fact that Zi is empty implies that Eve has a strategy σ in Gi which from Si
ensures Parity or to see priority d. Since Si is a dominion for Adam in Hi, there
exists a strategy τ for Adam which from Si ensures the complement of Parity
and to stay in Si. Playing σ against τ yields a contradiction, since σ ensures
Parity if the play remains in Si.

• Zi is a dominion for Adam in Gi.

That Zi is a subset of the winning region of Adam in Gi is clear. To see that Zi is
a trap for Eve in Gi, we first note that since Si is a trap for Eve in Hi and Zi is a
trap for Eve in H ′

i , the subgame of Hi induced by Si, then Zi is a trap in Hi by
the third item of Fact 12. Now, since Zi has an empty intersection with d, by the
second item of Fact 12 this implies that Zi is a trap for Eve in the subgame of Hi

induced by Vi \AttrHi
Eve(d), which is exactly Gi.

We are now fully equipped to prove that Si∞ = /0. Let i` be the value of i for which
the algorithm performs a recursive call for a large dominion. Since the sequence (Si)i
is non-increasing, if Si is empty for some i, then Si∞ as well.

The first while loop was exited for i = i`, implying that

SolveA(Gi` ,sEve,bsAdam/2c) = /0.

We apply the external inductive hypothesis to the dominion Zi` for Adam in Gi` for the
parameter bsAdam/2c: if |Zi` | ≤ bsAdam/2c, then Zi` ⊆ SolveA(Gi` ,sEve,bsAdam/2c),
implying that Zi` is empty, which by the first property above implies that Si` is empty,
thus Si∞ as well, proving the second item of Lemma 25. Excluding this case, we then
analyse the situation where |Zi` |> bsAdam/2c.

We apply again the external inductive hypothesis to Zi` , but this time for the pa-
rameter sAdam: if |Zi` | ≤ sAdam, then Zi` ⊆ Xi` . Since Zi` ⊆ Si` ⊆ S and |S| ≤ sAdam, the
premise is satisfied, so Zi` ⊆ Xi` . Since Zi` is non-empty, so is Xi` : the search for a large
dominion was successful, and in particular i is incremented at this stage, implying that
i` < i∞.

Consider Si`+1 = Si` \Attr
Hi`
Adam(Xi`). In particular Si`+1 ⊆ Si` \Xi` ⊆ Si` \Zi` , so

|Si`+1| ≤ |Si` |− |Zi` | ≤ bsAdam/2c.

The second while loop was exited for i = i∞, implying that

SolveA(Gi∞ ,sEve,bsAdam/2c) = /0.

We apply the external inductive hypothesis to the dominion Zi∞ for Adam in Gi∞ for the
parameter bsAdam/2c: if |Zi∞ | ≤ bsAdam/2c, then Zi∞ ⊆ SolveA(Gi∞ ,sEve,bsAdam/2c).
The premise holds because |Si`+1| ≤ bsAdam/2c, the sequence (Si)i is non-increasing,
i` < i∞, and Zi∞ ⊆ Si∞ . Hence Zi∞ is empty. Thanks to the first property above for Zi, this
implies that Si∞ is empty. This finishes the proof of the second item of Lemma 25.
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We obtain an algorithm for computing the winning regions of parity games using
SolveE(G ,n,n), where G is a parity game with n vertices.

We now perform a complexity analysis. Let us write f (m,n,d,sEve,sAdam) for
the complexity of the algorithm over parity games with m edges, n vertices, d pri-
orities, and parameters sEve and sAdam. We have f (m,n,1,sEve,sAdam) = O(n) and
f (m,0,d,sEve,sAdam) = f (m,n,d,0,sAdam) = f (m,n,d,sEve,0) = O(1), with the gen-
eral induction

f (m,n,d,sEve,sAdam) ≤ n · f (m,n,d−1,sEve,bsAdam/2c)
+ f (m,n,d−1,sEve,sAdam)
+ O(nm).

The term n · f (m,n,d−1,sEve,bsAdam/2c) corresponds to the recursive calls for small
dominions, the term f (m,n,d−1,sEve,sAdam) to the recursive call for a large dominion,
and O(nm) for the computation of the attractors. We obtain

f (m,n,d,n,n)≤ m ·n1+2blognc ·
(

d +2blognc
2blognc

)
.

which implies a quasi-polynomial upper bound of nO(logn).

3.3 A quasi-polynomial time separating automata algo-
rithm

The separation framework
We describe a general approach for reducing parity games to safety games. Sec-
tion 1.6 constructs reductions between objectives using automata: in the case at hand
parity reduces to safety if there exists a deterministic automaton A over the alphabet
[1,d] with acceptance objective Safe and defining Parity([1,d]), meaning L(A) =
Parity([1,d]). With such an automaton in hand Lemma 6 implies the following re-
duction: from a parity game G construct the safety game G ×A satisfying that Eve has
a winning strategy in G from v0 if and only if she has a winning strategy in G ×A from
(v0,q0).

Unfortunately, it can be shown (using a topological argument) that there is no such
automaton. The separation framework defines a (weaker) sufficient condition for the
reduction above to be correct. Instead of insisting that L(A) = Parity([1,d]), it is
enough to have WEve(A ,Parity[c]) = WEve(A ,L(A)[c]). To ensure this equality we
will only require that L(A) separates winning plays from losing plays. The two key
ideas are first to take advantage of the positionality of parity objectives by restricting
further winning plays to positional winning plays, and second to require

WEve(A ,Parity[c]) =WEve(A ,L(A)[c])

not for all parity games, but only for parity games with n vertices and priorities in [1,d].
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A deterministic safety automaton over the alphabet [1,d] is given by

A = (Q,q0,δ : Q× [1,d]→ Q,Safe[cA]),

where cA : Q× [1,d]→ {Win,Lose}. A word w ∈ [1,d]ω is accepted if the run ρ

over w only contains transitions in Win. We use the following simplifying convention
for safety automata: we distinguish a special rejecting state ⊥ and assume that all
transitions are accepting except the ones leading to ⊥. Said differently, a word w is
accepted if and only if it the run over w does not contain the state ⊥. Hence we do not
need to specify cA: in the next two sections by an automaton we mean a deterministic
safety automaton given by A = (Q,q0,δ : Q× [1,d]→ Q).

Let us now give a sufficient condition for the automaton A to imply the correctness
of the reduction from the parity game G to the safety game G ×A. The condition that
we define now is that the automaton A is (n,d)-separating; it relies on the notion of
parity graphs. Recall a parity graph satisfies parity from v if all infinite paths from v
satisfy parity, and that a strategy σ is winning from v if and only if the parity graph
G [σ ] satisfies parity from v.

We say that an automaton reads, accepts, or rejects a path π in a parity graph, which
is an abuse because what the automaton reads is the induced sequence of colours c(π).

Definition 5 (Separating automata). An automaton A is (n,d)-separating if the two
following properties hold.

• For all parity graphs G with n vertices and priorities in [1,d] satisfying parity,
all paths from v are accepted by A.

• All words accepted by A satisfy parity.

We define the objective Parity|n over the set of colours [1,d] as:

Parity|n =

{
π :

π is a path starting in some parity graph
with n vertices and priorities in [1,d] satisfying Parity

}
.

The definition of (n,d)-separating automata is illustrated in Figure 3.1 and can be sum-
marised as Parity|n ⊆ L(A)⊆ Parity.

[1,d]ω\ ParityParity
Parity|n

L(A)

Figure 3.1: The separation problem.

The following lemma shows the definition of separating automata in action.



106 CHAPTER 3. PARITY GAMES

Lemma 26 (Game equivalence using separating automata). Let A an (n,d)-separating
automaton. Then for all parity games G = (A ,Parity[c]) with n vertices and priori-
ties in [1,d], we have

WEve(G ) =WEve(A ,L(A)[c]).

Proof. The inclusion WEve(G ) ⊆WEve(A ,L(A)[c]) follows from positional determi-
nacy and the inclusion Parity|n ⊆ L(A). Let v ∈WEve(G ). Consider σ a positional
strategy ensuring parity from v and construct the parity graph G [σ ], it satisfies parity
from v. Hence the strategy σ also ensures L(A)[c] from v, so v ∈WEve(A ,L(A)[c]).

Conversely, L(A) ⊆ Parity implies L(A)[c] ⊆ Parity[c], which in turn implies
WEve(A ,L(A)[c])⊆WEve(G ).

The last step is to explain how to solve a game with objective L(A), as already
discussed in Section 1.6. Let G = (A ,L(A)[c]). We construct a safety game by making
the synchronised product of the arena with the automaton:

G ×A = (A ×A,Safe[c′]),

where the safety condition ensures that the play is accepted by A. Formally, we con-
struct the arena A ×A as follows. We first define the graph G×Q whose set of
vertices is V ×Q and set of edges is defined as follows: for every edge u

p−→ v ∈ E
and state q ∈ Q there is an edge from (u,q) to (v,δ (q, p)). The arena is A ×A =
(G×Q,VEve×Q,VAdam×Q). Using the convention for safety automata that the re-
jecting transitions are precisely those leading to the rejecting state ⊥, the colouring
function is defined by c′(v,q) = Win if q 6=⊥, and Lose otherwise.

Fact 13 (Reduction to safety games using separating automata). Eve has a winning
strategy in G from v0 if and only if she has a winning strategy in G ×A from (v0,q0).

Theorem 29 (Algorithm using separating automata). Let A an (n,d)-separating au-
tomaton. There exists an algorithm for solving parity games of complexity O(m · |A|).

Proof. Let G a parity game with n vertices and priorities in [1,d]. Thanks to Lemma 26
and Fact 13, solving G is equivalent to solving the safety game G ×A. Thanks to The-
orem 12 solving safety games can be done in time linear in the number of edges. This
yields an algorithm for solving parity games whose running time is O(m · |A|).

In the remainder of this section we give a construction for a quasi-polynomial
(n,d)-separating automaton.

The original separating automaton

Theorem 30 (The original separating automaton). There exists an (n,d)-separating
automaton of size nO(logd), inducing an algorithm for solving parity games of complex-
ity nO(logd).
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i-sequences. The key definition used by the original separating automaton is an i-
sequence. Let π = p1, p2, . . . , pt a finite sequence of priorities. An i-sequence is a set
of indices that splits π into sub-sequences. An i-sequence consists of exactly 2i indices
1 ≤ j1 < j2 < · · · < j2i ≤ t, where each jk is an integer that refers to the priority p jk
from the sequence π . An i-sequence is required to satisfy the following properties.

• Evenness. Each index (except possibly the last index) refers to an even priority,
meaning that p jk is an even priority for all k < 2i.

• Inner domination. The subsequence of priorities between any two indices jk
and jk+1 is dominated by either p jk or p jk+1 . Formally, this means that whenever
jk < l < jk+1, we have that pl ≤ p jk or we have that pl ≤ p jk+1 .

• Outer domination. The final subsequence between p j2i and pt is dominated by
p j2i , meaning that for all l > j2i we have pl ≤ p j2i .

2 1 4 3 1 2 8 7 1

Figure 3.2: A 2-sequence.

Figure 3.2 gives an example of a 2-sequence. The circled priorities are the indices
used in the sequence. Note that there are exactly 22 = 4 indices used, and that ev-
ery circled priority is even. Inner domination is satisfied because every priority that is
between two circled priorities is lower than one of the two end points, and outer domi-
nation is satisfied because the final circled priority 8 is larger than all the priorities that
come after it.

The relationship to parity games. The relationship between i-sequences and parity
games is explained by the following lemma.

Lemma 27 (Completeness for the separating automaton). Suppose that Adam and Eve
play positional strategies in the parity game, and let π the resulting play.

• If Eve wins the parity game, then there exists prefixes of π that contain arbitrarily
long i-sequences.

• If Adam wins the parity game, then no prefix of π will contain a dlogne-sequence.

Proof. If Eve wins the parity game then the largest priority occurring in π infinitely
often is even. Let p this priority. To construct a prefix containing an i-sequence, we
find the first index j after which no priority q > p is seen. We take as our indices
j1 < j2 < · · · < j2i the first 2i occurrences of priority p after index j. Evenness is
trivially satisfied, and both inner and outer domination are satisfied because no priority
larger than p is seen after index j.
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We prove the second claim by contradiction. Suppose that Adam wins the game,
but that there is a prefix of π that contains a dlogne-sequence. Since the sequence
indexes 2dlogne ≥ n vertices of the game, it must index the same vertex v twice. Thus
our i-sequence must contain a cycle passing through v. Note that inner domination
ensures that the largest priority on the cycle that passes through v is even. However, no
even cycle can be formed when Adam wins the game by playing a positional winning
strategy, and so we have arrived at our contradiction.

To summarise, if Eve wins the game, then she has a strategy that ensures that arbi-
trarily long i-sequences occur, while if Adam wins the game then he has a strategy that
ensures that no dlogne-sequence occurs. So to solve the parity game, it is sufficient to
determine whether Eve can force a dlogne-sequence to occur.

A data structure for recognising i-sequences. We will build a quasi-polynomial
sized automaton that reads a sequence of priorities, and determines whether that se-
quence of priorities contains a k-sequence. The automaton is defined by a data struc-
ture that we call a record, which contains information about the i-sequences that have
been seen so far in the sequence.

A record is a sequence bk,bk−1, . . . ,b1,b0, where each bi is either a priority, or the
special symbol −. The value of bi has the following meaning:

• Witnessing. If bi 6= −, then we have seen an i-sequence, and the final priority
on that i-sequence is bi.

• Order. If bi 6= − and b j 6= − and j < i, then the first index of the j-sequence
witnessed by b j occurs after the last index of the i-sequence witnessed by bi.

Note that, although each element bi records the existence of an i-sequence, the record
data structure does not store the 2i indices of this i-sequence, it only stores the priority
of the final index of that sequence.

2 1 4 2 8 7 2 1 4 1 2

Figure 3.3: An example sequence that corresponds to the record −842.

Figure 3.3 shows an example sequence that is consistent with the record that sets
b3 = −, b2 = 8, b1 = 4, and b0 = 2. The red 2-sequence is represented by b2 = 8,
which is the last priority of the 2-sequence. The blue 1-sequence starts after the end
of the 2-sequence, and it is represented by b1 = 4. Likewise the grey 0-sequence starts
after the end of the 1-sequence, and is represented by b0 = 2. There is no 3-sequence
in the example, and this is represented by setting b3 =−.

The update rule. Suppose that we have a record that represents the i-sequences in a
finite sequence of priorities, and that we then read the next priority p in that sequence.
We need to update the record to take this priority into account. We do this by applying
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the following update rule. The update rule consists of two steps, which occur one after
the other.

• Step 1. In this step, we find the largest index i such that b j is even for all j ≤ i.
If bi =−, or bi < p, then we create a new record b′k, b′k−1, . . . , b′0 by setting:

b′j =


b j if j > i,
p if j = i,
− if j < i.

If there is no index i that satisfies the conditions, then we do not modify the
record.

• Step 2. In step 2, we take the output of step 1, and we find the largest index i
such that p > bi and we create a new record b′k, b′k−1, . . . , b′0 by setting:

b′j =


b j if j > i,
p if j = i,
− if j < i.

Again, if there is no such index i, then the record is not modified.

2 1 4 2 8 7 2 1 4 1 2 4

Figure 3.4: An example of a Step 1 update applied to the sequence and record from Fig-
ure 3.3

Intuitively, Step 1 attempts to combine the i-sequences in the existing record into
a longer i-sequence. Suppose that we have read the sequence shown in Figure 3.3,
that we have compute the record −842, and that the next priority in the sequence is 4.
Figure 3.4 shows the result of applying Step 1 to this situation. Observe that 3 is the
largest index i such that for all j < i we have that b j is even, so Step 1 will output the
record 4−−−.

So in this circumstance, Step 1 claims that we have now seen a 3-sequence. Fig-
ure 3.4 shows why this is correct: the 0-sequence of b0, the 1-sequence of b1, and
the 2-sequence of b2 can be merged together, along with the new priority, to create a
3-sequence. Observe that inner domination in this new 3-sequence is satisfied due to
the outer domination property for each of the i-sequences that it was constructed from.
For example, the 2-sequence ends at priority 8, and the 1-sequence begins at priority 2,
and we know that 8 must dominate all priorities between the 8 and the 2 because 8 is
required to dominate all priorities that follow it.

Step 2 ensures that the outer domination property holds. In Figure 3.5, we show the
result of applying Step 2 to the record −842 that corresponds to the sequence shown
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2 1 4 2 8 7 2 1 4 1 2 9

Figure 3.5: An example of a Step 2 update applied to the sequence and record from Fig-
ure 3.3

in Figure 3.3, when the next priority in the sequence is 9. Observe that since 9 > 8,
the outer domination property for the 2-sequence ending at 8 now fails to hold, and
likewise for the sequences ending at 4 and 2. Hence, Step 2 deletes the 0-sequence and
1-sequence from the record, and updates the 2-sequence to end at 9, thereby restoring
outer domination. The resulting record is −9−−.

Correctness. To compute a record for a particular sequence of priorities, we start
with the record −− . . .−, and then process the sequence one priority at a time, using
the update rule that we have described.

We must now argue that the record data structure and update rule is sufficient to
decide the winner of a parity game. The following lemma states that a record will
never falsely claim that an i-sequence has occurred.

Lemma 28 (Correctness for the separating automaton). Let bk,bk−1, . . . ,b0 the record
for a sequence of priorities π . If bi 6=−, then π contains an i-sequence.

Proof. This can be proved by induction over the components of the record. In fact we
will prove the slightly stronger order property that we mentioned earlier: the i-sequence
corresponding to bi starts after the j sequence corresponding to b j whenever i < j and
bi 6=− and b j 6=−.

The base case is trivially true, since the value of b0 asserts the existence of a 0-
sequence, and any priority by itself is a 0-sequence. So when Step 1 or Step 2 updates
b0, the corresponding 0-sequence is the new priority, and this clearly starts after all
other i-sequences in the record.

For the inductive step, we must prove that the two steps of the update rule are
correct.

• For Step 1 updates, we can use the inductive hypothesis to argue that, for each
j < i, the j-sequence corresponding to b j exists, and that they appear in order in
the sequence, and that it ends before the sequence corresponding to b j−1 starts.
Furthermore, the outer domination property the j-sequence ensures that all prior-
ities between the end of the j-sequence and the start of the ( j−1)-sequence are
dominated by the last priority in the j-sequence, which must be even according to
the definition of a Step 1 update. Hence, we can combine all of the j-sequences
with j < i together, along with the new priority, to create an i-sequence. This
new i-sequence starts at exactly the same point as the sequence corresponding to
bi−1, and so the order property still holds.
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• For Step 2 updates, we only need to argue that the value of b′i correspond to
an i sequence. This can be constructed as we showed in Figure 3.5: take the
i-sequence that corresponds to bi, and replace the final priority with the new pri-
ority. Observe that the final priority of an i-sequence is permitted to be odd,
and so this new sequence satisfies all of the requirements of an i-sequence. Fur-
thermore, the starting point of this sequence has not changed, and so the order
property is preserved.

As a consequence of the lemma above, if Adam has a strategy to ensure that no k-
sequence occurs in the game, then Adam has a strategy to ensure that the bk component
of the record is never set so that bk 6=−.

It can be shown that the other direction is also true: if an i-sequence has occurred,
then there will be some index j ≥ i such that b j 6=−. However, the proof is somewhat
tedious, and this statement is actually stronger than what we need. To argue that the
record can determine the winner of a parity game, the following weaker lemma suffices.

Lemma 29 (Weaker correctness for the separating automaton). Let π an infinite play
that is winning for Eve. For all k, there exists a prefix of π such that bk 6=−.

Proof. Let p the largest even priority that is seen infinitely often, and let j be the first
index after which no priority larger than p is visited. We argue that after index j has
been reached, the record will eventually set bi 6=− for all i.

To see why, observe that after index j has been reached, Step 2 cannot replace any
component b j with b j = p, since Step 2 can only overwrite the priority in b j when the
new priority p′ satisfies p′ > b j, but no priority p′ > p is seen after index j.

On the other hand, Step 1 will always be triggered whenever we visit the priority
p. Step 1 will always set some component of the record to p, and as we have observed
this cannot be overwritten by Step 2. Moreover, since p is even, repeated application
of Step 1 will build a longer and longer i-sequences whose outer domination priority is
p. Thus, after we have made 2k visits to p, we will have set bk = p 6=−, if we have not
done so already.

Hence, if Eve wins the parity game, then she has a strategy to eventually ensure
that bk 6= −. Combining the two lemmas above, with Lemma 27 gives the following
corollary.

Corollary 4 (Correctness of the reduction for the separating automaton). Suppose that
we monitor the play of a parity game with a record bdlogne, . . . ,b0. Eve has a strategy
that ensures bdlogne 6=− if and only if Eve wins the parity game.

The size of the automaton. The record data structure and update rule can be encoded
as a deterministic finite automaton that reads the play. Each state of the automaton is
associated with some configuration of bdlogne, . . . ,b0, and the transitions of the automa-
ton are defined by the update rule.

This automaton has quasi-polynomial size. The number of states used in the au-
tomaton is the number of possible configurations of bdlogne, . . . ,b0. Each bi can be one
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of the d priorities in the game, or the symbol −, and so there are d +1 possible values
that it can take. Moreover there are logn+ 1 components of the record, so the total
number of configurations is at most (d +1)logn+1 = nO(logd).

3.4 A quasi-polynomial time value iteration algorithm

Theorem 31 (Value iteration). There exists a value iteration algorithm for solving
parity games in time

O
(

nm · log(n) log(d) ·n2.45+log2

(
1+ d/2−1

log2(n)

))
,

which is quasi-polynomial in general and polynomial if d = O(log2(n)). The space
complexity of the algorithm is quasi-linear, and more precisely O(m+n log2(d)).

The presentation follows the introduction to value iteration algorithms given in
Section 1.9, although it does not technically rely on it. Let G = (A ,Parity[c]) a
parity game with n vertices and priorities in [1,d], and without loss of generality d is
even.

The first step is to define a notion of value function valG : V → Y with (Y,≤) a
lattice satisfying the characterisation principle: for all vertices u we have that Eve wins
from u if and only if valG (u) 6= >, where > is the largest element in Y . The goal of
the algorithm is to compute valG , from which we then easily obtain the winning region
thanks to the characterisation principle.

We let FV be the lattice of functions V →Y equipped with the componentwise order
induced by Y . We are looking for a monotonic function δ : Y × [1,d]→Y inducing the
operator O : FV → FV defined by:

O(µ)(u) =

min
{

δ (µ(v), p) : u
p−→ v ∈ E

}
if u ∈VEve,

max
{

δ (µ(v), p) : u
p−→ v ∈ E

}
if u ∈VAdam,

such that valG is the least fixed point of O. The algorithm will then simply use Kleene’s
fixed point theorem (Theorem 4) to compute valG by iterating the operator O.

Let us look at this question using the notion of progress measures, which are pre-
fixed points of O, meaning µ such that O(µ) ≤ µ . Since the least fixed point of O is
also its least pre-fixed point, an equivalent formulation of the characterisation principle
above reads: for all vertices u we have that Eve wins from u if and only if there exists
a progress measure µ such that µ(u) 6=>.

To summarise this discussion, we are looking for a lattice (Y,≤) and a monotonic
function δ : Y× [1,d]→Y such that for all parity games G with n vertices and priorities
in [1,d], for all vertices u we have that Eve wins from u if and only if there exists a
progress measure µ such that µ(u) 6= >. Our next step is to show how the notion of
universal trees provides a class of solutions to this problem.
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Universal trees
The trees we consider have three properties: they are rooted, every leaf has the same
depth, and the children of a node are totally ordered. Formally, a tree of height 0 is a
leaf, and a tree t of height h+1 is an ordered list [t1, . . . , tk] of subtrees each of height h.

We consider two parameters for trees: the height, and the size which is defined to
be the number of leaves.

Figure 3.6: On the left, a tree of height h = 2, which is the smallest (5,2)-universal
tree: it has size 11 (meaning it has 11 leaves). On the right, a tree of size 5 and one
possible embedding into the universal tree.

We say that a tree t embeds into another tree T if:

• either both are leaves,

• or let t = [t1, . . . , tk] and T = [T1, . . . ,Tk′ ], there exist i1 < · · ·< ik such that for all
j ∈ [1,k] we have that t j embeds into Ti j .

Definition 6 (Universal trees). A tree is (n,h)-universal if it embeds all trees of size n
and height h.

We refer to Figure 3.6 for an example of a (5,2)-universal tree. A first example of
an (n,h)-universal tree is the tree where each node has degree n: formally we define it
recursively by Tn,0 is a leaf, and Tn,h+1 = [Tn,h, . . . ,Tn,h︸ ︷︷ ︸

n copies

]. It has size nh.

A quasi-polynomial universal tree
We present an inductive construction of a quasi-polynomial universal tree.

Theorem 32 (Construction of a quasi-polynomial universal tree). There exists an (n,h)-
universal tree with size f (n,h) satisfying the following:

f (n,h) = f (n,h−1)+ f (bn/2c,h)+ f (n−1−bn/2c,h),
f (n,0) = 1,
f (0,h) = 0.

An upper bound is given by

f (n,h)≤ n ·
(

h−1+ blog2(n)c
blog2(n)c

)
.
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This is also bounded from above by n
2.45+log2

(
1+ h−1

log2(n)

)
, which is quasi-polynomial in

n and h in general, and polynomial if h = O(log2(n)).

Proof. To construct the (n,h)-universal tree T , let:

• Tleft be a (bn/2c,h)-universal tree,

• Tmiddle be a (n,h−1)-universal tree,

• Tright be a (n−1−bn/2c,h)-universal tree.

The intuitive construction of T is as follows: we merge the roots of Tleft and Tright and
insert in-between them a child of the root to which is attached Tmiddle. Formally, let
Tleft = [T 1

left, . . . ,T
k

left] and Tright = [T 1
right, . . . ,T

k′
right], we define T as

[T 1
left, . . . ,T

k
left, Tmiddle, T 1

right, . . . ,T
k′

right].

The construction is illustrated in Figure 3.7.

Tleft TrightTmiddle

Figure 3.7: The inductive construction.

We argue that T is (n,h)-universal. Consider a tree t = [t1, . . . , tk] with n leaves.
The question is where to cut, i.e. which subtree of t gets mapped to Tmiddle. Let n(ti) be
the number of leaves in ti. Since t has n leaves, we have n(t1)+ · · ·+n(tk) = n. There
exists a unique p∈ [1,k] such that n(t1)+· · ·+n(tp−1)≤bn/2c and n(t1)+· · ·+n(tp)>
bn/2c. The choice of p implies that n(tp+1)+ · · ·+n(tk)≤ n−1−bn/2c. To embed t
into T , we proceed as follows:

• the tree [t1, . . . , tp−1] has at most bn/2c leaves, so it embeds into Tleft by induction
hypothesis;

• the tree tp has height h− 1 and at most n leaves, so in embeds into Tmiddle by
induction hypothesis;

• the tree [tp+1, . . . , tk] has at most n−1−bn/2c leaves, so it embeds into Tright by
induction hypothesis.
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The construction given in the proof yields the smallest (5,2)-universal tree illustrated
in Figure 3.6.

Ordering the leaves
Let us consider a tree t of height h, and write d = 2h. A leaf is given by a list of
directions that we define now. For technical convenience that will manifest itself later,
the list of directions is indexed by odd numbers p ∈ [1,d] downwards: for example for
d = 10 a leaf is (D9,D7,D5,D3,D1).

We write Yt for the set of leaves of t and ≤ for the lexicographic order on Yt . Note
that its interpretation on the tree is: for two leaves `,`′, we have `≤ `′ if and only if `
is to the left of `′. The strict version of ≤ is <.

We introduce a set of relations Cp over Yt for each p ∈ [1,d]. For a leaf ` =
(Dd−1, . . . ,D1) we write `≥p for the tuple (Dd−1, . . . ,Dp), which we call the p-truncated
branch of `.

• For p odd, we say that `Cp `
′ if `≥p < `′≥p.

• For p even, we say that `Cp `
′ if `≥p ≤ `′≥p.

To interpret Cp on the tree, we label the levels by priorities from bottom to top as
in Figure 3.6. Then `Cp `

′ if and only if the p-truncated branch of ` is to the left of the
p-truncated branch of `′, strictly if p is odd, and non-strictly if p is even.

`1 `2 `3

4
3
2
1

Figure 3.8: Illustration of the relations Cp.

We refer to Figure 3.8 for some examples. In red, we see that `1 C3 `2.

`2 C1 `3 ; `2 C2 `3 ; `3 C2 `2 ; `1 C3 `2 ; `1 C2 `2.

Lemma 30 (Properties of the tree orders). The relations Cp for p ∈ [1,d] induced by
a tree t satisfy the following properties:

• Cd is the full relation: for all b,b′ we have bCd b′;

• if `Cp `
′ and `′ Cq `

′′ then `Cmax(p,q) `
′′;
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• the relation Cp is non-reflexive if p is odd;

• the relation C1 is total;

• for p < d even we have `Cp `
′ if and only if ¬(`′ Cp+1 `).

The following observation rephrases the notion of embeddings between trees using
the ordering on leaves.

Fact 14 (Equivalence between embedding and orders). Let t,T be two trees of height
h and d = 2h. Then t embeds into T if and only if there exists a function µ : Yt → YT
such that for all leaves `,`′, for all p ∈ [1,d]:

`Ct
p `
′ =⇒ µ(`)CT

p µ(`′).

Progress measures

We explain how a tree t induces both a lattice (Yt ,≤) and a monotonic function δt :
Yt × [1,d]→ Yt . The set Yt is the set of leaves of t augmented with a new element
>, and ≤ is the lexicographic order on leaves with > as greatest element. For each
p ∈ [1,d] and ` ∈ Yt we extend Cp with `Cp >. We then define δt : Yt × [1,d]→ Yt by

δt(`, p) = min
≤

{
`′ : `Cp `

′} .
This in turn induces a monotonic operator Ot : FV → FV defined by:

Ot(µ)(u) =

min
{

δt(µ(v), p) : u
p−→ v ∈ E

}
if u ∈VEve,

max
{

δt(µ(v), p) : u
p−→ v ∈ E

}
if u ∈VAdam,

Let G be a parity game, a progress measure is a function µ : V → Yt which is a
pre-fixed point: Ot(µ) ≤ µ . Unfolding the definitions, this means that for all vertices
u, we have

∃u p−→ v ∈ E, δt(µ(v), p)≤ µ(u) if u ∈VEve,

∀u p−→ v ∈ E, δt(µ(v), p)≤ µ(u) if u ∈VAdam.

The definition of δt further simplifies it to: for all vertices u, we have

∃u p−→ v ∈ E, µ(v)Cp µ(u) if u ∈VEve,

∀u p−→ v ∈ E, µ(v)Cp µ(u) if u ∈VAdam.

The following theorem is our first and main step towards proving the characterisa-
tion principle.

Theorem 33 (Fundamental theorem for progress measures). Let G be a parity game
and v a vertex. Then Eve wins from v if and only if there exists a tree t and a progress
measure µ : V → Yt such that µ(v) 6=>.
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In order to prove Theorem 33, we first consider the case of parity graphs. A
progress measure in a parity graph is a function µ : V → Yt such that for all edges
u

p−→ v ∈ E we have µ(v)Cp µ(u).
Recall that a graph satisfies parity from v if all infinite paths from v satisfy parity.

This is equivalent to asking whether all cycles reachable from v are even, meaning the
maximal priority appearing in the cycle is even.

Lemma 31 (Fundamental lemma for progress measures over graphs). Let G be a parity
graph and v a vertex. Then G satisfies parity from v if and only if there exists a tree t
and a progress measure µ : V → Yt such that µ(v) 6=>.

Proof. Let us assume that there exists a tree t and a progress measure µ : V → Yt such
that µ(v) 6= > and for all edges u

p−→ v ∈ E we have µ(v) Cp µ(u). To show that G
satisfies parity from v we show that any cycle reachable from v is even. Let us consider
such a cycle:

v1
p1−→ v2

p2−→ v3 · · ·vk
pk−→ v1.

Since the cycle is reachable from v and µ(v) 6= >, this implies that µ(vi) 6= ⊥ for
i ∈ [1,k]. Let us assume towards contradiction that its maximal priority is odd, and
without loss of generality it is p1. Applying our hypothesis to each edge of the cycle
we have

µ(v1)Cpk µ(vk)Cpk−1 · · ·Cp2 µ(vk)Cp1 µ(v1).

The second item of Lemma 30 implies that µ(v1) Cp1 µ(v1), which contradicts the
third item since Cp1 is non-reflexive given that p1 is odd.

Let us now prove the converse implication. We prove the following property by
induction on the number of priorities: for all graphs satisfying parity (without the usual
assumption that every vertex has an outgoing edge), there exists a tree t and a progress
measure µ : V → Yt such that µ(v) 6=> for all vertices v ∈V .

Let G a graph satisfying parity. Without loss of generality the largest priority d in
the graph is even. Let us define G′ the graph obtained from G by removing all edges
with priority d. We consider its decomposition in strongly connected components: let
G1, . . . ,Gk denote the strongly connected components of G′, numbered so that for any
edge u→ v ∈ E(G′), if u ∈V (Gi) then v ∈V (G j) for j ≥ i. A stronger property holds

for edges u d−1−−→ v ∈ E(G′): if u ∈V (Gi) then v ∈V (G j) for j > i. Indeed, if v ∈V (Gi)
then we could form a cycle in G′ whose largest priority is d−1, a contradiction. Hence
each Gi has priorities in [1,d− 2], and being a subgraph of G it satisfies parity. By
induction hypothesis, there exists a tree ti and a progress measure µi : V (Gi)→Yti such
that µi(v) 6=> for all vertices v ∈V (Gi).

Let us define t = [t1, . . . , tk], and the function µ : V (G)→ Yt by µ(v) = µi(v) if v ∈
V (Gi). We claim that µ is a progress measure: let us consider an edge u

p−→ v ∈ E(G),
then

• if p = d, then µ(v)Cd µ(u) because Cd is the full relation;

• if p = d−1, then µ(v)Cd−1 µ(u) because u ∈V (Gi) and v ∈V (G j) for j > i;
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• if p < d−1, then µ(v) Cp µ(u). Indeed u ∈ V (Gi) and v ∈ V (G j) for j ≥ i, so
either j = i and this follows from the fact that µi is a progress measure, or j > i
and we have µ(v)Cd−1 µ(u) so a fortiori µ(v)Cp µ(u).

We can now prove Theorem 33.

Proof. Assume that Eve wins from v and let σ be a positional strategy. The parity graph
G [σ ] satisfies parity from v, so thanks to Lemma 31 there exists a tree t and a function
µ : V → Yt such that µ(v) 6= > and for all edges u

p−→ v ∈ E we have µ(v) Cp µ(u).
We remark that µ : V →Yt is actually a progress measure: the condition for u ∈VEve is
ensured by the edge σ(u), and the condition for v ∈VAdam by assumption on µ .

Conversely, assume that there exists a tree t and a progress measure µ : V → Yt .
It induces a positional strategy defined by σ(u) = u

p−→ v such that µ(v) Cp µ(u). We
argue that σ is a winning strategy from any vertex v such that µ(v) 6= >. This is a
consequence of Lemma 31 for the parity graph G [σ ].

Theorem 33 is very close to the characterisation principle we are after, the only
difference being that the lattice (Yt ,≤) depends on an existentially quantified tree t.
This is where we use universal trees:

Corollary 5 (Fundamental corollary for progress measures). Let G be a parity game
with n vertices and priorities in [1,d], and v a vertex. Let T be a (n,d/2)-universal
tree. Then Eve wins from v if and only if there exists a progress measure µ : V → YT
such that µ(v) 6=>.

Proof. Assume that Eve wins from v, thanks to Theorem 33 there exists a tree t and a
progress measure µ : V → Yt such that µ(v) 6= >. Since T is (n,d/2)-universal and t
has at most n leaves, t embeds into T , which thanks to Fact 14 implies that there exists
µ ′ : Yt → YT respecting the relations C. We extend it to µ ′ : Yt → YT by µ ′(⊥) = ⊥.
Then the composition µ ′ ◦µ : V →YT is a progress measure such that (µ ′ ◦µ)(v) 6=⊥.

The converse implication is a direct consequence of Theorem 33.

We have thus proved that the characterisation principle holds for any (n,d/2)-
universal tree.

The algorithm

Let us fix T an (n,d/2)-universal tree. It induces both a lattice (YT ,≤) and a monotonic
function δT : YT × [1,d]→ YT , which in turn induces a monotonic operator OT : FV →
FV . Since T is fixed we do not specify the subscript T for all these objects.

The last step is to construct an algorithm returning the minimal progress measure
relying on Kleene’s fixed point theorem (stated as Theorem 4). The generic algorithm
is explained in Section 1.9, let us instantiate it here.
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Figure 3.9: The operator O in action: the updated value for u is the minimal leaf
(meaning the leftmost leaf) which satisfies µ(v)C1 ` and µ(v′)C2 `.

We say that an edge u
p−→ v is incorrect if ¬(µ(v) Cp µ(u)), and a vertex u is

incorrect if either u ∈VEve and all outgoing edges are incorrect or u ∈VAdam and there
exists an incorrect outgoing edge.

The pseudocode for the algorithm is given in Algorithm 3.4, where we let `min
denote the minimal leaf in T .

Algorithm 3.4: The value iteration algorithm.
Data: A parity game with n vertices priorities in [1,d] and a (n,d/2)-universal

tree T .
for v ∈V do

µ(v)← `min

repeat
µ ←O(µ)

until µ =O(µ)
return µ

Theorem 34 (Generic value iteration algorithm). For all (n,d/2)-universal tree T , for
all parity games G with n vertices and priorities in [1,d], the value iteration algorithm
over the tree T returns the minimal progress measure µ for G over T .

Thanks to Corollary 5, the minimal progress measure yields a solution for parity
games: Eve wins from v if and only if µ(v) 6=>.

Complexity analysis
The number of times the operator O is used is bounded by the number of leaves of T ,
which we write |T |, implying that the total number of iterations is bounded by n · |T |.
To determine the overall complexity we need to discuss two aspects of the algorithm:

• the data structure and in particular the choice of the vertex u in the loop;
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• the computation of O and in particular the encoding of leaves of T .

Recall that a vertex u ∈ VEve is incorrect if and only if all its outgoing edges are
incorrect, and a vertex u ∈ VAdam is incorrect if and only if it has a incorrect outgoing
edge. Hence checking whether a vertex u is incorrect requires considering all of its
outgoing edges u

p−→ v and checking whether µ(v) Cp µ(u). Let us write ∆ for the
complexity of checking whether µ(v)Cp µ(u). Hence checking whether u is incorrect
costs O(|In−1(u)| ·∆), where |In−1(u)| is the number of outgoing edges of u. A naive
implementation of Algorithm 3.4 would in each repeat loop go through every vertex
u to check whether it is incorrect. This would incur the following cost for a single
iteration

∑
u∈V

O(|In−1(u)| ·∆) = O(n ·m ·∆).

Thus the overall running time of the algorithm would be

O((n ·m ·∆) · (n · |T |)) = O(n2 ·m ·∆ · |T |).

Typically ∆ is small (we will see that for a well chosen universal tree T it is polyloga-
rithmic in n and d), and T is the dominating factor (quasi-polynomial in n and d thanks
to Theorem 32).

A less naive implementation maintains the list of incorrect vertices using a bet-
ter data structure, saving a linear factor in the complexity. We first explain this, and
then discuss the cost ∆ by choosing an appropriate encoding of the quasi-polynomial
universal tree constructed in Theorem 32.

Data structure
We use a data structure similar to the attractor computation presented in Section 2.1,
also presented in general terms in Section 1.9. The pseudocode is given in Algo-
rithm 3.5.

The data structure consists of the following objects:

• a leaf of T for each vertex, representing the current function µ : V → Y ;

• a set Incorrect of vertices (the order in which vertices are stored and retrieved
from the set does not matter);

• a table Count storing for each vertex of Eve a number of edges.

For our complexity analysis we use the unit cost RAM model, see Section 1.2 for
details. In the case at hand let us choose for the machine word size w = log2(m)+
log2(d), so that an edge together with its priority can be stored in one machine word.
The space complexity of this data structure depends on the encoding of T , which we
will discuss later.

The invariant of the algorithm satisfied before each iteration of the repeat loop is
the following:

• for u ∈VEve, the value of Count(u) is the number of incorrect edges of u;
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• Incorrect is the set of incorrect vertices.

The invariant is satisfied initially thanks to the function Init. Let us assume that
we choose and remove u from Incorrect. Since we modify only µ(u) the only
potentially incorrect vertices are in Incorrect (minus u) and the incoming edges of
u; for the latter each of them is checked and added to Incorrect′ when required. By
monotonicity, incorrect vertices remain incorrect so all vertices in Incorrect (minus
u) are still incorrect. Hence the invariant is satisfied.

The invariant implies that the algorithm indeed implements Algorithm 3.4 hence
returns the minimal progress measure, but it also has implications on the complexity.
Indeed one iteration of the repeat loop over some vertex u involves

O
(
(|In−1(u)|+ |Out−1(u)|) ·∆

)
operations, the first term corresponds to updating µ(u) and Incorrect, which re-
quires for each outgoing edge of u to compute δ , and the second term corresponds to
considering all incoming edges of u. Thus the overall complexity for a single iteration
is

O

(
∑
u∈V

(|In−1(u)|+ |Out−1(u)|) ·∆

)
= O(m ·∆).

Since there are at most n · |T | iterations, the running time of the whole algorithm follows
as announced.

Encoding leaves
Let us fix T to be the quasi-polynomial universal tree constructed in Theorem 32.

In our definition of trees we say that a tree is an ordered list of subtrees [t1, . . . , tk],
so we use [1,k] with the natural order for ordering the subtrees. Any other total order
can be used to that effect, and a more appropriate order may lead to smaller encoding.
Indeed, using [1,k] for ordering subtrees, if a tree has height h and n leaves then a leaf
is a sequence of h numbers in [1,n], so it uses O(h log2(n)) bits.

Let us consider an order well suited for encoding T . We use {0,1}∗ the set of binary
words and order them using the following three rules that apply for any u,v ∈ {0,1}∗:

0u < ε < 1u ; (0u < 0v⇐⇒ u < v) ; (1u < 1v⇐⇒ u < v).

For words of length at most 2 the order is 00 < 0 < 01 < ε < 10 < 1 < 11.
We can now revisit the construction of the universal tree by defining directly the

set of leaves. Recall that T is obtained from Tleft,Tmiddle, and Tright. By induction
hypothesis leaves in Tleft and Tright are tuples of length h−1 and leaves in Tmiddle tuples
of length h. The leaves of T are:

• leaves of Tleft where the first component is prefixed with a 0;

• leaves of Tmiddle augmented with a new component ε;

• leaves of Tright where the first component is prefixed with a 1.
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Algorithm 3.5: The value iteration algorithm with explicit data structure.
Data: A parity game with n vertices priorities in [1,d] and a (n,d/2)-universal

tree T .
Function Init():

for u ∈V do
µ(u)← `min

for u ∈VEve do
for u

p−→ v ∈ E do
if incorrect: ¬(µ(v)Cp µ(u)) then

Count(u)← Count(u)+1

if Count(u) = Degree(u) then
Add u to Incorrect

for u ∈VAdam do
for u

p−→ v ∈ E do
if incorrect: ¬(µ(v)Cp µ(u)) then

Add v to Incorrect

Function Treat(u):
if u ∈VEve then

µ(u)←min
{

δ (µ(v), p) : u
p−→ v ∈ E

}
if u ∈VAdam then

µ(u)←max
{

δ (µ(v), p) : u
p−→ v ∈ E

}
Function Update(u):

if u ∈VEve then
Count(u)← 0

for v
p−→ u ∈ E do

if v
p−→ u is incorrect then

if v ∈VEve then
Count(v)← Count(v)+1
if Count(v) = Degree(v) then

Add v to Incorrect′

if v ∈VAdam then
Add v to Incorrect′

Function Main():
Init ()
for i = 0,1,2, . . . do

Incorrect′← /0
for u ∈ Incorrect do

Treat (u)
Update (u)

if Incorrect′ = /0 then
return µ

else
Incorrect← Incorrect′
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ε 0 ε 0 ε ε
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Figure 3.10: The succinct encoding on the (5,2)-universal tree.

We call this encoding the succinct encoding, it is illustrated in Figure 3.10 for the
(5,2)-universal tree. The leftmost leaf is (00,ε), and the middle leaf (ε,ε). In general,
the inductive construction implies that every leaf is a tuple (Dd−1, . . . ,D1) such that the
sum of the lengths of the directions Di is at most log2(n). Thus a leaf is encoded using
O(log2(h) log2(n)) bits: for each of the log2(n) bits we need log2(h) bits to specify its
component.

In terms of machine words of size w = log2(n)+ log2(d), this means that a leaf can
be stored using log2(d) machine words. Hence the data structure uses O(n log2(d))
machine words, with together with the input size O(m) means that the space complexity
of the algorithm is O(m+n log2(d)).

Using the succinct encoding and a tedious but simple case analysis we can compute
δ (`, p) in time O(log2(n) log2(d)). Putting everything together we obtain the overall
complexity stated in Theorem 31.

3.5 Comparing the three families of algorithms
At the beginning of the chapter we described three families of algorithms: strategy
improvement, attractor decomposition, and value iterations.

Let us first clarify the relationship between the separation framework discussed in
Section 3.3 and the value iteration paradigm presented in Section 3.4. Both are families
of algorithms:

• An (n,d)-separating automaton A induces an algorithm for solving parity games
in time O(m · |A|) where |A| is the size of A, meaning the number of states.

• An (n,d/2)-universal tree T induces a value iteration algorithm for solving parity
games in time proportional to |T | where |T | is the size of T , meaning the number
of leaves (the exact complexity depends on the cost of computing δ in T , which
is typically small).

These two families are in a strong sense equivalent:

Theorem 35 (Equivalence between separating automata and universal trees).
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• An (n,d)-separating automaton induces an (n,d/2)-universal tree of the same
size;

• An (n,d/2)-universal tree induces an (n,d)-separating automaton of the same
size.

We do not prove this theorem here but note that it can be stated more generally for
any half-positionally determined objective, replacing universal trees by the notion of
universal graphs. The main advantage of the value iteration presentation is the space
complexity, which for a good choice of the universal tree can be made very small
(quasi-linear).

In terms of complexity, the strategy improvement has exponential complexity, while
both attractor decompositions and value iterations algorithms have quasi-polynomial
complexity. Let us make a finer comparison: the complexity of the attractor decompo-
sition algorithm is a polynomial multiplied by the (non polynomial) term(

d−1+ blog(n)c
blog(n)c

)
,

while for the value iteration algorithm the complexity is a polynomial multiplied by the
(also non polynomial) term (

d/2−1+ blog(n)c
blog(n)c

)
.

The key difference is that the former performs an induction using all priorities, while
the latter considers only odd priorities hence the dependence in d/2. Although our
presentation of the attractor decomposition algorithm does not make it explicit, this
class of algorithms is also related to the notion of universal trees; however an algorithm
is induced not by one (n,d/2)-universal tree, but by two: one for each player, which
are then interleaved to organise the recursive calls of the algorithm.

Since both value iteration and attractor decomposition algorithms are connected to
the combinatorial notion of universal trees, the next question is whether the construc-
tion given in Section 3.4 is optimal. The answer is unfortunately yes, there exists a
lower bound on the size of universal trees which matches this construction up to poly-
nomial factors.

The last question we discuss here is whether there exists a quasi-polynomial strat-
egy improvement algorithm. In particular a natural attempt would be to use universal
trees for this endeavour. Unfortunately, the natural approach fails, as we explain now.
As we have seen, universal trees can be used to represent progress measures for Eve:
given a graph, a vertex is assigned > if all paths satisfy the complement of parity, and
some left of the tree otherwise. Hence they can be used for a strategy improvement
algorithm iterating over strategies of Adam. Let us consider the exponential univer-
sal tree, we present in Figure 3.11 a game where the strategy improvement algorithm
alternates between two strategies, hence does not terminate. The minimal progress
measures are illustrated on the right hand side, for both strategies. One can verify that
in both cases, the missing edge is an improving edge.
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Figure 3.11: A game where the strategy improvement over the exponential universal
tree does not terminate.
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Figure 3.12: The two strategies have opposing improving edges (dashed).
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We refer to Section 2.6 for the role of parity objectives and how they emerged in au-
tomata theory as a subclass of Muller objectives. Another related motivation comes
from the works of Emerson, Jutla, and Sistla [EJS93], who showed that solving parity
games is linear-time equivalent to the model-checking problem for modal µ-calculus.
This logical formalism is an established tool in program verification, and a common
denominator to a wide range of modal, temporal and fixpoint logics used in various
fields.

Let us discuss the progress obtained over the years for each of the three families of
algorithms.

Value iteration algorithms and separating automata. The heart of value iteration
algorithms is the value function, which in the context of parity games and related de-
velopments for automata have been studied under the name progress measures or sig-
natures. They appear naturally in the context of fixed point computations so it is hard to
determine who first introduced them. Streett and Emerson [SE84, SE89] defined signa-
tures for the study of the modal µ-calculus, and Stirling and Walker [SW89] later devel-
oped the notion. Both the proofs of Emerson and Jutla [EJ91] and of Walukiewicz [Wal96]
use signatures to show the positionality of parity games over infinite games.

Jurdziński [Jur00] used this notion to give the first value iteration algorithm for
parity games, with running time O(mnd/2). The algorithm is called ‘small progress
measure lifting’ and is an instance of the class of value iteration algorithms we con-
struct in Section 3.4 by considering the universal tree of size nh. Bernet, Janin, and
Walukiewicz [BJW02] investigated the notion of permissive strategies and obtained
reductions from parity games to safety games. In essence, they constructed the sep-
arating automaton corresponding to the universal tree of size nh, although the gen-
eral framework of separating automata came later, introduced by Bojańczyk and Czer-
wiński [BC18].

The new era for parity games started in 2017 when Calude, Jain, Khoussainov, Li,
and Stephan [CJK+17] constructed a quasi-polynomial time algorithm. Our presen-
tation follows the technical developments of the subsequent paper by Fearnley, Jain,
Schewe, Stephan, and Wojtczak [FJS+17] which recasts the algorithm as a value itera-
tion algorithm. Bojańczyk and Czerwiński [BC18] introduce the separation framework
to better understand the original algorithm.

Soon after two other quasi-polynomial time algorithms emerged. Jurdziński and
Lazić [JL17] showed that the small progress measure algorithm can be adapted to a
‘succinct progress measure’ algorithm, matching (and slightly improving) the quasi-
polynomial time complexity. The presentation using universal tree that we follow
in Section 3.4 and an almost matching lower bound on their sizes is due to Fijalkow [Fij18].
The connection between separating automata and universal trees was shown by Czer-
wiński, Daviaud, Fijalkow, Jurdziński, Lazić, and Parys [CDF+19].

The third quasi-polynomial time algorithm is due to Lehtinen [Leh18]. The orig-
inal algorithm has a slightly worse complexity (nO(log(n)) instead of nO(log(d))), but it
was later improved to (essentially) match the complexity of the previous two algo-
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rithms [Par20]. Although not explicitly, the algorithm constructs an automaton with
similar properties as a separating automaton, but the automaton is non-deterministic.
Colcombet and Fijalkow [CF19] revisited the link between separating automata and
universal trees and proposed the notion of good for small games automata, capturing
the automaton defined by Lehtinen’s algorithm. The equivalence result between sepa-
rating automata, good for small games automata, and universal graphs, holds for any
half-positionally determined objective, giving a strong theoretical foundation for the
family of value iteration algorithms.

Attractor decomposition algorithms. The McNaughton Zielonka’s algorithm has
complexity O(mnd). Parys [Par19] constructed the fourth quasi-polynomial time algo-
rithm as an improved take over McNaughton Zielonka’s algorithm. As for Lehtinen’s
algorithm, the original algorithm has a slightly worse complexity (nO(log(n)) instead
of nO(log(d))). The construction was later improved [LPSW22]. As discussed in Sec-
tion 3.5 the complexity of this algorithm is quasi-polynomial and of the form nO(log(d)),
but a bit worse than the three previous algorithms since the algorithm is symmetric
and has a recursion depth of d, while the value iteration algorithms only consider odd
priorities hence replace d by d/2.

Jurdziński, Morvan, and Thejaswini [JMT22] constructed a generic McNaughton
Zielonka’s algorithm parameterised by the choice of two universal trees, one for each
player. How the value iteration algorithm can simulate the attractor decomposition
algorithm was explained by Ohlmann [Ohl21].

Strategy improvement algorithms. As we will see in Chapter 4, parity games can be
reduced to mean payoff games or energy games, as well as discounted payoff games, so
any algorithm for solving them can be used for solving parity games. In particular, the
existing strategy improvement algorithms for these games can be run on parity games.
Vöge and Jurdziński [VJ00] introduced the first discrete strategy improvement for par-
ity games, running in exponential time. The algorithm we present is due to Björklund,
Sandberg, and Vorobyov [BSV03], which was shown to run in sub-exponential time
using a randomisation procedure. Our proof of correctness is original. The complexity
was reduced to sub-exponential with deterministic algorithms by Jurdziński, Paterson,
and Zwick [JPZ08]. For some time there was some hope that the strategy improvement
algorithm, for some well chosen policy on switching edges, solves parity games in
polynomial time. Friedmann [Fri11] cast some serious doubts by constructing numer-
ous exponential lower bounds applying to different variants of the algorithm. Fearn-
ley [Fea17] investigated efficient implementations of the algorithm, focussing on the
cost of computing and updating the value function for a given strategy.

A natural question is whether there exists a quasi-polynomial strategy improvement
algorithm. Koh and Loho [KL22] constructed a quasi-polynomial time algorithm and
presented it as a strategy improvement algorithm: the subtlety is that in their algorithm,
an iteration considers a strategy σ together with its valuation valσ and builds a new
strategy σ ′ with the additional constraint that valσ < valσ

′
. In other words, it does

not improve only based on the strategy σ . Hence in some sense it is closer to a value
iteration algorithm. As discussed in Section 3.5 the notion of universal trees cannot
be used to achieve this: the example is due to Ohlmann [Ohl21]. Whether there exists
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a quasi-polynomial time strategy improvement algorithm for parity games remains to
this day open.
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Chapter 4
Games with Payoffs
NATHANAËL FIJALKOW, BENJAMIN MONMEGE

This chapter considers quantitative objectives defined using payoffs. Adding quantities
can serve two goals: the first is for refining qualitative objectives by quantifying how
well, how fast, or at what cost a qualitative objective is satisfied, and the second is to
define richer specifications and preferences over outcomes.

• We start in Section 4.2 by studying extensions of the classical qualitative ob-
jectives. Among two strategies in a reachability game that guarantee to reach a
target in ten steps or in a billion steps, we would certainly prefer the first one
from a pragmatic point of view.

• We continue in Section 4.1 by introducing two approaches for proving positional
determinacy, that imply the results we need in this chapter.

• We study mean payoff games in Section 4.3, and energy games along the way.
We present three algorithms for solving them, the first two based on value itera-
tion and the third on strategy improvement. Along the way we show that parity
games reduce to mean payoff games.

• We study discounted payoff games in Section 4.4. We construct a strategy im-
provement algorithm for computing the value function. We also show that mean
payoff games reduce to discounted payoff games, so the previous algorithm
yields an algorithm for computing the value function of a mean payoff game.

• We study shortest path games in Section 4.5. They extend reachability games by
requiring that Min reaches her target with minimal cost, which if the weights are
all equal means as soon as possible.

• We study total payoff games in Section 4.6.
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Notations
In this chapter all objectives we consider use the set of colours C = Z the set of inte-
gers (or C = Z∪{Win} for the shortest path objective), so a colour is called a weight
interpreted as a payoff for Max. We will study different quantitative objectives corre-
sponding to different ways of aggregating the weights. We let valGMax(v) and valGMin(v)
be the values for Max and Min in the game G : this is the best each player can unilater-
ally guarantee from the vertex v, no matter which strategy the other player uses. All the
quantitative objectives we will study in this chapter are Borel, hence determined thanks
to Corollary 1: valGMax(v) = valGMin(v) for all vertices v. We thus let valG (v) denote this
value (and val(v) if G is clear from the context).

For complexity statements we use the unit cost RAM model as defined in Sec-
tion 1.2. Let us make some preliminary remarks, and consider a game G with an
objective using the set of colours C = Z. We let W denote the largest weight appearing
in G in absolute value. Choosing the machine word size w = log(m)+ log(W ) implies
that an edge together with its weight can be stored in one machine word and that we
can perform arithmetic operations on weights, hence for most objectives we use the
machine word size w = log(m)+ log(W ). The only exception will be the discounted
payoff objectives, which additionally have a discount factor λ ∈ (0,1) that needs to be
given in the input.

4.1 Proving positional determinacy over finite arenas
In this section we present two approaches for proving positional determinacy of quan-
titative objectives over finite arenas.

Positional determinacy via first cycle games
Theorem 36 (First cycle games). Let Φ : Cω → R∪{±∞} a quantitative objective,
and f : C∗→ R∪{±∞}. We assume that the following properties are satisfied. For all
games G with objective Φ:

• for all x ∈ R∪{±∞}, for all plays π ,

(∀c ∈ Cycles(π), f (c)≥ x) =⇒ Φ(π)≥ x,

• for all x ∈ R∪{±∞}, for all plays π ,

(∀c ∈ Cycles(π), f (c)≤ x) =⇒ Φ(π)≤ x,

• Φ is prefix independent.

Then Φ is uniformly positionally determined over finite arenas.

To build some intuition, let us consider the case of mean payoff: let Φ= MeanPayoff+.
Then the properties above hold when considering for f the function Mean:

Mean(w0 . . .wk−1) =
1
k
·

k−1

∑
i=0

wi.
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Let us argue that the first property holds. To estimate MeanPayoff+(π) let us look at
the prefix π<k of π of length k. Indeed MeanPayoff+(π) = limsupk Mean(π<k). To
calculate Mean(π<k) we use the fact that every vertex in π<k either belongs to exactly
one cycle in Cycles(π<k) or to π̂<k, and the linearity of the arithmetic mean:

Mean(π<k) = Mean
{

Mean(π̂<k),{Mean(c) : c ∈ Cycles(π<k)}
}
.

By assumption each Mean(c) is greater than or equal to x. Note that since π̂<k does
not contain any cycle, it has length at most n, independently of k. On the other hand
Cycles(π<k) has size at least k/n. Hence when k tends to infinity the term Mean(π̂<k)
vanishes and we have MeanPayoff+(π) = limsupk Mean(π<k)≥ x.

The second property follows as above from the linearity of the arithmetic mean and
the cycle decomposition. The third property will be proved in Lemma 32.

Corollary 6 (Positional determinacy of mean payoff). Mean payoff objectives are uni-
formly positionally determined over finite arenas.

By duality this is equivalent to saying that both limit superior and limit inferior
mean payoff objectives are uniformly positionally determined over finite arenas.

Proof. Let A an arena. A cycle is a sequence c = v0
w0−→ v1

w1−→ v2 . . .vk−1
wk−1−−−→ v0.

For technical convenience we do not indicate the returning vertex v0 when introducing
a cycle.

Let us consider a finite play π = v0
w0−→ v1

w1−→ . . . , we define two objects by induc-
tion: the cycle decomposition Cycles(π) and the folded play π̂ . To guide the intuition:
Cycles(π) is a list of some cycles in π , and π̂ is obtained from π by removing the cycles
from Cycles(π) and does not contain any cycle.

If π is a single vertex then the cycle decomposition is empty and the folded play is
equal to π . Otherwise let π = π ′

w−→ v, by induction we have already defined Cycles(π ′)
and π̂ ′. There are two cases:

• Either v appears in π̂ ′ and then π̂ is obtained from π̂ ′
w−→ v by replacing that cycle

by v and Cycles(π) by adding the cycle to Cycles(π ′).

• Or v does not appear in π̂ ′ and then π̂ = π̂ ′
w−→ v and Cycles(π) = Cycles(π ′).

The cycle decomposition breaks down π into (possibly interleaved) cycles and the
folded play: every vertex in π either belongs to exactly one cycle in Cycles(π) or
to π̂ . For instance for

π = v0
w0−→ v1

w1−→ v2
w2−→ v3

w3−→ v2
w4−→ v4

w5−→ v1
w6−→ v5

we have Cycles(π) = (c1 = v2
w2−→ v3

w3−→;c2 = v1
w1−→ v2

w4−→ v4
w5−→) and π̂ = v0

w0−→
v1

w6−→ v5, as illustrated in Figure 4.1.
The definition of Cycles(π) is extended for infinite plays. We write FC(π) for the

first cycle in π .
Let G = (A ,Φ(c)). The outline of the proof is as follows.



134 CHAPTER 4. GAMES WITH PAYOFFS

v0 v1 v2 v3 v2 v4 v1 v5
w0 w6

w2 w3

w1

w4 w5

Figure 4.1: An example for the cycle decomposition. The first cycle is c1 and is in red,
the cycle c2 is in blue, and π̂ = v0

w0−→ v1
w6−→ v5.

1. We define the condition FirstCycle and GFC = (A ,FirstCycle), and show that
valG = valGFC and that if GFC is positionally determined then G is positionally
determined.

2. We define the condition FirstCycleResetv (parameterised by a vertex v) and GFCR(v)=

(A ,FirstCycleResetv), and show that valG = valGFCR(v) .

3. We show that GFC is positionally determined.

Step 1. The condition FirstCycle computes the value of f on the first cycle. For-
mally:

FirstCycle(π) = f (FC(π)).

Let us define GFC = (A ,FirstCycle). We make two claims:

• let σFC a strategy in GFC, it induces a strategy σ in G such that valσFC ≤ valσ ,
and σ is positional if σFC is, and

• let τFC a strategy in GFC, it induces a strategy τ in G such that valτFC ≥ valτ , and
τ is positional if τFC is.

Let us prove the first claim. We let σ(π) = σFC(π̂): by definition if π is a play
consistent with σ then π̂ is a play consistent with σFC. Note that indeed if σFC is
positional then so is σ . We show that valσFC ≤ valσ .

Let π be a play consistent with σ from v0 and x = valσFC(v0). We first argue that
all cycles in Cycles(π) have value for f greater than or equal to x. Indeed consider a
cycle c in Cycles(π) and let π ′ the prefix of π ending with the cycle c. The play π̂ ′ is
consistent with σFC, implying that f (c) ≥ x. Thanks to the first property, this implies
that Φ(π)≥ x.

We turn to the second claim. The construction is identical for Min: we let τ(π) =
τFC(π̂). We show that valτFC ≥ valτ following the same arguments. Let π be a play
consistent with τ from v0 and x = valτFC(v0). Thanks to the second property, this
implies that Φ(π)≤ x.

Let us now prove that valG = valGFC using the two claims. We first need to establish
that GFC is determined: one argument is that FirstCycle is a Borel condition, hence
determinacy follows from the general Borel determinacy result (Theorem 1). Another
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simpler argument is that FirstCycle is a finite duration condition, meaning that the
outcome of the play is determined with a finite number of steps (at most n), hence
determinacy follows from an easier direct argument for finite duration games.

It follows from the two claims that

valGFC = supσFC
valσFC ≤ supσ valσ = valG

valGFC = infτFC valτFC ≥ infτ valτ = valG ,

where in both lines: the first equalities is by determinacy of GFC, the inequalities thanks
to the two claims, and the last equalities by determinacy of G . The two obtained
inequalities imply that valG = valGFC , and positional optimal strategies for either player
in GFC induce positional optimal strategies in G .

Step 2. We define a third condition on A :

FirstCycleResetv(π) =

{
FirstCycle(π) if π does not visit v before FC(π),
FirstCycle(π≥k) for k the first index such that In(πk) = v.

In words: if a cycle is closed before visiting v, then the condition is FirstCycle and
otherwise when reaching v the game is ‘reset’ and the condition is FirstCycle from this
point onwards.

This second step is similar to the first step; the reason why we separated them is
because this step relies on the fact that Φ is prefix independent.

Let us define GFCR(v) = (A ,FirstCycleResetv). We make two claims:

• let σFCR(v) an optimal strategy in GFCR(v), it induces a strategy σ in G such that
valσFCR(v) ≤ valσ , and

• let τFCR(v) an optimal strategy in GFCR(v), it induces a strategy τ in G such that
valτFCR(v) ≥ valτ .

Let us prove the first claim. We let

σ(π) =

{
σFCR(v)(π̂) if π does not contain v,
σFCR(v)(π̂≥k) for k the first index such that In(πk) = v.

We show that valσFCR(v) ≤ valσ . Let π a play consistent with σ from v0 and x =
valσFCR(v)(v0). There are two cases.

Either π does not contain v, and then as in the first step this implies that all cycles
in π have an arithmetic mean greater than or equal to x, and we conclude as in the first
step that FirstCycleResetv(π)≥ x.

Or π contains v. We first argue that x = valσFCR(v)(v0) ≤ valσFCR(v)(v). Indeed,
let π0 be a play without cycles from v0 to v consistent with σFCR(v), we let σ ′(π) =

σFCR(v)(π0π). Then valσFCR(v)(v0) ≤ valσ
′
(v) ≤ valσFCR(v)(v), the first inequality is be-

cause a play π consistent with σ ′ from v correspond to the play π0π consistent with
σFCR(v) from v0, and the second inequality by optimality of σFCR(v).

Let y= valσFCR(v)(v), the inequality above reads x≤ y. Let π ′ the suffix of π starting
from the first occurrence of v, then π ′ is consistent with σFCR(v) from v, so as in the first
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step this implies that all cycles in π ′ have an arithmetic mean greater than or equal to
y. We conclude as in the first step that Φ(π ′)≥ y≥ x, The last but important argument
is that Φ is prefix independent, implying that Φ(π)≥ x.

We prove that valG = valGFCR(v) using the two claims following the same arguments
as in the first step. In particular we need to establish that GFCR(v) is determined, and
again it either follows from the general Borel determinacy result (Theorem 1) or by
determinacy for finite duration games.

Step 3. We (finally!) prove that GFC is positionally determined. Let us consider
the case of Max, the case of Min being symmetric. We show that for all games there
exists an optimal positional strategy, by induction on the number of vertices of Max
with more than one outgoing edge. The base case is clear since in that case there is a
unique strategy and it is positional. Let v ∈VMax with more than one outgoing edge.

Let σFCR(v) an optimal strategy in GFCR(v). Intuitively, since the game is reset at
the first visit of v and that the second visit to v would close a loop hence determine the
outcome, we can use any optimal strategy from v. We define σ ′ as follows:

σ
′(π) =

{
σ(π) if π does not contain v,
σ(π≥k) for k the last index such that In(πk) = v.

Note that indeed σ ′ uses only one outgoing edge of v. We show that valGFCR(v),σ (v0)≤
valGFCR(v),σ

′
(v0), implying that σ ′ is optimal in GFCR(v) and the inequality is an equality.

Let π be a play consistent with σ ′ from v0. If it does not contain v it is consistent
with σ , so FirstCycleResetv(π) ≥ valGFCR(v),σ (v0). If it contains v, let π ′ the suffix of
π starting from the first occurrence of v, then FirstCycleResetv(π) = FirstCycle(π ′).
Since π ′ is consistent with σ (until a cycle is formed) we have FirstCycle(π ′) ≥
valGFCR(v),σ (v0), implying that FirstCycleResetv(π) ≥ valGFCR(v),σ (v0). We conclude:
valGFCR(v),σ

′
(v0)≤ valGFCR(v),σ (v0).

Let B the arena obtained from A by removing all outgoing edges of v not used
by σ ′. Let G ′FCR(v) = (B,FirstCycleResetv) and G ′FC = (B,FirstCycle). By definition

we have valGFCR(v),σ
′
= valG

′
FCR(v),σ

′
= valG

′
FCR(v) . In the previous step we proved that

valG
′
FC = valG

′
FCR(v) , so valG

′
FC = valGFC . The arena B contains one less vertex of Max

with more than one outgoing edge, so the induction hypothesis applies and implies
that there exists an optimal strategy in G ′FC, which is also optimal in GFC thanks to the
equality valG

′
FC = valGFC .

Positional determinacy via fairly mixing property
Definition 7 (Fairly mixing). A quantitative objective Φ : Cω → R∪{±∞} is fairly
mixing if:

1. for all x ∈C+, y0,y1 ∈Cω , if Φ(y0)≤Φ(y1) then Φ(xy0)≤Φ(xy1);

2. for all x ∈C+, y ∈Cω , min(Φ(xω),Φ(y))≤Φ(xy)≤max(Φ(xω),Φ(y));
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3. if (xi)i∈N is a sequence of non-empty words xi ∈C+ such that x0x1x2 · · · contains
only a finite number of colours, and I]J =N is a partition of N into two infinite
sets, then

inf(PI ∪PJ)≤Φ(x0x1x2 · · ·)≤ sup(PI ∪PJ)

with PI = {Φ(xi0xi1xi2 · · ·) | ik ∈ I} and PJ = {Φ(x j0x j1x j2 · · ·) | jk ∈ J}.
It is not difficult to convince oneself that the following quantitative objectives: Inf,

Sup, LimInf, LimSup, MeanPayoff+, MeanPayoff−, Energy, DiscountedPayoff,
TotalPayoff are all are fairly mixing.

Theorem 37 (Fairly mixing induces positional determinacy). If Φ is a fairly mixing
quantitative objective, then Φ is uniformly positionally determined over finite arenas.

The (rather technical) proof is by induction on the number of vertices.

Corollary 7. The quantative objectives Inf, Sup, LimInf, LimSup, MeanPayoff+,
MeanPayoff−, Energy, DiscountedPayoff, TotalPayoff are all uniformly posi-
tionally determined over finite arenas.

4.2 Refining qualitative objectives with quantities
In this section we define quantitative objectives extending the qualitative objectives
Safe, Reach, Buchi, and CoBuchi. The four quantitative objectives we will define
in this section return as outcome some weight in the sequence (for instance, the max-
imum weight). This is in contrast with the MeanPayoff and DiscountedPayoff ob-
jectives that we will study later, which perform arithmetic operations on the sequence
of weights.

A first way to compute a payoff from a sequence of weights ρ ∈ Zω is to consider
the maximum weight in the sequence:

Sup(ρ) = sup
i

ρi.

This extends the qualitative objective Reach(Win) in the following sense: the objective
Reach(Win) corresponds to the quantitative objective Sup using two weights: 0 for
Lose and 1 for Win. The outcome of a sequence is 1 if and only if the sequence
contains Win. It refines Reach(Win) by specifying (numerical) preferences.

The dual objective is to consider the smallest weight:

Inf(ρ) = inf
i

ρi.

The qualitative objective Safe(Win) corresponds to the quantitative objective Inf us-
ing two weights: 0 for Win and 1 for Lose. The outcome of a sequence is 0 if and only
if the sequence does not contain Lose.

Similarly the following quantitative objectives refine Buchi and CoBuchi:

LimSup(ρ) = limsup
i

ρi, LimInf(ρ) = liminf
i

ρi.

The analyses and algorithms for solving games with Reach, Safe, Buchi, and
CoBuchi objectives extend to these four quantitative objectives.
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Theorem 38 (Sup, Inf, LimSup, LimInf objectives). Games with objectives Sup, Inf,
LimSup, and LimInf are uniformly positionally determined. There exists an algorithm
for computing the value function of those games in polynomial time and space. More
precisely, let k be the number of different weights in the game, the time complexity is
O(m) for objectives Sup and Inf, and O(knm) for objectives LimSup and LimInf, and
for all algorithms the space complexity is O(m).

Proof. We sketch the algorithm for the objective Sup, the other cases are similar. Let
c1 < · · ·< ck be the ordered enumeration of all weights in the game. The set of vertices
of value ck is AttrMax(ck), which can be computed in linear time. We then construct
the subgame G ′ of G induced by V \AttrMax(ck), and continue recursively: G ′ has one
less weight.

A naive complexity analysis yields a time complexity O(km), but it is easily refined
to O(m) by revisiting the attractor computation and showing that each edge in the
whole game is treated at most once throughout the recursive attractor computations.
This complexity analysis does not extend to LimSup and LimInf objectives, where the
complexity is multiplied by k.

4.3 Mean payoff games

A natural approach for aggregating an infinite sequence of weights is to consider the
arithmetic mean. Since the sequence ( 1

k ∑
k−1
i=0 ρi)k∈N may not converge, we can either

consider the limit superior or the limit inferior, leading to the two definitions:

MeanPayoff+(ρ) = limsup
k

1
k

k−1

∑
i=0

ρi ; MeanPayoff−(ρ) = liminf
k

1
k

k−1

∑
i=0

ρi.

Note that MeanPayoff+(−ρ) = −MeanPayoff−(ρ), where in −ρ we take the op-
posite of each weight. In other words, MeanPayoff+ and MeanPayoff− are dual
objectives.

In this section we study mean payoff games. We will first prove that they are prefix
independent, then that they are positionally determined, and then construct algorithms
for solving them and compute the value function. The best known time complexity for
both problems is pseudo-polynomial, meaning polynomial when the numerical inputs
are given in unary.

Lemma 32 (Prefix independence). MeanPayoff+ is prefix independent.

Proof. We show that MeanPayoff+(ρ0ρ1 . . .)= MeanPayoff+(ρpρp+1 . . .) for a fixed
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p ∈ N:

limsup
k

1
k

k−1

∑
i=0

ρi = limsup
k

 1
k

p−1

∑
i=0

ρi︸ ︷︷ ︸
→0 for k→∞

+
k− p

k︸ ︷︷ ︸
→1 for k→∞

· 1
k− p

k−1

∑
i=p

ρi


= liminf

k

1
k− p

p−1

∑
i=0

ρp+i.

Note that by duality this implies that MeanPayoff− is also prefix independent.
In the setting we consider in this chapter, meaning two player zero sum games

of perfect information, the two objectives are equivalent, which will be a corollary
of Corollary 6.

As an example, consider the mean payoff game represented in Figure 4.2. As we
will show later, the positional strategies defined below are optimal strategies for Max
and Min:

σ∗(v0) = v0
4−→ v1 ; σ∗(v2) = v2

4−→ v3

τ∗(v1) = v1
2−→ v2 ; τ∗(v3) = v3

−1−→ v1 ; τ∗(v4) = v4
−2−→ v0.

The play consistent with σ∗ and τ∗ starting from v0 is the lasso word

v0
4−→ v1

(
v1

2−→ v2
4−→ v3

−1−→ v1

)ω

,

which has as mean payoff the average weight of the cycle v1
2−→ v2

4−→ v3
−1−→ v1, i.e. 5/3.

If we restrict ourselves to memoryless strategies for both players, we may easily con-
vince ourselves that this is the best that both players may aim for. Indeed,

• the loop around v4 has average weight 2;

• the simple cycle alternating between v0 and v4 has average weight 1.5;

• the simple cycle alternating between v0 and v1 has average weight 2;

• the loop around v2 has average weight 1, and

• the simple cycle alternating between v0, v1, v2 and v3 has average weight 2.

Therefore, we may check that no player can obtain a better mean payoff than 5/3, from
its own point of view: for instance, if Max switches her decision in v0, hoping to get
value 2, she will get a lower value 1.5 since Min still prefers cycle alternating between
v0 and v4 to his self-loop around v4. This is the case for all starting vertices, which
proves that all vertices have the same value 5/3.

Let us draw some corollaries from positional determinacy of mean payoff games.

Corollary 8 (Limit superior and limit inferior mean payoff games).
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v0

v1v2

v3 v4

4 0

2
1

4
−1

−2
5

−2
2

Figure 4.2: A mean payoff game.

• Limit superior and limit inferior mean payoff games are equivalent: for every
arena A and colouring function c : E→Z, let G+ = (A ,MeanPayoff+(c)) and
G− = (A ,MeanPayoff−(c)), then valG+ = valG− . This implies that a positional
strategy is optimal in G+ if and only if it is optimal in G−.

Since they are equivalent we speak of mean payoff games without specifying
whether the objective is MeanPayoff+ or MeanPayoff−, and write MeanPayoff
instead.

• For a mean payoff game with n vertices and weights in [−W,W ], the mean payoff
values are rational numbers in [−W,W ] whose denominators are at most n.

Proof. Thanks to Corollary 6, there exist σ+ and τ+ optimal positional strategies in
G+ and σ− and τ− optimal positional strategies in G− (for the latter by duality). By
definition valG+(v) = MeanPayoff+(πv

σ+,τ+) and valG−(v) = MeanPayoff−(πv
σ−,τ−).

Since MeanPayoff− ≤ MeanPayoff+ we already have valG− ≤ valG+ .
For two positional strategies σ and τ , the play πv

σ ,τ is a lasso, meaning of the form
πcω with π a simple path and c a simple cycle, implying that MeanPayoff+(πv

σ ,τ) =
MeanPayoff−(πv

σ ,τ), let us write MeanPayoff(πv
σ ,τ) for this value.

We have:

MeanPayoff(πv
σ+,τ+)≤ MeanPayoff(πv

σ+,τ−)≤ MeanPayoff(πv
σ−,τ−),

where the first inequality is by optimality of τ− and the second inequality by optimality
of σ−. Hence valG+ ≤ valG− , and finally valG+ = valG− .

For the second item, recall that valG (v) = MeanPayoff(πv
σ ,τ) with σ and τ optimal

positional strategies. Let us write πv
σ ,τ = πcω with π a simple path and c a simple cycle,

then by prefix independence MeanPayoff(πv
σ ,τ) = Mean(c), thus valG (v) is the mean

of at most n weights from G .

Solving mean payoff games in NP∩ coNP

The positional determinacy of mean payoff games easily gives an upper bound on the
complexity of solving these games.
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Theorem 39 (Complexity of mean payoff). Solving mean payoff games is in NP∩
coNP.

Proof. The first ingredient for this proof is a polynomial time algorithm for solving the
one player variants of mean payoff games. Indeed, they correspond to the minimum
cycle mean problem in a weighted graph, which can be solved in polynomial time by a
dynamic programming algorithm. The second ingredient is the positional determinacy
result proved in Corollary 6.

Let us show the NP membership. Consider a mean payoff game G , a vertex v and
a threshold x ∈Q∪{±∞}. Thanks to Corollary 6, we know that there exist an optimal
positional strategy for Max. With a non-deterministic Turing machine, we may guess
a positional strategy for Max, and check that it ensures x in G from v.

Let us now show the coNP membership. By determinacy of mean payoff games,
whether Max cannot ensure x in G from v is equivalent to whether Min can ensure x in
G from v. Again thanks to Corollary 6, we know that there exist an optimal positional
strategy for Min. With a non-deterministic Turing machine, we may guess a positional
strategy for Min, and check that it ensures x in G from v.

We can turn the non-deterministic algorithm given in Theorem 39 into a deter-
ministic algorithm with exponential complexity since there are exponentially many
positional strategies.

Reducing parity games to mean payoff games
We now show that solving mean payoff games is at least as hard as solving parity
games.

Theorem 40 (Reducing parity games to mean payoff games). Solving parity games
reduce in polynomial time to solving mean payoff games with threshold 0.

Proof. Let G = (A ,Parity(c)) a parity game with n vertices and priorities in [1,d].
We construct a mean payoff game G ′ = (A ,MeanPayoff[c′]) using the same arena and
the colouring function:

c′(e) = (−n)c(e).

Note that c′(e) is of polynomial size since log(|c′(e)|) = c(e) log(n)≤ d log(n).
The key property relating c′ and c is the following: let c a simple cycle

v0
p0−→ p1

p2−→ v2 · · ·vk−1
pk−1−−→ v0,

then the largest priority in c is even if and only if the mean value with respect to c′ is
non-negative. Indeed, if the largest priority in c is p even, then it contributes np and all
other values are greater than or equal to −np−1, and since there are at most n in total,
the largest priority dominates the others.

We claim that for all vertices v, v ∈WEve(G ) if and only if valG
′ ≥ 0. Let v ∈

WEve(G ), and σ a positional strategy winning from v in G , we show that σ ensures
mean payoff at least 0 in G ′ from v. Indeed, in G [σ ,v] all cycles are even, which
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thanks to the above implies that all cycles in G ′[σ ,v] are non-negative. The converse
implication is similar: a positional strategy σ ′ in G ′ ensuring mean payoff at least 0
from v has the property that all cycles in G ′[σ ,v] are non-negative, hence that all cycles
in G [σ ,v] are even, therefore that it is winning in G from v.

Note that we did not construct a reduction between objectives as defined in Sec-
tion 1.6: indeed it is not true that Parity reduces to MeanPayoff≥0, the reduction
depends on the number n of vertices. As a corollary of Theorem 39, this polyno-
mial reduction gives an alternative proof of the fact that solving parity games is in
NP∩ coNP.

A first value iteration algorithm using finite horizon payoffs
Let us give a first algorithm for solving mean payoff games using the value iteration
paradigm. The idea is to consider the game where we only play for a fixed number of
steps k, and the payoff is the sum of the weights. We compute iteratively the optimal
values for increasing values of k, and show that for k large enough it allows us to obtain
the values of mean payoff up by a simple rounding procedure.

Let G = (A ,MeanPayoff[c]) a mean payoff game with n vertices and weights in
[−W,W ]. Recall that for a vertex u, the mean payoff value is defined as

valG (u) = sup
σ

inf
τ

MeanPayoff[c](πσ ,τ
u ).

Our goal is to compute these values, or compare them to a threshold.
Let us fix a number k and define the following objective summing the first k weights:

Payoffk(ρ) =
k−1

∑
i=0

ρi.

Let us define valG ,k : V → Z the value function for the Payoffk objective:

valG ,k(u) = sup
σ

inf
τ

Payoffk[c](π
σ ,τ
u ).

We let FV be the set of functions V → Z, we define the operator OG : FV → FV by:

OG (µ)(u) =

max
{

µ(v)+w : u w−→ v ∈ E
}

if u ∈VMax,

min
{

µ(v)+w : u w−→ v ∈ E
}

if u ∈VMin.

Let µ0 defined by µ0(u) = 0 for all u and µk+1 =OG (µk).

Lemma 33. The following holds for all k.

• We have µk = valG ,k.

• For all u ∈V we have k · valG (u)−2nW ≤ valG ,k ≤ k · valG (u)+2nW.
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Proof. The proof of the first item is an easy induction on k. We turn to the second
item. Let us consider σ a positional optimal strategy for Max. We claim that for all
k, the strategy σ ensures from u that Payoffk[c] is at least (k− n) · valG (u)− nW .
We first note that all cycles reachable from u in G [σ ] have values (meaning, average
value of the weights) at least valG (u). Now, consider a path of length k, and iteratively
remove cycles from it. What remains is a most n edges, which contribute in the worst
case to −nW . The remaining k−n edges are included in some cycle, hence contribute
(k−n) ·valG (u). Since valG (u)≤W , we obtain a lower bound of k ·valG (u)−2nW .

The argument is symmetrical for Adam.

A direct corollary is as follows.

Corollary 9. We have limk
1
k · valG ,k = valG .

However, we can make this effective using Corollary 8, which places bounds on
the mean payoff values. This yields two very simple algorithms, one for computing the
mean payoff values, and the other one for solving mean payoff games.

Theorem 41. The following holds.

• There exists an algorithm running in time O(n3mW ) for computing the mean
payoff values.

• There exists an algorithm running in time O(n2mW ) for solving the mean payoff
games, meaning determining whether valG (u)≥ c for some threshold c.

Proof. Both arguments rely on Corollary 8.

• Let us fix k = 4n3W . We can compute the values valG ,k in time O(n3mW ) as
explained above. The value of k was chosen in such a way that

valG ,k(u)− 1
2n(n−1)

< valG (u)< valG ,k(u)+
1

2n(n−1)
.

Indeed, since valG (u) is a rational number whose denominator is at most n, the
minimum distance between two possible values of valG (u) is at most 1

n(n−1) .

Hence the exact value of valG (u) is the unique rational number with a denomi-
nator at most n that lies in the interval[

valG ,k(u)− 1
2n(n−1)

, valG ,k(u)+
1

2n(n−1)

]
,

which is easily computed.

• The distance between c and the closest rational number with a denominator at
most n is 1

n , so to determine whether valG (u) ≥ c it is enough to compute the
values valG ,k for k = 4n2W .
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A second value iteration algorithm using energy
Let us give a second algorithm, based on energy games. The construction of the algo-
rithm will follow closely the high-level presentation of value iteration algorithms given
in Section 1.9. Let G = (A ,MeanPayoff[c]) a mean payoff game with n vertices and
weights in [−W,W ].

The key insight is to use the energy objective. Recall that the energy quantitative
objective is defined over the set of colours C = Z:

Energy(ρ) = inf

{
` ∈ N : ∀k ∈ N, `+

k−1

∑
i=0

ρi ≥ 0

}
.

The interpretation is the following: weights are energy consumptions (negative values)
and recharges (positive values), and Energy(ρ) is the smallest initial budget ` such
that Min can ensure that the energy level remains non-negative forever. Let us be
careful here: maximising the mean payoff objective corresponds to minimising the
energy objective. We formalise the relationship between mean payoff and energy in
the following lemma.

Lemma 34 (Relating mean payoff and energy objectives). Let G be a mean payoff
graph. Then G satisfies MeanPayoff− ≥ 0 if and only if it satisfies Energy< ∞.

Proof. Let us say that a cycle in G is non-negative if the sum of its weights is non-
negative. We consider the following properties:

(i) G satisfies MeanPayoff− ≥ 0.

(ii) All cycles in G are non-negative.

(iii) G satisfies Energy< ∞.

We prove the implications (i)⇒ (ii), then (ii)⇒ (iii), and finally (iii)⇒ (i).
(i)⇒ (ii) is clear.
(ii)⇒ (iii). Let us consider an infinite path, and strike out all edges involved in

a cycle in it. At most n edges are not stricken out, incurring at most −nW in energy
drop. Since cycles are non-negative, the lowest level in a cycle is also lower bounded
by −nW . Hence the energy level of the infinite path is at most 2nW .

(iii)⇒ (i). Assume that G satisfies Energy < ∞, this implies that all partial sums
are greater than or equal to a constant `. This implies that the means of the partial sums
are lower bounded by `

k , which converges to 0 when k goes to infinity. Therefore G
satisfies MeanPayoff− ≥ 0.

It is tempting to claim that a stronger property hold, namely MeanPayoff−(ρ)≥ 0
if and only if Energy(ρ)< ∞. This is not the case.

Corollary 10. Let G a mean payoff game. We define G ′ the energy game induced by G .
Then for all vertices u, we have valG (u)≥ 0 if and only if valG

′
(u)< ∞. Consequently:

• An algorithm computing the energy values induces an algorithm for solving
mean payoff games with the same complexity.
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• An algorithm computing the energy values in time T (n,m,W ) induces an algo-
rithm for computing the mean payoff values in time O(log(n2W ) ·T (n,m,W )).

Proof. We consider σ a positional optimal strategy for Max in G , we have valG =
valG ,σ . Let u such that valG (u) ≥ 0, we consider the subgraph of G [σ ,u] of vertices
reachable from u. Thanks to Lemma 34 applied to this graph, since valG ,σ (u) ≥ 0 we
have valG

′,σ (u) < ∞. This implies that σ (seen as a strategy for Min in G ′) ensures
Energy< ∞, hence valG

′
(u)< ∞.

Conversely, we consider τ a positional optimal strategy for Min in G ′, we have
valG

′
= valG

′,τ . Let u such that valG
′
(u) < ∞, we consider the subgraph of G [τ,u] of

vertices reachable from u. Thanks to Lemma 34 applied to this graph, since valG
′,τ(u)<

∞ we have valG ,τ(u)≥ 0. This implies that τ (seen as a strategy for Max in G ) ensures
MeanPayoff≥ 0, hence valG (u)≥ 0.

The first consequence is immediate. For the second, we use a simply binary search.
Indeed, to determine whether valG (u)≥ c, we can shift all weights by c, thus reducing
to the question whether valG (u)≥ 0, and compute the energy values. Thanks to Corol-
lary 8 the mean payoff values are rational numbers in [−W,W ] whose denominators
are at most n, so this requires O(log(n2W )) calls.

Therefore, we set as a goal to compute the energy values.

Theorem 42 (Value iteration algorithm). There exists a value iteration algorithm which
computes the energy values in time O(mnW ).

We define Y = N∪{∞}, equipped with the natural total order on integers. We let
FV be the lattice of functions V → Y equipped with the componentwise order induced
by Y . We define a function δ : Y × [−W,W ]→ Y by δ (`,w) = max(`−w,0). This
induces an operator OG : FV → FV :

OG (µ)(u) =

min
{

δ (µ(v),w) : u w−→ v ∈ E
}

if u ∈VMin,

max
{

δ (µ(v),w) : u w−→ v ∈ E
}

if u ∈VMax.

We note that OG is a monotonic operator, therefore it has a least fixed point.

Lemma 35 (Least fixed point for energy games). Let G an energy game with n vertices
and weights in [−W,W ]. Then the least fixed point of OG computes the energy values
of G .

Proof. We first argue that the energy values, meaning the function valG : V →Z∪{∞},
form a fixed point of the operator OG . The fact that valG = OG (valG ) is a routine
verification, which follows from two properties (see Lemma 8).

• For all ρ sequences of weights, we have Energy(w ·ρ) = δ (Energy(ρ),w).

• The function δ is monotonic and continuous.



146 CHAPTER 4. GAMES WITH PAYOFFS

It already yields one inequality: valG is larger than or equal to the least fixed point of
OG . Let us give another proof of the same inequality. We recall that thanks to Kleene
fixed point theorem (Theorem 4), the least fixed point of OG is computed as follows:

∀u ∈V, µ0(u) = 0 ; µb+1 =OG (µb).

We have µ0 ≤ µ1 ≤ . . . , and since FV is a finite lattice, for some k we have that µk is
the least fixed point of OG . The crux here is to understand what are the values µb for
b = 0,1, . . . . Let us define the truncated energy objective:

Energyb(ρ) = inf

{
` ∈ N : ∀k ∈ [0,b], `+

k−1

∑
i=0

ρi ≥ 0

}
.

The interpretation is the following: Energyb(ρ) is the smallest initial budget ` such that
Min can ensure that the energy level remain non-negative for the first b steps. A simple
induction on b shows that µb is the values for Energyb in G . Note that Energy0 ≤
Energy1 ≤ ·· · ≤ Energy, hence µb = valEnergyb ≤ valG , the desired inequality.

Let us now prove the converse inequality: valG is smaller than or equal to the least
fixed point of OG . For this, we consider a fixed point µ of OG , and argue that valG ≤ µ .
To this end, we extract from µ a strategy τ for Min, and show that valτ ≤ µ; since we
know that valG ≤ valτ , this implies valG ≤ µ . We define τ as an argmin strategy:

u ∈VMin : τ(u) ∈ argmin
{

δ (µ(v),w) : u w−→ v ∈ E
}
.

Let us define the graph G = G [τ], by definition of τ for all edges u w−→ v in G we have
µ(u)≥ δ (µ(v),w). We claim that this implies that for all paths ρ from u in G, we have
Energy(ρ)≤ µ(u). To this end, we show that for all k∈N we have µ(u)+∑

k−1
i=0 ρi≥ 0.

We proceed by induction on k. This is clear for k = 0, let us assume that it holds for k
and show that it also does for k+1. Let us write ρ0 = u w−→ v. By the property above,
we have µ(u)≥ δ (µ(v),w) = max(µ(v)−w,0)≥ µ(v)−w. Hence

µ(u)+
k

∑
i=0

ρi = µ(u)+w+
k

∑
i=1

ρi ≥ µ(v)+
k−1

∑
i=0

ρi ≥ 0,

where the last inequality is by induction hypothesis for the path ρ1 . . .ρk−1 from v. This
concludes the induction.

Lemma 35 does not immediately yield a value iteration algorithm because the lat-
tice Y is infinite. However, let us note that by positional determinacy, the value of a
vertex is the value of a path consisting of a prefix of length at most n and a simple cycle,
which is ∞ if the cycle is negative and in [0,nW ] otherwise. Hence we can equivalently
define Y = [0,nW ]∪{∞} and δ (`,w) = max(`−w,0) if `−w≤ nW , and ∞ otherwise.
It is clear that the least fixed points for both operators coincide thanks to the remark
above, and now that we have a finite lattice we obtain the value iteration algorithm
presented in Algorithm 4.1.
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Algorithm 4.1: The value iteration algorithm for energy games.
Data: An energy game
for u ∈V do

µ(u)← 0
repeat

µ ←OG (µ)
until µ =OG (µ);
return µ

The value iteration algorithm for energy games is conceptually very simple, its
pseudocode is given in Algorithm 4.1. Since for each vertex its value can only in-
crease, and at each iteration at least one vertex increases, the total number of iterations
before reaching the fixed point is at most O(nW ). However to obtain the announced
complexity of O(nmW ), one needs to be a little bit more subtle: in the naive version the
computational cost of an iteration of OG is O(nm), since we need to look at each vertex
and each outgoing edge. This can be improved using a more involved data structure
keeping track of vertices to be updated. We detail this below.

Refined value iteration algorithm for energy values

The pseudocode is given in Algorithm 4.2. For an edge u w−→ v we say that it is incorrect
if µ(u) < δ (µ(v),w). A vertex u ∈ VMax is incorrect if it has an outgoing edge which
is incorrect, and a vertex u ∈VMin is incorrect if all of its outgoing edges are incorrect.
The key idea of the data structure we are building is not to keep track of all incorrect
edges for vertices in VMin, but rather to count them.

The data structure consists of the following objects:

• a value of Y for each vertex, representing the current function µ : V → Y ;

• a set Incorrect of vertices (the order in which vertices are stored and retrieved
from the set does not matter);

• a table Count storing for each vertex of Min a number of edges.

For our complexity analysis we use the unit cost RAM model, see Section 1.2 for
details. In the case at hand let us choose for the machine word size w = log2(m)+
log2(W ), so that an edge together with its weight can be stored in one machine word.

The invariant of the algorithm satisfied before each iteration of the repeat loop is
the following:

• for u ∈VMin, the value of Count(u) is the number of incorrect edges of u;

• Incorrect is the set of incorrect vertices.

The invariant is satisfied initially thanks to the function Init. Let us assume that
we choose and remove u from Incorrect. Since we modify only µ(u) the only
potentially incorrect vertices are in Incorrect (minus u) and the incoming edges of
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u; for the latter each of them is checked and added to Incorrect′ when required. By
monotonicity, incorrect vertices remain incorrect so all vertices in Incorrect (minus
u) are still incorrect. Hence the invariant is satisfied.

The invariant implies that the algorithm indeed implements Algorithm 4.1 hence
returns the minimal fixed point, but it also has implications on the complexity. Indeed
one iteration of the repeat loop over some vertex u involves

O
(
(|In−1(u)|+ |Out−1(u)|)

)
operations: the first term corresponds to updating µ(u) and Incorrect, which re-
quires for each outgoing edge of u to compute δ , and the second term corresponds to
considering all incoming edges of u. Thus the running time for a single iteration is

O

(
∑
u∈V

(|In−1(u)|+ |Out−1(u)|)

)
= O(m).

Since there are at most n ·W iterations, we obtain the running time of O(n ·m ·W ).

A strategy improvement algorithm for energy games

As explained above, solving energy games yields algorithms for solving mean payoff
games. So, we continue our investigation of energy games, and now construct a strategy
improvement algorithm for them.

Theorem 43 (Strategy improvement algorithm for energy games). There exists a strat-
egy improvement algorithm for solving energy games in exponential time.

We rely on the high-level presentation of strategy improvement algorithms given
in Section 1.10, although it is not necessary to have read that part. We have already
proved in Lemma 35 that the energy values correspond to the least fixed point of the
operator OG defined by:

OG (µ)(u) =

min
{

δ (µ(v),w) : u w−→ v ∈ E
}

if u ∈VMin,

max
{

δ (µ(v),w) : u w−→ v ∈ E
}

if u ∈VMax.

Recall that Y = [0,nW ]∪{∞}, and FV is the lattice of functions V → Y equipped with
the componentwise order induced by Y . The function δ : Y × [−W,W ]→ Y is defined
by δ (`,w) = max(`−w,0) if `−w≤ nW , and ∞ otherwise.

Improving a strategy. Let σ a (positional) strategy for Max, and a vertex u ∈VMax,
we say that e : u w−→ v is an improving edge if

δ (valσ (v),w)> valσ (u).

Intuitively: according to valσ , playing e is better than playing σ(u).
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Algorithm 4.2: The refined value iteration algorithm for energy games.

Function Init():
for u ∈V do

µ(u)← 0
for u ∈VMin do

for u w−→ v ∈ E do
if incorrect: µ(u)< δ (µ(v),w) then

Count(u)← Count(u)+1

if Count(u) = Degree(u) then
Add u to Incorrect

for u ∈VMax do
for u w−→ v ∈ E do

if incorrect: µ(u)< δ (µ(v),w) then
Add u to Incorrect

Function Treat(u):
if u ∈VMax then

µ(u)←max
{

δ (µ(v),w) : u w−→ v ∈ E
}

if u ∈VMin then
µ(u)←min

{
δ (µ(v),w) : u w−→ v ∈ E

}
Function Update(u):

if u ∈VMin then
Count(u)← 0

for v w−→ u ∈ E which is incorrect do
if v ∈VMin then

Count(v)← Count(v)+1
if Count(v) = Degree(v) then

Add v to Incorrect′

if v ∈VMax then
Add v to Incorrect′

Function Main():
Init ()
for i = 0,1,2, . . . do

Incorrect′← /0
for u ∈ Incorrect do

Treat (u)
Update (u)

if Incorrect′ = /0 then
return µ

else
Incorrect← Incorrect′
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Given a strategy σ and a set of improving edges S (for each u ∈VMax, S contains at
most one outgoing edge of u), we write σ [S] for the strategy

σ [S](u) =

{
e if there exists e = u w−→ v ∈ S,
σ(v) otherwise.

The difficulty is that an edge being improving does not mean that it is a better move
than the current one in any context, but only according to the value function valσ , so it
is not clear that σ [S] is better than σ . Strategy improvement algorithms depend on the
following two principles:

• Progress: updating a strategy using improving edges is a strict improvement,

• Optimality: a strategy which does not have any improving edges is optimal.

Let us write σ ≤ σ ′ if for all vertices v we have valσ (v)≤ valσ
′
(v), and σ < σ ′ if

additionally ¬(σ ′ ≤ σ).

The algorithm. The pseudocode of the algorithm is given in Algorithm 4.3.

Algorithm 4.3: The strategy improvement algorithm for energy games.
Data: An energy game G
Choose an initial strategy σ0 for Max
for i = 0,1,2, . . . do

Compute valσi and the set of improving edges
if σi does not have improving edges then

return σi
Choose a non-empty set Si of improving edges
σi+1← σi[Si]

The potential reduction point of view. A first important insight into the algorithm
is through so-called potential reductions. From a game G and a strategy σ with value
valσ , we define Gσ as follows. The two games are identical, except for the weights: if

u w−→ v in G , then u
w+valσ (v)−valσ (u)−−−−−−−−−−−→ v in Gσ .

Fact 15. We have valG = valσ + valGσ .

Proof. This follows from the observation that given any finite play

π = v0
w0−→ v1 · · ·vk−1

wk−1−−−→ vk

in G , writing the corresponding play π ′ = v0
w′0−→ v1 · · ·vk−1

w′k−1−−−→ vk in Gσ , we have a
telescoping sum:

k−1

∑
i=0

w′i = valσ (vk)−valσ (v0)+
k−1

∑
i=0

wi.
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Figure 4.3: An example of potential reduction.

The benefit of this point of view is to interpret the notion of improving edges in Gσ .

Fact 16. Let e = u w−→ v an edge in G .

• if u∈VMax, then e is an improving edge if and only if its weight in Gσ is negative.

• if u ∈VMax and σ(u) = e then the weight of e in Gσ is zero.

• if u ∈VMin, then the weight of e in Gσ is non-negative.

The second and third properties directly follow from the fact that valσ is a fixed
point of OG [σ ].

Proof of correctness. We now rely on Lemma 35 to prove the two principles: progress
and optimality.

Lemma 36 (Progress for the strategy improvement algorithm for energy games). Let
σ a strategy and S a set of improving edges. We let σ ′ denote σ [S]. Then σ < σ ′.
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Proof. We use the potential reduction point of view. Let us apply Fact 15 to the game
G [σ ′]: we have valσ

′
= valσ + valG

′
. Thanks to Fact 16 in G′ all weights are non-

positive, implying that valG
′ ≥ 0, and even valG

′
> 0 because the weights corresponding

to improving edges are negative.

Lemma 37 (Optimality for the strategy improvement algorithm for energy games). Let
σ be a strategy that has no improving edges, then σ is optimal.

Proof. We prove the contrapositive: assume that σ is not optimal, we show that it must
have some improving edge. The fact that σ is not optimal means that valσ < valG .
Since valG is the least fixed point of OG , it is also its least pre-fixed point. Therefore
valσ is not a pre-fixed point: ¬(valσ ≥OG (valσ )). Hence there exists u ∈V such that
valσ (u)<OG (valσ )(u).

We rule out the case that u ∈ VMin: since valσ is a fixed point of OG [σ ], this im-
plies that for u ∈ VMin we have valσ (u) = min

{
δ (valσ (v),w) : u w−→ v ∈ E

}
, equal to

OG (valσ )(u). Therefore u∈VMax, implying that there exists u w−→ v such that valσ (u)<
δ (valσ (v),w). This is the definition of u w−→ v being an improving edge.

Complexity analysis. The computation of valσ for a strategy σ can be seen to be
a shortest path problem. Thus, any algorithm for the shortest path problem can be
applied, such as the Bellman-Ford algorithm. In particular computing valσ can be
done in polynomial time, and even more efficiently through a refined analysis.

An aspect of the algorithm we did not develop is choosing the set of improving
edges. Many possible rules for choosing this set have been studied, as for instance the
greedy all-switches rule.

The next question is the number of iterations, meaning the length of the sequence
σ0,σ1, . . . . It is at most exponential since it is bounded by the number of strategies
(which is bounded aggressively by mn). There are lower bounds showing that the
sequence can be of exponential length, which apply to different rules for choosing
improving edges. Hence the overall complexity is exponential; we do not elaborate
further here. We refer to Section 4.6 for bibliographic references and a discussion on
the family of strategy improvement algorithms.

4.4 Discounted payoff games

From a practical point of view, the modelling of a real-world situation via mean payoff
games requires that only the long-term behaviour is important. Since mean payoff
only depends on the limit of the play, it cannot be used to model the beginning of the
execution: the mean payoff is prefix independent. In economical studies, there is a
tendency to make the prefixes count more, since they represent short-term implications
of the actions taken, even if long-term behaviours also matter. The common payoff
used to model this preference to prefixes is the discounted payoff that associates to a
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play ρ the value

DiscountedPayoff(ρ) = (1−λ ) ·
∞

∑
i=0

λ
i
ρi,

where λ is a parameter in the interval (0,1), ensuring the convergence of the infinite
series (since weights πi are bounded). We assume that λ is a rational number, it is part
of the input of a discounted payoff game. The coefficient 1−λ before the series is just
to counterbalance the fact that if all weights in the game are 1, we would like the payoff
to be 1 too, which then holds since ∑

∞
i=0 λ i = 1

1−λ
. When λ tends to 0, only the prefixes

(and even the first weight) matters. On the contrary, when λ tends to 1, the discounted
payoff looks more and more like the mean payoff. To grasp an intuition why this
holds, consider a play that results from positional strategies in a mean payoff game.
The weights encountered during the play then ultimately follow a periodic sequence
w0,w1, . . . ,wr−1,w0,w1, . . . ,wr−1,w0, . . . with average payoff 1

r ∑
r−1
i=0 wi. Grouping the

terms of the series (1−λ )∑
∞
i=0 λ i wi by batches of r terms, we then obtain

(1−λ )
∞

∑
i=0

λ
ri

r−1

∑
j=0

λ
jw j =

1−λ

1−λ r

r−1

∑
j=0

λ
jw j =

1
1+λ + · · ·+λ r−1

r−1

∑
j=0

λ
jw j

that tends towards the average-payoff 1
r ∑

r−1
j=0 w j when λ tends to 1.

The game of Figure 4.2 can also be equipped with a discounted payoff condition.
If λ is close to 1, for instance λ = 0.9, then optimal strategies are the same as for the
mean payoff objective:

σ∗(v0) = v0
4−→ v1 ; σ∗(v2) = v2

4−→ v3

τ∗(v1) = v1
2−→ v2 ; τ∗(v3) = v3

−1−→ v1 ; τ∗(v4) = v4
−2−→ v0.

The play consistent with σ∗ and τ∗ starting from v0 is the lasso word

v0
4−→ v1 ·

(
v1

2−→ v2
4−→ v3

−1−→ v1
)ω

,

which has as discounted payoff (1−λ )
(

4+ 2λ+4λ 2−λ 3

1−λ 3

)
, it is approximately 1.7 when

λ = 0.99. Recall that the mean payoff optimal value of vertex v0 was 5/3≈ 1.67. How-
ever, the situation completely changes when λ decreases. When λ = 0.5 for instance,
Min changes his decision in vertex v1 and his optimal move is v1

0−→ v0. For a really
low value of λ , for instance λ = 0.1, the decisions again change drastically for both
players: now the optimal (positional) strategies become

σ∗(v0) = v0
4−→ v1 ; σ∗(v2) = v2

4−→ v3

τ∗(v1) = v1
0−→ v0 ; τ∗(v3) = v3

−2−→ v0 ; τ∗(v4) = v4
−2−→ v0.

Computing the values using a contracting fixed point
Let us consider a discounted payoff game G with n vertices and weights in [−W,W ].
We define Y as R∪{±∞}, equipped with the natural total order on the reals. We let
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FV be the lattice of functions V → Y equipped with the componentwise order induced
by Y . We equip FV with the infinity norm: ‖µ‖= maxu∈V |µ(u)|.

We define a function δ : Y × [−W,W ]→ Y by δ (x,w) = λ · x+ (1− λ ) ·w. To
understand the definition of δ , the key observation is that the discounted payoff can be
computed recursively:

DiscountedPayoff(ρ) = (1−λ ) ·∑∞
i=0 λ i ρi

= (1−λ ) ·ρ0 +λ ·DiscountedPayoff(ρ≥1).

The function δ induces an operator OG : FV → FV :

OG (µ)(u) =

max
{

δ (µ(v),w) : u w−→ v ∈ E
}

if u ∈VMax,

min
{

δ (µ(v),w) : u w−→ v ∈ E
}

if u ∈VMin.

We note that OG is a monotonic operator. Even more interesting, it is contracting:

Fact 17. The operator OG is contracting with contraction factor λ , meaning that for
all µ,µ ′ ∈ FV :

‖OG (µ)−OG (µ ′)‖ ≤ λ · ‖µ−µ
′‖.

By Banach fixed point theorem, see Theorem 5, a direct consequence of this fact
is that OG has a unique fixed point. The following theorem is the cornerstone of the
study of discounted payoff games.

Lemma 38 (Values as unique fixed point). The discounted payoff values are the unique
fixed point of the operator OG . Moreover, the unique fixed point induces a pair of
optimal positional strategies:

u ∈VMax : σ(u) ∈ argmax
{

δ (valG (v),w) : u w−→ v ∈ E
}

u ∈VMin : τ(u) ∈ argmin
{

δ (valG (v),w) : u w−→ v ∈ E
}
.

Proof. Since we already know that OG has a unique fixed point, it is enough to show
that valG is a fixed point of OG . This follows from two properties, see Lemma 8:

• For all ρ sequences of weights, we have

DiscountedPayoff(w ·ρ) = δ (DiscountedPayoff(ρ),w).

• The function δ is monotonic and continuous.

We now move to the second point: the values imply optimal positional strategies.
Let us define σ ,τ two positional strategies:

u ∈VMax : σ(u) ∈ argmax
{

δ (valG (v),w) : u w−→ v ∈ E
}

u ∈VMin : τ(u) ∈ argmin
{

δ (valG (v),w) : u w−→ v ∈ E
}
.

To show that (σ ,τ) is a pair of optimal strategies, we claim that valσ = valτ = valG .
Indeed, both valσ and valτ are fixed points of OG , and since there exists a unique fixed
point the claim follows.
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Let us illustrate the operator OG on the discounted payoff game of Figure 4.2. It is
convenient to the contracting operator is:

OG (µ)(v0) = max
(
(1−λ ) ·4+λ ·µ(v1), (1−λ ) ·5+λ ·µ(v4)

)
OG (µ)(v1) = min

(
(1−λ ) ·0+λ ·µ(v0), (1−λ ) ·2+λ ·µ(v2)

)
OG (µ)(v2) = max

(
(1−λ ) ·1+λ ·µ(v2), (1−λ ) ·4+λ ·µ(v3)

)
OG (µ)(v3) = min

(
(1−λ ) · (−2)+λ ·µ(v0), (1−λ ) · (−1)+λ ·µ(v1)

)
OG (µ)(v4) = min

(
(1−λ ) · (−2)+λ ·µ(v0), (1−λ ) ·2+λ ·µ(v4)

)
A careful analysis gives the fixed points for all values of λ ∈ (0,1), which in turn

allows us to find the associated optimal positional strategies σ∗ and τ∗ on the various
intervals of values for λ , summarised in the following table:

λ (0,λ1] (λ1,λ2] (λ2,λ3] (λ3,1)
σ∗(v0) v4 v4 v1 v1
τ∗(v1) v0 v0 v0 v2
σ∗(v2) v3 v3 v3 v3
τ∗(v3) v0 v1 v1 v1
τ∗(v4) v0 v0 v0 v0

The frontiers are at λ1 = 1−
√

2/2 ≈ 0.293, λ2 = 1/2, and λ3 ≈ 0.841. For instance,
on interval (0,λ1], Min gets discounted payoff 5λ−2

1+λ
when starting in vertex v3, while

switching his decision in interval (λ1,λ2] allows him to secure −2λ 3+6λ 2−1
1+λ

: this gives
the explanation for the value of λ1 which allows one to equal the two values. A similar
reasoning provides the values of λ2 and λ3.

Solving discounted payoff games is in NP∩ coNP

The first step in proving NP∩ coNP upper bounds is to solve the one-player variants in
polynomial time.

Lemma 39 (One player discounted payoff games). There exists a polynomial time
algorithm for computing the optimal values of one-player discounted payoff games.

Proof. Let us consider a discounted payoff game where only Max has moves. We
claim that valσ (seen as a vector (xu)u∈V ) is the unique solution of the following linear
program

maximise ∑u∈V xu

subject to xu ≤ (1−λ ) ·w+λxv for u w−→ c ∈ E,

Indeed, vectors satisfying the constraints are exactly pre-fixed points of Oσ , and since
Oσ is monotonic the least fixed point of Oσ coincide with its least pre-fixed point.
Linear programming can be solved in polynomial time, see Theorem 2.

A dual argument solves the case where only Min has moves.

As for mean payoff (or parity) games, the existence of positional optimal (or win-
ning) strategies for both players, and the ability to solve in polynomial time the one-
player version of these games, allows us to obtain easily an NP∩ coNP complexity to
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solve discounted payoff games. The use of the above contracting operator even ensures
that the Turing machines guessing and checking the optimal strategies may indeed be
designed as unambiguous (instead of just non-deterministic). Calling UP the class of
problems that can be solved by an unambiguous Turing machine running in polynomial
time, and coUP the class of problems whose complement are in UP, we then obtain the
theorem:

Theorem 44 (Complexity). Solving discounted payoff games is in UP∩ coUP.

Proof. Using the previous result, we know that the value of a discounted payoff game
is the unique solution of the fixed point equation µ = OG (µ). Therefore, guessing µ

and checking it is indeed a fixed point of OG can be done by an unambiguous Turing
machine. To ensure that the machine runs in polynomial time, it only remains to show
that the solution is of polynomial size. Let us fix σ ,τ a pair of positional optimal
strategies. Let us rewrite the equation in a matrix form:

• We write~x for a vector of values,~x ∈ RV .

• We define the matrix Q ∈ {0,1}V×V : the entry Qu,v is 1 if u ∈ VMin and σ(u) =
u w−→ v or u ∈VMax and τ(u) = u w−→ v, and 0 otherwise.

• We define the vector~c ∈ ZV : the entry cu is the weight of the edge u w−→ v chosen
by the strategies σ and τ .

With these notations, the equation rewrites

~x = (1−λ ) ·~c+λ ·Q ·~x.

Letting λ = a/b the rational discount factor, the above equation rewrites into

A ·~x = (b−a) ·~c (4.1)

with A = b · I−a ·Q (I being the identity matrix). Therefore, A is a matrix that has at
most two non-zero elements in each row: each of these non-zero elements can be writ-
ten using at most N = max(log2 a, log2 b) bits (therefore polynomial in the representa-
tion of the game), and are therefore bounded in absolute value by 2N . By induction on
the size of the matrix, we can then show that the determinant of A is at most 4n·N . The
solution to Equation (4.1), using Cramer’s formula, reads xv = det(Av)/det(A) where
Av is the matrix obtained from A by replacing the v-th column with the vector (b−a) ·~c.
Therefore, all components of ~x can be written with only a polynomial number of bits
with respect to the size of the weights in the game and N.

The coUP membership follows, as in Theorem 39, from a dual reasoning for Min.

A value iteration algorithm for discounted payoff games
Let us recall that thanks to Banach fixed point theorem, see Theorem 5, the fixed point
is obtained as the limit of the following sequence:

∀u ∈V, µ0(u) = 0 ; µk+1 =OG (µk).
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We have limk µk = valG . To make sense of this sequence, let us define the following
condition for each k:

DiscountedPayoffk(ρ) = (1−λ ) ·
k−1

∑
i=0

λ
i
ρi.

We define valG ,k : V → R∪{±∞} the value function by

valG ,k(u) = sup
σ

inf
τ

DiscountedPayoffk[c](π
σ ,τ
u )

Fact 18. For all k, we have valG ,k = µk.

The remaining question is therefore to design a rounding procedure to compute the
exact values. The following lemma places bounds on the discounted payoff values, in
a similar manner as for Corollary 8 for mean payoff.

Lemma 40 (Upper bound on values in discounted payoff games). Let us write λ = a
b ∈

(0,1). The discounted payoff values are rational numbers in [−W,W ] whose denomi-
nators are at most D = bn−1

∏
n
j=1(b

j−a j).

Proof. Let σ ,τ a pair of optimal positional strategies. The corresponding play consists
of a prefix of length at most n and a simple cycle, hence the sequence of weights is:

w0,w1, . . . ,wk−1,(wk, . . . ,w`)
ω ,

with k, `≤ n.

valG (v) = (1−λ )

[
k−1

∑
i=0

λ
iwi +λ

k
∞

∑
m=0

λ
(`−k+1)m

`−k

∑
i=0

λ
iwk+i

]

=
b−a

b

[
k−1

∑
i=0

bk−1−iai

bk−1 ·wi +
λ k

1−λ `−k+1

`−k

∑
i=0

b`−k−iai

b`−k ·wk+i

]

=
N1

bk +
akb`−k+1

bk+1(b`−k+1−a`−k+1)

N2

b`−k (with N1,N2 ∈ Z)

=
N3

bk(b`−k+1−a`−k+1)
(with N3 ∈ Z)

=
N

bn−1 ∏
n
j=1(b j−a j)

(with N ∈ Z)

It follows from Lemma 40 that if we have an approximation η of valG (v) such that
|valG (v)−η |< 1

2D , we can recover the value as valG (v) = bDη+1/2c
D .

Let

K =

⌈
1

− log2 λ

(
n(n+3)

2
log2 b+ log2 W +2

)⌉
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Lemma 41 (Number of steps of value iteration). For the value K above, we have
‖FK(~0)− val‖< 1

2D .

Proof. First, we bound D by bn+ n(n+1)
2 , so that n(n+3)

2 log2 b ≥ log2 D. Therefore K ≥
1

− log2 λ
(log2 D+ log2 W + log2 4) = log1/λ (4DW ). This implies that λ KW ≤ 1

4D < 1
2D .

Since OG is contracting with contraction factor λ , we have ‖FK(~0)− valG ‖∞ ≤ λ K ·
‖valG ‖∞. Since |valG (v)| ≤W , we obtain the desired inequality.

Algorithm 4.4: The value iteration algorithm for discounted payoff games.
Data: A discounted payoff game G with discount factor λ = a/b ∈ (0,1), and

F the contracting operator
for u ∈V do

µ(u)← 0

K←
⌈

1
− log2 λ

(
n(n+3)

2 log2 b+ log2 W +2
)⌉

;

for i = 1 to K do
µ ←OG (µ)

return µ

Theorem 45 (Value iteration algorithm for discounted payoff games). There exists a
value iteration algorithm computing in pseudo-polynomial time the discounted payoff
values.

One can check that K is polynomial in the size of the arena, but not in the discount
factor λ . Indeed, consider that λ = 1− 1

b , with b ∈ N \ {0}. Then, we may store λ

with log2 b bits, yet 1
− log2 λ

∼b→∞ b ln2 is exponential in log2 b. As a consequence, the
value iteration algorithm runs in pseudo-polynomial time.

Strategy improvement algorithm for discounted payoff games

Theorem 46 (Strategy improvement for discounted payoff games). There exists a
strategy improvement algorithm computing the discounted payoff values in exponen-
tial time.

We construct a strategy improvement algorithm, following the presentation in Sec-
tion 1.10. Let us consider a (positional) strategy σ for Max. We compute valσ (for
instance by solving a linear program as in Lemma 39). Now there are two cases:

• Either valσ = OG (valσ ), in which case we have found a fixed point of OG . By
uniqueness, this is the discounted payoff values, and σ is an optimal strategy for
Max.

• Or valσ 6=OG (valσ ), in which case we need to improve the strategy σ .
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Let us consider the second case. Let u ∈VMax, we say that u w−→ v ∈ E is an improving
edge if valσ (u)< δ (valσ (v),w). Given a set of improving edges S (for each u ∈VMax,
S contains at most one outgoing edge of u), we write σ [S] for the strategy

σ [S](u) =

{
e if there exists e = u w−→ v ∈ S,
σ(v) otherwise.

Strategy improvement algorithms depend on the following two principles:

• Progress: updating a strategy using improving edges is a strict improvement,

• Optimality: a strategy which does not have any improving edges is optimal.

Let us write σ ≤ σ ′ if for all vertices v we have valσ (v)≤ valσ
′
(v), and σ < σ ′ if

additionally ¬(σ ′ ≤ σ).

The algorithm. The pseudocode of the algorithm is given in Algorithm 4.5.

Algorithm 4.5: The strategy improvement algorithm for discounted payoff
games.

Data: A discounted payoff game G
Choose an initial strategy σ0 for Max
for i = 0,1,2, . . . do

Compute valσi and the set of improving edges
if σi does not have improving edges then

return σi
Choose a non-empty set Si of improving edges
σi+1← σi[Si]

An example Let us consider the discounted payoff game of Figure 4.2 with λ = 0.5,
and start from the strategy σ(v0) = v0

5−→ v4 and σ(v2) = v2
1−→ v2.

We compute valσ by solving the linear program:

maximise x0 + x1 + x2 + x3 + x4
subject to x0 = (1−λ ) ·5+λ · x4

x1 ≤ (1−λ ) ·0+λ · x0
x1 ≤ (1−λ ) ·2+λ · x2
x2 = (1−λ ) ·1+λ · x2
x3 ≤ (1−λ ) · (−2)+λ · x0
x3 ≤ (1−λ ) · (−1)+λ · x1
x4 ≤ (1−λ ) · (−2)+λ · x0
x4 ≤ (1−λ ) ·2+λ · x4

Feeding this linear program to a solver we obtain the solution

~x =
(

8
3
,

4
3
,1,

1
6
,

1
3

)
.
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The only improving edge is v2
4−→ v3, so we iterate with the strategy σ ′ defined by

σ ′(v0) = v0
5−→ v4 and σ ′(v2) = v2

4−→ v3. The new vector of values found by solving
the new linear program is

~x′ =
(

8
3
,

4
3
,

25
12

,
1
6
,

1
3

)
,

which is the (unique) fixed point of OG .

Proof of correctness. We now prove the two principles: progress and optimality.

Lemma 42 (Progress for the strategy improvement algorithm for discounted payoff
games). Let σ a strategy and S a set of improving edges. We let σ ′ denote σ [S]. Then
σ < σ ′.

Proof. Let τ,τ ′ optimal positional strategies in G [σ ] and G [σ ′]. As in the proof of The-
orem 44, letting Q, ~c, Q′, and ~c′ the respective matrices and cost vectors described by
the pairs of strategies (σ ,τ) and (σ ′,τ ′), we have

valσ = (1−λ ) ·~c+λ ·Q ·valσ and valσ
′
= (1−λ ) ·~c′+λ ·Q′ ·valσ

′
.

Therefore:

valσ
′ −valσ = λ ·Q′ · (valσ

′ −valσ )+λ · (Q′−Q) ·valσ +(1−λ ) · (~c′−~c)︸ ︷︷ ︸
=~δ

.

So:
(I−λ ·Q′) · (valσ

′ −valσ ) = ~δ .

Since Q′ is a positive matrix with coefficients in {0,1}, the series ∑i λ i ·Q′i converges,
which shows that I−λ ·Q′ is invertible of inverse ∑

∞
i=0 λ i ·Q′i. In particular, the in-

verse (I−λQ′)−1 has only non-negative coefficients, and its diagonal coefficients are
positive. Therefore, to show that valσ

′ −valσ = (I−λ ·Q′)−1 ·~δ is non-negative with
at least one positive coefficient, it suffices to show that ~δ is non-negative with at least
one positive coefficient. Let u ∈V :

• If u ∈VMax, let σ(u) = u w−→ v and σ ′(u) = u w′−→ v′, we have

δu = λ · (valσ (v′)−valσ (v))+(1−λ )(w′−w).

If σ(u) = σ ′(u), then δu = 0. Otherwise, δu > 0 by definition of an improving
edge.

• If u ∈VMin, let τ(u) = u w−→ v and τ ′(u) = u w′−→ v′, we have

δu = λ · (valσ (v′)−valσ (v))+(1−λ )(w′−w).

By definition of τ we have valσ (u) = δ (valσ (v),w) ≤ δ (valσ (v′),w′). This im-
plies λ ·valσ (v)+(1−λ ) ·w≤ λ ·valσ (v′)+(1−λ ) ·w′, so δu ≥ 0.
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Lemma 43 (Optimality for the strategy improvement algorithm for discounted payoff
games). Let σ be a strategy that has no improving edges, then σ is optimal.

Proof. Let σ be a strategy that has no improving edges. We claim that valσ is a fixed
point of OG , which implies that valσ = valG , meaning that σ is optimal. Since valσ is a
fixed point of OG [σ ], for u∈VMin we have valσ (u) =min

{
δ (valσ (v),w) : u w−→ v ∈ E

}
.

The fact that σ has no improving edges reads: for all u ∈ VMax, for all u w′−→ v′ ∈ E,
δ (valσ (v′),w′) ≤ δ (valσ (v),w) where σ(u) = u w−→ v. Since valσ (u) = δ (valσ (v),w),
this implies that valσ (u) = max

{
δ (valσ (v′),w) : v w−→ v′ ∈ E

}
. The two equalities

above witness that valσ is the unique fixed point of OG .

The value iteration and strategy improvement algorithms are incomparable:

• the value iteration algorithm has a runtime pseudo-polynomial, and more pre-
cisely polynomial with respect to the number of vertices and the binary encoding
of the weights of the arena, but exponential with respect to the binary encoding
of λ ,

• the strategy improvement algorithm has a runtime exponential with respect to
the number of vertices, but polynomial with respect to the binary encoding of λ

and the weights of the arena.

Reducing mean payoff games to discounted payoff games
Recall that Corollary 8 states that the mean payoff value valG (v) is a rational num-
ber with denominator at most n. The minimal distance between two such rational
numbers is 1

n−1 −
1
n = 1

n(n−1) , implying that a 1
2n(n−1) approximation β of valG (v) is

enough to apply a rounding procedure finding the only such rational in the interval
[β − 1

2n(n−1) ,β + 1
2n(n−1) ]. By interpreting the mean payoff game as a discounted pay-

off game with a nicely chosen λ , we are able to find such a good approximation:

Theorem 47 (Discounted payoff approximation). Let G a mean payoff game. Let
λ ∈ (0,1), we define Gλ the discounted payoff game obtained from G . We let val
denote the mean payoff values and valλ (v) the discounted payoff values with λ as
discount factor. Then

‖val− valλ‖∞ ≤ (1−λ ) ·2n ·W.

Proof. Let u ∈ V . We prove the inequality valλ (u)− valG (u) ≥ −(1−λ ) · 2n ·W by
reasoning on Max’s strategies: a similar reasoning on Min’s strategies allows one to
obtain the other inequality valλ (u)−valG (u)≤ (1−λ ) ·2n ·W .

Let σ ,τ a pair of optimal positional strategies for the mean payoff game. The play
starting from u consistent with σ and τ is a finite prefix and a simple cycle, hence the
sequence of weights is:

ρ = w0,w1, . . . ,wk−1,(wk, . . . ,w`)
ω ,
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with k, ` ≤ n. Note that valG (u) = 1
`−k+1 ∑

`
i=k wi. Playing σ in the discounted payoff

game, we obtain that valλ (u) ≥ DiscountedPayoff(ρ). We now compute precisely
DiscountedPayoff(ρ):

(1−λ ) ·
k−1

∑
i=0

λ
i · wi︸︷︷︸
≥−W

+(1−λ ) ·λ k ·
∞

∑
m=0

λ
(`−k+1)m

`−k

∑
i=0

λ
iwk+i

The first term is greater than or equal to −(1−λ k) ·W , and the second term is equal to

(1−λ ) ·λ k

1−λ `−k+1

`−k

∑
i=0

λ
i ·wk+i.

By shifting all weights by W , we can rewrite the sum as:

`−k

∑
i=0

λ
i ·wk+i =

`−k

∑
i=0

λ
i · (wk+i +W )−W ·

`−k

∑
i=0

λ
i

By using the fact that wk+i +W is non-negative and λ i ≥ λ `−k, we obtain

`−k

∑
i=0

λ
i ·wk+i ≥ λ

`−k ·
`−k

∑
i=0

(wk+i +W )−W · 1−λ `−k+1

1−λ

= λ
`−k

`−k

∑
i=0

wk+i +(`− k+1) ·λ `−k ·W −W · 1−λ `−k+1

1−λ

Therefore, since valG (u) = 1
`−k+1 ·∑

`
i=k wi, we obtain

`−k

∑
i=0

λ
i ·wk+i ≥ λ

`−k · (`− k+1) · (valG (u)+W )−W · 1−λ `−k+1

1−λ
.

Together with the first term, we have

DiscountedPayoff(π)≥−W +
(1−λ ) · (`− k+1)

1−λ `−k+1 ·λ ` · (valG (u)+W )

Since 1−λ `−k+1

1−λ
= ∑

`−k
i=0 λ i < `− k+1 and valG (u)+W ≥ 0, we have

DiscountedPayoff(π)≥−W +λ
` · (valG (u)+W )

Finally, since ` ≤ n we have λ ` ≥ λ n > 1− n · (1− λ ), using the fact that 1−λ n

1−λ
=

∑
n−1
i=0 λ i < n. Therefore, using again valG (u)≤W ,

DiscountedPayoff(π)≥−W +(1−n · (1−λ )) · (valG (u)+W )

=−n · (1−λ ) · (W +valG (u))+valG (u)

≥−2n · (1−λ ) ·W +valG (u)

We obtain
valλ (u)−valG (u)≥−2n(1−λ ) ·W.
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A direct corollary of Theorem 47 is an algorithm for computing the mean payoff
values: picking λ = 1− 1

4n2(n−1)W , we obtain a good enough approximation of the mean
payoff values by solving the associated discounted payoff game. From a complexity
point of view, this value iteration algorithm runs in polynomial time in the size of the
arena, but exponential with respect to the representation of λ .

The previous reductions implies an improved theoretical complexity for mean pay-
off and parity games.

Corollary 11 (Complexity). Solving mean payoff games and parity games is in UP∩
coUP.

Proof. The reduction from mean payoff to discounted payoff games allows to lift the
UP∩coUP complexity of Theorem 44. Moreover, the reduction of Theorem 40 implies
the same complexity for parity games.

4.5 Shortest path games
The quantitative objective Sup generalises the qualitative objective Reach by stating
numerical preferences on the target. Another quantitative extension of the reachability
objective is to quantify the cost of a path towards the target: we define the quantitative
objective ShortestPath over the set of colours C = Z∪{Win} by

ShortestPath(ρ) =

{
∑

k−1
i=0 ρi for k the first index such that ρk = Win,

∞ if ρk 6= Win for all k.

We interpret the weights as costs and Min is trying to reach the target with the smallest
possible cost. Note that we use the same abusive terminology as for the shortest path
graph problem: the cost of a path is the sum of the weights along it (until the first
occurrence of Win) and we are looking for a path of minimal cost, hence not necessarily
the shortest in number of edges.

We fix a shortest path game G . Without loss of generality we assume that Win
appears only in a sink. Recall that by definition:

valG (u) = sup
σ

inf
τ
ShortestPath(πv

σ ,τ).

Hence for a vertex u there are three possibilities:

• valG (u) = ∞, meaning that Min cannot ensure to reach Win,

• valG (u)∈Z, meaning that Min can ensure to reach Win with a finite cost (bounded
from below),

• valG (u) =−∞, meaning that Min can ensure to reach Win with arbitrarily nega-
tive cost.

Note that if all weights are one, then valG is the rank defined in the attractor computa-
tion, see Section 2.1.

Detecting whether valG (u) = ∞ is easy:
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v0 v1−1
0

Win

Figure 4.4: An example of a shortest path game with negative weights where Min does
not have an optimal strategy. Indeed valG (v0) =−∞ since for any k, Min has a strategy
ensuring that ShortestPath is −k by using k times the self loop −1 before Win.
However, if Min never sees Win the outcome is ∞.

Lemma 44 (Detection of ∞ values). Let G a shortest path game and u a vertex. Then
valG (u)< ∞ if and only if u ∈WMin(Reach(Win)). Consequently, if valG (u)< ∞, then
valG (u)≤ nW.

Proof. The first equivalence is clear. For the second statement, consider a positional
strategy ensuring Reach(Win), it ensures to reach Win within at most n steps, hence
incurs a cost bounded by n times the largest weight.

Before moving to algorithms, let us illustrate two difficulties:

• As illustrated in Figure 4.4, Min does not have optimal strategies in general.

• As illustrated in Figure 4.5, even if Min has an optimal strategy, it may not be
positional.

We discuss Figure 4.5, which is a shortest path game where Min has an optimal
strategy, but it cannot be made positional. First, Min has two positional strategies:
τ1(v0) = v0

−1−→ v1 and τ2(v0) = v0
0−→ v2. Strategy τ1 does not ensure to reach the

target, since Max can enforce the cycle v0
0−→ v1

0−→ v0 forever and obtain payoff ∞.
Strategy τ2 guarantees a payoff of 0. However, Min can be smarter by threatening
Max. If Min plays once τ1, and then switches to τ2, he guarantees a payoff of −1.
Doing so twice, he guarantees a payoff of −2. This reasoning is valid for playing up
to 50 times τ1, showing to Min can ensure a payoff of −50. However it is not valid
beyond: against the strategy that plays 51 times τ1, Max’s optimal decision is to stop
the game with v1

−50−−→ v2, ensuring a payoff of −50. Indeed and more generally (as
we will see), Max has a positional optimal strategy, which is to choose v1

−50−−→ v2 right
from the beginning.

Detection of −∞ values using mean payoff games

We call ‘detecting −∞ values in shortest path games’ the following decision problem:
given a shortest path game G and a vertex u, do we have valG (u) =−∞?

Theorem 48 (Detection of−∞ values using mean payoff games). Detecting−∞ values
in shortest path games is polynomial time equivalent to solving mean payoff games.

We construct two simple reductions.
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v2

v0 v1

−1

0

0 −50

Win

Figure 4.5: A shortest path game where Min needs memory to play optimally.

Lemma 45. Let G a shortest path game, and G ′ the mean payoff game obtained from G
by replacing the self loop with Win by a self loop with 0. Assume that for all vertices
u we have valG (u) 6= ∞. Then for all vertices u, we have valG (u) = −∞ if and only if
valG

′
(u)< 0. As a consequence, if valG (u)>−∞, then valG (u)≥−nW.

Note that as stated in Lemma 44, detecting vertices with value ∞ can be done in
polynomial time, hence it does not reduce the generality of the reduction.

Proof. Let us fix σ an optimal positional strategy for Max in the mean payoff game
G ′. Since for all vertices u we have valG (u) 6= ∞, thanks to Lemma 44 there exists a
strategy σ0 which ensures ShortestPath≤ nW from all vertices.

Assume that valG (u) = −∞. Let τM a strategy ensuring ShortestPath < −nW ,
and look at a play consistent with σ and τM . It contains necessarily a negative cycle,
implying that σ does not ensure MeanPayoff≥ 0. Since σ is optimal, this implies that
valG

′
< 0.

For the converse implication, assume now that valG
′
(u) < 0. This implies that all

cycles consistent with σ are negative. Consequently, for all paths consistent with σ , the
sum of the weights diverges to −∞. Let us fix M, and consider the strategy σM which
plays like σ until the sum of the weights reaches below M−nW , and then switches to
σ0. This strategy ensures ShortestPath≤M. Thus valG (u) =−∞.

We now explain how it follows that if valG (u)>−∞, then valG (u)≥−nW . Since
the optimal positional strategy σ ensures MeanPayoff≥ 0, it also ensures that the sum
of the weights remains larger than −nW at all times.

Lemma 46. Let G a mean payoff game. We construct G ′ a shortest path game where
after each edge, Min has a choice to stop the game with colour Win. Then for all
vertices u in the original game G , we have valG (u)< 0 if and only if valG

′
(u) =−∞.

Proof. Note that Min can ensure to reach Win from anywhere, so Min has a strategy to
reach Win, implying that for all u we have valG

′
(u) 6= ∞.

Let G ′′ the mean payoff obtained from G ′ as in Lemma 45, we have that valG
′
(u) =

−∞ if and only if valG
′′
(v)< 0. To conclude, it only remains to show that valG (u)< 0

if and only if valG
′′
(u)< 0. The game G ′′ is exactly as G , except that anytime Min can
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stop the game and settle for a mean payoff of 0. Hence when asking whether the mean
payoff value is < 0, this option is not relevant.

A value iteration algorithm for shortest path games
Theorem 49 (Half-positional determinacy in shortest path games). Shortest path games
are half-positionally determined over finite arenas.

This half-positional determinacy result will follow from the correctness of a value
iteration algorithm, which works for shortest path games where no vertices has value
−∞. Thanks to the above, this can be computed and removed from the game. We
say that such a game is normalised. Note that it is enough to prove half-positional
determinacy for normalised games, since on the vertices having value −∞ the strategy
of Max is irrelevant.

Theorem 50 (Value iteration algorithm). There exists a value iteration algorithm for
computing the value function of normalised shortest path games in pseudo-polynomial
time and space.

Our first lemma shows the existence of optimal strategies.

Lemma 47 (Optimal strategies). Let G be a normalised shortest path game, then there
exists an optimal strategy for Min.

Proof. Thanks to the assumption that the game is normalised and Lemma 45, the values
are lower bounded by−nW , which implies that the infimum is indeed a minimum.

Figure 4.4 shows that the assumption that the game is normalised in Lemma 47 is
necessary.

We follow the high-level presentation of value iteration algorithms given in Sec-
tion 1.9. Let us define Y = Z∪{−∞,∞} equipped with the natural order and the func-
tion δ : Y × (Z∪{Win})→ Y by

δ (x,w) =

{
0 if w = Win,
x+w if w ∈ Z.

We let FV be the lattice of functions µ : V →Y equipped with the componentwise order
induced by Y . Note that δ is monotonic, it induces the monotonic operator OG : FV →
FV defined by:

OG (µ)(u) =

max
{

δ (µ(v),w) : u w−→ v ∈ E
}

if u ∈VMax,

min
{

δ (µ(v),w) : u w−→ v ∈ E
}

if u ∈VMin.

Thanks to Theorem 4, the operator OG has a greatest fixed point which is also the
greatest post-fixed point of OG . Recall that a post-fixed point of OG is a function
µ ∈ FV such that OG (µ) ≥ µ , it is also called a progress measure. Unfolding the
definitions, for all vertices u, we have

∃u w−→ v ∈ E, µ(u)≤ δ (µ(v),w) if u ∈VMax,

∀u w−→ v ∈ E, µ(u)≤ δ (µ(v),w) if u ∈VMin.
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Lemma 48 (Shortest path values as greatest fixed point). Let G be a normalised short-
est path game, then valG is the greatest fixed point of OG .

Proof. We show two properties:

• valG is a progress measure;

• valG is larger than the greatest fixed point of OG .

Since the greatest fixed point of OG is also the greatest progress measure, the first item
implies that it is larger than valG , and the second item states the converse inequality.

The first item is a routine verification, which follows from two properties (see Lemma 8).

• For all ρ sequences of weights, we have

ShortestPath(w ·ρ) = δ (ShortestPath(ρ),w).

• The function δ is monotonic and continuous.

We now show the second item: valG is larger than or equal to the greatest fixed
point of OG . For this, we consider a fixed point µ of OG , and argue that valG ≥ µ . To
this end, we extract from µ a strategy σ for Max, and show that valσ ≥ µ; since we
know that valG ≥ valσ , this implies valG ≥ µ . We define σ as an argmax strategy:

u ∈VMax : σ(u) ∈ argmax
{

δ (µ(v),w) : u w−→ v ∈ E
}
.

Let us define the graph G = G [σ ], by definition of σ for all edges u w−→ v in G we have
µ(u)≤ δ (µ(v),w). We claim that this implies that for all paths ρ from u in G, we have
ShortestPath(ρ)≥ µ(u). If ShortestPath(ρ) = ∞, this is clear, so let us consider
the finite case, and proceed by induction on the length k of the path before reaching
Win. This is clear for k = 0, since both values are 0. Let us assume that it holds for k
and show that it also does for k+1. Let us write ρ0 = u w−→ v. By the property above,
we have µ(u)≤ δ (µ(v),w) = µ(v)+w. Hence

k

∑
i=0

ρi = w+
k

∑
i=1

ρi ≥ w+µ(v)≥ µ(u),

where the first inequality is by induction hypothesis for the path ρ1 . . .ρk−1 from v.
This concludes the induction.

Lemma 48 does not immediately yield a value iteration algorithm because the
lattice Y is infinite. However, let us note that by half-positional determinacy, the
value of a vertex is either ∞,−∞, or in [−nW,nW ]. Hence we can equivalently de-
fine Y = [−nW,nW ]∪{−∞,∞} and δ : Y × (Z∪{Win})→ Y by

δ (x,w) =


0 if w = Win,
x+w if w ∈ Z and x+w ∈ [−nW,nW ],

∞ if w ∈ Z and x+w > nW,

−∞ if w ∈ Z and x+w <−nW.
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It is clear that the greatest fixed points for both operators coincide thanks to the re-
mark above, and now that we have a finite lattice we can use the generic monotonic
fixed point computation (see Theorem 4) to compute valG , which yields a pseudo-
polynomial time and space algorithm.

Shortest path games with non-negative weights

Theorem 51 (Polynomial time algorithm for shortest path games with non-negative
weights). There exists an algorithm for computing the values in shortest path games
with non-negative weights running in time O(m+n log(n)).

In the case where all weights are non-negative, the value iteration algorithm can be
made much more efficient, and in particular in polynomial time. To understand this,
let us start by noting that the one-player case where only Min has moves is the classi-
cal shortest path problem (towards Win) for graphs. We extend Dijkstra’s algorithm,
see Algorithm 4.6 for the pseudocode.

Let us denote by Si,µi(u), µi(u
w−→ v) the values in iteration i. We define the invari-

ants satisfied by the algorithm.

1. µi(u) is value of u in the shortest path game Gi obtained by replacing u w−→ v with
u ∞−→ v if both u and v are still in Si;

2. min{µi(u) : u ∈ Si} ≥max
{

valG (u) : u /∈ Si
}

.

The second invariant generalises the greedy property of Dijkstra’s algorithm.
Since the weight of every edge in Gi is non-increasing, the values valGi(u) are also

non-increasing. The invariants show imply that µi(u) = valGi(u) for all u ∈ Si and
µi(u) = valG (u) for all u /∈ Si. We refer to [KBB+08] for the detailed proofs of the
invariants. A careful analysis, using (minimum) Fibonacci heaps, as in Dijkstra’s algo-
rithm, allows one to obtain an overall complexity O(m+n log(n)).

4.6 Total payoff games
Recall that the total payoff objective is defined by

TotalPayoff(ρ) = limsup
k

k−1

∑
i=0

ρi.

Contrary to the shortest path objective, total payoff games do not include a reachability
objective. In particular, all plays will be infinite and their payoff is the superior limit of
the partial sums: we need this superior limit since partial sums might not have a limit
(consider for instance the sequence of weights 1,−1,1,−1,1, . . . whose partial sums
alternate between 1 and 0).

It is easy to show that solving total payoff games is in NP∩ coNP: they are posi-
tionally determined, and the one-player games can be solved in polynomial time using
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Algorithm 4.6: A polynomial time algorithm for shortest path games with
non-negative weights.

Data: A shortest path game with non-negative weights.
Function Init():

for u ∈V do
µ(u)← ∞

for u ∈VMin do
if ∃u Win−−→ v ∈ E then

µ(u)← 0
Add u to S

for u ∈VMax do
if ∀u Win−−→ v ∈ E then

µ(u)← 0
Add u to S

else
for u w−→ v ∈ E do

µ(u w−→ v)← ∞

Function Main():
Init ()
repeat

Extract v ∈ argmin{µ(v) : v ∈ S}
for u w−→ v ∈ E do

if u ∈VMin and µ(u)> δ (µ(v),w) then
µ(u)← δ (µ(v),w)
Update µ(u) in S

if u ∈VMax and µ(u w−→ v)> µ(v) then
µ(u w−→ v)← µ(v)

x←max
{

µ(u w′−→ v′) : u w′−→ v′ ∈ E
}

if µ(u)> x then
µ(u)← x
Update µ(u) in S

until S is empty
return µ
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Figure 4.6: A total payoff game

shortest paths algorithms. However, constructing a value iteration is not easy. A natural
attempt is to define the following operator:

OG (µ)(u) =

max
{

µ(v)+w : u w−→ v ∈ E
}

if u ∈VMax,

min
{

µ(v)+w : u w−→ v ∈ E
}

if u ∈VMin.

One can show that the value function is indeed a fixed point of OG . But it is neither
the greatest nor the least fixed point. Consider for example the total payoff game rep-
resented in Figure 4.6. The fixed points of OG are (a,a+1,a+2) with a ∈ R∪{±∞}:
in particular, the greatest fixed point is (+∞,+∞,+∞) and the least fixed point is
(−∞,−∞,−∞). However, the value function is (0,1,2).

We obtain a pseudo-polynomial time algorithm by reduction to a shortest path game
of pseudo-polynomial size.

Theorem 52 (A reduction from total payoff games to shortest path games). Let G a
total payoff game, we can construct a shortest path game G ′ such that for all vertices u
from G , we have valG (u) = valG

′
(u). The game G ′ has size pseudo-polynomial in the

size of G .

Proof. Let us fix K = n ·
(
(2n− 1) ·W + 1

)
. The game G ′ consists in K consecutive

copies of G . In each copy, after each move, Min can offer Max the following alter-
native: either the game stops and reaches Win, or we move to the next copy. For the
chosen K, one can show that the values of G coincide with the values of the first copy
of G ′.

Instead of explicitly constructing G ′, we can run the value iteration algorithm for
shortest path games in each copy, improving the space complexity of the algorithm.

Bibliographic references
This chapter has been the occasion to start revealing a ladder of reductions going from
parity games through mean payoff games and to discounted payoff games. In Chap-
ter 6, the last reduction from discounted payoff games to simple stochastic games will
complete this chain of reductions.

Mean payoff games. Mean payoff games have been first studied by Ehrenfeucht and
Mycielski in [EM79] where positional determinacy is shown. The one-player vari-
ants had already been studied by Karp [Kar78]. It is much later that Zwick and Pa-
terson [ZP96] first obtained the pseudo-polynomial value iteration algorithm to solve
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them, while introducing discounted payoff games (that had been first studied in a prob-
abilistic setting as will be studied in Chapter 5 and Chapter 6). The NP and coNP upper
bound, together with strategy improvement algorithm, is due to Pure [Pur95].

The first-cycle games theorem is due to Aminof and Rubin [AR17], who fixed a
flaw in the proof of Björklund, Sandberg and Vorobyov [BSV04] of positional deter-
minacy for mean payoff games. The fairly mixing theorem is due to Gimbert and
Zielonka [GZ04].

Strategy improvement algorithms. There are several strategy improvement algo-
rithms for computing the mean payoff values. Björklund and Vorobyov [BV07] con-
structed one such algorithm for computing the energy values, presented via the notion
of longest shortest path problem. A more direct approach was construct by Filar and
Vrieze [FV96], involving a pair of values, called gain and bias. Strategy improve-
ment methods (for parity games or payoff games) are very closely related to the sim-
plex method for solving linear programs, see for instance [ABGJ14]. Lifshits and
Pavlov [LP07] develop yet another strategy improvement algorithm for mean payoff
games using potential reduction techniques, which were originally described by Gal-
lai [Gal58] in the context of networks-related problems, and also developed by Gur-
vich, Karzanov, and Khachiyan [GKK88] in the context of mean payoff games. This
has been further explored, see for instance [Ohl22].

Energy games.

Value iteration algorithm. The value iteration algorithm for energy games has been
developed by Brim, Chaloupka, Doyen, Gentilini, and Raskin [BCD+11]. Comin and
Rizzi [CR17] have shown how to adapt the algorithm to compute optimal strategies as
well with a running time O(n2mW ). This removes the log(n)+ log(W ) term due to
binary search.

Shortest path games. As we have seen, computing the values for shortest path games
can be done in polynomial time when weights are non-negative, this has been proved by
Khachiyan and coauthors [KBB+08]. No polynomial solution is known for the general
case. The best known at the time this chapter is written is a polynomial time fragment
consisting of divergent shortest path games [BGMR17] in which the arena does not
contain any cycle with total weight 0: this a priori weak property indeed partitions the
strongly connected components of the arena into the ones where all cycles are positive,
and the ones where all cycles are negative; in each of these components, it is shown
why the value iteration algorithm converges in polynomial time. Theorem 48 shows
the equivalence between mean payoff games and detecting vertices of values −∞ in
shortest path games. It is open whether solving shortest path games where no vertices
have value −∞ can be done in polynomial time.

Total payoff games. The analysis of total payoff games and shortest path games is
due to [BGHM17].
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Chapter 5
Markov Decision Processes
PETR NOVOTNÝ

In this chapter we study Markov decision processes (MDPs), a standard model for
decision making under uncertainty. MDPs are also called ‘1 1

2 -player games’, since
they can be viewed as a game in which only one player makes strategic choices, while
the other player, which we call Nature, behaves according to some fixed probabilistic
model. The chapter surveys the basic notions pertaining to MDPs, and algorithms for
the following MDP-related problems:

• positive and almost-sure reachability and safety,

• discounted payoff,

• mean payoff in strongly connected MDPs,

• decomposition of MDPs into maximal end-components (MECs),

• reductions of general mean payoff MDPs, Büchi MDPs, and parity MDPs to
general reachability MDPs (via the MEC decomposition),

• solving general reachability in MDPs.

Notations
We write vectors in boldface: ~x,~y, etc. For a vector ~x indexed by a set I (i.e. ~x ∈ RI)
we denote by~xi the value of the component whose index is i ∈ I.

A (discrete) probability distribution over a finite or countably infinite set A is a
function f : A→ [0,1] such that ∑a∈A f (a) = 1. The support of such a distribution f
is the set of all a ∈ A with f (a)> 0. A distribution f is called Dirac if its support has
size 1. We denote by D(A) the set of all probability distributions over A.

177
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We also deal with probabilities over uncountable sets of events. This is accom-
plished via the standard notion of a probability space.

Definition 8 (Probability space). A probability space is a triple (S,F ,P) where

• S is a non-empty set of events (so called sample space).

• F is a sigma-algebra over S, i.e. a collection of subsets of S that contains the
empty set /0 and that is closed under complementation and countable unions. The
members of F are called F -measurable sets.

• P is a probability measure on F , i.e. a function P : F → [0,1] such that:

1. P( /0) = 0;

2. for all A ∈F it holds P(S\A) = 1−P(A); and

3. for all countable sequences of pairwise disjoint sets A1,A2, · · · ∈F (i.e.,
Ai∩A j = /0 for all i 6= j) we have ∑

∞
i=1P(Ai) = P(

⋃
∞
i=1 Ai).

A random variable in the probability space (S,F ,P) is an F -measurable function
X : Ω→ R∪ {−∞,∞}, i.e., a function such that for every a ∈ R∪ {−∞,∞} the set
{ω ∈Ω | X(ω)≤ a} belongs to F . We denote by E[X ] the expected value of a random
variable X (see Chapter 5 in [Bil95] for a formal definition).

We first give a syntactic notion of an MDP which is an analogue of the notion of an
arena for games.

Definition 9 (MDP). A Markov decision process is a tuple (V,E,∆,c). The meaning
of V , E, and c is the same as for games, i.e. V is a finite set of vertices, E ⊆ V ×V
is a set of edges and c : E →C a mapping of edges to a set of colours. However, the
meaning of ∆ is now different: ∆ is a partial probabilistic transition function of type
∆ : V ×A→D(E), such that the support of ∆(v,a) only contains edges outgoing from
v. We usually write ∆(v′ | v,a) as a shorthand for ∆(v,a)((v,v′)), i.e. the probability of
transitioning from v to v′ under action a.

We also stipulate that for each edge (v1,v2) there exists an action a ∈ A such that
∆(v2 | v1,a)> 0. Edges not satisfying this can be always removed without changing the
semantics of the MDP, which is defined below. We denote by pmin the smallest non-
zero edge probability in a given MDP, i.e. pmin = min{x > 0 | ∃u,v ∈V,a ∈ A s.t. x =
∆(v | u,a)}.

We denote by EC the set of edges coloured by C. Also, for MDPs where C is
some set of numbers, we use maxc to denote the number maxe∈E |c(e)|. In the set-
ting of MDPs it is technically convenient to encode regular objectives (Reachability,
Büchi,. . . ) by colours on vertices as opposed to edges. Hence, when discussing these
objectives, we assume that the colouring function c has the type V →C.

Plays and strategies in MDPs The way in which a play is generated in an MDP
is similar to games, but now encompasses a certain degree of randomness. There is
a single player, say Max , who controls all the vertices. Max ’s interaction with the
‘world’ described by an MDP is probabilistic. One reason is the stochasticity of the
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transition function, the other is the fact that in MDP settings, it is usually permitted
for Max to use randomised strategies. Formally, a randomised strategy is a function
σ : E∗→D(A), which to each finite play assigns a probability distribution over actions.
We typically shorten σ(π)(a) to σ(a | π).

In this section, we will refer to randomised strategies simply as ‘strategies’. The
strategies known from the game setting will be called deterministic strategies. For-
mally, a deterministic strategy can be viewed as a special type of a randomised strategy
which always selects a Dirac distribution over the edges. We shorten ‘memoryless
randomised/deterministic’ to MR and MD, respectively.

Now a play in an MDP is produced as follows: in each step, when the finite play
produced so far (i.e. the history of the game token’s movement) is π , Max chooses
an action a randomly according to the distribution σ(π). Then, an edge outgoing from
last(π) is chosen randomly according to ∆(last(π),a) and the token is pushed along the
selected edge. As shown below, this intuitive process can be formalized by constructing
a special probability space whose sample space consists of infinite plays in the MDP.

Formal semantics of MDPs Formally, to each MDP M , each (Max ’s) strategy
σ in M , and each initial vertex v0 we assign a probability space (SM ,FM ,Pσ

M ,v0
).

To explain the individual components, we need the notion of a cylinder set. A basic
cylinder determined by a finite play π is the set of all infinite plays in M having π as
a prefix. Now the above probability space consists of the following components:

• SM is the set of all infinite plays in M ;

• FM is the Borel sigma-algebra over ΩM ; this is the smallest sigma-algebra
containing all the basic cylinder sets determined by finite plays in M . The sets
in FM are called events. Note that the smallest sigma-algebra of the desired
property is guaranteed to exist, since an intersection of an arbitrary number of
sigma-algebras is again a sigma algebra.

• Pσ

M ,v0
is the unique probability measure arising from the cylinder construction

detailed below. We use Eσ

M ,v0
to denote the expectation operator associated to

the measure Pσ

M ,v0
.

Since the sample space SM is uncountable, we construct the probability measure by
first specifying a probability of certain simple sets of runs and then using an appropriate
measure-extension theorem to extend the probability measure, in a unique way, to all
sets in FM . The standard cylinder construction proceeds as follows: for each finite
play π we define the probability p(π) such that

• for an empty play ε we put p(ε) = 1;

• for a non-empty play π = π0 · · ·πk initiated in v0 we put

p(π) = p(π<k) ·
(

∑
a∈A

σ(a | π<k) ·∆(last(π) | last(π<k),a)
)
,

where we use the convention that last(π<0) = v0;
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• for all other π we have p(π) = 0.

Now using an appropriate measure-extension theorem (such as Hahn-Kolmogo-
rov theorem [Ros06, Corollary 2.5.4 and Proposition 2.5.7], or Carathéodory theo-
rem [ADD00, Theorem 1.3.10]) one can show that there is a unique probability mea-
sure Pσ

M ,v0
on FM such that for every cylinder set Cyl(π) determined by some finite

play π we have Pσ
v0
(Cyl(π)) = p(π). (Abusing the notation, we write Pσ

M ,v0
(π) for the

probability of this cylinder set). There are some intermediate steps to be performed be-
fore an extension theorem can be applied, and we omit these due to space constraints.
Full details on the cylinder construction can be found, e.g. in [ADD00, Nov15].

While the construction of the probability measure Pσ

M ,v0
might seem a bit esoteric,

in the context of MDP verification we do not usually need to be concerned with all the
delicacies behind the associated probability space. The sets of plays that we work with
typically arise from the basic cylinder sets by means of countable unions, intersections,
and simple combinations thereof; such sets by definition belong to the sigma-algebra
FM , and their probabilities can be inferred using basic probabilistic reasoning. Never-
theless, one should keep in mind that all the probabilistic argumentation rests on solid
formal grounds.

In the standard MDP literature [Put05], the plays are often defined as alternating
sequence of vertices and actions. Here we stick to the edge-based definition inherited
from deterministic games. Still, we would sometimes like to speak about quantities
such as ‘probability that action a is taken in step i’. To this end, we introduce, for each
strategy σ , each action a, and each i ≥ 0, a random variable Aσ

a,i such that Aσ
a,i(π) =

σ(π<i)(a). It is easy to check that Eσ
v [A

σ
a,i] is the probability that action a is played in

step i when using strategy σ .

Objectives in MDPs Similarly to plays, the notions of both qualitative and quantita-
tive objectives are inherited from the non-stochastic world of games. However, since
plays in MDPs are generated stochastically, even for a fixed strategy σ there is typ-
ically no single infinite play that would constitute the outcome of σ . A concrete σ

might yield different outcomes, depending on the results of random events during the
interaction with the MDP. Hence, we need a more general way of evaluating strategies
in MDPs.

In the game setting, a qualitative objective was given as a set Ω⊆Cω . In the MDP
setting, we require that such Ω is measurable in the sense that the set c−1(Ω) = {π ∈
SM | c(π) ∈ Ω} belongs to FM . We can then talk about a probability that the pro-
duced play satisfies Ω. For instance, for a colour C the objective Reach(C) is indeed
measurable, since c−1(Ω) can be written as a countable union of all basic cylinders that
are determined by finite plays ending in a vertex coloured by C. Indeed, all the qual-
itative objectives studied in previous chapters can be shown measurable in a similar
way, and we encourage the reader to prove this as an exercise. Hence, the expression
Pσ

M ,v0
(Reach(C)) denotes the probability that a vertex of colour C is reached when us-

ing strategy σ from vertex v0. Naturally, Max aims at maximizing this probability. We
refer to Max as “she”, and in subsequent chapters when studying two-player stochastic
games the opponent Min will be “he”.
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The situation is more complex for quantitative objectives. As shown in the previous
chapter, when working with quantitative objectives, the set of colours C is typically the
set of real numbers (or a subset thereof), and the quantitative objective is given by an
‘aggregating function’ f : Cω → R, which can be extended into a function f̄ : Eω → R

by putting f̄ (π) = f (c(π0)c(π1) · · ·). In the MDP setting, we require that f̄ is FM -
measurable, which means that for each x ∈ R the set {π ∈ Eω | f (c(π0)c(π1) · · ·)≤ x}
belongs to FM (again this holds for all the objectives studied in the previous chap-
ters). Then there are two ways in which we can define the expected payoff achieved by
strategy σ from a vertex v. First, we can treat f̄ as a random variable in the probability
space (SM ,FM ,Pσ

M ,v). Then the play-based payoff of σ from v, which we denote by
p-Payoff f (v,σ), is the expected value of this random variable, i.e. p-Payoff f (v,σ) =

Eσ
v [ f̄ ]. That is, we compute the expected payoff over all plays. This approach sub-

sumes also qualitative objectives: For such an objective Ω we can consider an indica-
tor random variable 1Ω, such that 1Ω(π) = 1 of π ∈Ω and 1Ω(π) = 0 otherwise. Then
Pσ

M ,v(Ω) = Eσ

M ,v[1Ω] = p-Payoff1Ω
(v,σ).

The second approach to quantitative objectives in MDPs, common e.g. in the oper-
ations research literature, is step-based: for each time step i we compute the expected
one-step reward (i.e. colour) encountered in that step and then aggregate these one-
step expectations. Formally, the step-based payoff of σ from v is s-Payoff f (v,σ) =
f (Eσ

v [c(π0)]Eσ
v [c(π1)] · · · ]), where for each i we treat the expression c(πi) as a random

variable returning the colour (i.e. a number) which labels the i-th edge of the randomly
produced play (recall here that we index edges from 0).

Depending on the concrete quantitative objective and on the shape of σ , the path-
and step-based payoffs from a given vertex might or might not be equal. Nevertheless,
in this chapter we study only objectives for which these two semantics yield the same
optimization criteria: no matter which of the two semantics we use, the optimal values
will be the same and strategy that is optimal w.r.t. one of the semantics is also optimal
for the other one. Hence, we will fix the play-based approach as the default one, writing
just Payoff f (v,σ) instead of p-Payoff f (v,σ). We will prove the equivalence with step-
based payoff where necessary. Also, we will drop the subscript f when the payoff
function is known from the context.

Optimal strategies and decision problems Let us fix an MDP M and an objective
given by a random variable f . The value of a vertex v ∈ V is the number val(v) =
supσ Payoff f (v,σ). We let val(M ) denote the |V |-dimensional vector whose compo-
nent indexed by v equals val(v).

We say that a strategy σ is ε-optimal in v, for some ε ≥ 0, if Payoff f (v,σ) ≥
val(v)− ε . A 0-optimal strategy is simply called optimal.

For qualitative objectives, there are additional modes of objective satisfaction. Given
such an objective Ω, we say that a strategy σ is almost-surely winning from v if
Eσ

M ,v[1Ω] = 1, i.e. if the run produced by σ falls into Ω with probability 1. We also say
that σ is positively winning from v if Eσ

M ,v[1Ω]> 0. For strategies that are winning in
the non-stochastic game sense, i.e. that cannot produce a run not belonging to Ω, are
usually called surely winning to distinguish them from the above concepts. We denote
by W>0(M ,Ω) and W=1(M ,Ω) the sets of all vertices of M from which there exists
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a positively or almost-surely winning strategy for the objective Ω, respectively.
The problems pertaining to the existence of almost-surely or positively winning

strategy are often called qualitative problems in the MDP literature, while the notion
quantitative problems covers the general notion of optimizing the expectation of some
random variable. We do not use such a nomenclature here so as to avoid confusion with
qualitative vs. quantitative objectives as defined in Chapter 1. Instead, we will refer
directly to, e.g. ‘almost-sure reachability’ while using the term ‘optimal reachability’
to refer to the expectation-maximization problem.

5.1 Positive and almost-sure reachability and safety in
MDPs

We start our study of algorithmic problems for MDPs with the reachability objectives:
we write Reach(Win) for Win a set of colours. By a small abuse, we also write Win
for the set of vertices of colours Win.

Positive reachability Analogously to attractor computations in reachability games
(cf. Section 2.1), we define a one-step positive probability predecessor operator Pre>0
as follows: for U ⊆V we put

Pre>0(U) = {v ∈V | ∃a ∈ A,∃u ∈U : ∆(u | v,a)> 0}.
We define an operator P>0 on subsets of vertices: for X ⊆V we have

P>0(X) = Win∪Pre>0(X).

We note that this operator is monotonic when equipping the powerset of vertices with
the inclusion preorder: if X ⊆ X ′ then P>0(X)⊆P>0(X ′). Hence Theorem 4 applies:
this operator has a least fixed point computed by the following sequence: we let X0 = /0
and Xi = P>0(Xi−1). This constructs a sequence (Xi)i∈N of non-decreasing subsets
of V . Considering the graph induced by the MDP, it is see to see that Xi is the set of
vertices from which a vertex of Win is reachable via a finite play of length at most i−1.
Hence the sequence stabilises after at most n−1 steps.

We have the following simple characterization of the positively winning set:

Theorem 53 (Characterisation of the positively winning set). Let M an MDP. Then the
positively winning region W>0(M ,Reach(Win)) is the least fixed point of the operator
P>0. Consequently, a vertex v belongs to W>0(M ,Reach(Win)) if and only if there
exists a (possibly empty) finite play from v to a vertex of colour Win. Moreover, there
exists a uniform memoryless deterministic strategy that is positively winning from every
vertex in W>0(M ,Reach(Win)).

Proof. Let us write X0 = /0 and Xi+1 = P>0(Xi), thanks to Theorem 4 this sequence
of subsets of states converges to the least fixed point X∞ of P>0. Since it is non-
decreasing, the sequence is stationary and is reached after at most n iterations, meaning
Xn = X∞. To simplify notations let us write W>0 = W>0(M ,Reach(Win)). We show
two properties:
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• For all i, we have Xi ⊆W>0.

• W>0 is a pre-fixed point of P>0.

The first property implies that X∞ ⊆W>0, and the second the converse implication.
We prove the first property by induction on i. The case i = 0 is clear. Let v ∈ Xi+1,

either v ∈Win and then it is in W>0, or v in Pre>0(Xi). Choosing the action witnessing
that inclusion yields a positive probability to land in Xi. By induction hypothesis,
Xi ⊆W>0. Hence we have constructed a strategy winning positively from v, implying
that v ∈W>0.

We now prove the second property: W>0 ⊆Win∪ Pre>0(W>0). Let v ∈W>0, by
definition either v ∈Win or there exists an action which yields a positive probability of
winning, implying that v ∈ Pre>0(W>0).

So far we have proved that W>0 is the least fixed point of P>0. We conclude the
proof by constructing a memoryless deterministic strategy σ positively winning from
all of W>0. For a vertex v ∈W>0, let rank(v) be the smallest i such that v ∈ Xi. For each
v ∈W>0, either v ∈Win or there exists an action a and vertex u such that ∆(u | v,a)> 0
and rank(u)< rank(v). Define σ(v) = a. A simple induction on the rank shows that σ

is positively winning from every vertex of W>0.

As for complexity, we can focus on the problem of determining whether a given vertex
belongs to W>0(M ,Reach(Win)).

Corollary 12 (Complexity of deciding positive reachability). The problem of decid-
ing whether a given vertex of a given MDP belongs to W>0(M ,Reach(Win)) is NL-
complete. Moreover, the set W>0(M ,Reach(Win)) can be computed in linear time.

Proof. Theorem 53 gives a blueprint for a logspace reduction from this problem to the
s-t-connectivity problem for directed graphs, and vice versa. The latter problem is well
known to be NL-complete [Sav70]. Moreover, the set of states from which a target
colour is reachable can be computed by a simple graph search (e.g. by BFS), hence in
linear time.

Almost-sure safety We define the almost-sure predecessor operator Pre=1: for X ⊆
V we have

Pre=1(X) = {v ∈V | ∃a ∈ A,∀t ∈V : ∆(t | v,a)> 0⇒ t ∈ X}.

It is clearly monotonic: if X ⊆ X ′, then Pre=1(X)⊆ Pre=1(X ′). One might be tempted
to mimic the positive reachability case in order to solve the almost-sure reachability
case: compute the least fixed point of the monotonic X 7→Win∪Pre=1(X) and hope
that it yields W=1(M ,Reach(Win)). But this is not correct: consider an MDP with
two vertices, u,v, the latter one being coloured by Win. We have only one action a: in
v, the action self loops on v, while in u playing the action either moves us to v or leaves
us in u, both options having probability 1

2 . The probability that we never reach v from
u is equal to limn→∞

( 1
2

)n
= 0, and hence W=1(M ,Reach(Win)) = {u,v}. However,

the least fixed of the operator above is {v}, excluding u. Note that there indeed exists
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an infinite play which can be generated by the strategy and which never visits v, but
the probability of generating such a play is 0.

Let us define the operator P=1 on subsets of vertices: for X ⊆V we have

P=1(X) = Win∩Pre=1(X).

Clearly P=1 is monotonic.

Lemma 49 (Characterization of the almost-sure safety winning region). Let M an
MDP. Then the almost-sure safety winning region W=1(M ,Safe(Win)) is the greatest
fixed point of the operator P=1. Moreover, there exists a memoryless deterministic
strategy that is almost-surely winning from every vertex of W=1(M ,Safe(Win)).

Proof. Let us write X0 = V and Xi+1 = P=1(Xi), thanks to Theorem 4 this sequence
of subsets of states converges to the greatest fixed point X∞ of P=1. Since it is non-
increasing, the sequence is stationary and is reached after at most n iterations, meaning
Xn = X∞. To simplify notations let us write W=1 = W=1(M ,Safe(Win)). We show
two properties:

• For all i, we have W=1 ⊆ Xi.

• W=1 is a post-fixed point of P=1.

The first property implies that W=1 ⊆ X∞, and the second the converse implication.
We prove the first property by induction on i. The case i = 0 is clear. Let v ∈W=1.

Clearly we must have that v ∈Win. Since v ∈W=1, there exists an action ensuring to
stay in W=1 with probability 1. By induction hypothesis v ∈ Xi, so this implies that
v ∈ P=1(Xi).

We now prove the second property: W=1 ⊇ Win∩ Pre=1(W=1). Let v ∈ Win∩
Pre=1(W=1), there exists an action ensuring to win with probability 1, implying that
v ∈W=1.

So far we have proved that W=1 is the greatest fixed point of P=1. We conclude
the proof by constructing a memoryless deterministic strategy σ almost-surely winning
from all of W=1. For a vertex v∈W=1, there exists an action a such that if ∆(u | v,a)> 0
then u ∈W=1. Define σ(v) = a. Clearly σ is almost-surely winning from every vertex
of W=1.

Algorithm 5.1: An algorithm computing W=1(M ,Safe(Win))
Data: An MDP M , a colour Win
X ←V ;
repeat

X ′← X ;
X ←Win∩Pre=1(X)

until X ′ = X ;
return X
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Corollary 13 (Complexity of the almost-sure safety winning set). The problem of de-
ciding whether a given vertex of a given MDP belongs to W=1(M ,Safe(Win)) can be
solved in strongly polynomial time, together with a memoryless deterministic strategy
which is almost-surely winning for all vertices in W>0(M ,Safe(Win)).

Algorithm 5.1 computes the set W=1(M ,Safe(Win)) in strongly polynomial time.

Proof. The algorithm makes at most linearly many iterations, each of which has at
most linear complexity. Hence, the complexity is at most quadratic. The strong poly-
nomiality is testified by the fact that the algorithm only tests whether a probability of
a given transition is positive or not, and the exact values of positive probabilities are
irrelevant.

Almost-sure reachability With almost-sure safety solved, we can now solve almost-
sure reachability. Consider the one-step almost-sure safety operator Safe=1 acting on
sets of vertices:

Safe=1(X) = X ∩Pre=1(X).

This operator gives rise to the notion of a closed set, which is important for the study
of safety objectives in MDPs.

Definition 10 (Closed set in an MDP). A set X of vertices is closed if Safe=1(X) =
X. The sub-MDP of an MDP M induced by the closed subset X is the MDP MX =
(X ,EX ,∆X ,cX ) defined as follows:

• EX is obtained from E by removing edges incident to a vertex from V \X;

• ∆X is obtained from ∆ ⊆ V ×A×D(E) by removing all triples (v,a, f ) where
either v 6∈ X or where the support of f is not contained in X;

• cX is a restriction of c to X.

We denote by Cl(M ) the set of all closed sets in M .

One can show that a set is closed if Max has a strategy ensuring that she stays in
the set forever.

Algorithm 5.2: An algorithm computing W=1(M ,Reach(Win))
Data: An MDP M , a colour Win
W ←V repeat

W ′←W Z←W>0(MW ,Reach(Win)) W ←W=1(MW ,Safe(W \Z))
until W ′ 6=W ;
return W ; // A positive winning strategy in MW is now
almost-surely winning from W in M.

The pseudocode for solving almost sure reachability is given in Algorithm 5.2.
Note that in the first iteration, the algorithm computes the set W=1(M ,Safe(Z)) where
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Z =W>0(M ,Reach(Win)). We might be tempted to think that this set already equals
W=1(M ,Reach(Win)), but this is not the case. To see this, consider an MDP with
three states u,v, t and two actions a,b such that t is coloured by Win, both actions
self loop in v and t, and ∆(t | u,a) = ∆(v | u,a) = 1

2 while ∆(u | u,b) = 1. Then
W=1(M ,Reach(Win)) = {t}, but W=1(M ,Safe(W>0(M ,Reach(Win)))) = {u, t}.
However, iterating the computation works, as shown in the following theorem.

Theorem 54 (Algorithm for the almost-sure reachability winning set). The problem
of deciding whether a given vertex of a given MDP belongs to W=1(M ,Reach(Win))
can be solved in strongly polynomial time, together with a memoryless deterministic
strategy which is almost-surely winning for all vertices in W>0(M ,Reach(Win)).

The pseudocode is given in Algorithm 5.2.

Proof. Since the set W can only decrease in each iteration, the algorithm terminates.
We prove that upon termination, W equals W=1(M ,Reach(Win)).

We start with the ⊆ direction. We have W ⊆W>0(MW ,Reach(Win)). By Theo-
rem 53 there exists an MD strategy σ in MW which is positively winning from each
vertex of W . We show that the same strategy is also almost-surely winning from each
vertex of W in MW and thus also from each vertex of W in M , which also proves the
second part of the theorem. Let v be any vertex of W and denote |W | by `. Since σ

is memoryless, it guarantees that a vertex of Win is reached with a positive probability
in at most ` steps (see also the construction of σ in the proof of Theorem 53), and
since it is also deterministic, it guarantees that the probability p of reaching Win in at
most ` steps is at least p`min, where pmin is the smallest non-zero edge probability in
MW . Now imagine that ` steps have elapsed and we have not yet reached Win. This
happens with a probability at most (1− p`min). However, even after these ` steps we
are still in W , since σ is a strategy in Mw. Hence, the probability that we do not reach
Win within the first 2` steps is bounded by (1− p`min)

2. To realize why this is the case,
note that any finite play π of length 2` can be split into two halves, π ′,π ′′ of length `,
and then Pσ

v (Cyl(π)) = Pσ
v (Cyl(π ′)) ·Pσ

last(π ′)(Cyl(π ′′)) (here we use the fact that σ is
memoryless). Using this and some arithmetic, one can show that, denoting Avoidi the
set of all plays that avoid the vertices of Win in steps ` · (i−1) to ` · (i)−1, it holds

Pσ
v (Avoid1∩Avoid2)≤ Pσ

v (Avoid1) · max
u∈W\Win

Pσ
u (Avoid1)≤ (1− p`min)

2.

One can then continue by induction to show that Pσ
v (
⋂ j

i=1 Avoidi) ≤ (1− p`min)
j, and

hence

Pσ
v (Reach(Win)) = 1−Pσ

v (
∞⋂

i=1

Avoidi)≤ 1− lim
j→∞

(1− p`min)
j = 1−0 = 1.

Now we prove the ⊇ direction. Denote X = W=1(M ,Reach(Win)). We prove
that W ⊇ X is an invariant of the iteration. Initially this is clear. Now assume that
this holds before an iteration takes place. It is easy to check that X is closed, so MX
is well-defined. We prove that X ⊆W=1(MW ,Safe(W \Z)), where Z is defined dur-
ing the iteration. A strategy in M that reaches Win with probability 1 must never
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visit a vertex from V \X with a positive probability. Hence, each such strategy can
be viewed also as a strategy in MX . It follows that X = W=1(MX ,Reach(Win)) =
W>0(MX ,Reach(Win)) ⊆W>0(MW ,Reach(Win)) = Z, the middle inclusion follow-
ing from induction hypothesis. Now by Lemma 49 and Corollary 13, we have that
the set W=1(MW ,Safe(W \Z)) is the largest closed set contained in Z. But X is also
closed, and as shown above, it is contained in Z. Hence, X ⊆W=1(MW ,Safe(W \Z)).

The complexity follows form Corollary 12 and Corollary 13; and also from the
fact that the main loop must terminate in ≤ |V | steps. The strong polynomiality again
follows from the algorithm being oblivious to precise probabilities.

We also have a complementary hardness result.

Theorem 55 (Complexity of the almost-sure reachability winning set). The problem of
determining whether a given vertex of a given MDP belongs to W=1(M ,Reach(Win))
is P-complete.

Proof. We proceed by a reduction from the circuit value problem (CVP). An instance
of CVP is a directed acyclic graph C , representing a boolean circuit: each internal
node represents either an OR gate or an AND gate, while each leaf node is labelled
by true or false. Each internal node is guaranteed to have exactly two children. Each
node of C evaluates to a unique truth value: the value of a leaf is given by its label and
the value of an internal node v is given by applying the logical operator corresponding
to the node to the truth values of the two children of v, the evaluation proceeding
in a backward topological order. The task is to decide whether a given node w of C
evaluates to true. CVP was shown to be P-hard (under logspace reductions) in [Lad75].
In [CDH10a], the following logspace reduction from CVP to almost-sure reachability
in MDPs is presented: given a boolean circuit C , construct an MDP MC whose vertices
correspond to the gates of C . There are two actions, call them left and right. In each
vertex corresponding to an OR gate g, the left action transitions with probability 1 to
the vertex representing the left child of g, and similarly for the action right and the right
child. In a vertex corresponding to an AND gate g, both actions behave the same: the
transition into each of the two children of g with probability 1

2 . Vertices corresponding
to leafs have self loop as the only outgoing edges, and moreover, they are coloured with
the respective labels in C . It is easy to check that a gate of C evaluates to true if and
only if the corresponding vertex belongs to W=1(MC ,Reach(true)).

Positive safety We conclude this section by a discussion of positive safety.

Theorem 56 (Algorithm for the positive safety winning set). Let MW̄in be an MDP
obtained from M by changing all Win-coloured vertices to sinks (i.e. all actions in
these vertices are self loops). Then

W>0(M ,Safe(Win)) =W>0(MW̄in,Reach(W=1(MW̄in,Safe(Win)))).

In particular, the set W>0(M ,Safe(Win)) can be computed in a strongly polynomial
time and there exists a memoryless deterministic strategy, computable in strongly poly-
nomial time, that is positively winning from every vertex of W>0(M ,Safe(Win)).
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Proof. Clearly W>0(M ,Safe(Win))=W>0(MW̄in,Safe(Win)) and W=1(M ,Safe(Win))=
W=1(MW̄in,Safe(Win)); and moreover the corresponding winning strategies easily
transfer between the two MDPs (for a safety objective, the behaviour after visiting a
Win-coloured state is inconsequential). Hence, putting Z = W=1(MW̄in,Safe(Win)),
it is sufficient to show that W>0(MW̄in,Safe(Win)) =W>0(MW̄in,Reach(Z))

The ⊇ inclusion is clear as well as the construction of the witnessing MD strategy
(in the vertices of that are outside of Z, we behave as the positively winning MD strat-
egy for reaching Z, while inside Z we behave as the almost-sure winning strategy for
Safe(Win)).

For the other inclusion, let X = V \W>0(MW̄in,Reach(Z)). We prove that X ⊆
V \W>0(MW̄in,Safe(Win)). Assign ranks to vertices inductively as follows: each
vertex coloured by Win gets rank 0. Now if ranks ≤ i have been already assigned,
then a vertex v is assigned rank i+ 1 if it does not already have a lower rank but for
all actions a ∈ A there exists a vertex u of rank ≤ i s.t. ∆(u | v,a) > 0. Then each
vertex in X is assigned a finite rank: indeed, the set of vertices without a rank is closed
and does not contain Win-coloured vertices, hence it is contained in Z. Now fix any
strategy σ starting in a vertex v ∈ X . By definition of X , σ never reaches Z and hence
never visits an unranked state. At the same time, whenever σ is in a ranked state, there
is, by definition of ranks, a probability at least pmin (the minimal edge probability in
M ) of transitioning to a lower-ranked state in the next step. Hence, in every moment,
the probability of σ reaching a Win-coloured state within the next |V | steps is at least
p|V |min. By a straightforward adaptation of the second part of the proof of Theorem 54,
σ eventually visits Win with probability 1. Since σ was arbitrary, this shows that
v 6∈W>0(MW̄in,Safe(Win)).

The complexity follows from the results on positive reachability and almost-sure
safety.

5.2 Discounted payoff in MDPs
In this section, we consider MDPs with edges coloured by rational numbers and with
the objective DiscountedPayoff. We start the chapter by proving that using the play-
based semantics for the discounted payoff objective yields no loss of generality.

Lemma 50 (Equivalence of the definitions for discounted payoffs). In a discounted
payoff MDP, for each strategy σ and each vertex v we have

p-Payoff(v,σ) = s-Payoff(v,σ).

Proof. We have

p-Payoff(v,σ) = Eσ
v [(1−λ ) lim

k→∞

k−1

∑
i=0

λ
ic(πi)] = (1−λ ) lim

k→∞
Eσ

v [
k−1

∑
i=0

λ
ic(πi)]

= (1−λ ) · lim
k→∞

k−1

∑
i=0

λ
iEσ

v [c(πi)] = s-Payoff(v,σ).
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Here, the last equality on the first line follows from the dominated convergence theo-
rem [ADD00, Theorem 1.6.9] and the following equality comes from the linearity of
expectation. (To apply the domination convergence theorem, we use the fact that for
each k we have DiscountedPayoffk(π)≤maxc.)

Optimal values and memoryless optimality

In this subsection we give a characterization of the value vector val(M ) and prove that
there always exists a memoryless deterministic strategy that is optimal in every vertex.
Our exposition follows (in a condensed form) the one in [Put05], the techniques being
somewhat similar to the ones in the previous chapter.

We define an operator O : RV → RV as follows: each vector~x is mapped to a vector
~y =O(~x) such that:

~yv = max
a∈A

∑
u∈V

∆(u | v,a) · ((1−λ ) · c(v,u)+λ ·~xu) .

Lemma 51 (Contraction mapping). The operator O is a contraction mapping. Hence,
O has a unique fixed point~x∗ in RV , and~x∗ = limk→∞Ok(~x), for any~x ∈ RV .

Proof. The proof proceeds by a computation analogous to the one in the first half of
the proof of Lemma 38; we just need to reason about actions rather than edges (and
of course, use the formula defining O instead of the one for games). The second part
follows from the Banach fixed point theorem.

We aim to prove that val(M ) is the unique fixed point ~x∗ of O. We start with an
auxiliary definition.

Definition 11 (Safe actions). Let~x ∈ RV . We say that an action a is~x-safe in a vertex
v if

a = argmax
a′∈A

∑
u∈V

∆(u | v,a′) · ((1−λ ) · c(v,u)+λ ·~xu) . (5.1)

A strategy σ is ~x-safe, if for each play π ending in a vertex v, all actions that are
selected with a positive probability by σ for π are~x-safe in v.

Given a strategy σ we define~xσ to be the vector such that~xσ
v = p-Payoff(v,σ). For

memoryless strategies, ~xσ can be computed efficiently as follows: Each memoryless
strategy σ defines a linear operator Oσ which maps each vector ~x ∈ RV to a vector
~y =Oσ (~x) such that

~yv = ∑
a∈A

σ(a | v) ·

(
∑
u∈V

∆(u | v,a) · ((1−λ ) · c(v,u)+λ ·~xu)

)
.

Lemma 52 (Operator using a fixed strategy). Let σ be a memoryless strategy using
rational probabilities. Then the operator Oσ has a unique fixed point, which is equal
to~xσ and which can be computed in polynomial time.
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Proof. The operator Oσ can be seen as an instantiation of O in an MDP where there is
no choice, since the action probabilities are chosen according to σ . Lemma 51 shows
that ~xσ is a fixed point of Oσ . Since Oσ is again a contraction, it has a unique fixed
point; and since it is linear, the fixed point can be computed in polynomial time, e.g.
by Gaussian elimination (in its polynomial bit-complexity variant known as Bareiss
algorithm [Bar68]).

We now prove that there is a memoryless strategy ensuring outcome given by the
fixed point of O. Hence, the fixed point gives a lower bound on the values of vertices.

Lemma 53 (Any fixed point induces an MD strategy). Let~x∗ be the unique fixed point
of O. Then there exists an MD strategy that is ~x∗-safe. Moreover, for each ~x∗-safe
memoryless strategy it holds that p-Payoff(v,σ) =~x∗v for each v ∈V .

Proof. Note that for each~x ∈ RV and each v ∈V there always exists at least one action
that is~x-safe in v. Hence, there is a memoryless deterministic strategy which in each v
chooses an arbitrary (but fixed) action that is~x∗-safe in v.

Now let σ be an arbitrary ~x∗-safe memoryless strategy. By Lemma 52, the vector
~xσ is the unique fixed point of Oσ . But since σ is ~x∗-safe, ~x∗ is also a fixed point of
Oσ . Hence,~x∗ =~xσ .

It remains to prove that ~x∗ gives, for each vertex, an upper bound on the expected
discounted payoff achievable by any strategy from that vertex. We introduce some ad-
ditional notation to be used in the proof of the next lemma, as well as in some later
results: namely, we denote by DiscountedPayoff (k)(π) the discounted payoff ac-
cumulated during the first k steps of π , i.e. the number (1− λ )∑

k−1
i=0 λ i c(πi). The

following lemma can be proved by an easy induction.

Lemma 54 (Properties of the sequence of iterates). For each k ≥ 0 and each vertex v
we have

sup
σ

Eσ
v [DiscountedPayoff

(k)] = (Ok(~0))v

(here~0 is a |V |-dimensional vector of zeroes).

The previous lemma is used to prove the required upper bound on val(v).

Lemma 55 (Upper bound on the optimal value). For each vertex v it holds val(v)≤~x∗v ,
where~x∗ is the unique fixed point of O.

Proof. We have DiscountedPayoff(π)= limk→∞ DiscountedPayoff
(k)(π) (for each

π) and hence, by dominated convergence theorem we have Eσ
v [DiscountedPayoff] =

limk→∞Eσ
v [DiscountedPayoff

(k)]. Hence,

val(v) = sup
σ

Eσ
v [DiscountedPayoff]

= sup
σ

lim
k→∞

Eσ
v [DiscountedPayoff

(k)] (5.2)

It remains to prove that the RHS of Equation (5.2) is not greater than~x∗= limk→∞Ok(~0)=
limk→∞ supσ Eσ

v [DiscountedPayoff
(k)] (the last inequality follows by Lemma 54).
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It suffices to show that for each σ ′ we have limk→∞Eσ ′
v DiscountedPayoff (k)] ≤

limk→∞ supσ Eσ
v [DiscountedPayoff

(k)]. But this immediately follows from the fact
that the inequality holds for each concrete k.

The following theorem summarizes the results.

Theorem 57 (Characterisation of the optimal values). The vector of values val(M ) in
a discounted sum MDP M is the unique fixed point ~x∗ of the operator O. Moreover,
there exists a memoryless deterministic strategy that is optimal in every vertex.

Proof. The characterisation of val(M ) follows directly from Lemmata 53 and 55. The
MD optimality follows from Lemma 53.

In the rest of this section we discuss several algorithms for computing the values
and optimal strategies in discounted payoff MDPs.

Value iteration
The value iteration algorithm works in the same way as in the case of discounted payoff
games: we simply iterate the operator O. We know that val(M ) = limk→∞Ok(~0), and
hence, iterating O yields an approximation of val(M ). The iteration might not reach
the fixed point (i.e. val(M )) in a finite number of steps, but we can provide simple
bounds on the precision of the approximation.

Lemma 56 (Properties of the iterates). For each k ∈ N, ‖val(M )−Ok(~0)‖∞ ≤ λ k ·
maxc.

Proof. This follows immediately from Lemma 54 and from the fact that for each play
π , ∑

∞
i=k λ i · c(πi)≤ 1

1−λ
·λ k ·maxc.

Similar analysis can be applied to strategies induced by the approximate vectors.

Lemma 57 (Relating iterates and optimal strategies). Let ε > 0 be arbitrary and let

k(ε) =


log2

(
ε(1−λ )
4maxc

)
log2(λ )

 .
Then, every Ok(ε)(~0)-safe memoryless strategy is ε-optimal in every vertex.

Proof. Let σ be any Ok(ε)(~0)-safe memoryless strategy and let Oσ be the correspond-
ing operator. We have that

‖val(M )−~xσ‖∞ = ‖val(M )−Ok(ε)(~0)+Ok(ε)(~0)−~xσ‖∞

≤ ‖val(M )−Ok(ε)(~0)‖∞ +‖Ok(ε)(~0)−~xσ‖∞. (5.3)

The first term in Equation (5.3) is ≤ ε/2 by the choice of k(ε) and Lemma 56. We
prove that the second term in Equation (5.3) is also bounded by ε/2. Note that we have
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~xσ =Oσ (~xσ ) (as was already proved in Lemma 53) and O(Ok(ε)(~0)) =Oσ (Ok(ε)(~0))
(since σ is Ok(ε)(~0)-safe). Using this we get

‖Ok(ε)(~0)−~xσ‖∞ = ‖Ok(ε)(~0)−Ok(ε)+1(~0)+Ok(ε)+1(~0)−~xσ‖∞

≤ ‖Ok(ε)(~0)−Ok(ε)+1(~0)‖∞ +‖Ok(ε)+1(~0)−~xσ‖∞

= ‖Ok(ε)(~0)−Ok(ε)+1(~0)‖∞ +‖Oσ (Ok(ε)(~0))−Oσ (~xσ )‖∞

≤ ‖Ok(ε)(~0)−Ok(ε)+1(~0)‖∞ +λ · ‖(Ok(ε)(~0))−~xσ‖∞

Re-arranging yields ‖Ok(ε)(~0)−~xσ‖∞ ≤ 1
1−λ
· ‖Ok(ε)(~0)−Ok(ε)+1‖∞.

It follows from Lemma 56 that ‖Ok(ε)(~0)−Ok(ε)+1(~0)‖∞ ≤ 2 · λ k(ε) ·max |c| ≤
(1−λ )ε

2 , the last inequality holding by the choice of k(ε). Plugging this into the formula
above yields ‖Ok(ε)(~0)−~xσ‖∞ ≤ ε

2 , as required.

Using a value-gap result (similar to the game case, but proved using a different
technique), one can show that sufficiently precise iterates can be used to compute an
optimal strategy. This is summarized in the following lemma due to [Tse90].

Lemma 58 (Sufficiently many iterates yield an optimal strategy). Let d be the least
common multiple of denominators of the following numbers: λ , all transition proba-
bilities, and all edge colourings in M . Next, let ε∗= 1

d(3|V |+3)·|V |
V
2

. Then, any Ok(ε∗)(~0)-

safe memoryless deterministic strategy is optimal in every vertex.

Proof. Let σ∗ be any MD optimal strategy (it is guaranteed to exist by Theorem 57).
By the same theorem, we have that val(M ) = Oσ (val(M )). By the definition of
Oσ , we can write the above equation as val(M ) = (1−λ ) ·~c+λ ·P ·val(M ), where
~c is a vector whose each component is a sum of several terms, each term being a
product of an edge colour and of a transition probability; and P is a matrix containing
transition probabilities. Multiplying the equation by d3 yields d3val(M ) = d3(1−λ ) ·
~c+ d3λ ·P · val(M ). Since this equation has a unique fixed point (due to Oσ being
a contraction), the matrix A = d3(I−λP) (where I is the unit matrix) is regular, and
moreover, composed of integers (ue to the choice of d). By Cramer’s rule, each entry
of val(M ) is equal to det(B)/det(A), where B is a matrix obtained by replacing some
column of A with d3(1−λ )~c (which is again an integer vector, due to the multiplication
by d3). Hence, each entry of val(M ) is a rational number with denominator det(A).

Hadamard’s inequality [Gar07] implies |det(A)| ≤ d3|V ||V |
|V |
2 .

Now let σ be any Ok(ε∗)(~0)-safe MD strategy. By Lemma 57, σ is ε∗-optimal. We
prove that all actions used by σ are~x∗-safe, which means that σ is optimal by Lemma 53.
Assume that in some vertex v the strategy σ uses action a that is not ~x∗-safe. Denote
~y = Oσ (~x∗). We have |~yv−~x∗v | > 0, since otherwise a would be ~x∗-safe. But then we
can obtain a lower bound on the difference by investigating the bitsize of the numbers
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involved:

|~yv−~x∗v |=
∣∣∣∣d3

d3~yv−
d3

d3~x
∗
v

∣∣∣∣
=

1
d3

∣∣∣∣∣∣∣∑u∈V
d ·∆(u | v,a)︸ ︷︷ ︸

integer

·(d2(1−λ ) · c(u,v)︸ ︷︷ ︸
integer

+ d2 ·λ ·~x∗u)−d3~x∗︸ ︷︷ ︸
int. multiples of 1/det(A)

∣∣∣∣∣∣∣
≥ 1

d3 ·det(A)
≥ 1

d(3|V |+3) · |V |
|V |
2

.

Now put~z =Oσ (Ok(ε)(~0)). We have the following (using, on the first line, the fact that
|a+b| ≥ |a|− |b|):

|~zv−~x∗v |= |~zv−Oσ (~x∗)v +Oσ (~x∗)v−~x∗v | ≥ |Oσ (~x∗)v−~x∗v |− |~zv−Oσ (~x∗)v|

≥ 1

d(3|V |+3) · |V |
|V |
2

−|Oσ (Ok(ε)(~0))v−Oσ (~x∗)v| (as shown above)

≥ 1

d(3|V |+3) · |V |
|V |
2

−|Oσ (Ok(ε∗)(~0)−~x∗)v| (since Oσ is linear)

≥ ε
∗−λ · ‖Ok(ε∗)(~0)−~x∗‖∞ > ε

∗− ε∗

2
(Lemma 56)

=
ε∗

2
.

In particular, it must hold that ~zv <~x∗v . Otherwise we would have Ok(ε∗)+1(~0)v ≥
Oσ (Ok(ε∗)(~0))v≥ ~x∗v+

ε∗
2 , a contradiction with Ok(ε∗)+1(~0) being an ε∗

4 -approximation
of~x∗ (by Lemma 56 and the choice of k(ε∗)).

At the same time, |O(Ok(ε∗)(~0))v−~x∗| ≤ ε∗
4 , due to the choice of k(ε∗). Since

~zv ≤~x∗v , we get~zv <~x∗v − ε

2 ≤ O(Ok(ε∗)(~0))v, a contradiction with σ being Ok(ε∗)(~0)-
safe.

Corollary 14 (Complexity of discounted payoff MDPs with a fixed discount factor).
An optimal MD strategy in discounted payoff MDPs with a fixed discount factor can be
computed in polynomial time.

Proof. The number 1/ε∗, where ε∗ is from Lemma 58, has bitsize polynomial in the
size of the MDP when the discount factor is fixed. Hence, the number k(ε∗) defined as
in Lemma 57 has a polynomial magnitude, so it suffices to perform only polynomially
many iterations. Since each iteration requires polynomially many arithmetic operations
that involve only summation and multiplication by a constant, the result follows.

Strategy improvement, linear programming, and (strongly) polyno-
mial time
The strategy (or policy) improvement (also called strategy/policy iteration in the liter-
ature) for MDPs works similarly as for games, see Algorithm 5.3. In the algorithm, we
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use Oa,v(~x) as a shortcut for ∑u∈V ∆(u | v,a)((1−λ ) · c(v,u)+λ ·~xu). The computation
of~xσi uses Lemma 52.

Algorithm 5.3: An algorithm computing an optimal MD strategy in a dis-
counted MDP

Data: A discounted payoff MDP M
i← 0;
σi← arbitrary MD strategy;
repeat

compute~xσi =
(
Eσi

v [DiscountedPayoff]
)

v∈V ;
foreach v ∈V do

Improve(v)← σi(v);
foreach a ∈ A do

if Oa,v(~xσi)>Oa,Improve(v)(~xσi) then Improve(v)← a ;

σi+1(v)← Improve(v)
i← i+1

until σi = σi−1;
return σi

Theorem 58 (Strategy improvement for discounted MDPs). The strategy improvement
algorithm for discounted MDPs terminates in a finite (and at most exponential) number
of steps and returns an optimal MD strategy.

Proof. First we need to show that whenever σi+1 6= σi, then~xσi+1 ≥~xσi and~xσi+1 6=~xσi

(we write this by ~xσi+1 �~xσi ). So fix some i s.t. an improvement is performed in the
i-th iteration of the repeat-loop. We have Oσi+1(~x

σi)�Oσi(~x
σi) =~xσi , i.e. Oσi+1(~x

σi)−
~xσi � 0. Let P, ~c be the matrix and vector such that the equation ~x = Oσi+1(~x) can be
written as~x = (1−λ ) ·~c+λ ·P ·~x. Since the equation~x =Oσi+1(~x) has a unique fixed
point (as Oσi+1 is a contraction), the matrix I−λP is invertible. Then Oσi+1(~x

σi)−~xσi �
0 can be written as (1− λ )~c+(λP− I)~xσi � 0, or equivalently ~xσi ≺ (1− λ )~c · (I−
λP)−1. But the RHS of this inequality is equal to the fixed point of Oσi+1 , i.e. to~xσi+1 .

Now there are only finitely (exponentially) many MD strategies and since~xσi+1 �
~xσi , we have that no strategy is considered twice. Hence, the algorithm eventually
terminates. Upon termination, there is no improving action, so the algorithm has found
a strategy σ whose value vector ~xσ is the fixed point of O. Such a strategy is optimal
by Theorem 57.

While each of the steps (1.)–(4.) can be performed in polynomial time, the worst-
case number of iterations is exponential [HDJ12]. However, the algorithm has nice
properties in the case when the discount factor is fixed, as we’ll see below. It is also
intimately connected to the linear programming approach.

We can indeed aim to directly solve the equation~x =O(~x), thus obtaining the fixed
point of O, by using a suitable LP. While the operator O is not in itself linear, solving
the equation can be encoded into a linear program. The main idea can be described
as follows: given some numbers y,z, the solution x̄ to the equation x = max{y,z} is
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exactly the smallest solution to the set of inequalities x ≥ y, x ≥ z. Hence, to solve
the equation~x =O(~x), we set up the following linear program Ldisc with variables xv,
v ∈V .

minimize ∑v∈V xv
subject to xv ≥ ∑u∈V ∆(u | v,a) · ((1−λ ) · c(v,u)+λ · xu) for all v ∈V and a ∈ A.

Lemma 59 (Properties of the linear program). The linear program Ldisc has a unique
optimal solution ~̄x that satisfies ~̄x = val(M ).

Proof. Let~x∗ = val(M ) be the unique fixed point of O. Clearly setting xv =~x∗v yields
a feasible solution of Ldisc. We show that~x∗ is actually an optimal solution, by proving
that for each feasible solution~x it holds~x≥~x∗. (This also shows the uniqueness, since
it says that an optimal solution is the infimum of the set of all feasible solutions.) First,
note that for any feasible solution ~x it holds O(~x) ≤~x, by the construction of Ldisc.
Next, if ~x is a feasible solution, then O(~x) is also a feasible solution; otherwise, there
would be some v and a ∈ A such that

O(~x)v < ∑
u∈V

∆(u | v,a) · ((1−λ ) · c(v,u)+λ ·O(~x)u)

≤ ∑
u∈V

∆(u | v,a) · ((1−λ ) · c(v,u)+λ ·~xu)≤O(~x)v.

Here, the first inequality on the second line follows from O(~x) ≤~x, while the second
inequality follows from the definition of O. But O(~x)v < O(~x)v is an obvious contra-
diction. So O(~x) is indeed a feasible solution and by applying the argument above, we
get O2(~x)≤O(~x). By a simple induction, Oi+1(~x)≤Oi(~x)≤~x for each i≥ 0. Hence,
also~x∗ = limi→∞Oi(~x)≤~x (the first equality comes from Lemma 51).

Linear programming can be solved in polynomial time (Theorem 2). Hence, we get
the following.

Theorem 59 (Properties of discounted payoff MDPs). The following holds for dis-
counted payoff MDPs:

1. The value of each vertex as well as an MD optimal strategy can be computed in
polynomial time.

2. The problem whether the value of a given vertex v is at least a given constant
(say 1) is P-complete (under logspace reductions). The hardness result holds
even for a fixed discount factor.

Proof. (1.) The first part comes directly from Lemma 59. Once the optimal value vec-
tor val(M ) is computed, we can choose any val(M )-safe MD strategy as the optimal
one (Lemma 53).

(2.) Let λ be the fixed discount factor. We show the lower bound, by extending the
reduction from the CVP problem used for almost-sure reachability. First, we transform
the input circuit into an MDP in the same way as in the reachability case, and we let
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v be the vertex corresponding to a gate we wish to evaluate. Assume, for a while,
that each path from v to a target state has the same length `. Then we simply assign
reward 1

(1−λ )·λ `−1 to each edge entering a target state, and 0 to all other edges. It is
easy to check that the value of v in the resulting discounted MDP is equal to the value
of v in the reachability MDP. If the reachability MDP M does not have the ‘uniform
path length’ property, we modify it by producing |V | copies of itself so that each new
vertex carries, apart from the original name, an index from {1, . . . ,n}. The transition
function in the new MDP mimics the original one, but from vertices with index j < n
we transition to the appropriate vertices of index j+1. The target vertices in the new
MDP are those vertices of index n that correspond to a target vertex of the original
MDP (this does not break down the reduction, as target vertices in the original vertices
can be assumed to have no outgoing edges other than self loops). This new MDP has
the desired property and can be produced in a logarithmic space.

The previous theorem shows that discounted payoff MDPs can be solved in poly-
nomial time even if the discount factor is not fixed (i.e., it is taken as a part of the
input). This is an important difference from the 2-player setting. However, the proof,
resting on polynomial-time solvability of linear programming, leaves opened a ques-
tion whether the discounted payoff MDPs be solved in strongly polynomial time. An
answer was provided by Ye [Ye11]: already the classic simplex algorithm of Dantzig
solves Ldisc in a strongly polynomial time in MDPs with a fixed discount factor. For-
mally, Ye proved that the number of iterations taken by the simplex method is bounded
by |V |

2·(|A|−1)
1−λ

· log( |V |
2

1−λ
), with each iteration requiring O(|V |2 · |A|) arithmetic opera-

tions. This has also an impact on the strategy improvement method: it can be shown
that strategy improvement in discounted MDPs is really just a ‘re-implementation’ of
the simplex algorithm using a different syntax. Hence, the strongly polynomial com-
plexity bound for a fixed discount factor holds there as well.

Theorem 60 (Discounted payoff MDPs with a fixed discount factor). For MDPs with
a fixed discount factor, the value of each vertex as well as an optimal MD strategy can
be computed in a strongly polynomial time.

5.3 Mean payoff in MDPs: General properties and lin-
ear programming

We will use the liminf variant of mean payoff:

MeanPayoff−(π) = liminf
n

1
n

n−1

∑
i=0

c(πi)

In particular, the play-based expected mean payoff achieved by σ from v is defined
as p-Payoff(v,σ) = Eσ

v [MeanPayoff
−], while for the step-based counterpart we have

s-Payoff(v,σ) = liminfn→∞
1
n ∑

n−1
i=0 Eσ

v [c(πi)].
The use of liminf is natural in the formal verification setting: taking the liminf

rather than limsup emphasizes the worst-case behaviour along a play. However, all the
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results in this section hold also for limsup-based mean payoff, though some proofs are
more complex. See the bibliographic remarks for more details.

In general, s-Payoff(v,σ) can be different from p-Payoff(v,σ). However, we have
the following simple consequence of the dominated convergence theorem:

Lemma 60. Let U be the set of all plays π for which limn→∞
1
n ∑

n−1
i=0 [c(πi)] is undefined.

If v0,σ are such that Pσ
v0
(U) = 0, then s-Payoff(v0,σ) = p-Payoff(v0,σ).

In particular, for any finite-memory strategy σ , the two values coincide, since ap-
plying such a strategy turns an MDP into a finite Markov chain where the existence of
the limit can be inferred using decomposition into strongly connected components and
applying the Ergodic theorem. We will show that in our case of finite-state MDPs, the
two approaches coincide not only at the levels of finite-memory strategies, but also as
optimality criteria: that is, no matter which of the two semantics we use, the optimal
values are the same and a strategy that is optimal w.r.t. one of the semantics is also
optimal for the other one. We caution the reader that such a result does not automati-
cally transfer to more complex settings, such as infinite-state MDPs or multi-objective
optimization.

To simplify the subsequent notation, we define the expected one-step reward of a
vertex-action pair (v,a) to be the number ∑w∈V ∆(w | v,a) · c(v,w). Overloading the
notation, we denote this quantity by c(v,a).

In mean payoff MDPs, a crucial role is played by the linear program Lmp defined
in Equation (5.4). The variables are x(v,a) for v ∈V and a ∈ A.

maximise ∑
v∈V,a∈A

x(v,a) · c(v,a)

subject to ∑
u∈V,a∈A

x(u,a) ·∆(v | u,a) = ∑
a∈A

xv,a for all v ∈V

∑
v∈V,a∈A

xv,a = 1 for all v ∈V,a ∈ A

xv,a ≥ 0 for all v ∈V,a ∈ A
(5.4)

Let us name the equations:

∑u∈V,a∈A x(u,a) ·∆(v | u,a) = ∑a∈A xv,a for all v ∈V (5.5)

∑v∈V,a∈A xv,a = 1 for all v ∈V,a ∈ A (5.6)

xv,a ≥ 0 for all v ∈V,a ∈ A (5.7)

There is a correspondence between feasible solutions of Lmp and the strategies in
the corresponding MDP. Intuitively, in a solution corresponding to a strategy σ , the
value of a variable xv,a describes the expected frequency with which σ visits v and
plays a upon such a visit. These frequencies must obey the flow constraints Equa-
tion (5.5) and must represent a probability distribution, which is ensured by Equa-
tion (5.6) and Equation (5.7). The objective function then represents the expected
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mean payoff. Of high importance is also the linear program which is dual to Lmp.
This dual program, denoted L dual

mp , is defined in Section 5.3. (For a refresher on linear
programming and duality, see Section 1.2).

minimize g
subject to g− c(v,a)+∑u∈V ∆(u | v,a) · yu ≥ yv for all v ∈V,a ∈ A

A feasible solution of Lmp is a vector~x∈ RV×A s.t. setting x(v,a) =~x(v,a) for all (v,a)
satisfies the constraints in Lmp. A feasible solution of L dual

mp is a tuple (g,~y), where g∈
R (using the same notation for the number and the variable should not cause confusion
here) and ~y ∈ RV s.t. setting the corresponding variables to numbers prescribed by g
and~y satisfies the constraints.

The variable g in L dual
mp is often called gain while the vector of y-variables is called

bias. This is because it provides information on how much does the payoff (under
some strategy) accumulated up to a certain step deviate from the estimate provided by
the mean payoff value of that strategy. This is illustrated in the following lemma, which
forms the first step of our analysis.

Lemma 61 (Properties of feasible solutions). Let (g,~y) be a feasible solution of L dual
mp

and let Y (i), where i ≥ 0, be a random variable such that Y (i)(π) =~yIn(πi). Then for
each strategy σ , each vertex v0, and each n≥ 0 it holds Eσ

v0
[∑n−1

i=0 c(πi)]≤ n ·g−~yv0 +

Eσ
v0
[Y (n)].

Proof. By induction on n. For n = 0, both sides are equal to 0. Now assume that the
inequality holds for some n≥ 0. By the induction hypothesis

Eσ
v0
[

n

∑
i=0

c(πi)] = Eσ
v0
[
n−1

∑
i=0

c(πi)]+Eσ
v0
[c(πn)]≤ ng−~yv0 +Eσ

v0
[Y (n)]+Eσ

v0
[c(πn)] (5.8)

We now obtain a bound for the third term on the RHS of Equation (5.8). In the follow-
ing, we denote by Πn the set of all plays of length n. Then we have

Eσ
v [Y

(n)] = ∑
v∈V

~yv ·Pσ
v0
(In(πn) = v) = ∑

v∈V
~yv ·
(

∑
π ′∈Πn

last(π ′)=v

Pσ
v0
(π ′)

)

= ∑
v∈V

~yv ·
(

∑
π ′∈Πn

last(π ′)=v

Pσ
v0
(π ′) ·

(
∑
a∈A

σ(a | π ′)︸ ︷︷ ︸
=1

))

= ∑
v∈V
a∈A

~yv ·
(

∑
π ′∈Πn

last(π ′)=v

Pσ
v0
(π ′) ·σ(a | π ′)

)

≤∑
v∈V
a∈A

(
g− c(v,a)+ ∑

u∈V
∆(u | v,a) ·~yu

)
·
(

∑
π ′∈Πn

last(π ′)=v

Pσ
v0
(π ′) ·σ(a | π ′)

)
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= g ·∑
v∈V
a∈A

∑
π ′∈Πn

last(π ′)=v

Pσ
v0
(π ′) ·σ(a | π ′)

︸ ︷︷ ︸
=1

−∑
v∈V
a∈A

∑
π ′∈Πn

last(π ′)=v

Pσ
v0
(π ′) ·σ(a | π ′) · c(v,a)

︸ ︷︷ ︸
=Eσ

v0
[c(πn)]

+ ∑
v,u∈V
a∈A

∑
π ′∈Πn

last(π ′)=v

Pσ
v0
(π ′) ·σ(a | π ′) ·∆(u | v,a) ·~yu

︸ ︷︷ ︸
=Eσ

v0
[Y (n+1)]

.

The first inequality follows from Section 5.3.
Plugging this into Equation (5.8) yields the desired Eσ

v0
[∑n

i=0 c(πi)] ≤ (n+ 1)g−
~yv0 +Eσ

v0
[Y (n+1)].

Corollary 15 (Feasible solutions imply upper bounds). Let g be the objective value of
some feasible solution of L dual

mp . Then for every strategy σ and every vertex v0 it holds
p-Payoff(v0,σ)≤ s-Payoff(v0,σ)≤ g.

Proof. Let (g,~y) be any feasible solution of L dual
mp . By Lemma 61 we have, for ev-

ery n ≥ 0, that Eσ
v0
[ 1

n ∑
n−1
i=0 c(πi)] ≤ g− ~yv0

n + 1
nE

σ
v0
[Y (n)]. Since ~yv0 is a constant and

|Eσ
v0
[Y (n)]| is bounded by the constant maxv∈V |~yv| that is independent of n, the last two

terms on the RHS vanish as n goes to ∞. Hence, we also have that s-Payoff(v0,σ) =
liminfn→∞Eσ

v0
[ 1

n ∑
n−1
i=0 c(πi)] ≤ g. It remains to show that we have p-Payoff(v0,σ) ≤

s-Payoff(v0,σ), but this immediately follows from the Fatou’s lemma [ADD00, Theo-
rem 1.6.8].

Corollary 16 (Existence of optimal solutions for the linear programs). Both the lin-
ear programs Lmp and L dual

mp have a feasible solution. Hence, both have an optimal
solution and the optimal values of the objective functions in these programs are equal.

Proof. One can easily construct a feasible solution for L dual
mp by setting all the y-

variables to 0 and g to maxc. By the duality theorem for linear programming, to show
that also Lmp has feasible solution it suffices to show that the objective function of
L dual

mp is bounded from below. But this follows from Corollary 15, since there is at
least one strategy σ giving us the lower bound (in particular, the objective function
is bounded from below by −maxc). The second part follows immediately by linear
programming duality.

5.4 Mean payoff optimality in strongly connected MDPs
As shown in the previous section, the optimal solution of any of the programs Lmp,
L dual

mp gives us an upper bound on the optimal value. In this sub-section we show that
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in strongly connected MDPs: a) a value of every vertex is the same; b) from a solution
of Lmp one can extract a memoryless deterministic strategy σ whose expected mean
payoff is well defined (i.e., the preconditions of Lemma 60 are satisfied)) and equal to
the objective value of the solution. Moreover, if the solution in question is optimal,
then σ is optimal for both p-Payoff- and s-Payoff-semantics.

Definition 12 (Strongly connected MDPs). An MDP is strongly connected if for each
pair of vertices u,v there exists a strategy which, when starting in u, reaches v with a
positive probability.

For the rest of this section we fix an optimal solution ~̄xv,a of Lmp. We denote by S
the set of all vertices for which there exists action a s.t. ~̄xv,a > 0. From the shape of Lmp
it follows that S is non-empty and closed, and hence we can consider a sub-MDP MS
induced by S. In MS we then define a memoryless randomized strategy σ by putting

σ(a | v) =
~̄x(v,a)

∑b∈A~̄x(v,b)
.

Fixing a strategy σ yields a Markov chain M σ
S . Markov chain can be viewed as

an MDP with a single action (and hence, with no non-determinism). M σ
S in particular

can be viewed an MDP with the same vertices, edges, and colouring as MS, but with
a single action (as non-determinism was already resolved by σ ). The probability of
transitioning from a vertex u to a vertex v in a Markov chain is denoted by Pu,v. In M σ

S
we have Pu,v = ∑a∈A ∆(v | u,a) ·σ(a | u), the right-hand side being computed in the
original MDP M . Both MS and M σ

S have the same sets of plays and for each initial
vertex, the probability measure induced by σ in M equals the probability measure
arising (under the unique policy) in M σ

S . Hence, to prove anything about σ it suffices
to analyse M σ

S .

A refresher on Markov chains. We review some fundamental notions of Markov
chain theory [Nor98]. A Markov chain that is strongly connected is called irreducible.
The one-step transition probabilities in a Markov chain can be arranged into a square
matrix P, which has one row and one column for each vertex. The cell in the row
corresponding to a vertex u and in the column corresponding to a vertex v bears the
value Pu,v defined above. An easy induction shows that the matrix Pk contains k-step
transition probabilities. That is, the probability of being in v after k steps from vertex u
is equal to the (u,v)-cell of Pk, which we denote by P(k)

u,v .
A vertex u of a Markov chain is recurrent if, when starting from u, it is revisited

infinitely often with probability 1. On the other hand, if the probability that u is re-
visited only finitely often is one, then the vertex is transient. It is known [Nor98,
Theorem 1.5.3] that each vertex of a finite Markov chain is either recurrent or transient,
and that these two properties can be equivalently characterized as follows: vertex u is
recurrent if and only if ∑

∞
k=0 P(k)

u,u = ∞, otherwise it is transient.
An invariant distribution in a Markov chain with a vertex set V is a |V |-dimensional

non-negative row vector~z which adds up to 1 and satisfies~z ·P =~z.
The following lemma holds for arbitrary finite Markov chains.
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Lemma 62 (Invariant distributions witness recurrent states). Let~z be an invariant dis-
tribution and v a vertex such that~zv > 0. Then v is recurrent.

Proof. Let n be the number of vertices in the chain and pmin the minimum non-zero
entry of P. Assume, for the sake of contradiction, that v is transient. We show that
in such a case, for each vertex u it holds limk→∞ P(k)

u,v = 0. For u = v this is imme-
diate, since the sum ∑

∞
k=0 P(k)

v,v converges for transient v. Otherwise, let fu,v,i be the
probability that a play starting in u visits v for the first time in exactly i steps. Then
P(k)

u,v = ∑
k
i=0 fu,v,i · P(k−i)

v,v . Now when starting in a vertex from which v is reachable
with a positive probability, at least one of the following events happens with probabil-
ity ≥ pn

min in the first n steps: either we reach a vertex from which v is not reachable
with positive probability, or we reach v. If neither of the events happens, we are, af-
ter n steps, still in a vertex from which v can be reached with a positive probability.
In such a case, the argument can be inductively repeated (analogously to the proof of
Theorem 54) to show that fu,v,i ≤ (1− pn

min)
b i

n c ≤ (1− pn
min)

i−n
n .

Since ∑
∞
k=0 P(k)

v,v converges, for each ε > 0 there exists jε such that ∑
∞
i= jε P(i)

v,v < ε

2 .
Similarly, there exists `ε such that

∞

∑
i=`ε

(1− pn
min)

i−n
n =

(1− pn
min)

`ε
n(

1− (1− pn
min)

1
n

)
· (1− pn

min)
<

ε

2
,

and hence ∑
∞
i=`ε

fu,v,i <
ε

2 .

Now we put mε =max{ jε , `ε}. For any k≥ 2mε we have P(k)
u,v =∑

k
i=0 fu,v,i ·P(k−i)

v,v ≤
∑

k
i=mε

fu,v,i+∑
mε

i=0 P(k−i)
v,v ≤∑

k
i=mε

fu,v,i+∑
k
i=mε

P(i)
v,v < ε (note that all the series involved

are non-negative). This proves that P(k)
u,v vanishes in the limit.

Finally, we derive the contradiction. Since~z satisfies~z ·P=~z, we also have~z ·Pk =~z
for all k. Hence, the v-component of~z ·Pk is equal to~zv > 0. But as shown above, the
v-column of Pk converges to the all-zero vector as k→ ∞, so also (~z ·Pk)v vanishes in
the limit, a contradiction.

Towards the optimality of σ . We now turn back to the chain M σ
S , where the mem-

oryless strategy σ is obtained from the optimal solution of Lmp. In general, M σ
S does

not have to be irreducible. Hence, we use the following lemma and its corollary to
extract an irreducible sub-chain, to which we can apply known results of Markov chain
theory.

Lemma 63 (Invariant distributions witness recurrent MDPs). Let ~̄z be a vector such
that for each v ∈ S it holds ~̄zv = ∑a∈A~̄xv,a. Then ~̄z is an invariant distribution of M σ

S .
Consequently, all vertices of M σ

S are recurrent.

Proof. The first part follows directly from the fact that ~̄xv,a is a feasible solution of
Lmp. The second part follows from Lemma 62 and from the fact that ~̄z is positive (by
the definition of S).
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Corollary 17 (Extraction of strongly connected components). The set S can be parti-
tioned into subsets S1,S2, . . . ,Sm such that each Si induces a strongly connected sub-
chain of M σ

S .

Proof. Let v∈ S be arbitrary and let Uv ⊆ S be the set of all vertices reachable with pos-
itive probability from v in M σ

S . Then v is reachable (in M σ
S ) with positive probability

from each u ∈Uv: otherwise, there would be a positive probability of never revisiting
v, a contradiction with each vertex being recurrent in M σ

S (Lemma 63). Hence, Uv
induces a strongly connected ‘sub-MDP’ (or sub-chain) of M σ

S . It is easy to show that
if Uv 6=Uw for some v 6= w, then the two sets must be disjoint.

Hence, we can extract from S a set Q inducing a strongly-connected sub-chain of
M σ

S , which we denote M σ
Q . The set Q also induces a strongly connected sub-MDP of

M denoted by MQ. The chain M σ
Q arises by fixing, in MQ, a strategy formed by a

restriction of σ to Q. We use the following powerful theorem to analyse M σ
Q .

Theorem 61 (Ergodic theorem). In a strongly connected Markov chain (with a finite
set of vertices V ) there exists a unique invariant distribution ~z. Moreover, for every
vector~h ∈ RV the following equation holds with probability 1:

lim
n→∞

1
n

n−1

∑
i=0

~hIn(πi) = ∑
v∈V

~zv ·~hv.

(In particular, the limit is well-defined with probability 1).

We refer to Theorem 1.10.2 in [Nor98] for a proof of the Ergodic theorem.
We can use the Ergodic theorem to shows that the expected mean payoff achieved

by σ in MQ matches the optimal value of Lmp, in a very strong sense: the probability
of a play having a mean payoff equal to this optimal value is 1 under σ .

Theorem 62. Let σQ be the restriction of σ to Q. Then for every v ∈ Q it holds that
PσQ

MQ,v
(MeanPayoff− = r∗) = 1, where r∗ is the is the optimal value of Lmp.

Proof. Let ~w ∈ RV×A be a vector such that ~w(v,a) = ~̄x(v,a)/∑(q,a)∈Q×A~̄x(q,a) for every
(v,a) ∈ Q×A, and ~w(v,a) = 0 for all other (v,a). We claim that ~w is also an optimal
solution of Lmp.

To prove feasibility, note that setting ~w(v,a) = 0 for each v ∈ V \Q does not break
the constraints Equation (5.5). This is because Q induces a strongly connected sub-
chain of M σ

S , and hence there are no v ∈V , u ∈V \Q such that ~̄x(u,a) ·∆(v | u,a)> 0.
Next, Equation (5.5) is invariant w.r.t. multiplication of variables by a constant, so nor-
malizing the remaining values preserves Equation (5.5) and ensures that Equation (5.6)
holds.

To prove optimality, assume that the objective value of ~w is smaller than r∗. Then
we can mirror the construction from the previous paragraph and produce a feasible
solution ~̂w(v,a) whose (Q×A)-indexed components are zero and the rest are normalized
components of ~̄x. Then r∗ is a convex combination of the objective values of ~w and ~̂w,
so ~̂w must have a strictly larger value than r∗, a contradiction with the latter’s optimality.
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We now plug ~w into the ergodic theorem as follows: As in Lemma 63, it easy
to prove that setting ~zv = ∑a∈A~w(v,a) yields an invariant distribution. Now put ~hv =

∑a∈A σ(a | v) · c(v,a)(= ∑w∈V Pv,w · c(v,w)). From the Ergodic theorem we get that
limn→∞

1
n ∑

n−1
i=0

~hIn(πi) almost-surely exists and equals

∑
v∈Q

~zv ·~hv = ∑
v∈V

((
∑
d∈A

~w(v,d)
)
·
(
∑
a∈A

σ(a | v) · c(v,a)
))

= ∑
v∈Q


(

∑d∈A~̄x(v,d)
∑

q∈Q
b∈A

~̄x(q,b)

)
·

(
∑a∈A~̄x(v,a) · c(v,a)

∑
d∈A

~̄x(v,d)

)
=

1
∑

q∈Q
b∈A

~̄x(q,b)
·∑

v∈Q
a∈A

~̄x(v,a) · c(v,a) = ∑
v∈Q
a∈A

~w(v,a) · c(v,a) = r∗. (5.9)

It remains to take a step from the left-hand side of Equation (5.9) towards the mean
payoff. To this end, we construct a new Markov chain M ′

Q from MQ by ‘splitting’
every edge (u,v) with a new dummy vertex du,v (i.e., du,v has one edge incoming from
u with probability Pu,v and one edge outgoing to v with probability 1). In M ′

Q we define
a vector~h′ s.t. for each vertex du,v the vector~h′ has the du,v-component equal to c(u,v),
while the components corresponding to the original vertices are zero. It is easy to
check that M ′

Q is strongly connected and that it has an invariant distribution~z′ defined

by ~z′v =~zv/2 for v in Q and ~z′du,v
=

~zu·Pu,v
2 for (u,v) an edge of MQ. Also, by easy

induction, for each play π of length n in MQ it holds 1
n ∑

n−1
i=0 c(πi) =

1
n ∑

2n−1
i=0

~h′In(π ′i )
,

where π ′ is the unique play in M ′
Q obtained from π by splitting edges with appropriate

dummy vertices. Hence,

lim
n→∞

1
n

n−1

∑
i=0

c(πi) = 2 · lim
n→∞

1
n

n−1

∑
i=0

~h′In(π ′i ), (5.10)

provided that both limits exist. By the ergodic theorem applied to M ′
Q, we have that

the RHS limit in Equation (5.10) is defined with probability 1 and equal to

∑
v∈Q

~z′v ·~h′v︸ ︷︷ ︸
=0

+ ∑
u,v∈Q

~z′du,v
·~h′du,v

=
1
2 ∑

u∈Q
~zu ·

(
∑
v∈Q

Pu,v · c(u,v)

)

=
1
2 ∑

u∈Q
~zu ·~hu =

r∗

2
,

the last equality being shown above. Plugging this into Equation (5.10) yields that if a
limit on the LHS (i.e., the mean payoff of a play) is well-defined with probability 1, then
it is equal to r∗ also with probability 1. But if there was a set L of positive probability in
MQ with limn→∞

1
n ∑

n−1
i=0 c(πi) undefined for each π ∈ L, by splitting the plays in L we
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would obtain a positive-probability set of plays in M ′
Q in which limn→∞

1
n ∑

n−1
i=0

~h′In(π ′i )
is also undefined, a contradiction with the Ergodic theorem.

So far, we have constructed an optimal strategy σQ but only on the part Q of the
original MDP M . To conclude the construction, we define a memoryless strategy σ∗

in M as follows: we fix a memoryless deterministic strategy σ=1 that is winning, from
each vertex of M , for the objective of almost-sure reaching of Q (such a strategy exists
since M is strongly connected, see also Theorem 54. Then we put σ∗(v) = σ=1(v)
if v 6∈ Q and σ∗(v) = σQ(v) otherwise. Hence, starting in any vertex, σ∗ eventually
reaches Q with probability 1 and then it starts behaving as σQ. The optimality of such
a strategy follows from the prefix independence of mean payoff, as argued in the next
theorem.

Theorem 63 (Prefix independence of mean payoff). For any sequence of numbers
c0,c1, . . . and any k ∈ N it holds liminfn→∞

1
n ∑

n−1
i=0 ci = liminfm→∞

1
m ∑

m−1
i=0 ck+i. As a

consequence, for every vertex v in M it holds PσQ
MQ,v

(MeanPayoff− = r∗) = 1, where

r∗ is the optimal value of Lmp. Hence, Eσ∗
v [MeanPayoff−] = r∗.

Proof. We have

liminf
n→∞

c0 + · · ·cn−1

n
= liminf

n→∞

 k
n︸︷︷︸
vanishes for n→∞

·c0 + · · ·+ ck−1

k
+

n− k
n︸ ︷︷ ︸
→1 for n→∞

·ck + ·+ cn−1

n− k


= liminf

m→∞

ck + · · ·+ ck+m−1

m
.

A similar argument holds for limsup .
With probability 1, a play has an infinite suffix consisting of plays from M σ

Q , and
thus also MeanPayoff− and MeanPayoff+ determined by this suffix. By Theorem 62,
these quantities are equal to r∗ with probability 1.

The following theorem summarizes the computational aspects.

Theorem 64 (Complexity of solving strongly connected mean payoff MDPs). In a
strongly connected mean payoff MDP, one can compute, in polynomial time, a memo-
ryless randomized strategy which is optimal from every vertex, as well as the (single)
optimal value of every vertex.

Proof. We obtain, in polynomial time, an optimal solution of Lmp, with the optimal
objective value being the optimal value of every vertex (Theorem 63). We then use
this optimal solution ~̄x to construct the strategy σ and the Markov chain M σ

S . From
this chain we extract a strongly connected subset of vertices Q (in polynomial time,
by a simple graph reachability analysis). With the subset in hand, we can construct
strategies σQ and σ=1, all polynomial-time computations (see Theorem 54). These two
strategies are then combined to produce the optimal strategy σ∗.
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Deterministic optimality in strongly connected MDPs
It remains to prove that we can actually compute a memoryless deterministic strategy
that is optimal in every vertex. Looking back at the construction that resulted in Theo-
rem 64, we see that the optimal strategy σ∗ might be randomized because the computed
optimal solution ~̄x of Lmp can contain two components (v,a), (v,b) with a 6= b and both
~̄x(v,a) and ~̄x(v,b) being positive. To prove memoryless deterministic optimality, we will
show that there is always an optimal solution which yields a deterministic strategy, and
that such a solution can be obtained in polynomial time.

The previous section implicitly defined two mappings: First, a mapping Ψ, which
maps every solution ~x of Lmp to a memoryless strategy in some sub-MDP of M ,
by putting Ψ(~x) = σ where σ(a | v) =~x(v,a)/∑b∈A~x(v,b). Second, mapping Ξ, which
maps each memoryless strategy σ that induces a strongly connected Markov chain to a
solution Ξ(σ) of Lmp such that Ξ(σ)(v,a) =~zv ·σ(a | v), where~z is the unique invariant
distribution of the chain induced by σ .

Lemma 64 (Correspondence between solutions and strategies). Let X be the set con-
taining exactly those solutions~x of Lmp for which the strategy Ψ(~x) induces a strongly
connected Markov chain. Then the mappings Ψ and Ξ are bijections between X and
the set of all memoryless strategies in some sub-MDP of M that induce a strongly
connected Markov chain.

Proof. A straightforward computation shows that Ξ◦Ψ and Ψ◦Ξ are identity functions
on the respective sets.

Definition 13 (Pure solutions). A solution ~x of Lmp is pure if for every vertex v there
is at most one action a such that~x(v,a) > 0.

The following lemma follows from the way in which strategies σ and σ∗ were con-
structed in the previous sub-section.

Lemma 65 (Solutions of the linear programs). Let ~̄x be a pure optimal solution of
Lmp and denote S = {v ∈ V | ∃a s.t. ~̄x(v,a) > 0}. Then the strategy σ = Ψ(~̄x) is an
MD strategy in MS. Hence, in such a case, the strategy σ∗ constructed from σ as in
Theorem 64 is an optimal MD strategy in M .

It remains to show how to find a pure optimal solution of Lmp. To this end we
exploit some fundamental properties of linear programs.

A linear program is in the standard (or equational) form if its set of constraints can
be expressed as A ·~x =~b, ~x ≥ 0, where ~x is a vector of variables,~b is a non-negative
vector, and A is a matrix of an appropriate dimension. In this notation, all the vectors
are column vectors, i.e. A has one column per each variable. Note that Lmp is a
program in the standard form. A feasible solution ~x of such a program is basic if the
columns of A corresponding to variables whose value is positive in ~x form a linearly
independent set of vectors. Since the maximal number of linearly independent columns
equals the maximal number of linearly independent rows (a number called a rank of
A), we know that each basic feasible solution has at most as many positive entries as
there are rows of A.
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The next two lemmas prove some fundamental properties of basic feasible solu-
tions.

Lemma 66 (Properties of basic feasible solutions: uniqueness). Assume that a linear
program in a standard form has two basic feasible solutions ~x,~x′ such that both solu-
tions have the same set of non-zero components, and the cardinality of this set equals
the number of equality constraints in the program. Then~x =~x′.

Proof. Write A ·~x =~b the equational constraints of the LP. If ~x is a basic feasible
solution, then it solves the equation AN ·~xN =~b, where AN (N stands for ‘non-zero’) is
obtained from A by removing all columns corresponding to zero components of~x, and
~xN is obtained from~x by removing all zero components.

Since ~x has as many non-zero components as there are rows of A, it follows that
AN is a square matrix. Since ~x is a basic solution, AN is regular (its columns are lin-
early independent) and~x = A−1

N ·~b is uniquely determined by AN . Repeating the same
argument for~x′ yields~x′ = A−1

N ·~b =~x.

Lemma 67 (Properties of basic feasible solutions). If a linear program in a standard
form has an optimal solution, then it has also a basic optimal solution. Moreover, a
basic optimal solution can be found in polynomial time.

Sketch. The existence of a basic optimal solution is a well-known linear programming
fact, e.g. the standard simplex algorithm works by traversing the set of basic feasi-
ble solutions until it finds an optimal one [Mat07]. For computing an optimal basic
solution, we can use one of the polynomial-time interior-point methods for linear pro-
gramming, such as the path-following method [Kar84, Gon92]. While these methods
work by traversing the interior of the polyhedron of feasible solutions, they converge,
in polynomial time, to a point that is closer to the optimal basic solution than to all
the other basic solutions. By a process called purification, such a point can be then
converted to the closest basic solution, i.e. to the optimal one [Gon92].

Theorem 65 (Complexity of computing optimal deterministic strategies in strongly
connected mean payoff MDPs). One can find, in polynomial time, an optimal deter-
ministic strategy in a given strongly connected mean payoff MDP.

Proof. First, we use Lemma 67 to find a basic optimal solution ~̄x of Lmp. We check if
it is pure. If yes, we are done. Otherwise, there is v ∈ V and two distinct actions a,b
such that ~̄x(v,a) > 0 and ~̄x(v,b) > 0. Let S = {v ∈V | ∃a s.t. ~̄x(v,a) > 0}. By Corollary 17,
we can partition S into several subsets, each of which induces a strongly connected sub-
MDP of M . Let Q be a class of this partition containing v. We have that the optimal
mean payoff value of every vertex in MQ is the same as in M . This is because, as
in the beginning of the proof of Theorem 62, we can transform ~̄x into another optimal
solution of the same value as~̄x which has non-zero entries only for components indexed
by (q,a) with q ∈ Q. All these computations can be easily implemented in polynomial
time.

We argue that Q is a strict subset of V . Indeed, assume that Q =V . Then ~̄x induces
a randomized strategy σ in M . Moreover, since ~̄x is a basic solution, it has at most
|V |+ 1 positive entries, and since it is non-pure, it must have exactly n+ 1 positive
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entries, i.e. Lemma 66 is applicable to ~̄x, since Lmp has exactly |V |+ 1 constraints.
Now we define a new strategy σ ′ in M by slightly changing the behaviour in v. To this
end, choose some ε > 0 and put σ ′(a | v) = σ(a | v)− ε and σ ′(b | v) = σ(b | v)+ ε;
we choose ε small enough so that both quantities are still non-zero. The chain M σ ′

is still strongly connected. Now let~x′ = Ξ(σ ′). Then~x′ is a solution of Lmp which is
still basic, with a set of non-zero components being the same as in ~̄x. At the same time,
~x′ 6= ~̄x, since σ 6= σ ′ and Ξ is a bijection (Lemma 64). But this is a contradiction with
Lemma 66.

Hence, MQ is a strict sub-MDP of M in which the value of every vertex is the same
as in the original MDP. We can perform a recursive call of the aforementioned compu-
tation on MQ (compute basic optimal solution of Lmp, check purity, possibly extract
and recurse on a sub-MDP). The depth of recursion is bounded by |V |, so the running
time is polynomial. Since each sub-MDP obtained during the recursion is non-empty,
and the size of the MDPs decreases, the recursion must eventually terminate with a
basic optimal solution (in some sub-MDP M ′) that is pure. This yields a memoryless
deterministic strategy in M ′ whose value is equal to the optimal value in M . Such a
strategy can be extended to whole M by solving almost sure reachability to M ′, as
described in the previous sub-section.

5.5 End components
To solve mean payoff optimization in general MDPs, as well as general optimization
problems for ω-regular objectives, we need to introduce a crucial notion of an end
component.

Definition 14. An end component (EC) of an MDP is any set M of vertices having the
following two properties:

• For each u ∈M there exists an action a that is M-safe in u, i.e. satisfies that for
all vertices v with ∆(v | u,a)> 0 it holds v ∈M.

• For each pair of distinct vertices u,v ∈M there is a path from u to v visiting only
the states from M.

In other words, M is an EC of M if and only if M is a closed set and the sub-MDP
MM is strongly connected.

From the player’s point of view, the following property of ECs is important.

Lemma 68. Let M be an EC and v ∈M. Then there is an MD strategy σ which, when
starting in a vertex inside M, never visits a vertex outside of M and at the same time
ensures that with probability one, the vertex v is visited infinitely often. Moreover, σ

can be computed in polynomial time.

Proof. From Theorem 54 we know that we can compute, in polynomial time, an MD
strategy σ in the sub-MDP MM ensuring that v is reached with probability 1 from any
initial vertex in M. Indeed, this is because M =W>0(MM,Reach(v)), due to the second
condition in the definition of a MEC. Since M is closed, this strategy never leaves M.
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Whenever, the strategy leaves v, it guarantees that we return to v with probability 1.
Hence, for each k, the probability of event Vk — visiting v at least k times — is 1.
Since Vk+1 ⊆ Vk, it follows that also the probability of

⋂
∞
i=1 Vi is equal to 1, which is

what we aimed to prove.

The main reason for introducing ECs is that they are crucial for understanding the
limiting behaviour of MDPs.

Definition 15. We denote by Inf(π) the set of vertices that appear infinitely often
along a play π .

Lemma 69. For any v0 and σ it holds Pσ
v0
({π | Inf(π) is an EC }) = 1.

Proof. Assume the converse. Then in some MDP there is a set of vertices X which is
not an EC but satisfies Pσ

v0
(Inf= X)> 0. Since X is not an EC, there is a vertex v ∈ X

in which any (even randomized) choice of action results in leaving X with probability
at least pmin > 0 (recall that pmin is the smallest non-zero edge probability in the MDP).

Let Stayk be the set of plays in {Inf=X}which, from step k on, never visit a vertex
outside of X . Since {Inf = X} =

⋃
∞
i=1 Stayi, by union bound we get Pσ

v0
(Stayk0

) > 0
for some k0 ∈ N. Let Vis j denote the set of all plays in Stayk0

that visit v at least j
times after the step k0. Since Stayk0

⊆ {Inf = X}, we have Stayk0
∩Vis j = Stayk0

for each j. But an easy induction shows that Pσ
v0
(Stayk0

∩Vis j+1) ≤ Pσ
v0
({In(πk0) ∈

X}) · p j
min, since every visit to v brings a risk at least pmin of falling out of X . The latter

number converges to zero, so Pσ
v0
(Stayk0

) = lim j→∞Pσ
v0
(Stayk0

) = lim j→∞Pσ
v0
(Stayk0

∩
Vis j+1) = 0, a contradiction.

In general, there can be exponentially many end components in an MDP (e.g. for a
complete underlying graph and one action per edge, each subset of vertices is an EC).
However, we can usually restrict to analysing maximal ECs.

Definition 16. An end component M is a maximal end component (MEC) if no other
end-component M′ is a superset of M. We denote by MEC(M ) the set of all MECs of
M .

If two ECs have a non-empty intersection, then their union is again an EC. Hence,
every EC is contained in exactly one MEC, and the total number of MECs is bounded
by |V |, since two distinct MECs must be disjoint. Moreover, the decomposition of an
MDP into MECs can be computed in polynomial time.

Theorem 66. The set of all MECs in a given MDP can be computed in polynomial
time.

Proof. There are several known algorithms, a simple one is pictured in Algorithm 5.4.
Each iteration goes as follows: we first take the underlying directed graph of the MDP
and find its strongly connected components using some of the well-known polynomial
algorithms [CLRS09]. We identify the bottom SCCs, i.e. those from which there is
no outgoing edge in the graph. It is easy to see that each such SCC must form a MEC
of M , and conversely, each MDP has at least one MEC that is also a bottom SCC of
its underlying graph. Moreover, for each such bottom SCC B we compute the random
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Algorithm 5.4: Algorithm for MEC decomposition of an MDP.
Data: An MDP M
List← /0 ; // List of found MECs
G← (V,E) ; // The underlying graph of M
while G is non-empty do

Decompose G into strongly connected components;
R← /0 ; // The list of vertices to remove.
foreach bottom SCC B of G do

B is a MEC of M , add it to List;
R← R∪ (V \W=1(M ,Safe(V \B))) ; // Schedule removal
of vertices from which B cannot be avoided in
M.

remove vertices in R from G along with adjacent edges
return List

attractor of B, i.e. the set of vertices of M from which B cannot be avoided under any
strategy. To this end, we compute, in polynomial time, the almost-surely winning set
W=1(M ,Safe(V \B)) which is the largest largest (w.r.t. set inclusion) subset of V from
which the player can ensure to stay in V \B forever (i.e. the complement of the random
attractor of B). The computation can be done in polynomial time by Corollary 13). No
vertex of the random attractor of B can belong to a MEC different from B: such a MEC
would be disjoint from B but the player could not force avoiding B from within this
MEC, a contradiction with MEC being a closed set. Hence, all MECs of M which
are not a bottom SCC of G are subsets of W=1(M ,Safe(V \B)) ⊆ V \R, so we can
remove all vertices in R from the graph and continue to the next iteration (note that
removing vertices in R from M again yields a MDP, since the complement of R is an
intersection of closed sets, and thus again a closed set). The main loop performs at
most |V | iterations, which yields the polynomial complexity.

5.6 Reductions to optimal reachability

The MEC decomposition can be used to reduce several optimization problems (includ-
ing general mean payoff optimization) to optimizing reachability probability. Recall
that in the optimal reachability problem, we are given an MDP M (with coloured
vertices) and a colour Win ∈ C. The task is to find a strategy σ that maximizes
Pσ

v0
(Reach(Win)), the probability of reaching a vertex coloured by Win. The main

result on reachability MDPs, which we prove in Section 5.7, is as follows:

Theorem 67 (Solving reachability MDPs). In reachability MDPs, the value of each
vertex is rational and computable in polynomial time. Moreover, we can compute, in
polynomial time, a memoryless deterministic strategy that is optimal in every vertex.
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From optimal Büchi to reachability
In Büchi MDPs, the vertices are assigned colours from the set {1,2} and our aim is to
find a strategy maximizing Pσ

v0
(Buchi), i.e. maximizing the probability that a vertex

coloured by 2 is visited infinitely often. We say that a MEC M of a Büchi MDP is good
if it contains a vertex coloured by 2.

Theorem 68 (Solving Büchi MDPs). In Büchi MDPs, the value of each vertex is ra-
tional and computable in polynomial time. Moreover, we can compute, in polynomial
time, a memoryless deterministic strategy that is optimal in every vertex.

Proof. Let Mb be a Büchi MDP and let Mr be a reachability MDP obtained from Mb
by repainting each vertex belonging to a good MEC with the colour Win. Note that Mr
can be computed in polynomial time by performing the MEC decomposition of Mb
(Algorithm 5.4) and checking goodness of each MEC.

We prove that the value of each vertex in Mb is equal to the value of the corre-
sponding vertex in Mr.

First, fix any σ and v0 (due to equality of underlying graphs, we can view these as
a strategy/initial vertex both in Mb and Mr). By Lemma 69, the probability of visiting
infinitely often a vertex outside of a MEC is 0. Hence, the probability of visiting
infinitely often a vertex coloured by 2 (in Mb) is the same as the probability of visiting
infinitely often a vertex coloured by 2 which belongs to (a necessarily good) MEC,
which is in turn bounded from above by the probability that σ visits (in Mr) a vertex
coloured by Win.

Conversely, let σ∗ be the MD reachability-optimal strategy in Mr (which exists
by Theorem 67). We construct a strategy σ in Mb which achieves, in every vertex,
the same Büchi-value as the reachability value achieved in that vertex by σ∗ in Mr.
Outside of any good MEC, σ behaves exactly as σ∗. Inside a good MEC M, σ behaves
as the MD strategy from Lemma 68, ensuring that some fixed vertex in M of colour 2 is
almost-surely visited infinitely often. Since σ is stitched together from MD strategies
on non-overlapping domains, it is memoryless deterministic and it ensures that once a
good MEC is reached, the Büchi condition is satisfied almost-surely.

The construction of σ in the aforementioned paragraph is effective: given the opti-
mal strategy σ∗ for reachability, σ can be constructed in polynomial time.

From optimal parity to optimal reachability
In parity MDPs, the vertices are labelled by colours form the set {1, . . . ,d} (w.l.o.g. we
stipulate that d ≤ |V |) and the goal is to find a strategy maximizing Pσ

v0
(Parity), i.e.

maximizing the probability that the largest priority appearing infinitely often along a
play is even.

Theorem 69 (Solving parity MDPs). In Parity MDPs, the value of each vertex is ra-
tional and computable in polynomial time. Moreover, we can compute, in polynomial
time, a memoryless deterministic strategy that is optimal in every vertex.

Proof. Let Mp be a parity MDP. We will proceed similarly to Theorem 68, construct-
ing a reachability MDP Mr with the same underlying graph as Mp.
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To this end, let Mi be the largest sub-MDP of Mp containing only the vertices of
priority≤ i. Formally, we set Vi =W=1(Mp,Safe(c−1({i+1, . . . ,d}))) and define Mi
to be the sub-MDP induced by Vi (note that Mi might be empty). We say that a vertex
of Mp is i-good if it is contained in some MEC M of Mi such that the largest vertex
priority inside M is equal to i. We say that a vertex is even-good if it is i-good for
some even i. We set up a reachability MDP Mr by taking Mp and re-colouring each
its even-good vertex with colour Win. To do this, we need to compute, for each even
priority i, the MDP Mi and its MEC-decomposition. This can be done in polynomial
time (Algorithm 5.4).

We again prove that the value of every vertex in Mp is equal to the value of the
corresponding vertex in Mr.

Let σ and v0 be arbitrary. By Lemma 69, Pσ

Mp,v0
(Parity) is equal to the probabil-

ity that Inf(π) is an EC in which the largest priority is even. But each such EC is also
an EC of some Mi with even i, and thus is also contained in a MEC of a Mi in which
the largest priority is i. Hence, Pσ

Mp,v0
(Parity)≤ Pσ

Mr ,v0
(Reach(Win)).

Conversely, let σ∗ be the MD reachability-optimal strategy in Mr. We construct
an MD strategy σ in Mp as follows: in a vertex v which is not even-good, σ behaves
as σ∗. For a vertex v that is even-good, we identify the smallest even i such that v is
i-good. This means that v belongs to some MEC M of Mi in which the largest priority
is i. By Lemma 68, we can compute, in polynomial time, an MD strategy σM which
ensures that the largest-priority vertex in (Mi)M is visited infinitely often, and we set
σ(v) to σM(v). Note that given σ∗, the strategy σ can be constructed in polynomial
time. It remains to show that Pσ

Mp,v0
(Parity)≥ Pσ∗

Mr ,v0
(Reach(Win)).

By the construction of σ , once we reach a vertex which is i-good for some even
i, all the following vertices will be j-good for some even j ≤ i. From this and from
Lemma 69 it follows that Pσ∗

Mr ,v0
(Reach(Win)) is equal to the probability that σ pro-

duces a play π with the following property: ∃i even such that all but finitely many ver-
tices on π are i-good but are not j-good for any even j < i. This can be in turn rephrased
as the probability that Inf(π) is an EC whose all vertices are i-good for some even i
but none of them is j-good for an even j < i; we call such an EC i-definite. But within
such an EC, σ forever behaves as σM for some MEC M of Mi in which the maximal
priority is i. Hence, once an i-definite EC is reached, the strategy almost-surely en-
sures that priority i is visited infinitely often and ensures that no larger priority is ever
visited. It follows that Pσ∗

Mr ,v0
(Reach(Win)) = Pσ

Mp,v0
(inf(π) is i-definite for even i) =

Pσ

Mp,v0
(Parity).

From general mean payoff to optimal reachability

We already know how to solve strongly connected mean payoff MDPs. We now com-
bine this result with MEC decomposition to reduce the general (not strongly connected)
mean payoff optimization to MDP reachability.

We start with a strengthening of Theorem 63.

Lemma 70. Let M be a strongly connected mean payoff MDP and r∗ the value of
each of its vertices. Then, for each σ and v0 we have Pσ

v0
(MeanPayoff− > r∗) = 0.
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Proof. Assume that the statement is not true. Then there exist σ ,v0 as well as numbers
ε,δ > 0 and n0 ∈ N s.t. the probability of the following set of plays Xε,n0 is at least
δ : a play π belongs to Xε,n0 if for every n ≥ n0 it holds 1

n ∑
n−1
i=0 c(πi) ≥ x∗+ ε . We

construct a new strategy σ ′, which proceeds in a series of episodes. Every episode
starts in v0, and for the first n0 steps of the, episode σ ′ mimics σ . After that, it checks,
in every step n, whether the payoff accumulated since the start of the episode is at least
n · (r∗+ ε). If this holds, we mimic σ for one more step. If the inequality is violated,
we immediately ‘restart’, i.e. return to v0 (can be performed with probability 1 due to
the MDP being strongly connected) and once in v0, start a new episode which mimics
σ from the beginning. By our assumption, the probability of not performing a reset in a
given episode is at least δ > 0. Hence, with probability 1 we witness only finitely many
resets, after which we produce a play whose suffix has mean payoff at least r∗+ e. By
prefix independence of mean payoff (Theorem 63), Eσ ′

v0
[MeanPayoff−] ≥ r∗+ ε, a

contradiction.

We will need to strengthen the previous lemma so that it applies not only to strongly
connected MDPs, but also to MECs in some larger MDPs. The strengthening is per-
formed in the following two lemmas. The first lemma says that once we exit a MEC,
with some positive probability we will never return.

Lemma 71. Let M be a MEC of an MDP M and let v ∈M, a ∈ A be such that a is not
M-safe in v. Then there exists t s.t. ∆(t | v,a)> 0 and t 6∈W=1(M ,Reach(M)).

Proof. Assume that a is not M-safe in v and that all t’s with ∆(t | v,a) > 0 belong
to W=1(M ,Reach(M)). Fix the MD strategy σ which is almost-surely winning for
reaching M from each vertex of W=1(M ,Reach(M)) (Theorem 54). For each t s.t.
∆(t | v,a)> 0, let Mt denote the set of vertices which can be (with a positive probability)
visited under σ . Put M′ = M∪(

⋃
t∈V,∆(t|v,a)>0 Mt). Then M′ is closed, since M is closed

and since for every u in some Mt there exists an action (the one selected by σ for u)
under which we surely stay in Mt . Moreover, the M′-induced sub-MDP is strongly
connected: each t with ∆(t | v,a)> 0 is reachable from within M (through v) and thus
each vertex in some Mt is reachable from M. In turn, from each vertex in some Mt
(where ∆(t | v,a) > 0) we can reach M without leaving Mt , due to the definition of σ .
Hence, M′ is a MEC which strictly contains M, a contradiction with the maximality of
M.

Given a play π and strategy σ , we define a slice of σ as a strategy σπ− such that for
each π ′ starting in last(π) it holds σπ−(π

′) = σ(ππ ′), while on other plays σπ− just
mimics σ .

Lemma 72. Let M be a MEC of M and r∗ the mean payoff value of every vertex in
the strongly connected sub-MDP induced by M. Then the set E of all plays that have
Inf(π) ⊆ M and at the same time mean payoff greater than r has probability zero
under any strategy σ .

Proof. Assume, for contradiction, that there is a strategy σ and δ > 0 such that the
probability of E under σ is at least δ . Note that we do not immediately have a contra-
diction with Lemma 70, since σ might leave M (and then return back).
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We say that a play π cheats in step i if it is inside M in i-th step and outside of M
in the next step (which can only be caused by an M-unsafe action being played). From
Lemma 71 we have that there is p > 0 s.t. upon every exit from M we return with
probability at most (1− p). Hence, the probability that a play cheats infinitely often is
0. It follows that there is k ∈N s.t. Pσ

v0
(π cheats after ≥ k steps)≤ (δ · pmin)/4, where

pmin is the smallest non-zero edge probability in M .
Whenever we are in some v ∈ M and play an action that is not M-safe in v, this

results into a cheat with probability at least pmin. Thus, the total probability that this
happens after at least k steps, i.e. the quantity

q = ∑
i≥k

∑
v∈M

∑
a not M-safe in v

Eσ
v0
[Aσ

a,i ·1Out(πi)=v], (5.11)

is bounded by Pσ
v0
(π cheats after more than k steps)/pmin ≤ δ/4.

Let’s go back to E now. On each play in E there is a step i from which on the play
stays in M forever: we say that the play is i-definite and we denote by Ek the set of all
i-definite plays in E. By union bound, there is ` ∈ N, `≥ k s.t. Pσ

v0
(E`)≥ δ/2.

We define a new strategy σ ′ as follows: on each play prefix, σ ′ by default mimics
σ , except for the case when at least ` steps have elapsed, the current vertex v is in M,
and σ prescribes to play, with positive probability, an action which is not M safe in v.
In such a case, σ is overridden and we play any action that is M-safe in v instead (after
which we return to simulating σ , until the override kicks in again). The probability
that such an override happens is bounded by the quantity q from Equation (5.11), and
hence by δ/4. Since Pσ

v0
(E`)≥ δ/2, at least half the measure of E` stays untouched by

the overrides; hence Pσ ′
v0
(E`)≥ δ/4.

We are ready to apply the final argument. There are only finitely many plays of
length `. Hence, by union bound, there is a play π of length ` such that Pσ ′

v0
(E` ∩

Cyl(π)) > 0. Consider the strategy σ ′π−. Starting in last(π), we have that σ ′π− never
leaves M, due to the overrides in σ ′. Hence, σ ′π− can be seen as a strategy in the
strongly connected MDP MM . Now consider the set E ′ = {π ′ | π ′∃π ′′ ∈ E s.t. π ′′ =

ππ ′}. Then Pσ ′π−
last(π)(E

′) = Pσ ′
v0
(E`∩Cyl(π))> 0; but due to the prefix independence of

mean payoff, all plays in E ′ have payoff > r∗, a contradiction with Lemma 70.

Theorem 70. In mean payoff MDPs, the value of each vertex is rational and com-
putable in polynomial time. Moreover, we can compute, in polynomial time, a memo-
ryless deterministic strategy that is optimal in every vertex.

Proof. First, note that we can w.l.o.g. restrict to MDPs in which each edge is coloured
by a number between 0 and 1. To see this, let M be an MDP and a,b any two numbers,
with a non-negative. We can construct an MDP M ′ by re-colouring each edge (u,v) of
M with colour a · c(u,v)+b, where c is the original colouring in M . It is then easy to
see that for each strategy σ it holds Eσ

M ,v0
[MeanPayoff−] = (Eσ

M ′,v0
[MeanPayoff−]/a)−

b, so a strategy optimizing the mean payoff in M ′ is also optimal in M . Hence, we al-
ways can re-scale the colouring into the unit interval while preserving the optimization
criterion.

So now let Mmp be a mean payoff MDP with edge-colouring c. We construct, in
polynomial time, a new reachability MDP Mr as follows: first, we compute the MEC
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decomposition of Mmp (Algorithm 5.4). Let M1, . . . ,Mk be all the resulting MECs. For
each MEC Mi we compute the optimal mean payoff value r∗i in the sub-MDP induced
by Mi (which is shared by all vertices of this sub-MDP, by Theorem 63), along with
the corresponding memoryless deterministic optimal strategy. We already know how
to do this in polynomial time (Theorems 64 and 65). Now we add new vertices vgood,
vbad, both with self loops, and edges incoming to these vertices from each vertex that
belongs to some MEC of Mmp. The vertex vgood is the only vertex coloured by Win
in Mr. Finally, we add a new action f in which behaves as follows: For each vertex v
belonging to a MEC Mi we set ∆(vgood | v, f in) = r∗i and ∆(vbad | v, f in) = 1− r∗i . In a
non-MEC vertex v, we put ∆(v, f in) = ∆(v,a) for some a ∈ A, a 6= f in, so that no new
behaviour is introduced in these vertices.

We show that for any original vertex (i.e. all vertices but vgood,vbad) the optimal
values in both MDPs are the same and the optimal strategies are easily transferable
from one MDP to the other.

First, let σ be an ε-optimal strategy in Mmp. We have

Eσ
v0
[MeanPayoff−] = ∑

k
i=1Eσ

v0
[MeanPayoff− ·1Inf⊆Mi ]

≤ ∑
k
i=1Eσ

v0
[r∗i ·1Inf=Mi ]

= ∑
k
i=1 r∗i ·Pσ

v0
(Inf= Mi)

Here the first equation follows from Lemma 69 and the subsequent inequality from
Lemma 72. Moreover, for each i there is a number ni

0 such that the probability of all
plays that stay inside Mi in all the steps from ni

0 to infinity is at least Pσ
v0
(Inf⊆Mi)− ε

k .
Let n0 = max1≤i≤k ni

0.
We construct a reachability strategy σr which mimics σ for the first n0 steps. After

n0 steps it performs a switch: if the current vertex is in some Mi we immediately play
the action f in, otherwise we start to behave arbitrarily. We have

Pσr
v0
(Reach(Win)) ≥ ∑

k
i=1 r∗i ·Pσr

v0
(last(π≤n0) ∈Mi)

≥ ∑
k
i=1 r∗i ·Pσ

v0
(Inf⊆Mi)− ε

≥ Eσ
v0
[MeanPayoff−]− ε.

This is the last equality shown in the previous paragraph. Since σ is ε-optimal for
mean payoff, Pσr

v0
(Reach(Win)) is at most 2ε away from the mean payoff value of v.

Since ε > 0 was chosen arbitrarily, we get that the reachability value in Mr is at least
as large as the mean payoff value in Mmp.

Conversely, let σ∗ be the optimal MD strategy in Mr. We say that σ∗ ends in
a vertex v if σ∗(v) = f in. We can assume that if σ∗ ends in some v ∈ Mi then it
ends in all vertices of Mi. This is because whenever σ∗ ends in some vertex v ∈ Mi,
the reachability value of v must be equal to r∗i , otherwise playing f in would not be
optimal here. But the optimal reachability value in every vertex of a given MEC is
the same (due to Lemma 68), so if playing f in is optimal in some vertex of Mi, it
is optimal in all such vertices. Now we can define an MD strategy σmp in Mmp to
initially mimic σ∗, and upon encountering any MEC Mi in which σ∗ ends, immedi-
ately switch to the MD strategy that is optimal in the mean payoff sub-MDP Mi. We
have Eσmp

v0 [MeanPayoff−] = ∑
k
i=1Pσ∗

v0
(end in Mi) · r∗i = Pσ∗

v0
(Reach(Win)). Since σ∗
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as well as the optimal strategies in all Mi can be computed in polynomial time (Theo-
rems 65 and 67), we get the result.

5.7 Optimal reachability
In this final section, we prove Theorem 67. The proof bears many similarities to the
methods for discounted MDPs, hence we only sketch the process and point out the key
differences. Throughout the section we assume that targets are sinks, i.e. that a vertex
coloured by Win has only a self loop as the single outgoing edge. Modifying an MDP
to accommodate this does not influence reachability probabilities in any way.

Consider the reachability operator R : [0,1]V → [0,1]V such that for ~y = R(~x) it
holds

~yv =

{
maxa∈A ∑u∈V ∆(u | v,a) · xu c(v) 6= Win
1 c(v) = Win.

Lemma 73. For each initial vector ~x, the limit limk→∞ Rk(~x) exists. Moreover, if
~x ≤ R(~x), then the limit is equal to the least fixed point of R that is greater than or
equal to ~x; if R(~x) ≤~x, then the limit is equal to the greatest fixed point of R that is
less than or equal to~x.

Proof. The existence of the limit follows from the monotonicity of R. In addition, it
can be easily checked that the set [0,1]V is a directed complete partial order and that R
is a Scott-continuous operator on this set. Hence, the result follows from the Kleene’s
theorem (see also Tarski-Kantorovich principle).

We denote by Reachk(Win) the set of all plays that reach Win within the first k
steps. Clearly, for each σ and v0 we have limk→∞Pσ

v0
(Reachk(Win))=Pσ

v0
(Reach(Win)).

Lemma 74. For each k ∈ N and v ∈ V , Rk(~0)v = supσ Pσ
v (Reach

k(Win)). In partic-
ular, the vector ~x∗ = limk→∞ Rk(~0) is the least fixed point of R and it is equal to the
vector of reachability values.

Proof. The first part can be proved by a straightforward induction, the second part
follows by Lemma 73 and a simple limiting argument.

Similarly to Definition 11 we say that an action a is ~x-safe in v if it holds that
a = argmax

a′∈A
∑u∈V ∆(u | v,a′) ·~xu. Recall that a strategy σ is~x-safe if all actions selected

in a vertex with non-zero probability are~x-safe in that vertex.

Lemma 75. Let ~x∗ be as in Lemma 74. Next, let Z(n) be a random variable which
for a given time step n looks at the current vertex v after n steps and returns the value
~x∗v . Then for every ~x∗-safe strategy σ it holds Eσ

v0
[Z(n)] = ~x∗v0

. Moreover, it holds
Eσ

v0
[Z(n) ·1c(Out(πn))=Win] = Pσ

v0
(Reachn(Win)).

Proof. By an easy induction on n, using the fact that target states are sinks.
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Now an analogue of Lemma 53 does not hold for reachability: a strategy playing
only ~x∗-safe actions might not be optimal (indeed, it might not reach Win at all). In-
stead, we proceed as follows: Let M ∗ be an MDP in which we ‘disable’, in each state
v, all actions that are not ~x∗-safe in v. This can be formally done by adding a new
non-target sink vertex sink, an edge from each original vertex to sink, and stipulating
that each action a that is disabled in a vertex v chooses, when played in v in M ∗, the
edge leading to sink with probability 1.

Lemma 76. The vectors of reachability values val(M ) and val(M ∗) are equal. In
particular, W>0(M ,Reach(Win)) =W>0(M

∗,Reach(Win)).

Proof. Let~x∗ again denote the vector of optimal values in M . If all actions in M are
~x∗-safes, then the lemma clearly holds. Otherwise there is some δ ∈ (0,1) such that for
each action a that is not~x∗-safe in some vertex v it holds ∑u∈V ∆(u | v,a) ·~xu ≤~x∗v−δ .

Let ε ∈ (0,δ ) be arbitrary and fix an ε-optimal strategy σ in M . We will show that
there is a (2ε/δ )-optimal strategy σ ′ which only uses ~x∗-safe actions. Since ε can be
chosen arbitrarily close to 0, this shows that~x∗-safe strategies can get arbitrarily close
to the value, hence val(M ∗) = val(M ).

The strategy σ ′ initially mimics σ up to the first point in time when an action
that is not ~x∗-safe in the current vertex is to be selected. At this point σ ′ switches to
behave as any~x∗-safe strategy. To analyse the value achieved by σ ′, we need to bound
the probability of the event NonSafe that the switch occurs. By the same reasoning
as in Lemma 75, we can show that for all n it holds Pσ

v0
(Reachn(Win)) ≤ Eσ

v0
[Z(n)] ≤

~x∗v0
−δ ·Pσ

v0
(NonSafe(n)), where NonSafe(n) is the probability that a switch occurs in the

first n steps. By taking n to the limit we get Pσ
v0
(Reach(Win))≤~x∗v0

−δ ·Pσ
v0
(NonSafe).

At the same time~x∗v0
−ε ≤ Pσ

v0
(Reach(Win)). Combining these two inequalities yields

Pσ
v0
(NonSafe) ≤ ε

δ
. Now clearly Pσ ′

v0
(Reach(Win)) ≥~x∗v0

− ε −Pσ
v0
(NonSafe) ≥~x∗v0

−
ε− ε/δ ≥~x∗v0

−2ε/δ .

Lemma 77. Given the vector ~x∗ of optimal reachability values, we can compute, in
polynomial time, the optimal MD reachability strategy in M .

Proof. Given ~x∗, we construct the MDP M ∗ and compute the winning strategy σ for
positive reachability in M ∗. We already know that σ can be taken memoryless and
computed in polynomial time (Theorem 53). We claim that σ is an optimal reachabil-
ity strategy in M . By Lemma 76 it suffices to show that σ is optimal in M ∗. Let W
be the winning region for positive reachability in M ∗. Since σ is memoryless, with
probability 1 we reach either Win or a vertex of value 0 (from which we cannot return
to W anymore); in other words, for almost all plays π we have that 1Out(πn)∈W eventu-
ally equals 1c(Out(πn))=Win. Hence, using Lemma 75 we get ~x∗v0

= limn→∞Eσ
v0
[Z(n)] =

Eσ
v0
[limn→∞ Z(n)] = Eσ

v0
[limn→∞ Z(n) ·1Out(πn)∈W ] = Eσ

v0
[limn→∞ Z(n) ·1c(Out(πn))=Win] =

Pσ
v0
(Reach(Win)). Here, the third equality holds since~x∗v is zero for v 6∈W , while the

swapping of expectations and limits can be performed due to the dominated conver-
gence theorem.

To finish the proof of Theorem 67, it remains to prove that the vector of optimal
values~x∗ can be computed in polynomial time. We again employ linear programming
and define the linear program Lreach with variables xv, v ∈V .
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minimise ∑v∈V xv
subject to xv = 1 if c(v) = Win

xv = 0 if v 6∈W>0(M ,Reach(Win))
xv ≥ ∑u∈V ∆(u | v,a) · xu for all other v ∈V,a ∈ A.

Lemma 78. The linear program Lreach in Section 5.7 has a unique optimal solution ~̄x
such that ~̄x =~x∗.

Proof. Clearly ~x∗ is a feasible solution of Lreach. Similarly to Lemma 59 we prove
that each feasible solution~x of Lreach satisfies~x ≥~x∗. We can proceed analogously to
Lemma 59, just replacing the operator O with R. The proof can be mimicked up to
the point where we get that limk→∞ Rk(~x) ≤~x (the limit exists by Lemma 73). Since
R(~x) ≤~x for each feasible solution ~x, from Lemma 73 we get that the limit is a fixed
point of R, and in hence it is greater or equal to the least fixed point of R, i.e. ~x∗

(Lemma 74). Hence, also~x≥ limk→∞ Rk(~x0)≥~x∗.

Lemmata 77 and 78 give us Theorem 67.

Bibliographic references
There is a broad field of study related to Markov decision processes, with a history
going as far as 1950’s [Bel57]. It is beyond the scope of this chapter to provide a com-
prehensive overview of the related literature. Nonetheless, in this section we provide
pointers to the most significant works connected to our techniques as well as to works
that can serve as a starting point for a further study.

One of the most widely used references for MDP-related research is the textbook
by Puterman [Put05]. The textbook views MDPs from an operations research point-
of-view, focusing on finite-horizon, discounted, total-reward, and average reward (an
alternative name for mean payoff) objectives. Regular objectives fall outside of the
book’s focus, though reachability can be viewed as a special case of the “positive
bounded total reward” objectives studied in the book. An in-depth study of the textbook
will impart to its reader the knowledge of many useful techniques for MDP analysis,
though a reader who is a newcomer to MDPs might feel somewhat intimidated by its
sheer volume and generality. In this chapter, we follow Puterman’s exposition mainly
in the discounted payoff, albeit in a rather condensed form.

For mean payoff MDPs, [Put05] follows similar blueprint as in the discounted case:
first characterizing the optimal values via a suitable optimality equation and then deriv-
ing the value iteration, strategy improvement, and linear programming methods from
this characterization. We use the linear programming as our foundational stone, fo-
cusing on the relationship between strategies and feasible solutions of the program.
We note that value and strategy iteration for mean payoff MDPs come with super-
polynomial lower bounds, see, e.g. [Fea10a, Fea10b], or [Put05], where it is shown
that strategy improvement converges at least as fast as value iteration.

Also, [Put05] makes the initial analysis of mean payoff MDPs in the context of
unichain MDPs, and then extends to arbitrary MDPs, with strongly connected MDPs
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treated as a special case of the latter. While unichain is an important theoretical con-
cept, in the context of formal methods and automata it is preferable to work with
strongly connected MDPs. We also note that all the results in the mean payoff sec-
tions hold also for MeanPayoff+. Almost all of the proofs are the same, with an
important exception of Corollary 15, where Fatou’s lemma cannot be used to prove
that p-Payoff(v0,σ) ≤ s-Payoff(v0,σ). Instead, we could use martingale techniques
here. Martingales are an important concept in probability theory [Wil91], with ap-
plications e.g. in analysis of infinite-state MDPs and stochastic games [BBEK11].
We can use martingales to strengthen Lemma 61 by showing that the probability of
∑

n−1
i=0 c(πi)≥

√
n ·Eσ

v0
[∑n−1

i=0 c(πi)] converges (with an exponential rate of decay) to 0 as
n→ ∞, which allows us to prove the required bound for limsup.

The notion of a (M)EC as well as many techniques we use in the EC section are due
to de Alfaro, whose thesis [dA97] details the evolution of the concept and its relation to
similar notions. The algorithm for MEC decomposition is taken from [CH11], where
more advanced algorithms as well as use of MECs in parity MDPs are discussed.

For an overview of literature related to verification of temporal properties in MDPs,
we refer the reader to the monograph [BK08].

MDPs are also used as a prime model in reinforcement learning (RL), one of the
classical yet rapidly evolving sub-fields of AI. For RL-centric view of MDPs, we point
the reader towards the textbooks [SB18, Ber07a].
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Chapter 6
Stochastic Games
NATHALIE BERTRAND, PATRICIA BOUYER-DECITRE, NATHANAËL

FIJALKOW, MATEUSZ SKOMRA

In this chapter, we introduce and review results on stochastic games with two players.
On the one hand, they extend 2-player games with random vertices; on the other hand,
they extend Markov decision processes with a second player.

When equipped with a simple reachability objective, the objective of Max is to
maximise the probability to reach the target. Most of the chapter focuses on stochastic
games with reachability objectives. We show uniform positional determinacy in Sec-
tion 6.1, using a fixed point characterisation of the values. Section 6.2 deals with
a number of normalisation steps that are often useful when constructing algorithms
for stochastic games. This immediately yields a value iteration algorithm, discussed
in Section 6.3, and with a bit more work a strategy improvement algorithm, defined
in Section 6.4. We construct two algorithms based on permutations of random vertices
in Section 6.5, and conclude in Section 6.6 showing that many other stochastic games
reduce to stochastic games with reachability objectives.

Notations
There are two classical models for stochastic arenas, which we present now. In this
chapter, we will use the first one: using random vertices. We present it first, and then
quickly introduce the second one and explain why they are equivalent.

The model with random vertices
Let us first define stochastic arenas.

Definition 17 (Stochastic arenas). A stochastic arena is A =(G,VMax,VMin,VRandom,δ )
where

221
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Figure 6.1: Example of a stochastic arena: circle nodes are controlled by Max, square
nodes by Min, and triangle nodes are random.

• G is a graph over the set of vertices V and V =VMax]VMin]VRandom partitions
the vertices into those controlled by Max, Min, and random vertices.

• δ : VRandom→D(E) is the probabilistic transition function.

Definition 18 (Stochastic games). Let A a stochastic arena. A qualitative stochastic
game is G = (A ,W ) with W ⊆ Pathsω a qualitative condition, and a quantitative
stochastic game is G = (A , f ) with f : Pathsω → R∪{±∞} a quantitative condition.

Most of the chapter will be devoted to stochastic reachability games, which are
induced by Reach(Win). For simplicity we assume that Win is a sink (meaning a
single vertex with a self-loop), the general case where Win is a subset of edges can be
easily reduced to this case. The following definitions are natural extensions of the ones
given in Chapter 1 for the stochastic setting.

A strategy for Max is a function σ : Paths→ D(E), and similarly for Min. Note
that a strategy is allowed to randomise over its actions. A pure strategy does not use
randomisation: σ : Paths→ E, and a positional strategy does not use memory: σ :
VMax→D(E).

When a pair of strategies (σ ,τ) and an initial vertex u is fixed, we obtain a stochas-
tic process: we write Pu

σ ,τ for the probability measure on infinite plays. For instance,
for W a condition, we write Pu

σ ,τ(W ) for the probability that the infinite path satisfies
W when Max plays σ , Min plays τ , and we start from u. Note that we are implicitly
assuming that W is measurable. For f : Pathsω → R∪{±∞}, we write Eu

σ ,τ( f ) for the
expectation of f .

Let us consider a qualitative stochastic game G = (A ,W ). The value for Max in
G from u is defined as valGMax(u) = supσ infτ Pu

σ ,τ(W ), and symmetrically the value for
Min is valGMin(u) = infτ supσ Pu

σ ,τ(W ). Clearly enough, valGMax(u)≤ valGMin(u).
Let us now consider a quantitative stochastic game G = (A , f ). The value for Max

in G from u is defined as valGMax(u) = supσ infτ Eu
σ ,τ( f ), and symmetrically the value

for Min is valGMin(u) = infτ supσ Eu
σ ,τ( f ). Clearly enough, valGMax(u)≤ valGMin(u).

We say that the game is determined if valGMax(u) = valGMin(u), and in that case define
the value of u in G as valG (u). A strategy σ is optimal from u if valσ (u) = valG (u),
and simply optimal if it is optimal from all vertices.
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We say that the qualitative Ω is positionally determined if for all games with ob-
jective Ω, for all vertices v, there exists a pair of optimal positional strategies. We
add the adjective purely to indicate that the strategy is pure, and uniformly to express
that the same strategy can be used from all vertices. We define as expected the no-
tion of half-positionally determined qualitative objective, and similarly for quantitative
objectives.

Remark 10. For stochastic reachability games we also often assume that the proba-
bilistic transition function is

δ : VRandom→D(V ),

and similarly strategies are functions σ ,τ : V →V .

Back to the example in Figure 6.1, let us consider the stochastic reachability game
G = (A ,Reach({v7})). Assume that Max and Min play the following pure positional
strategies: σ(v0) = v1, σ(v2) = v3, σ(v5) = v5 and τ(v6) = v5. Under such a strategy
profile, starting in v0, the probability to reach v7 is Pv0

σ ,τ(Reach({v7})) = 2
3 . One can

show that both strategies are optimal, and valGMax(v0) = valGMin(v0) =
2
3 .

The model with explicit actions
We now introduce a second model for stochastic arenas, using the notion of actions.
This is the natural extension of the model used in Chapter 5 to two-player games. We
let A be a (finite) set of actions, which is the set of choices the players can make at each
step of the game.

Definition 19 (Stochastic arenas and games – explicit actions). A stochastic arena with
explicit actions is A = (G,VMax,VMin,VRandom,∆) where

• G is a graph over the set of vertices V and V =VMax]VMin,

• ∆ : A→D(E) maps actions to distributions of edges.

All notions are adapted (or extended from Chapter 5) in a natural way: for instance
a strategy is a function σ : Paths→D(A).

The transformations between the two models are transparent. The key difference
is that the model with random vertices allows us to naturally define a parameter: the
number of random vertices, which will be important in Section 6.5. A different param-
eter arises in the model with actions: the number of actions. At the end of the day, the
choice of models is a matter of taste and technical convenience.

6.1 Fixed point characterisation and positional deter-
minacy

In the same way as Martin’s theorem implies (determinacy for (essentially) all (non-
stochastic) games we consider in this book, the following theorem by Maitra and Sud-
derth establishes determinacy for stochastic games:
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Theorem 71 (Determinacy of stochastic games with bounded quantitative objectives).
Stochastic games with bounded measurable quantitative objectives are determined.

Thanks to this theorem, the value is well defined in all games we consider.

Theorem 72 (Pure positional determinacy for stochastic reachability games). Stochas-
tic reachability games are uniformly purely positionally determined.

Note that Theorem 72 does not make any assumption on the game.
Before giving the proof of Theorem 72, we establish two preliminary results. Let

G a stochastic reachability game. Let Y the set of functions µ : V → [0,1], it is a lattice
when equipped with the componentwise order. We define the operator OG : Y →Y by:

OG (µ)(u) =


1 if u ∈Win,
max{µ(v) : u→ v ∈ E} if u ∈VMax,
min{µ(v) : u→ v ∈ E} if u ∈VMin,

∑v∈V δ (u)(v) ·µ(v) if u ∈VRandom.

Since OG is monotonic, it has a least fixed point, which is also the least pre-fixed point.

Theorem 73. Let G a stochastic reachability game. Then G is determined and the least
fixed point of OG computes the values of G . Furthermore, any uniform pure positional
strategy τ for Min that satisfies

u ∈VMin : τ(u) ∈ argmin
{

valG (v) : u→ v ∈ E
}

is optimal.

Proof. To begin, let us recall that thanks to Kleene fixed point theorem (Theorem 4),
the least fixed point of OG is computed as follows:

∀u ∈V, µ0(u) = 0 ; µk+1 =OG (µk).

We have µ0≤ µ1≤ . . . , and since OG preserves suprema, µ∗= limk µk is the least fixed
point of OG . The crux here is to understand what are the values µk for k = 0,1, . . . . Let
us define the truncated reachability objective:

Reach≤k(Win) = {π : ∃i≤ k,πi = Win} .

A simple induction on k shows that µk+1 is the values for Reach≤k in G and that both
players have optimal deterministic strategies for Reach≤k. For any ε > 0, let k be such
that ‖µk+1−µ∗‖∞ ≤ ε and let σ be an optimal strategy of Max for Reach≤k. Then, for
any u and any strategy τ of Min we have Pu

σ ,τ(Reach(Win))≥ Pu
σ ,τ(Reach≤k(Win))≥

µ∗(u)− ε , so valGMax(u)≥ µ∗(u).
To prove that valGMin(u) ≤ µ∗(u), consider any pure positional strategy τ for Min

that satisfies
u ∈VMin : τ(u) ∈ argmin{µ∗(v) : u→ v ∈ E} .

Let σ be any strategy of Max. We prove by induction that for all k, the following holds:

∀σ , Eu
σ ,τ [µ

∗(πk)]≤ µ
∗(u).
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v0v1 Win

Figure 6.2: An example of a game where some argmax strategy is not optimal.

In words, if we consider the distribution of vertices obtained after k steps, then the
expectation of µ∗ on that distribution is smaller than or equal to µ∗(u). This is clear
for k = 0, with the inequality being an equality. For k > 0, we show that for any vertex u
we have Eu

σ ,τ [µ
∗(π1)]≤ µ∗(u): this is the one-step special case of the property above.

We distinguish four cases:

• if u = Win, this is clear.

• if u∈VMax, then for all u→ v∈E we have µ∗(v)≤ µ∗(u), implying the property.

• if u∈VMin, then for τ(u) = u→ v we have µ∗(v) = µ∗(u), implying the property.

• if u ∈VRandom, then ∑v∈V δ (u)(v) ·µ∗(v) = µ∗(u), again implying the property.

To do the induction step for higher k, note that for every v the conditional expected
value Eu

σ ,τ [µ
∗(πk+1) | π1 = v] is equal to Ev

σ ′,τ [µ
∗(πk)] ≤ µ∗(v) for some σ ′, which

gives Eu
σ ,τ [µ

∗(πk+1)]≤ ∑vPu
σ ,τ(π1 = v)µ∗(v) = Eu

σ ,τ [µ
∗(π1)]≤ µ∗(u) as claimed. In

particular, for any σ and any k we get

Pu
σ ,τ(Reach≤k(Win))≤ Eu

σ ,τ [µ
∗(πk)]≤ µ

∗(u),

because µ∗(Win) = 1 and µ∗ ≥ 0. Taking the limit when k goes to infinity, this yields
Pu

σ ,τ(Reach(Win)) ≤ µ∗(u). Since σ was arbitrary, we get valGMin(u) ≤ µ∗(u), which
implies that µ∗ is the value of the game and that the strategy τ is optimal.

Let us raise an important point here: the set of values does not directly imply a pair
of pure and positional optimal strategies. It is very tempting to define them as follows

u ∈VMax : σ(u) ∈ argmax
{

valG (v) : u→ v ∈ E
}
,

u ∈VMin : τ(u) ∈ argmin
{

valG (v) : u→ v ∈ E
}
.

and to claim that they are optimal. The optimality of τ follows from Theorem 73,
but σ may not be optimal, as shown in Figure 6.2. In that example, all vertices have
value 1, but the strategy σ(v0) = v1 is not optimal, although it can be obtained by the
definition above. Some notion of progress is missing: the optimal strategy must make
progress towards the target. Note that this example is actually not a stochastic game:
the optimality claim for σ already fails for (non-stochastic) reachability games.

To construct optimal pure and positional strategies for Max, we need to be more
precise. Let us fix 0 < λ < 1 and consider the quantitative objective

QuantitativeReach(ρ) =

{
0 if ρi 6= Win for all i,
λ i for i the first index such that ρi = Win.
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It refines the reachability objective by quantifying the number of steps required to reach
Win. A stochastic reachability game can be naturally interpreted as a limit of stochastic
quantitative reachability games when λ → 1. We now extend Theorem 73 to quanti-
tative games. Let Y be the set of functions µ : V → [0,1]. We define the operator
OG : Y → Y by:

OG (µ)(u) =


1 if u ∈Win,
λ ·max{µ(v) : u→ v ∈ E} if u ∈VMax,
λ ·min{µ(v) : u→ v ∈ E} if u ∈VMin,
λ ·∑v∈V δ (u)(v) ·µ(v) if u ∈VRandom.

Since OG is monotonic, it has a least fixed point, which is also the least pre-fixed point.

Theorem 74. Let G a stochastic quantitative reachability game. Then G is uniformly
purely positionally determined, OG has a unique fixed point, and this point computes
the values of G . Furthermore, any uniform pure positional strategies σ ,τ that satisfy

∀u ∈VMax : σ(u) ∈ argmax
{

valG (v) : u→ v ∈ E
}
,

∀u ∈VMin : τ(u) ∈ argmin
{

valG (v) : u→ v ∈ E
}
.

are optimal.

Proof. Let us define the quantitative objective QuantitativeReach≤k:

QuantitativeReach≤k(ρ) =

{
0 if ρi 6= Win for all i≤ k,
λ i for i≤ k the first index such that ρi = Win.

Let µ∗ be any fixed point of OG and take any pure positional strategy σ such that
σ(u) ∈ argmax{µ∗(v) : u→ v ∈ E} for all u. We prove by induction that for all k ≥ 1,
the following holds:

∀τ, Eu
σ ,τ [λ

k
µ
∗(πk)+(1−λ )

k

∑
i=1

λ
i−1QuantitativeReach≤k−i(π)]≥ µ

∗(u).

To shorten the notation, we write QR instead of QuantitativeReach. To prove the
claim for k = 1 we distinguish four cases:

• if u = Win, then µ∗(u) = 1.

• if u ∈VMax, then for σ(u) = u→ v we have µ∗(v) = λ−1µ∗(u).

• if u ∈VMin, then for all u→ v ∈ E we have µ∗(v)≥ λ−1µ∗(u).

• if u ∈VRandom, then ∑v∈V δ (u)(v) ·µ∗(v) = λ−1µ∗(u).

Therefore Eu
σ ,τ [λ µ(π1)+ (1−λ )QR≤0(π)] ≥ µ∗(u) for all u. To prove the induction

step, note that the claimed inequality is satisfied as equality if u ∈Win. Otherwise,
for every v there is τ ′ such that Eu

σ ,τ [µ(πk+1) | π1 = v] = Ev
σ ,τ ′ [µ(πk)], Eu

σ ,τ [QR≤0(π) |
π1 = v] = 0, and

Eu
σ ,τ [QR≤ j(π) | π1 = v] = λEv

σ ,τ ′ [QR≤ j−1(π)]



6.1. FIXED POINT CHARACTERISATION AND POSITIONAL DETERMINACY227

for all j ≥ 1. Hence, by the induction assumption we get

Eu
σ ,τ [λ

k+1
µ(πk+1)+(1−λ )

k+1

∑
i=1

λ
i−1QR≤k+1−i(π) | π1 = v]≥ λ µ

∗(v).

Therefore,

Eu
σ ,τ [λ

k+1
µ(πk+1)+(1−λ )

k+1

∑
i=1

λ
i−1QR≤k+1−i(π)]≥ λEu

σ ,τ [µ(π1)]

and the right-hand side is equal to Eu
σ ,τ [λ µ(π1)+ (1−λ )QR≤0(π)] ≥ µ∗(u) because

Eu
σ ,τ [QR≤0(π)] = 0. To finish the proof, we want to show that the limit

lim
k→∞

Eu
σ ,τ [λ

k
µ
∗(πk)+(1−λ )

k

∑
i=1

λ
i−1QR≤k−i(π)]

exists and is equal to Eu
σ ,τ [QR(π)]. Since 0 ≤ µ∗(u) ≤ 1 for all u, we get the equality

limk→∞Eu
σ ,τ [λ

kµ∗(πk)] = 0. Since Eu
σ ,τ [QR≤k−i(π)]≤ Eu

σ ,τ [QR(π)] for all k, i, we get

Eu
σ ,τ [(1−λ )

k

∑
i=1

λ
i−1QR≤k−i(π)]≤ (1−λ

k)Eu
σ ,τ [QR(π)].

This shows that

limsup
k→∞

Eu
σ ,τ [λ

k
µ
∗(πk)+(1−λ )

k

∑
i=1

λ
i−1QR≤k−i(π)]≤ Eu

σ ,τ [QR(π)].

Furthermore, the monotone convergence theorem gives the equality Eu
σ ,τ [QR(π)] =

limk→∞Eu
σ ,τ [QR≤k(π)]. Fix ε > 0 and k0 such that Eu

σ ,τ [QR(π)]− ε ≤ Eu
σ ,τ [QR≤k0(π)].

Then, for every k > k0 we have the bound

Eu
σ ,τ [

k

∑
i=1

λ
i−1QR≤k−i(π)]≥ Eu

σ ,τ [
k−k0

∑
i=1

λ
i−1QR≤k−i(π)],

so Eu
σ ,τ [∑

k
i=1 λ i−1QR≤k−i(π)] ≥ 1−λ

k−k0
1−λ

(Eu
σ ,τ [QR(π)]− ε). By taking k to infinity, we

get Eu
σ ,τ [QR(π)]−ε ≤ liminfk→∞Eu

σ ,τ [λ
kµ∗(πk)+(1−λ )∑

k
i=1 λ i−1QR≤k−i(π)]. Since

ε was arbitrary, we get the existence of the limit. Therefore, we have shown that
Eu

σ ,τ [QR(π)] ≥ µ∗(u) for every τ . The proof for Min is analogous, proving that µ∗

is the value of the game. Since the value is unique, OG has a unique fixed point.
Moreover, our proof shows the optimality of the strategies (σ ,τ) constructed as in the
statement of the theorem.

We can now use stochastic quantitative reachability games to prove the positional
determinacy of reachability games.
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Proof of Theorem 72. Let G be a stochastic reachability game. By Theorem 73, G has
a value and an optimal pure positional strategy for Min. We need to show that Max
also has such a strategy. To do so, for 0 < λ < 1, let Gλ be the quantitative stochastic
reachability game with parameter λ played on the same arena as G . By Theorem 74,
Gλ is positionally determined. Furthermore, we have 0 ≤ valGλ (u) ≤ 1 for every u.
Therefore, we can find an increasing sequence λ1 < λ2 < .. . such that limk→∞ λk =

1, valGλk converges to some point, and every game Gλk
has the same optimal pure

positional strategy σ of Max. We will show that σ is optimal in G . Let τ be any
strategy of Min. Observe that for every u and every k we have

valGλk (u) ≤ Eu
σ ,τ [QuantitativeReach(π)] = ∑

∞
i=0 λ iPu

σ ,τ(Reach=i(Win))
≤ Pu

σ ,τ(Reach(Win)),

where Reach=i(Win) = {π : πi = Win,π j 6= Win for j < i}. By taking τ to be the
optimal pure positional strategy for Min in G , we get limk→∞ valGλk (u)≤ valG (u). Fur-
thermore, note that for every ξ : V → [0,1], we have ‖OGλ (ξ )−OG (ξ )‖∞ ≤ (1−λ ).
Since valGλk is the fixed point of OGλ by Theorem 73, we get ‖valGλk −OG (valGλk )‖∞≤
(1−λk) for all k. Hence, the continuity of OG implies that valGλk converges to a fixed
point of OG . Therefore, by Theorem 74, we get limk→∞ valGλk = valG , which implies
that Pu

σ ,τ(Reach(Win))≥ valG (u) for any τ .

6.2 Normalisation: stopping, binary, simple

6.2.1 Normalised games
We say that σ is almost-surely winning from u is for all strategies τ of Min, we have
Pu

σ ,τ(W ) = 1. The almost-sure winning region is the set of vertices from where Max
has an almost-surely winning strategy. Similarly, σ is positively winning from u if for
all strategies τ of Min, we have Pu

σ ,τ(W )> 0, and the positive winning region is the set
of vertices from where Max has a positively winning strategy. Let us write W>0(G ) for
the positively winning region, and W=1(G ) for the almost surely winning region.

Theorem 75. There exists an algorithm for computing the positively winning region of
stochastic reachability games in time O(m).

Analogously to attractor computations in reachability games (cf. Section 2.1), we
define a one-step positive probability predecessor operator Pre>0 as follows: for X ⊆V
we put

Pre>0(X) = {u ∈VMax : ∃u−→ v ∈ E,v ∈ X}
∪ {u ∈VMin : ∀u−→ v ∈ E, v ∈ X}
∪ {u ∈VRandom : ∃u−→ v ∈ E, v ∈ X and δ (u)(u−→ v)> 0} .

Let us define an operator on subsets of vertices:

X 7→Win∪Pre>0(X).
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We note that this operator is monotonic when equipping the powerset of vertices with
the inclusion preorder: if X ⊆ X ′ then Pre>0(X) ⊆ Pre>0(X ′). Hence Theorem 4 ap-
plies: this operator has a least fixed point computed by the following sequence: we
let X0 = /0 and Xi = Win∪ Pre>0(Xi−1). This constructs a sequence (Xi)i∈N of non-
decreasing subsets of V . Hence the sequence stabilises after at most n−1 steps, let us
write Attr>0(Win) for the limit. We have the following simple characterization of the
positively winning set:

Lemma 79 (Characterisation of the positively winning set). Let G a stochastic reach-
ability game. The positively winning region is the least fixed point of the operator
X 7→Win∪Pre>0(X).

Proof. We show two properties:

• For all i, we have Xi ⊆W>0(G ).

• W>0(G ) is a pre-fixed point of Pre>0.

The first property implies that Attr>0(Win) ⊆W>0(G ), and the second the converse
implication.

We prove the first property by induction on i. The case i = 0 is clear. Let v ∈ Xi+1,
either v ∈Win and then it is in W>0(G ), or v in Pre>0(Xi). In each of the three cases
(v ∈ VMax,VMin,VRandom) we have a positive probability to land in Xi at the next step.
By induction hypothesis, Xi ⊆W>0(G ). Hence we have constructed a strategy winning
positively from v, implying that v ∈W>0(G ).

We now prove the second property: W>0(G ) ⊆ Win∪ Pre>0(W>0(G )). Let v ∈
W>0(G ), by definition either v ∈Win or there exists a move which yields a positive
probability of winning after the next step, implying that v ∈ Pre>0(W>0(G )).

Similarly as Section 2.1, we can compute the least fixed point of the operator X 7→
Win∪ Pre>0(X) in time and space O(m). To avoid repetitions, let us note that we
can actually directly reduce to non-stochastic reachability games. Let G a stochastic
reachability game, we construct a (non-stochastic) reachability game G ′ as follows.
Max controls the vertices of Max and the random vertices, and Min the vertices of Min.
This means that for each random vertex, Max chooses an outgoing edge with positive
probability. We claim that Max has a positively winning strategy in G from u if and
only if Max has a winning strategy in G ′ from u. Indeed, the attractor computation in
G ′ is exactly the positive attractor computation in G .

Theorem 76. There exists an algorithm for computing the almost surely winning region
of stochastic reachability games in time O(n ·m).

Lemma 80 (Fixed point characterisation of the almost surely winning region for stochas-
tic reachability games). Let G be a stochastic reachability game.

• If Attr>0(Win) =V , then W>0(G ) =V .

• If Attr>0(Win) 6=V , we define G ′=G \AttrMin(V \Attr>0(Win)), then W>0(G )=
W>0(G

′).
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Proof. We prove the first item. Let σ be a positively winning pure and positional
strategy from Attr>0(Win) =V . We argue that σ wins almost surely everywhere. Note
that there exists N ∈N and η > 0 such that σ ensures to reach Win within N steps with
probability at least η . A play consistent with σ can be divided into infinitely many
finite plays of length N. Since each of them has probability at least η to reach Win, the
infinite play has probability 1 to reach Win by the Borel-Cantelli lemma.

We now look at the second item. We first prove that AttrMin(V \Attr>0(Win)) ⊆
W=0(G ), the set of vertices where Min can ensure to reach Win with probability 0.
Let τa denote an attractor strategy ensuring to reach V \Attr>0(Win) from AttrMin(V \
Attr>0(Win)), and τc a strategy ensuring reach Win with probability 0. We construct
the strategy τ as the disjoint union of τa and τc:

τ(v) =

{
τa(v) if v ∈ AttrMin(V \Attr>0(Win))\ (V \Attr>0(Win)),
τc(v) if v ∈V \Attr>0(Win).

Any play consistent with τ is first consistent with τa until reaching V \Attr>0(Win) and
then is consistent with τc and stays there forever. Thus we have proved that AttrMin(V \
Attr>0(Win))⊆W=0(G ), implying W>0(G )⊆V \AttrMin(V \Attr>0(Win)).

We now show that W>0(G
′)⊆W>0(G ), which implies the converse inclusion. Con-

sider a positively winning strategy from W>0(G
′) in G ′, it induces a positively winning

strategy in G .

The algorithm is presented in pseudocode in Algorithm 6.1. For the complexity
analysis, the algorithm performs at most n recursive calls and each of them involves
two positive attractor computations, implying the time complexity O(n ·m).

Algorithm 6.1: The quadratic time algorithm for the almost-sure winning
region in stochastic reachability games.

Data: A stochastic reachability game.
Function Solve(G):

X ← Attr>0(Win)
if X =V then

return V
else

Let G ′ = G \AttrMin(V \X)
return Solve(G ′)

Another point of view on this algorithm is to directly reduce the problem to Büchi
games. Let G a stochastic reachability game, we construct a (non-stochastic) Büchi
game G ′ as follows. Max controls the vertices of Max, and Min the vertices of Min and
the random vertices. For each random vertex, Min can either choose an outgoing edge,
or let Max choose one herself. If he chooses, the edge has priority 2, and if she does,
the edge has priority 1. We add a self-loop over Win with priority 2. We claim that Max
has an almost-surely winning strategy in G from u if and only if Max has a winning
strategy in G ′ from u. Indeed, a closer look at the fixed point computations reveals that
the algorithm for Büchi games in G ′ performs the exact same steps as Algorithm 6.1.
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Definition 20 (Normalised stochastic reachability games). We say that a stochastic
reachability game is normalised if there is a unique almost-surely winning vertex Win
and a unique vertex Lose which is not positively winning, and both are sinks.

Lemma 81 (Reduction to normalised games). Let G a stochastic reachability game,
we can compute a normalised game G ′ in time O(n ·m) so that for all vertices u from
G , we have valG (u) = valG

′
(u) (unless it is 0 or 1, and then it is merged into Win or

Lose).

We compute both the almost-surely and positively winning regions, and replace
the set of almost-surely vertices by Win, and the complement of the set of positively
winning vertices by Lose.

6.2.2 Simple stochastic games
Definition 21 (Binary stochastic games). We say that a stochastic game is binary if:

• it is normalised,

• every vertex except for Win and Lose have out-degree two,

• for every random vertex u ∈VRandom we have δ (u) = 1
2 · v+

1
2 · v

′ for some v,v′.

Lemma 82 (Reduction from stochastic games to simple stochastic games). Let G a
stochastic reachability game, we can compute a simple stochastic game in polynomial
time such that for all vertices u from G , we have valG (u) = valG

′
(u). The game G ′

has O(n · (log(n) + k)) vertices, where k is the number of bits required to represent
probabilities in G .

Proof. Let v ∈ VRandom a random vertex with k outgoing edges, with probabilities
p1, . . . , pk, leading to v1, . . . ,vk. We first introduce intermediary vertices in order to
build a binary tree, whose leaves are v1 . . .vk, root is v, and probabilities are set at each
level of the tree in order to recover p1, · · · pk on the respective branches. This introduces
O(log(k)) fresh vertices, and is illustrated on an example on Figure 6.3.

The same process can be applied to vertices in VMax and VMin (without probabilities)
to reduce to out-degree 2.

u

v2v1 v3

1
5

1
10

3
10

2
5

u

v1 v2 v3

2
5

3
5

1
4

3
4

2
3

1
3

Figure 6.3: From general random vertices to binary ones.
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It remains to explain how to simulate a distribution δ (u) = p
q ·v+

q−p
q ·v

′ using only
probabilities 1

2 . Let us denote the binary encodings (with most significant bit first) of p
and q− p as a1 · · ·at resp. b1 · · ·bt . We build the following gadget. The input vertex is
u and for every i ∈ [2, t +1], it has two exit edges with accumulated probabilities 2−i.
Now, if ai = 1, one outgoing edge leads to v, and similarly if bi = 1, then one outgoing
edge leads to v′. The remaining edges are redirected to u.

The transformation is illustrated in Figure 6.4, with p = 11 and q = 14. The binary
encodings are 1011 for p and 0011 for p− q = 3. For simplicity some vertices are
represented several times to avoid intricate transitions. One can check that this gadget
indeed simulates probabilities p

q to v and q−p
q to v′.

u

v v′
11
14

3
14

u

v

1
4

u

1
4

u

1
8

u

1
8

v

1
16

v′

1
16

v

1
32

v′

1
32

Figure 6.4: From binary random vertices to binary uniform ones.

6.2.3 Stopping games
The next lemmas will be useful in multiple proofs throughout the next sections. Note
that if (σ ,τ) is a pair of pure positional strategies of Max and Min, then the stochastic
process induced on V by fixing (σ ,τ) is a Markov chain in which the state Win is
absorbing. We denote by Cσ ,τ the set of recurrent states in this Markov chain and we
put Cσ =

⋃
τ Cσ ,τ .

Lemma 83. Let G be a stochastic reachability game and µ : V → R be any function.
Take a pair of pure positional strategies (σ ,τ) such that

∀u ∈VMax : σ(u) ∈ argmax{µ(v) : u→ v ∈ E} ,
∀u ∈VMin : τ(u) ∈ argmin{µ(v) : u→ v ∈ E} .

Then, we have the following two properties.

1. If µ satisfies µ ≤ OG (µ), µ(Win) = 1, and µ(u) = 0 for all u ∈Cσ \Win, then
valG ≥ valσ ≥ µ .

2. If µ satisfies µ ≥OG (µ) and µ ≥ 0, then valG ≤ valτ ≤ µ .

Before giving a proof, we note that in this lemma the operator OG is defined not
only on functions µ : V → [0,1], but more generally on functions µ : V → R.
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Proof. We start by proving the first property. If Cσ =V , then the claim is trivial. Oth-
erwise, let τ ′ be any pure positional strategy of Min and P be the transition matrix
of the Markov chain obtained by fixing (σ ,τ ′). By definition of µ and σ we have
µ ≤OG (µ)≤ Pµ . Let Q denote the matrix obtained from P by removing the rows and
columns indexed by Cσ ,τ ′ . Furthermore, let z be the vector defined as zu = Pu,Win for
all u ∈V \Cσ ,τ ′ . Then, the theory of absorbing Markov chains, see, e.g., [KS76, Chap-
ter III], implies that QN → 0, (I−Q)−1 = I+Q+Q2 + . . . , and Pu

σ ,τ ′(Reach(Win)) =

((I −Q)−1z)u for every u ∈ V \Cσ ,τ ′ . Let ρ : (V \Cσ ,τ ′)→ R denote the function
obtained by restricting µ to the vertices in V \Cσ ,τ ′ . Then, µ ≤ Pµ implies that
ρ ≤ z+Qρ (note that here we use the fact that µ(Win) = 1 and µ(u) = 0 for u∈Cσ ,τ ′ ).
Hence, for every N ≥ 1 we get ρ ≤ (I +Q+ · · ·+QN)z+QN+1ρ → (I−Q)−1z. In
particular, Pu

σ ,τ ′(Reach(Win)) ≥ µ(u) for all u. Since τ ′ was arbitrary, positional de-
terminacy implies that valG ≥ valσ ≥ µ .

The proof of the second property is analogous. Note that µ(Win)≥ 1 by definition.
Let σ ′ be any pure positional strategy of Max and P be the transition matrix of the
Markov chain obtained by fixing (σ ′,τ). If Cσ ′,τ =V , then Pu

σ ′,τ(Reach(Win)) = 0 for
all u 6= Win so µ(u) ≥ Pu

σ ′,τ(Reach(Win)) for all u. Otherwise, let Q,z,ρ be defined
as in the previous proof. By definition of τ,µ we get µ ≥ Pµ , which implies that
ρ ≥ z+Qρ (note that this implication only uses the fact that µ(Win)≥ 1 and µ ≥ 0).
As previously, this inequality implies that µ(u)≥ Pu

σ ′,τ(Reach(Win)) for all u, which
gives the claim.

The second lemma characterises absorption probabilities in Markov chains with
rational transition probabilities. We refer to [Sko21, AdMS21] for the proof.

Lemma 84. Suppose that P is a square stochastic matrix with rational entries whose
common denominator is D. Furthermore, let K denote the number of rows of P with
at least two nonzero entries and suppose that Pvv = 1 for some index v. Consider a
Markov chain with transition matrix given by P. Then, there exists a natural number
M ≤ DK such that for every state u the probability that the chain starting at u reaches
v is a rational number of the form auv/M, where auv ∈ N.

To apply the lemma above to stochastic reachability games, we use the following
notation. We suppose that D is the common denominator of all transition probabilities
of G and that K is the number of significant random vertices, i.e., random vertices u
such that δ (u)(v)> 0 for at least two different v.

Corollary 18. The value of the game G is a vector of rational numbers whose lowest
common denominator is not greater than DK .

Proof. Let (σ ,τ) be a pair of optimal pure positional strategies in G . Then, valG (u) =
Pu

σ ,τ(Reach(Win)) for all u. Hence, the claim follows from Lemma 84.

Remark 11. We note that, as discussed in [Sko21, AdMS21], the bound M ≤ DK in
Lemma 84 and Corollary 18 can be improved in the following way: if we denote by
du the lowest common denominator of the transition probabilities of a random vertex
u, then M ≤∏u du ≤ DK . For the sake of simplicity, we use the bound M ≤ DK in our
proofs, but this can be replaced by M ≤∏u du.
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We now define the stopping stochastic reachability games. To do so, we suppose
that the graph of the game is equipped with a special state Lose that is distinct from Win
and that has only one outgoing edge, which is a loop going back to Lose. In particular,
if a game reaches Lose, then it never leaves this state, and player Max cannot reach
Win any more.

Definition 22 (Stopping stochastic reachability games). A stochastic reachability game
is stopping if for every vertex u ∈V and every pair of pure positional strategies (σ ,τ)
we have Pu

σ ,τ(Reach({Win,Lose})) = 1.

The following lemma shows that the condition of Definition 22 can be replaced by
a seemingly weaker one.

Lemma 85. A stochastic reachability game is stopping if for every vertex u ∈ V and
every pair of pure positional strategies (σ ,τ) we have Pu

σ ,τ(Reach({Win,Lose}))> 0.

Proof. Suppose that a Markov chain defined by (σ ,τ) can reach the set {Win,Lose}
from any starting state u. Since the states Win,Lose are absorbing, this implies that
they are the only recurrent states of the chain, so Pu

σ ,τ(Reach({Win,Lose})) = 1.

Theorem 77 (Fixed point characterisation for stopping simple stochastic games). Let
G be a stopping stochastic reachability game. Then, the operator OG has a unique
fixed point µ such that µ(Lose) = 0, namely µ = valG . Moreover, pure positional
strategies (σ ,τ) of Max and Min are optimal if and only if they satisfy

∀u ∈VMax : σ(u) ∈ argmax
{

valG (v) : u→ v ∈ E
}
,

∀u ∈VMin : τ(u) ∈ argmin
{

valG (v) : u→ v ∈ E
}
.

Proof. Let µ be any fixed point of OG such that µ(Lose) = 0 (by Theorem 73, valG

is one such point). Let σ ,τ be a pair of pure positional strategies such that σ(u) ∈
argmax{µ(v) : u→ v ∈ E} for all u ∈VMax and τ(u) ∈ argmin{µ(v) : u→ v ∈ E} for
all u ∈ VMin. Since the game is stopping, we have Cσ = {Win,Lose}. In particular,
the pair (µ,σ) satisfies the conditions of Lemma 83 and therefore µ ≤ valG . Likewise,
the pair (µ,τ) satisfies the conditions of Lemma 83, so µ ≥ valG . Thus, µ = valG

and Lemma 83 show that σ ,τ are optimal. Suppose now that τ is a pure positional strat-
egy of Min such that τ(u) /∈ argmin

{
valG (v) : u→ v ∈ E

}
for some u ∈ VMin. Then,

valG 6= OG [τ](valG ). Hence, by Theorem 73, valτ 6= valG and τ is not optimal. The
proof for player Max is analogous.

Lemma 86 (Reduction to stopping games). Let G a stochastic reachability game. We
can compute a stopping game G ′ such that any pair of optimal pure stationary strate-
gies in G ′ is also optimal in G . Moreover, for all vertices u in G , we have valG (u)> 1

2
if and only if valG

′
(u)> 1

2 .

Proof. For every 0 < ε < 1, we construct the game G ε in the following way. First, we
add a state Lose to G . Then, for every edge u→ v∈ E such that u 6= Lose we add a new
random vertex wuv to the graph. We remove the edge u→ v and add the edges u→wuv,
wuv→ v, and wuv→ Lose, as in Figure 6.5. We also define the transition function δ ε
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of the new game as follows. For every random state u of the original game we put
δ ε(u)(wuv) = δ (u)(v) for all v, and for every new state wuv we put δ ε(wuv)(Lose) = ε

and δ ε(wuv)(v) = 1− ε .

u v becomes u vwuv

Lose

1− ε

ε

Figure 6.5: From reachability games to stopping games.

We also consider the game G 0 obtained by putting ε = 0, i.e., a game that is iden-
tical to the original game G except for the fact that we added an isolated vertex Lose
to the graph and we put a dummy vertex on every edge of the graph. In particular,
the game G 0 has the same optimal pure stationary strategies as G . Furthermore, every
vertex of G has the same value in G and in G 0. Let D denote the lowest common
denominator of all transition probabilities in G . Furthermore, let K be the number of
random vertices in G . By Corollary 18, the values of the game G 0 are rational numbers
with lowest common denominator not higher than DK . Let ε = min{ 1

4 ,D
−2K}. We will

show that G ′ = G ε satisfies the claim.
To begin, note that G ′ is stopping. Indeed, if we fix any pair of pure positional

strategies (σ ,τ) in G ′ and suppose that the resulting Markov starts at some state u, then
this chain can reach the set {Win,Lose}, so G ′ is stopping by Lemma 85. Furthermore,
note that if ξ is any vector with entries in [0,1] and such that ξLose = 0, then OG ′(ξ )≤
OG 0

(ξ ) ≤ ε +OG ′(ξ ), where the notation ε +OG ′(ξ ) means that we add ε to all
coordinates of OG ′(ξ ). Let ξ = valG

′
and suppose that σ ,τ are optimal pure positional

strategies of Max and Min in G ′. We want to show that (σ ,τ) are also optimal in
G 0. By Theorem 77, we have σ(u) ∈ argmax{ξ (v) : u→ v ∈ E} for all u ∈ VMax and
τ(u) ∈ argmin{ξ (v) : u→ v ∈ E} = argmin{ε +ξ (v) : u→ v ∈ E} for all u ∈ VMin.
Since ξ ≥ 0, Lemma 83 implies that valG

0 ≤ ε +ξ and that the same is true if Min uses
τ in G 0. Suppose that u is any state in G 0 different than Win and that there exists a
pure positional strategy τ ′ of Min such that u is recurrent in the Markov chain induced
by fixing (σ ,τ ′) in G 0. In this situation, the chain starting at u cannot reach Win.
Hence, if we consider the Markov chain induced by fixing (σ ,τ ′) in G ′, then this chain
also cannot reach Win from u. By optimality of σ this implies that ξu = 0. Since
ξWin = 1, Lemma 83 implies that valG

′ ≤ valG
0

and the same is true if Max uses σ in
G 0. Hence, we established the inequality valG

′ ≤ valG
0 ≤ ε +valG

′
. Let u be any state.

Note that, by definition of ε , the interval [valG
′
(u),ε+valG

′
(u)] can contain at most one

rational number of denominator at most DK . Moreover, valG
0
(u) is such a number. If

we now consider the one-player game obtained from G 0 by fixing τ , then Corollary 18
shows that the values of this game are also rational numbers of denominator at most
DK . Moreover, as shown above, these values are between valG

0
and ε +valG

′
. Hence,
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they must be equal to valG
0

and τ is optimal in G 0. By the same reasoning, σ is optimal
in G 0. To show the last claim, note that valG

′
(u)> 1

2 implies valG
0
(u)> 1

2 . Conversely,

since valG
0
(u) has denominator at most DK , if valG

0
(u)> 1

2 , then valG
0
(u)> ε + 1

2 , so
valG

′
(u)> 1

2 .

6.3 A value iteration algorithm
We now present a value iteration algorithm for stochastic reachability games. This al-
gorithm will rely on a appropriate rounding procedure. In this procedure, we want to
approximate a given rational number from above by a number with bounded denom-
inator. To make this more precise, given a positive natural number M, we denote by
QM the set

QM =

{
p
q

: p ∈ {0,1, . . . ,M},q ∈ {1,2, . . . ,M}
}
.

Theorem 78. Given a rational number α ∈ [0,1] and M ≥ 1 we can find the smallest
number β ∈QM that satisfies α ≤ β in O(logM) arithmetic operations.

Proof. Let β be the smallest number in QM that satisfies α ≤ β . Note that if γ is any
number in QM , then it is trivial to decide if β ≤ γ . Indeed, if α ≤ γ , then β ≤ γ and if
α > γ , then β > γ . Hence, the exact value of β can be found in O(logM) operations
using the rational search technique described in [KM03].

We denote by ROUNDUP(µ,M) the procedure that takes as an input M ≥ 1 and a
function µ : V → [0,1]∩Q and rounds up all values of µ using the procedure from The-
orem 78. The pseudocode of the value iteration algorithm for stochastic reachability
games is given in Algorithm 6.2.

Algorithm 6.2: The value iteration algorithm.
Data: A stochastic reachability game.
Choose µ such that µ ≤ valG and µ ≤OG (µ)
repeat

µ ← ROUNDUP(OG (µ),DK)
until OG (µ) = µ

return µ

To analyze the algorithm, we use the following lemmas. To simplify the notation,
we denote B(µ) = ROUNDUP(OG (µ),DK) for every function µ : V → [0,1]∩Q.

Lemma 87. The operator µ 7→ B(µ) is monotonic.

Proof. Suppose that 0 ≤ α1 ≤ α2 ≤ 1 are two rational numbers. If βi ∈ QM is the
smallest number such that βi ≥αi for i∈ {1,2}, then we have β2 ≥α2 ≥α1, so β2 ≥ β1
by definition. Hence, the operator µ → ROUNDUP(µ,DK) is monotonic. Therefore,
B(µ) is monotonic as a composition of monotonic operators.
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Lemma 88. If µ0 ≤ OG (µ), then the sequence µk+1 = B(µk) produced by the value
iteration algorithm is nondecreasing, µk ≤ µk+1.

Proof. We have µ0 ≤ OG (µ0) ≤ B(µ0) = µ1 by the assumption. Hence, the mono-
tonicity of B gives µk ≤ µk+1 for all k.

Theorem 79 (Starting condition for value iteration). Suppose that µ0 = 0 or µ0 = valσ

for some pure positional strategy σ of Max. Then, µ0 satisfies the initial condition of
value iteration, i.e., µ0 ≤ valG and µ0 ≤OG (µ).

Proof. Both claims are trivial if µ0 = 0. Moreover, valσ ≤ valG by positional deter-
minacy. To prove the last claim, note that valσ = OG [σ ](valσ ) by Theorem 73 and
OG [σ ](valσ )≤OG (valσ ) by definition of OG .

Theorem 80 (Correctness of value iteration). The value iteration algorithm halts in at
most nD2K iterations and outputs a function µ such that µ = valG .

Proof. Let µ0 be such that µ0 ≤ valG and µ0 ≤OG (µ0). By Lemma 88, the sequence
µk+1 = B(µk) is nondecreasing. Furthermore, by Theorem 73, valG is a fixed point of
OG and by Corollary 18 it is also a fixed point of ROUNDUP(x,DK), so it is a fixed
point of B. Hence, by the monotonicity of B we have µk ≤ valG for all k. In particular,
if the algorithm halts, then it outputs a fixed point of OG that is not higher than valG .
Therefore, by Theorem 73, the algorithm outputs valG when it halts. To show that the
algorithm halts, consider a sequence ξk defined as ξ0 = µ0 and ξk+1 = OG (ξk), i.e.,
a sequence produced by value iteration without rounding. The monotonicity of OG

shows that ξk is nondecreasing, ξk ≤ ξk+1, and Theorem 73 shows that ξk ≤ valG for
all k. In particular, the sequence µk converges to µ∗ = supk µk (where we apply the
supremum to all coordinates of the sequence), ξk converges to ξ ∗ = supk ξk, and we
have µ∗ ≤ valG and ξ ∗ ≤ valG . Furthermore, by induction we have ξk ≤ µk for all
k. Indeed, ξ0 ≤ µ0 by definition, and if ξk ≤ µk, then ξk+1 = OG (ξk) ≤ OG (µk) ≤
B(µk) = µk+1. Hence, we get ξ ∗ ≤ µ∗ ≤ valG . Moreover, by continuity of OG , the
sequence ξk also converges to OG (ξ ∗), which means that ξ ∗ is a fixed point of OG .
Since ξ ∗ ≤ valG , Theorem 73 shows that ξ ∗ = µ∗ = valG . To finish the proof, note that
µk is a vector of rational numbers in [0,1] with denominators bounded by DK . Since
there are only finitely many such numbers, the sequence (µk) stabilizes after finitely
many steps, i.e., there exists the smallest k∗ such that µk = µ∗ = valG for all k ≥ k∗.
Hence, the algorithm halts in k∗ iterations. To bound k∗ note that for k < k∗ we have
µk ≤ µk+1 and µk 6= µk+1. Therefore, at least one coordinate of µk+1 is strictly larger
than in µk. Since these coordinates are rational numbers of denominator at most DK ,
they differ by at least D−2K . Given that the coordinates of µk are in [0,1], we conclude
that k∗ ≤ nD2K .

6.4 A strategy improvement algorithm
Let us consider a stochastic reachability game G and set as a goal to construct an
optimal strategy for Max. The key idea behind strategy improvement is to use valσ to
improve the strategy σ by switching edges, which is an operation that creates a new
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strategy. This involves defining the notion of improving edges: let us consider a vertex
u ∈VMax, we say that e : u−→ v is an improving edge if

valσ (v)> valσ (u).

Intuitively: according to valσ , playing e is better than playing σ(u).
Given a strategy σ and a set of improving edges S (for each u ∈VMax, S contains at

most one outgoing edge of u), we write σ [S] for the strategy

σ [S](u) =

{
e if there exists e = u−→ v ∈ S,
σ(v) otherwise.

The difficulty is that an edge being improving does not mean that it is a better move
than the current one in any context, but only according to the value function valσ , so it
is not clear that σ [S] is better than σ . Strategy improvement algorithms depend on the
following two principles:

• Progress: updating a strategy using improving edges is a strict improvement,

• Optimality: a strategy which does not have any improving edges is optimal.

The pseudocode of the algorithm is given in Algorithm 6.3. The algorithm is non-
deterministic, in the sense that both the initial strategy and at each iteration, the choice
of improving edge can be chosen arbitrarily. A typical choice, called the “greedy all-
switches” rule, choosing for each u ∈VMax a maximal improving edge, meaning

argmax{valσ (v) : u−→ v ∈ E} .

Algorithm 6.3: The strategy improvement algorithm.
Choose an initial strategy σ0 for Max
for i = 0,1,2, . . . do

Compute valσi and the set of improving edges
if σi does not have improving edges then

return σi
Choose a non-empty set Si of improving edges
σi+1← σi[Si]

Before proving the correctness of this algorithm, we show that computing valσi at
each iteration can be done in polynomial time. Note that the opposite problem (com-
puting valτ given τ) is the reachability problem in a MDP as discussed in Chapter 5.
In particular, Theorem 67 gives a polynomial-time algorithm for this problem based on
linear programming. Finding valσ given σ is similar.
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Lemma 89. Let σ be a pure positional strategy of player Max. Then, valσ is the
solution of the linear program

maximise ∑u∈V xu
subject to xu = 1 if u = Win,

xu = xσ(u) if u ∈VMax,
xu ≤ xv if u ∈VMin, u→ v ∈ E,
xu = ∑v δ (u)(v)xv if u ∈VRandom,
xu = 0 if u ∈V \W>0(G

[σ ]).

In particular, valσ can be found in polynomial time.

Proof. By applying Theorem 73 to OG [σ ] we get that valσ is a feasible solution of the
program. Moreover, note that every feasible solution x satisfies x≤OG [σ ](x), xWin = 1,
and xu = 0 for all u ∈V \W>0(G

[σ ]). Since (Cσ \Win)⊂ (V \W>0(G
[σ ])), Lemma 83

shows that x≤ valσ . Hence, valσ can be found by computing W>0(G
[σ ]) (Theorem 75)

and solving the linear program.

Let us write σ ≤ σ ′ if for all vertices u we have valσ (u)≤ valσ
′
(u), and σ < σ ′ if

additionally ¬(σ ′ ≤ σ). We make the following observation.

Lemma 90. Let σ be any strategy of Max and S a set of improving edges. We let σ ′ =
σ [S]. Then, we have valσ ≤ OG [σ ′](valσ ) ≤ OG (valσ ). Furthermore, the inequality
valσ (u)≤OG (valσ )(u) is strict if and only if u is a vertex of Max that has at least one
improving edge. Likewise, the inequality valσ (u)≤OG [σ ′](valσ )(u) is strict if u has an
outgoing edge in S. Moreover, if S is constructed by the greedy all-switches rule, then
OG [σ ′](valσ ) =OG (valσ ).

Proof. By Theorem 73 we have valσ =OG [σ ](valσ ). Hence, the inequality valσ (u)≤
OG (valσ )(u) follows from the definition of OG and this inequality is strict if and only
if u is a vertex of Max that has at least one improving edge. Furthermore, the definition
of σ ′ implies that OG [σ ′](valσ ) is sandwiched between valσ and OG (valσ ) and that it
satisfies valσ (u)<OG [σ ′](valσ )(u) for every u that has an outgoing edge in S. The last
claim follows from the definition of the greedy all-switches rule.

Theorem 81 (Progress property for the strategy improvement). Let σ a strategy and S
a set of improving edges. We let σ ′ = σ [S]. Then σ < σ ′.

Proof. By Lemma 90, we have valσ ≤ OG [σ ′](valσ ) and this inequality is strict for
at least one coordinate. Hence, by Theorem 73, valσ

′ 6= valσ . It remains to prove that
valσ

′ ≥ valσ . To do so, we use Lemma 83. Denote µ = valσ , let τ be any pure positional
strategy of Min and let P be the transition matrix of the Markov chain induced by fixing
(σ ′,τ). By definition, we have µ ≤ OG [σ ′](µ) ≤ Pµ . Suppose that C 6= {Win} is a
recurrent class of this Markov chain. Then, this class has a stationary distribution (see,
e.g., [KS76, Chapter V]). In other words, there exists a nonnegative vector π ≥ 0 such
that πu > 0 for u ∈ C, πu = 0 for u /∈ C, and πT P = π . Since πT µ ≤ πT Pµ = πT µ

we get µ(u) =OG [σ ′](µ)(u) = (Pµ)u for all u ∈C. In particular, the strategies σ ′ and
σ are the same on all vertices in C∩VMax. Hence, C is also a recurrent class in the
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Markov chain obtained by fixing (σ ,τ) and so valσ (u) = 0 for every u ∈ C. Since τ

was arbitrary, we get µ(u) = 0 for all u ∈Cσ ′ \{Win}. We also have µ(Win) = 1 and
by Lemma 83 we conclude that µ ≤ valσ

′
.

Theorem 82 (Optimality property for the strategy improvement). Let σ be a strategy
that has no improving edges, then σ is optimal.

Proof. Let σ be a strategy that has no improving edges. Then, by Lemma 90 we have
valσ =OG (valσ ), and so, by Theorem 73, valσ ≥ valG , which gives valσ = valG .

Theorem 83 (Comparison of strategy improvement and value iteration algorithms).
Let us write σ0 <σ1 <σ2 < · · · for the sequence of positional strategies in an execution
of the strategy improvement algorithm with the greedy all-switches rule over G and
µ0 ≤ µ1 ≤ µ2 ≤ ·· · for the sequence of functions computed by the corresponding value
iteration algorithm over G initialised at valσ0 : for all k, we have µ0 = valσ0 and µk+1 =
B(µk).

Then for all k, we have µk ≤ valσk .

Proof. For every k we have valσk ≤ valσk+1 . Hence, by Theorem 73 and the mono-
tonicity of OG [σk+1] we get OG [σk+1](valσk) ≤ valσk+1 . Furthermore, by Lemma 90 we
have OG [σk+1](valσk) = OG (valσk). Thus OG (valσk) ≤ valσk+1 for all k. Moreover, by
Corollary 18, valσk is a fixed point of x 7→ ROUNDUP(x,DK) for all k. Therefore,
B(valσk) ≤ valσk+1 for all k. By induction and the monotonicity of B, if µk ≤ valσk ,
then µk+1 = B(µk)≤ B(valσk)≤ valσk+1 .

By combining Theorems 80 and 83, we get an n ·D2K bound on the number of
iterations of the strategy improvement algorithm using the greedy all-switches rule.
The following theorem improves this bound for all switching rules.

Theorem 84. The strategy improvement algorithm stops in at most |VMax| ·DK itera-
tions.

Proof. Let σ0 < σ1 < σ2 < · · · be the sequence of positional strategies in an execu-
tion of the strategy improvement algorithm. We have valσk ≤ valσk+1 for all k. As
in the proof of Theorem 83, by Theorem 73 and the monotonicity of OG [σk+1] we get
OG [σk+1](valσk)≤ valσk+1 . Furthermore, Lemma 90 shows that valσk ≤OG [σk+1](valσk)
and that this inequality is strict for every vertex of Max that has an outgoing edge in
S. Let u be such a vertex. We claim that OG [σk+1](valσk)(u)−valσk(u)≥D−K . Indeed,
by Corollary 18, valσ is a vector of rational numbers with common denominator at most
DK . Since OG [σk+1](valσk)(u)= valσk(v) for some vertex v, we get OG [σk+1](valσk)(u)−
valσk(u) ≥ D−K . In particular, valσk+1(u) ≥ valσk(u)+D−K . Therefore, the strategy
improvement algorithm increases the value of at least one vertex of Max by at least
D−K . Since the value is bounded by 1, the algorithm must stop within |VMax| ·DK

iterations.
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6.5 Algorithms based on permutations of random ver-
tices

We present two algorithms, both based on the same key idea: to order the random ver-
tices and to restrict ourselves to strategies aiming at reaching the best random vertices
(with respect to the order on random vertices). For the remainder of this section we fix
a stochastic normalised reachability game G .

Permutation of random vertices

Let us write VRandom = {v1, . . . ,vk}. We represents total orders on VRandom using permu-
tations π : VRandom→VRandom. We write πi = π−1(vi) for the i-th element in the order
defined by π . Intuitively, π represents a preference order for Max on random vertices.

A permutation π induces what we call the π-regions:
W k+1

π = {Win}
W i

π = AttrMax({πi, . . . ,πk,Win})\
⋃

j>i W
j

π i ∈ [1,k]
W 0

π =V \
⋃

j>0 W j
π

The idea is that once we fix the order on random vertices, the rest of the game is
deterministic: Max and Min only aim at the best (with respect to the permutation π)
random vertex they can get. More precisely, W i

π is the set of vertices where Max
can ensure to reach {πi, . . . ,πk,Win} before any other random vertex (but no subset{

π j, . . . ,πk,Win
}

).

Fact 19. We have W 0
π = {Lose}.

Indeed, recall that Lose is the unique vertex with value 0. We write W≥i
π for⋃

j≥i W
j

π . The π-regions induce the π-strategies σπ (for Max) and τπ (for Min):

• on W i
π , σπ is a pure and positional attractor strategy to {πi, . . . ,πk,Win};

• on W i
π , τπ is a pure and positional counter-attractor strategy ensuring never to

reach {πi+1, . . . ,πk,Win}.

We can then define for every u ∈V :

valπ(u) = Pu
σπ ,τπ

(Reach(Win)).

It can be easily computed using systems of linear equations.
The key property of permutation-based algorithms is stated below:

Theorem 85 (Existence of an optimal permutation). There exists a permutation π such
that σπ is optimal for Max and τπ is optimal for Min.

The remainder of this section is devoted to a proof of Theorem 85. We later explore
how this yields algorithms.
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Live and self-consistent permutations

Definition 23 (Live and self-consistent permutations). Let π a permutation.

• We say that π is self-consistent if

valπ(π1)≤ valπ(π2)≤ . . .≤ valπ(πk).

• We say that π is live if for every i ∈ [1,k]:

δ (πi)
(
W≥i+1

π

)
> 0.

Intuitively, if π is self-consistent the order given by π coincides with the preference
of Max, and if π is live there is a positive probability to reach a preferable (for Max)
π-region. The following result directly implies Theorem 85.

Lemma 91. The following properties hold.

• If a permutation π is live and self-consistent, then the π-strategies are optimal.

• There exists a live and self-consistent permutation.

Live and self-consistent permutations induce optimal strategies

We prove the first item of Lemma 91.

Lemma 92 (Correctness of live and self-consistent permutations). If π is self-consistent,
then valπ is a fixed point of the operator O. Consequently, valG ≤ valπ .

Proof. We prove the following properties:

1. For i ∈ [1,k] and u ∈W i
π we have valπ(u) = valπ(πi).

2. For u ∈VMax we have valπ(u) = valπ(σπ(u)) = max{valπ(v) : u→ v ∈ E}.

3. For u ∈VMin we have valπ(u) = valπ(τπ(u)) = min{valπ(v) : u→ v ∈ E}.

For v ∈W i
π , up to the first visit to a random vertex, the strategy profile (σπ ,τπ) gen-

erates a unique path. So we can speak of the first random vertex encountered from
u when applying (σπ ,τπ). By definition of σπ (attractor to {πi, . . . ,πk,Win}) and τπ

(counter-attractor strategy avoiding {πi+1, . . . ,πk,Win}), this random vertex can only
be πi. According values follow, proving the first item.

Assume u ∈ VMax ∩W i
π . By definition of σπ (being an attractor strategy), σπ(u) ∈

W i
π ∪{πi, . . . ,πk,Win}. Dually, since u /∈W≥i+1

π , we have σπ(u) /∈ {πi+1, . . . ,πk,Win}.
Hence, σπ(u) ∈W i

π ∪{πi} = W i
π , and we get that valπ(u) = valπ(πi) = valπ(σπ(u)).

Assume towards contradiction that there exists u→ v ∈ E such that valπ(v)> valπ(u).
Since we know that valπ(u) = valπ(πi), by self-consistence this implies that v ∈W j

π

with j > i (with valπ(v) = valπ(π j)). But then, we can deduce that u ∈ AttrMax(v) ⊆
AttrMax({π j, . . . ,πk,Win}), which is not the case, since u /∈W≥i+1

π ⊇W j
π . Contradic-

tion.
The reasoning is symmetric for u ∈VMin.
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The converse inequality valG ≥ valπ is not true for general or self-consistent permu-
tations, but it does hold when adding the liveness property. A key technical property
of the π-strategies σπ when π is live is that it induces a stopping MDP: Min cannot
prevent the game converging to Lose or Win.

Lemma 93 (Live permutations imply stopping MDPs). Let π be a live permutation.
Then, for every strategy τ of Min, for every u, we have Pu

σπ ,τ(Reach({Lose,Win})) = 1.

Proof. Let α = mini∈[1,k] δ (πi)
(
W≥i+1

π

)
. By definition of a live permutation we have

α > 0. We write Vi for the random variable representing the i-th state of a run. By
definition of α , for i∈ [1,k] and `≥ 0, we have Pu

σπ ,τ

(
V`+1 ∈W≥i+1

π |V` = πi

)
≥α and

Pu
σπ ,τ

(
∃h < |W i

π |, V`+h ∈ {πi, . . . ,πk,Win} | V` ∈W i
π

)
= 1, since σπ plays according

to attractor strategies in the corresponding π-regions, where n is the number of vertices
in the game. This implies that Pu

σπ ,τ

(
V`+n = Win | V` 6= Lose

)
≥ αk, which we can

rewrite as: Pu
σπ ,τ

(
∀`′ ∈ [`,`+ n], V`′ 6= Win | V` 6= Lose

)
≤ 1−αk. Iterating, we get

that for every i,

Pu
σπ ,τ

(
∀` ∈ [0, i ·n], V` /∈ {Win,Lose} |V0 6= Lose

)
≤ (1−α

k)i.

Hence by taking the limit Pu
σπ ,τ(∀` ≥ 0, V` /∈ {Win,Lose}) = 0, which equivalently

reads Pu
σπ ,τ(∃`≥ 0, V` ∈ {Win,Lose}) = 1.

We can now show that if π is a live and self-consistent permutation, then valπ =
valG . Indeed, by Lemma 92 valπ is a fixed point of the operator OG , hence of OG [σπ ].
By Lemma 93, the MDP obtained when restricting to σπ is stopping, hence (the special
case for MDPs of) Theorem 77 implies that OG [σπ ] has a unique fixed point, which is
valG . Hence valπ = valG .

Existence of a live and self-consistent permutation

We now prove the second item of Lemma 91.

Lemma 94 (Live and value non-decreasing imply self-consistent). Let π be a live
permutation such that valG (π1)≤ valG (π2)≤ ·· · ≤ valG (πk). Then π is self-consistent.

Proof. We show that for every vertex u we have valG (u) = valπ(u), which implies
the result. We first note that for every i ∈ [1,k], for every u ∈W i

π we have valG (u) =
valG (πi).

Let us define a σ∗ from u: it plays the attractor strategy to {πi, . . . ,πk,Win})
until Win or a random vertex is reached, and in the latter case, switch to an opti-
mal strategy. Clearly for every strategy τ for Min we have Pu

σ∗,τ(Reach({Win})) ≥
mini∈[i,k] valG (π j) = valG (πi). Hence valG (u)≥ valG (πi).

Conversely, let us define a strategy τ∗ from u: it plays the counter-attractor strategy
to {πi+1, . . . ,πk,Win} until Lose or a random vertex is reached, and in the latter case,
switch to an optimal strategy. It may never hit Lose or a random vertex, but this is
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good to Min. Clearly for every strategy σ for Max we have Pu
σ ,τ∗(Reach({Win})) ≤

max j∈[1,i] valG (π j) = valG (πi). Hence valG (u)≤ valG (πi).

Now we can conclude: both valG and valπ are fixed points of the operator OG [σπ ],
which is unique because π is live (Lemma 93 and Theorem 77).

It remains to show that there always exists a live permutation satisfying the hypoth-
esis of Lemma 94. To do so, we show the following structural property of the game,
which will help building an appropriate live permutation.

Lemma 95. Let X ⊆ V such that Win ∈ X, and Y = V \AttrMax(X). Then either Y =
{Lose}, or there exists a random vertex u∈Y such that valG (u)=max{valG (v) : v∈Y}
and δ (u)

(
AttrMax(X)

)
> 0.

Proof. Let m = max{valG (u) : u ∈Y}, we write Z =
{

u ∈ Y : valG (u) = m
}

. We show

that if there are no random vertices u ∈ Z such that δ (u)
(

AttrMax(X)
)
> 0, then Z =

{Lose}. To do so, we show that if u ∈ Z, then valG (u) = 0. Let us assume towards a
contradiction that valG (u)> 0.

Let τ be a counter-attractor (pure and positional) strategy for Min to stay safe of
AttrMax(X) from Y . The following properties are direct consequences of the definitions:
for any u ∈ Z,

• if u ∈VMin and τ(u) = u→ v ∈ E, then v ∈ Z,

• if u ∈VMax and u→ v ∈ E, then v ∈ Y ,

• if u ∈VRandom and δ (u)(v)> 0, then v ∈ Z.

We now define a strategy τ ′ which plays from v as τ until Z is left, and then switches
to an optimal strategy for Min. Let σ a strategy for Max. Thanks to the properties
above, a play consistent with σ and τ ′ from v either stays forever in Z, or reaches a
vertex v such that valG (v)< valG (u) = m. Let us write β = max{valG (v) | v∈Y \Z}<
m. We then have that Pv

σ ,τ ′(Reach({Win}))≤ β , because the probability to reach Win
if staying forever in Z is 0. Hence valG (v)≤ β < valG (v), a contradiction.

We can now prove the existence of a live permutation such that valG (π1)≤ valG (π2)≤
·· ·≤ valG (πk). We define the permutation π inductively, by repeatedly using Lemma 95.
For every i ∈ [k,1] we define πi by applying Lemma 95 to X = {πi+1, . . . ,πk,Win}. By
construction,

• valG (πi) = max{valG (v) | v ∈V \AttrMax({πi+1, . . . ,πk,Win})};

• δ (πi)
(

AttrMax({πi+1, . . . ,πk,Win})
)
> 0.

It follows that π is live, and the hypothesis of Lemma 94 is satisfied. Hence π is
self-consistent. This concludes the proof of the second item of Lemma 91.
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Strategy enumeration algorithm

Theorem 85 induces a simple algorithm for computing the values and optimal strate-
gies for both players in a stochastic reachability game: enumerate all permutations of
random vertices, and for each of them, check whether it is live and self-consistent; stop
when one is found. Note that indeed given π , it is easy to compute the π-regions and
strategies and check for liveness and self-consistency, in polynomial time. However,
as such, this requires to enumerate all permutations of random vertices, and there are
|VRandom|! of them. Hence the overall complexity of finding the values and the optimal
strategies is exponential.

Strategy improvement algorithm

We will describe a strategy improvement algorithm, which may avoid enumerating all
permutations. Note that there is nevertheless no guarantee that the overall complexity
will be better than the strategy enumeration algorithm.

The algorithm consists in the following steps:

• Initialization step: Compute a live permutation π

• Improvement step: Given a live permutation π , compute a live and self-consistent
permutation in G [σπ ].

We argue (not in full details) that the following properties are satisfied:

1. We can compute an initial live permutation in polynomial time.

2. For every live permutation π , we can compute in polynomial time a live and
self-consistent permutation π ′ in G [σπ ].

3. The above mentioned permutation π ′ is live in G as well.

4. The improvement step is an improvement:

• valG [σπ ] ≤ valG [σ
π′ ], and

• If valG [σπ ] = valG [σ
π′ ], then π ′ is self-consistent in G .

The first property is based on the inductive construction following Lemma 95.
For the second property, we know as a consequence of Theorem 85 that there exists

a live and self-consistent permutation π ′ in G [σπ ]. Note that for this we need to argue
that G [σπ ] is normalized.

For the third property, we note that the π ′-regions in G [σπ ] are included in the
π ′-regions in G , which implies the result.

The last property is harder to argue; it expresses the fact that the new permutation
π ′ improves over π .

This last property ensures both termination of the algorithm: indeed, it is ensured by
the finiteness of the number of permutations, and by the improvement characterization
above. Note that it may be the case that in the worst-case, all permutations will be
enumerated. No lower nor upper bound is known.
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6.6 Reductions to simple stochastic games
The rest of this chapter focused on stochastic reachability games. As we will see in
this section, they are powerful enough to encode other classes of games, such as non-
stochastic discounted payoff games, and stochastic parity, mean payoff, and discounted
payoff games.

6.6.1 From discounted payoff games to stochastic reachability games
Theorem 86 (Reducing discounted payoff games to stochastic reachability games).
Solving (non-stochastic) discounted payoff games reduces in polynomial time to solving
stochastic reachability games.

u v becomesw u vev

Lose

Win

λ

(1−λ ) · (1−w)

(1−λ ) ·w

Figure 6.6: From discounted payoff games to stochastic reachability games.

Proof. Let G a discounted payoff game. Using a linear transformation we can assume
that all weights are rational numbers in [0,1]. We construct G ′ a stochastic reachability
game by adding to vertices vWin and vLose, and each edge e = u w−→ v in G is redirected
to a new random vertex ve with probabilistic distribution

δ (ve) = λ · v+(1−λ ) ·w ·Win+(1−λ ) · (1−w) ·Lose.

The reachability condition is Reach(Win). (Note that the game G ′ is stopping.)
We claim that for every u ∈V , we have

valG (u) = valG
′
(u).

To this end, we rely on Lemma 38, which states that the discounted payoff values are
the unique fixed point of the operator OG : FV → FV defined by

OG (µ)(u) =

max
{

λ ·µ(v)+(1−λ ) ·w : u w−→ v ∈ E
}

if u ∈VMax,

min
{

λ ·µ(v)+(1−λ ) ·w : u w−→ v ∈ E
}

if u ∈VMin.
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We show that (valG
′
(u))u∈V is a fixed point of the operator OG .

Thanks to Theorem 73, the values in G ′ satisfy the following:

valG
′
(Win) = 1,

valG
′
(Lose) = 0,

valG
′
(u) = max

{
valG

′
(v) : u→ v ∈ E

}
if u ∈VMax,

valG
′
(u) = min

{
valG

′
(v) : u→ v ∈ E

}
if u ∈VMin,

valG
′
(ve) = λ ·valG

′
(v)

+ (1−λ ) ·w ·valG
′
(Win)

+ (1−λ ) · (1−w) ·valG
′
(Lose)

Eliminating the values valG
′
(ve) from these equations, we obtain valG

′
(u) = max

{
λ ·valG

′
(v)+(1−λ ) ·w : u→ v ∈ E

}
if u ∈VMax,

valG
′
(u) = min

{
λ ·valG

′
(v)+(1−λ ) ·w : u→ v ∈ E

}
if u ∈VMin.

Hence (valG
′
(u))u∈V is a fixed point of the operator OG . Since OG has a unique fixed

point valG , this implies the desired equality.

We note that Theorem 86 easily extends to discounted stochastic games: from a
discounted stochastic game, one can build a stochastic reachability game with the same
values.

6.6.2 From stochastic mean payoff games to stochastic discounted
payoff games

Both positional determinacy for mean payoff games and the reduction to discounted
payoff games (presented in Theorem 47) can be lifted to stochastic games.

Theorem 87 (Stochastic mean payoff games are positionally determined). Stochastic
mean payoff games are uniformly purely and positionally determined.

Theorem 88 (Reducing stochastic mean payoff games to stochastic discounted pay-
off games). Let G a stochastic mean payoff game. Let λ ∈ (0,1), we define Gλ the
stochastic discounted payoff game obtained from G . There exists a discount factor λ

computable in polynomial time such that any pair of optimal pure positional strategies
in the discounted payoff game with discount factor λ is also a pair of optimal strategies
in the mean payoff game.

6.6.3 From stochastic parity to stochastic mean payoff
Both positional determinacy for parity games and the reduction to mean payoff games
(presented in Theorem 40) can be lifted to stochastic games.

Theorem 89 (Stochastic parity games are positionally determined). Stochastic parity
games are uniformly purely and positionally determined.



248 CHAPTER 6. STOCHASTIC GAMES

Theorem 90 (Reducing stochastic parity games to stochastic mean payoff games).
Solving stochastic parity games reduces in polynomial time to solving stochastic mean
payoff games.

The reduction is similar as the one presented in Theorem 40, but requires additional
technical care. In particular, it relies on the fact that we can compute the almost-surely
and positively winning regions.

Theorem 91. The following holds.

• There exists a polynomial time algorithm for computing the positively winning
region of stochastic parity games.

• There exists a polynomial time algorithm for computing the almost-surely win-
ning region of stochastic parity games.

Let G a stochastic parity game. We let pmin the minimal non-zero probability that
appears in G , and n the number of vertices.

We construct G ′ a stochastic mean payoff game. As a first step, we compute the
almost-sure and positive winning regions, we replace the almost-sure winning region
with a sink vertex Win with a self-loop with weight 1, and the complement of the
positive winning region with a sink vertex Lose with a self-loop with weight −1. For

each edge u
p−→ v in G , we have an edge u

(−2n·p−n
min)

k

−−−−−−−→ v in G ′.
We claim without proof that for all u ∈V , we have

valG (u) =
1
2
·
(

valG
′
(u)+1

)
.
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Chapter 7
Concurrent Games
RASMUS IBSEN-JENSEN

This chapter considers concurrent games. The concurrent games we consider are ex-
tensions of the games considered in Chapter 2 and Chapter 4, but where the choice of
which edge to choose in a round is determined not by the choice of the owner of the
vertex (indeed the vertices in concurrent games have no owners), but by the outcome
of a matrix game corresponding to the vertex and played in that round. A matrix game
is in turn a generalization of rock-paper-scissors, where each player picks an action
simultaneously and then their pair of actions determines the outcome.

We will consider concurrent discounted, reachability and mean payoff games and
the definitions of the different objectives is as in the introduction. The chapter is divided
into four sections:

1. Matrix games

2. Concurrent discounted payoff games

3. Concurrent reachability games

4. Concurrent mean payoff games

As we go through the sections in this chapter, the complexity of the strategies and
the computational complexity of solving the games rises: indeed, since the games are
generalizations of rock-paper-scissors, the strategies used requires randomness, but to-
wards the end, no optimal or finite-memory ε-optimal strategies exists in general and
even the principle of sunken cost does not apply! Even with all this, the related ques-
tions about values are solvable in polynomial space and thus also in exponential time
even in the last section. The results we will focus on characterizes the complexity of
the both the strategies as well as the computational complexity. In each section we first
give some positive result and some number of negative results. Each negative result
also applies to the classes of games considered in the latter sections and each positive
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result applies to the classes considered in earlier sections (however, the positive re-
sults of latter sections will have worse complexity than the positive results from earlier
sections). As mentioned, the strategies for this chapter require randomness and not
too surprisingly, this implies that there is little difference between having stochastic or
deterministic transition functions.

7.1 Notations
The definition of arena A in this chapter is A = (G,∆), where G = (V,E) is a graph
and ∆ : V ×A×A→ D(E). In particular, we are not using the sets VAdam and VEve.
The games are played similarly to before and formally as follows: There is a token,
initially on the initial vertex. Whenever the token is on some vertex v, Eve selects an
action r in A and Adam selects an action c in A. The edge e = (v,c,w) is then drawn
from the distribution ∆(v,r,c) and the token is pushed from v to w. In general, the game
continues like that forever.

We will use the following simplifying assumptions in this chapter:

1. We will assume that all colors are in {0,1}, except for the section on Matrix
games where we additionally also allow −1 (to be able to easily illustrate the
game rock-paper-scissors). This simplifies some expressions, but generally, the
dependency on the number of colors is not too bad comparatively.

2. To make illustrations easier, we assume that for any pair of edges e,e′ in ∆(v,a,a′)
for any v,a,a′, we have that c(e) = c(e′), i.e. the color does not depend on which
edge is picked from ∆(v,a,a′), but only v,a,a′. This assumption does not matter
for the types of games considered.

We will overload the notation slightly for notational convenience, in that for any
v,a,a′, we will write c(v,a,a′) for c(e) where e ∈ ∆(v,a,a′) (note that the second as-
sumption ensures that this is well-defined, i.e. there is only one such color).

A vertex v is absorbing if and only if each player has only 1 action in v and
∆(v,1,1) = v.

To describe the complexity of good stationary strategies in concurrent games, we
will use the notion of patience. Given a probability distribution d ∈D the distribution
has patience p if p = mini∈supp(d) d(i) (i.e. the patience is the smallest, non-zero prob-
ability that an event may happen according to d). In essence, if you have low enough
patience you can typically guess the strategy and check whether it is a good strategy
(when you fix a strategy, the game becomes a Markov decision process, which are rel-
ative easy to work with), the game can solved in NP∪ coNP. However, some times the
patience is huge and writing down a good strategy, in binary, cannot be done in poly-
nomial space (it is quite surprising in some sense that even with this property, finding
the values in the games remain in PSPACE).

We will illustrate a stochastic arena A = (G,∆) as follows: For each non-absorbing
vertex v, there is matrix. Entry (i, j) of the matrix illustrating v ∈ V describes what
happens if, when the token is on v, Eve plays i and Adam j. The entry contains a
color c, which is c(v, i, j), and there is an arrow from entry (i, j) of v to w if there is
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0

0

0

-1

-1

-1

1

1

1

Figure 7.1: Rock-paper-scissors. The color is 1 if Eve wins, 0 if they draw and -1 if
Adam wins. Also, the actions are ordered as in the name of the game

an edge e = (v,c,w) in ∆(v, i, j). The arrow corresponding to e is denoted with the
probability ∆(v, i, j)(e). Especially, to simplify the illustrations we will do as follows:
If |supp(∆(v, i, j))| = 1, we do not include the probability (which is 1). Also, in that
case, let e = (v,c,w) = ∆(v, i, j) and if v = w, we omit the arrow and if w is absorbing
we write c∗ in entry i, j of v, where c is the color c(w,1,1) (in this case, we omit the
number c(e) from the illustration, but in none of our illustrations does this number
matter for what we try to illustrate).

7.2 Matrix games
A matrix game is a game defined from a (R×C)-matrix M of numbers for some R,C.
The game is played as follows: Eve picks a row r and Adam picks a column c simu-
lations like in rock-paper-scissors. Adam then pays Eve M[r,c], i.e. the content of the
entry defined by being in row r and column c. A strategy in such a game for Eve (resp.
Adam) consists of a distribution over the rows (resp. columns). There is an illustration
of rock-paper-scissors as a matrix game in Figure 7.1.

The following theorem lists some known results for matrix games:

Theorem 92. Each (m× n)-matrix game M is determined and there exists optimal
strategies for each player.

• The value and an optimal strategy for each player can be found in polynomial
time and the problem is equivalent to linear programming.

• Let c > 0 be some constant. Consider the matrix cM where each entry of M has
been multiplied by c. Then, the value of cM is cv.

• Let c be some constant. Consider the matrix M + c where each entry of M is c
larger (additively). Then, the value of M+ c is v+ c.

• The value of matrix games are monotone in the entries.

We will omit the proof of the existence of values, optimal strategies and the first
bullet. The second bullet can be viewed as changing currency and clearly, this does not
affect the optimal strategy. The third bullet can be viewed as getting a reward before
playing the game, and again, clearly this does not affect how to play it. The last bullet
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can be seen from that each pair of strategies must give a higher reward if the entries of
the matrix is higher. This is especially true if you consider the optimal strategy for Eve
in M together with an arbitrary strategy for Adam, which then shows that the value is
higher.

Given a matrix M, we will by val[M] denote the value of the matrix game M.
Perhaps interestingly, an illustration of a matrix M can be viewed as a game arena

A (for concurrent games) with only one non-absorbing vertex. In each type of games
considered in this section (apart from concurrent reachability games, where no game
can be illustrated as a matrix with non-star entries different from 0), the value of the
game with that arena matches val[M] and the optimal strategies for each player is to
play an optimal strategy from M in each round. One can also consider a game arena A ∗

with an illustration similar to M, but where there is a star in each entry (and c(v, i, j) = 0
for the unique non-absorbing state v and any pair of actions i, j). Again, the value is
val[M] (except for the case of discounted objectives, where the value is (1−δ )val[M])
and the optimal strategies for each player is again to play an optimal strategy from M.

One could easily be lead to believe that in games (called repeated games with ab-
sorbing states) that can be illustrated as a single matrix M with some entries stared
and others not, the value would be similar to val[M] and the optimal strategy would
again be to play the optimal strategy from M. However, this is very much not true and
indeed, many of the games in this chapter, illustrating how complex concurrent games
can be, are repeated games with absorbing states! In particular repeated games with
absorbing states may (1) have irrational values and probabilities in optimal strategies
(with any objective), (2) have no optimal strategies (for reachability and mean payoff
objectives) and (3) have no ε-optimal finite-memory or ε-optimal Markov strategies
(for mean payoff objectives)!

7.3 Concurrent discounted payoff games
In this section we focus on concurrent discounted payoff games. The key property of
these games is that to a high degree, only the relative early part of the play matters.
We will first argue that the value iteration algorithm works and especially converges to
the value of the game and then that there are stationary optimal strategies in concurrent
discounted payoff games. While the value iteration algorithm also works for the games
considered in the latter sections, we will not explicitly show it there, since the proofs
become much more complex. The argument here however will allow us to show quite a
few more statements in essence as corollaries of the theorem that value iteration works.

The value iteration algorithm is based on the concept of finite-horizon (or time
limited) games. It is also sometimes referred to as dynamic programming. Specifically,
apart from the usual definition of a game, there is an additional integer T , denoting how
many rounds are remaining initially, and a vector v, assigning a reward to each node if
the game ends in that node with 0 rounds remaining. After round T the reward is 0. I.e.
for T = 0, the outcome reward from node x is vx in the first round and 0 in each later
round. Let valOpT (v) be the vector that assigns to each node its value in the game with
time-limit T with vector v.

In general this formulation leads to a simple dynamic algorithm that computes
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valOpT (v) inductively in T . We have that valOp0(v) = v and given valOpT−1(v) it
is easy to compute valOpT (v) because, if Eve selects row i and Adam column j in node
x in the first round, the outcome is

∑
v∈V

valOpT−1(v)∆(x, i, j)(v)

and thus (valOpT (v))x is the value of the matrix MT,x,v, where entry i, j is

∑
v∈V

valOpT−1(v)∆(x, i, j)(v)

It is common to start with the all-0 vector for v when using the value iteration
algorithm.

The following lemma shows many interesting properties of concurrent discounted
payoff games.

Lemma 96 (Concurrent discounted payoff games). Concurrent discounted payoff games
have the following properties:

• The value iteration algorithm converges for any initial vector v.

• The value iteration algorithm has an unique fixed point, independent of the initial
vector v.

• There are optimal stationary strategies in concurrent discounted payoff games
and the unique fixed point of the value iteration algorithm is the value (thus, the
games are determined).

• The value of a concurrent discounted game can approximated in PPAD.

• There are ε-optimal stationary strategies with patience below m log(ε/2)
log(1−γ)ε .

Proof. The first item comes from considering the vectors v and valOp1(v). We thus
have that valOpT+1(v) ∈ [valOpT (v)− (1− γ)T ,valOpT (v)+ (1− γ)T ] for all T . The
statement then comes from that ∑

∞
i=1(1− γ)i is a converging sum.

The second item comes from considering two fixed points, u,v. I.e., valOp1(v) = v
and thus valOpT (v) = v for all T . Similar for u. But, v = valOpT (v) ∈ [valOpT (u)−
(1−γ)T ,valOpT (u)+(1−γ)T ] = [u− (1−γ)T ,u+(1−γ)T ]. Since it is true for all T ,
we have that u = v.

Claim 1. Consider some T and the strategy for Eve that plays the first T steps following
an optimal strategy in the finite-horizon game of length T with vector v, followed by
playing arbitrarily. Then, the outcome is above valOpT (v)− (1− γ)T maxi vi.

Proof. For any strategy for Adam, the expected reward for the first T rounds is at least
the expected reward in the finite-horizon game. In each remaining round, the reward is
at least 0 in the real game, but vi in round T for some i followed by 0’s in the finite-
horizon game. Since the outcome is valOpT (v) in the finite-horizon game, the real
outcome is then as described.
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One can show a similar statement for Adam. For any ε > 0 one can pick a big
enough T such that (1− γ)T maxi vi ≤ ε .

Let v∗ be the unique fixed point of the value iteration algorithm. Thus, v∗ =
valOpT (v∗) for all T . Pick some optimal strategies σx,τx in MT,x,v∗ for each x. Let
σ∗,τ∗ be the strategies that play σx,τx whenever in node x in each round. The strategy
σ ,τ are optimal in valOpT (v∗) for each T , because v∗ is a fixed point. But, for each
ε > 0, the strategy σ ensures outcome at least v− ε and τ ensures outcome at most
v+ ε using the claim. Hence, the third item follows.

The fourth item follows from that the value iteration algorithm is a contraction.
For the fifth item, consider the strategy used in the claim. Let T be log(ε/2)/ log(1−

γ), i.e. T is such that

γ

∞

∑
i=T

(1− γ)i = ε/2

or in words, T is such that the total outcome of each step after the T -th step is at most
ε/2. Intuitively, if we modify the strategy very little, then the change is unlikely to
come up in the first T steps. More precisely, we will modify our strategy so that the
probability that change will matter is less than ε/2. That implies that the outcome dif-
fers by at most ε from the value. We will use this intuition together with the argument
for the third item to give a bound on the patience of ε-optimal strategies. Fix some op-
timal stationary strategy σ for Eve and an arbitrary stationary strategy τ for Adam. Let
σ ′ be a stationary strategy obtained from σ rounded greedily so that each probability
is a rational number with denominator

q = mT/ε =
m log(ε/2)
log(1− γ)ε

.

We will argue that σ ′ is ε-optimal.
The rounding proceeds inductively as follows for each node x: The numbers pi

are the original probability and the numbers p′i are the new probabilities. For each i,
the number p′i is defined as follows: If ∑

i−1
j=1(pi− p′i) > 0, then round up (i.e. p′i is

the smallest rational with denominator q so that pi < p′i) and otherwise round down,
except the last number p′`, which is such that ∑

`
j=1 p′i = 1. Note that this ensures that

−1/q < ∑
i−1
j=1(pi− p′i) < 1/q. It also ensures that |pi− p′i| < 1/q for all i (including

for i = `).
For all nodes x and rounds T ′ ≤ T we will define some random variables. Specifi-

cally, the random variables denote what happen in round T ′ if in node x. The random
variable Xx,T ′ (resp. Yx,T ′ ) denotes the action picked by Eve if Eve follows σ (resp.
σ ′). The random variable Zx,T ′ denotes the action picked by Adam. For each action
pair (i, j) the random variable Wx,i, j,T ′ denotes the node entered in round T ′+1, if Eve
picks i and Adam j. (As a side note: Each of the random variables are distributed the
same way independent of T ′). Each of these random variables are independent of each
other, except that (as we will define later) the random variables Xx,T ′ and Yx,T ′ for each
x,T ′ are very much not independent of each other.

We see that we can view the first T steps of the play when Eve follows σ by only
considering the outcome of Xx,T ′ , Zx,T ′ and Wx,i, j,T ′ for all T ′ and x (even stronger: We
only need to consider one x, i, j for each T ′, because the token is on only one node
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at a time). Similarly, for σ ′, but using Yx,T ′ instead of Xx,T ′ . For this to work, note
that each random variable should be independent, except that the random variables
Xx,T ′ and Yx′,T ′′ need not be independent of each other for any x′,T ′′. This is precisely
the property we had for them! For each x,T ′, we will then use a coupling Cx,T ′ =
(X ′x,T ′ ,Y

′
x,T ′), a distribution over [m]2, such that X ′x,T is distributed as Xx,T ′ and Y ′x,T ′ is

distributed as Yx,T ′ . We will use a classic result for distributions, called the Coupling
Lemma.

To introduce the Coupling Lemma, first, we need the notion of total variation dis-
tance. Given two distributions, ∆ and ∆′ over a set S, the total variation distance t
between ∆ and ∆′ is

t(∆,∆′) =
1
2 ∑

x∈S
|∆(x)−∆

′(x)|

Lemma 97. For any distributions ∆ and ∆′ over a set S, we have

• for all couplings (X ,Y ) of ∆ and ∆′, that

t(∆,∆)≤ Pr[X 6= Y ]

• that there is a coupling (X ′,Y ′) of ∆ and ∆′ satisfying that

t(∆,∆) = Pr[X ′ 6= Y ′]

Because of our rounding, we have that t(X ′x,T ′ ,Y
′
x,T ′)<

m
2q . Using that with the cou-

pling lemma (the second part to be precise), lets us find a coupling Cx,T ′ = (X ′x,T ′ ,Y
′
x,T ′)

such that Pr[X ′x,T ′ 6= Y ′x,T ′ ]<
m
2q .

Consider the plays π1,π2 for when Eve follows σ or σ ′ respectively. We can view
the first T steps of these plays by considering X ′x,T ′ instead of Xx,T ′ and similar when
Eve follows σ ′. We can therefore see that the first T steps two plays are different with
probability = p < mT

2q = ε/2 using union bounds.
We therefore see that the value for the path π1 cannot differ from the value of π2

with more than pγ ∑
T
i=1(1− γ)i = p. I.e. in the worst case, if π1 and π2 differs, the

reward is 1 in each step for π1 but 0 in each step for π2. Also, the rewards in the steps
after step T can also differ by at most 1 and by our choice of T , we have that outcome
contributed from these remaining steps are worth less than ε/2 as well. Hence, we
see that σ ′ obtains the same as σ except for ε against any strategy τ and is thus ε-
optimal.

There is a classic problem in geometry called the sum-of-square-roots problem.
The problem is defined as follows: Let a,b1,b2, . . . ,bn be natural numbers. Is ∑

n
i=1
√

bi >
a?

The problem comes up for decision problems about distances in Euclidean space. It
is not known to be in P or NP for that matter, but is in the fourth level of the countering
hierarchy, slightly inside PSPACE. The issue is in essence that it is not known how
good an approximation of

√
bi is necessary to decide the strict inequality.

We will use the sum-of-square-roots problem to give an informal hardness argu-
ment, in that finding the exact value of a concurrent game is in general harder than
solving the sum-of-square-roots problem.
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s :
1∗

1∗0∗

1/2

0 : 00∗
1/2

Figure 7.2: Concurrent discounted game with value vs =−2+
√

4+2(1− γ)

Consider the following game G: There are three vertices, {0,1,s} where 0 and 1
are absorbing, with color 0 and 1 respectively. The vertex s is such that (1) c(s, i, j) =
0, (2) ∆(s, i, i) = 1 (for i ∈ {1,2}), (3) ∆(s,2,1) = 0 and (4) ∆(s,1, i) is the uniform
distribution over s and 0. The game is illustrated in Figure 7.2.

Consider an optimal stationary strategy in G for Eve. Let p be the probability with
which she plays the first action. If Adam knows that Eve will follow this strategy, the
game devolves into a MDP. We know from that for such there exists optimal positional
strategies and thus Adam is either going to play the left or right column always. Clearly,
0 < p < 1 because p = 0 or 1 means that either playing the left or right column with
probability 1 would ensure that no positive reward ever happens.

Let v0 = 0,v1 = 1,vs be the values of the three vertices. If he plays the left column,
the outcome is p(1− γ). If he plays the right column, the outcome is p/2(1− γ)vs +
(1− p)(1− γ). Observe that the former is increasing in p and the latter is decreasing
(since clearly, 0 < (1− γ)vs < vs). Also, both are continues. Thus, the optimum is for
p(1−γ) to be equal to p/2(1−γ)vs+(1− p)(1−γ) and both equal to vs. We will first
isolate vs in vs = p/2(1− γ)vs +(1− p)(1− γ).

vs = p/2(1− γ)vs +(1− p)(1− γ)⇒ (1− p/2(1− γ))vs = (1− p)(1− γ)⇒

vs =
(1− p)(1− γ)

1− p/2(1− γ)
.

Note that p,γ < 1 thus, 1− p/2(1− γ) 6= 0. We then have the equality

(1− p)(1− γ)

1− p/2(1− γ)
= p(1− γ)⇒

(1− p)(1− γ) = p(1− γ)(1− p/2(1− γ))⇒

0 =
1− γ

2
p2 +2p−1⇒

p =
−2±

√
4+2(1− γ)

1− γ
.

We see that −2−
√

4+2(1−γ)

1−γ
< 0. Thus, p =

−2+
√

4+2(1−γ)

1−γ
. Also,

vs =−2+
√

4+2(1− γ) .

It is straightforward to modify the construction to get any square-root desired for a
fixed γ .
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s :

1∗

1∗

1∗ 1∗0∗

0

00∗

0∗

Figure 7.3: Alternate concurrent discounted game with value vs =−2+
√

4+2(1− γ)

By making such a construction for each number
√

bi, we can make another vertex
s∗ that has the value of (1− γ)

∑
n
i=1
√

bi
n with a single action for each player and that

goes to a uniformly random vertex. Observe that decreasing each reward by x, reduces
the value of each vertex by x. Reduce each reward by an

1−γ
. We can then decide the

sum-of-square-roots problem by deciding whether the value of s∗ is strictly above 0.
We get the following lemma.

Lemma 98. The (exact) decision problem for the value is sum-of-square-root hard for
concurrent discounted payoff games.

We will use this game G as an example to illustrate how to make the ∆-function
deterministic for concurrent games while having the same value and a similar optimal
strategy.

Consider the following game G′: There are three vertices, {0,1,s} where 0 and 1
are absorbing, with color 0 and 1 respectively. The vertex s is such that (1) c(s, i, j) = 0
for all i, j, (2) ∆(s, i, j) = s for i+1= j (i.e. for (i, j)∈ {(1,2),(2,3)}), (3) ∆(s, i, j) = 0
for i+ j = 4 (i.e. the “other” diagonal, (i, j)∈ {(3,1),(2,2),(1,3)}) and (4) ∆(s, i, j) =
1 otherwise (i.e. for (i, j) ∈ {(1,1),(2,1),(3,2),(3,3)}). The game is illustrated in
Figure 7.3.

We will argue that the value of G′ is equal to that of G. We clearly have that the
value of s is in (0,1). Consider a stationary strategy σ for Eve such that σ(1) 6= σ(2).
Let pi = σ(i) for i ∈ {1,2,3}. Let σ ′ be such that σ ′(3) = p3 and otherwise, σ ′(i) =
p1+p2

2 for i ∈ {1,2}. Let p′i = σ ′(i) for i ∈ {1,2,3}.

Claim 2. The strategy σ ′ is at least as good as σ .

Proof. If Adam plays 1, then the expected outcome is p1 + p2 = p′1 + p′2 no matter if
Eve plays σ or σ ′. If he plays i for i ∈ {2,3}, the expected outcome is p4−i

1−pi−1
if Eve

plays σ and otherwise, if she plays σ ′, the expected outcome is p′1
1−p′2

=
p′2

1−p′1
. Note that

p′1
1−p′2

> mini∈{2,3} p4−i
1−pi−1

and thus, σ ′ is at least as good a strategy as σ .

A similar argument shows that for any strategy τ for Adam the similar strategy τ ′

where τ ′(1) = τ(1) and τ ′(i) = τ(2)+τ(3)
2 for i∈ {2,3} is at least as good as τ . Consider
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s′ :
1∗

0∗

0∗

: s∗0

Figure 7.4: Concurrent discounted game that implies that if there is an exponential
lower bound on patience, then the sum-of-square-roots problem is in P

that the players follows such stationary strategies σ ′ and τ ′. Let σ be

σ(i) =

{
σ ′(1)+σ ′(2) if i = 1
σ ′(3) if i = 2 .

Similarly, let τ be

τ(i) =

{
τ ′(1) if i = 1
τ ′(2)+ τ ′(3) if i = 2 .

But playing σ and τ in G gives the same outcome as playing σ ′ and τ ′ in G′ as can be
seen as follows: In either game, with probability

σ
′(1)τ ′(2)+σ

′(2)τ ′(3) =
σ(1)τ(2)

2

we play again with a reward of 0, with probability

σ
′(1)τ ′(3)+σ

′(2)τ ′(2)+σ
′(3)τ ′(1) =

σ(1)τ(2)
2

+σ(2)τ(1)

we get absorbed in 0 after a reward of 0 and with probability

(σ ′(1)+σ
′(2))τ ′(1)+(τ ′(2)+ τ

′(3))σ ′(3)

we get absorbed in 1 after a reward of 0. But this is in particular the case if the players
play optimally and thus, the value is the same in the two games.

Before, in Corollary Lemma 96, we argued that the patience of ε-optimal station-
ary strategies was q = m log(ε/2)

log(1−γ)ε . Giving a similar exponential bound for the optimal
stationary strategies is harder than solving the sum-of-square-roots problem, as we will
argue next. Assume that we had an exponential bound for optimal stationary strategies.

Consider an arbitrary yes-instance of the sum-of-square-roots problem, giving a
vertex s∗. Reduce each reward by a and in the new game let s∗a be the vertex corre-
sponding to s∗. We will now create a game that uses the previous game as a sub-game.
The game has 1 additional vertex s′, which is a 2x2-matrix, such that c(s′, i, j) = 0 and
∆(s,1,1) = 1 and ∆(s,2,2) = s∗ and ∆(s, i, j) = 0 for i 6= j. There is an illustration
in Figure 7.4, using the vertex s∗ as above. Using an argument like above, we see
that the probability p to play the top action in the vertex s′ is such that p(1− γ) =
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1 :
1∗

0∗

0

1∗

Figure 7.5: The snowball game or purgatory 1, in which no optimal strategy exists for
Eve

(1− p)(1− γ)x, where x is the value of s∗. Thus, x = p
1−p . If p only needs to be ex-

ponential small, then x is exponentially small as well. This is true for any yes-instance
of the sum-of-square-roots problem and thus, we only need polynomially many dig-
its to decide the problem. We can find polynomially many digits of

√
bi for each i in

polynomial time. We get the following lemma.

Lemma 99. Giving an exponential lower-bound on patience for optimal stationary
strategies in concurrent discounted payoff games implies that the sum-of-square-roots
problem is in P

7.4 Concurrent reachability games

In this section we consider concurrent reachability games. Intuitively, unlike concur-
rent discounted payoff games, these games cares only about the final part of the play.
This, while perhaps not clear directly from the definitions, makes the games somewhat
harder. For instance, the value iteration algorithm requires double-exponential time.
Note that like for concurrent discounted payoff games, if we force Eve to follow some
strategy, the game reduces to a MDP and there exists optimal positional strategies.

We will not prove the following known lemma. We will however, show the weaker
statement that the decision problem for the value can be done in PSPACE.

Lemma 100 (Properties of concurrent reachability games). Concurrent reachability
games are determined. Also, finding the value of a concurrent reachability game can
be done in TFNP[NP].

We will argue that there might not be optimal strategies for Eve in concurrent reach-
ability games. The game we will use will later be a member of a family of games that
requires high patience to play well.

The snowball game (or purgatory 1) is defined as follows: There are 3 vertices,
the goal vertex Win, ⊥ (an absorbing vertex) and a vertex 1, which has a 2x2 matrix,
such that ∆(x,r,c) is a Dirac distribution over (1) Win for r = c, (2) 1 for r < c and
(3) ⊥ for r > c. When we illustrate the game, we write view the goal vertex Win as
being an absorbing vertex with color 1. There is an illustration of the snowball game
in Figure 7.5.

For any ε > 0, consider the stationary strategy for Eve that plays the first action
with probability 1−ε . If Adam plays the left column always, play will reach Win with
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pr. 1− ε . If Adam plays the right column always, play reaches Win with pr. 1. Hence,
the strategy for Eve is ε-optimal and the value of the vertex is 1.

On the other hand, if Adam plays the right column whenever Eve plays the first
action with pr. 1, and otherwise plays the first action, then in the last round in the
vertex there must be a positive pr. that play goes to vertex 0. Hence, Eve has no
optimal strategy.

Lemma 101 (No optimal strategies in concurrent reachability games). Eve need not
have an optimal strategy in a concurrent reachability game.

The following lemma states some classical results for concurrent reachability games
that we will not prove.

Lemma 102 (Classical results for concurrent reachability games). • For any ε >
0, there are always ε-optimal stationary strategies for Eve and optimal station-
ary strategies for Adam.

• The value iteration algorithm converges to the optimal value and is defined ex-
actly like for concurrent discounted payoff games, except that γ = 0 and the
target vertex has value 1 in the first iteration.

• The values v are the least fixed point (i.e., every other fixed point v′ is such that
for all i vi ≤ v′) of the value iteration operator valOp.

(Note that the games are not symmetric, in that Eve tries to reach a node and Adam
tries to stay away from it, and in particular, even though Eve need not have an optimal
strategy in a concurrent reachability game, Adam always has one.)

The decision problem for the existential first order theory over the reals is the fol-
lowing decision problem: Given a function F : Rn→ {true, false}, is there an vector v
such that F(v) is true? The function F must be an well-formed (i.e. connected with
logical ‘and’, ‘or’ and ‘not’) quantifier-free formula over polynomial inequalities. E.g.
x2y+ z≥ 5∧¬(xz≤ 3) would be such a function.

Lemma 103. The decision problem for the existential theory over the reals is in PSPACE

We will now, given a number c, encode the problem whether the value in a con-
current reachability game is < c, starting from some vertex x. The idea is that we
can describe a fixed point of the value iteration operator, i.e. we can describe that
vi = val[Mi(v)]i. Since we know that the values are the least fixed point, we can then
just add the condition that vx < c. We can describe the value of a matrix game by guess-
ing a strategy for each player, σ for Eve and τ for Adam, and then checking that these
strategies are optimal by showing that the outcome obtained by following Eve’s strat-
egy is equal to what is obtained by following Adam’s. I.e. we check that for Eve’s strat-
egy, the least outcome obtained when Adam plays any given column is vi and similar
for Adam. We describe that as vi = mina∈[m](σMi

∗,a(v)) and vi = maxa∈[m](τMi
a,∗(v)),

where Mi
∗, j(v) is the j-th column of Mi(v) and Mi

j,∗(v) is the j-th row for all j. We can
express that x = min(a1,a2, . . . ,an) for any number n and any polynomials a1,a2,an,
in the first order theory of the reals by stating that

x≤ a1∧ x≤ a2∧·· ·∧ x≤ an∧ (x = a1∨ x = a2∨·· ·∨ x = an) .
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Similarly, one can also describe that x = max(a1,a2, . . . ,an) for any number n and any
polynomials a1,a2,an.

We can similarly make a statement that vx ≤ c. Using that PSPACE is equal to
co-PSPACE, we also get that we can find if vx ≥ c and vx > c and therefore also vx = c
and vx 6= c, all in PSPACE.

Lemma 104. Decision problems for the values in a concurrent reachability game is in
PSPACE.

The set of vertices that have value 0 can be found in polynomial time. This is
because, the set of vertices that have value 0 in the time limited game of length n has
also value 0 in all other time limited games. That this is so is easy to see by considering
that Eve plays an ε-optimal strategy for v > ε , where v is the value of the vertex with
the lowest value. The game then devolves to a MDP for Adam, and the statement is
true for such.

Lemma 105 (Value 0 vertices in concurrent reachability games). The set of vertices of
value 0 in a concurrent reachability game can be found in polynomial time.

Next, we argue that we can find the set of vertices S1 that have value 1 in polynomial
time as well. For notational convenience, for stationary strategies σ ,τ we will, for a
set x and a set of vertices S use

Fσ ,τ(x,S) := ∑
r∈A1

∑
c∈A2

∑
x′∈S

σ(x)(r)τ(x)(c)δ (x,r,c)(x′) ,

i.e. the probability when the players follows σ ,τ to go from x directly to a vertex in S.
For a set S, containing Win and a non-empty subset S′ ⊆ (S \{Win}) and a vertex

x ∈ S′, let the subset property be the following: For each ε > 0, there is a strategy σ for
Eve, such that for any strategy τ for Adam, Fσ ,τ(x,S\S′) · ε > Fσ ,τ(x,V \S).

For a set S, containing Win, let the value-1-property be that the subset property is
satisfied for each S′ ⊆ (S\{Win}) (with some x ∈ S′). For a set S satisfying the value-
1-property, we will define some subsets. Let S0 be the set consisting of Win. Let Si, for
each i≥ 1 be the set of vertices such that for each x∈ Si, the vertex x satisfies the subset
property for S′ and S =

⋃i−1
j=0 S j. Let ` be the largest number such that S` is non-empty

(note that Si, for i > ` must then be empty).
We will be using the following lemma.

Lemma 106. The set of vertices S1 of value 1 satisfies the value-1-property.

Proof. The proof is by contradiction. Thus, there is an S (not containing Win) such that
S1 and S does not satisfy the subset property for any x∈ S. I.e. for some constant ε > 0,
Fσ ,τ(x,S1 \ S)ε ≤ Fσ ,τ(x,V \ S1) for any strategy σ for Eve and some strategy τσ for
Adam and for every x ∈ S. But then, all vertices in S have value ≤ (1− ε)+ εVmax
where vmax < 1 is the largest value of a vertex in V \S1. This is because to get to Win
from S, it must leave S and in that step, the probability to go to a vertex in V \S1 (from
which one cannot obtain more than vmax) is at least the constant ε .

We will argue that this is a precise characterization of S1 next.
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Lemma 107. Consider a set S′ satisfying the value-1-property, then each vertex of S′

has value 1.

Proof. We will for all i and any ε > 0 construct a strategy σi,ε for Eve that starting from
a vertex in

⋃n
j=i S j will eventually get to Si−1 with probability at least 1−ε (especially,

the strategy σ1,ε is ε-optimal). We will do it using backwards induction in i and thus
start from i = `.

Note that the base case for i = ` follows directly from the condition. We now
for any ε > 0 will find a strategy σi,ε , given that we have a strategy σi+1,ε ′ for any
ε ′ > 0. The idea is that the subset property gives a strategy σ such that for all τ ,
Fσ ,τ(x,S′ \S)ε/2> Fσ ,τ(x,V \S′), for S =

⋃n
j=i S j. Note that in expectation, following

this strategy, we go to some other vertex in S with at least some fixed probability p
(that could be quite close to 1). Hence, in expectation, we need to be in such a vertex
1/(1− p) times before entering either S′ \S or V \S′. We therefore follow the strategy
σi+1,ε ′ in

⋃n
j=i+1 S j, where ε ′ = ε

2(1−p) . The inductive construction then follows by
applying union bound over the 1/(1− p) times we are in Si.

Note that the lemmas together show that S1 is the largest set satisfying the value-1-
property.

Our algorithm, A1, for finding S1 is then as follows: Assign to each vertex x a
rank rkx, a value in 0,1, . . . ,n,⊥, starting with rkx = 0. Let Si be the set of vertices
of rank i. Let S1 = V \ S⊥. We increment (where a rank is less than another if it is a
smaller number. Also, all other ranks are below⊥) the rank of a non-goal vertex x∈ Si,
whenever it does not satisfy the subset property for S = S1 and S′ =

⋃n
j=i S j. Note that

no vertex can satisfy the subset property for rank 0, since S′ is all vertices. Whenever a
stable configuration is reached, output S1.

Lemma 108. The output of the A1 algorithm is correct.

Proof. The idea is that we want Si = Si at termination. Note that the subset property
is harder to satisfy for a vertex x if we remove vertices from S or from (S \ S′). Thus,
if at some time we have that x does not satisfy the subset property for S = S1 and
S′ =

⋃n
j=i S j, then it does not do so for S being any subset of S1 or (S \ S′) being any

subset of
⋃i−1

j=0 S j. However, initially S1 ⊇ S1 (being all vertices) and
⋃n

j=i S j ⊇
⋃i−1

j=0 S j

for all i. But we must have that S1 ⊇ S1 and
⋃n

j=i S j ⊇
⋃i−1

j=0 S j for all i, at all latter
points as well, since in the last iteration it was satisfied, for all i and all x ∈ Si, we
have that the subset property is satisfied for S = S1 and S′ =

⋃n
j=i S j, because we have

that S ⊇ S1 and (S \S′) =
⋃i−1

j=1 S j ⊇
⋃i−1

j=1 S j. On the other hand, eventually no vertex
gets it rank incremented (since there are a finite number of ranks and vertices) and the
algorithm terminates with a set S1 ⊇ S1 satisfying the value-1-property. Since S1 is the
largest such set, we have that S1 = S1.

We will now consider the running time of the algorithm. We will consider that we
can decide whether a pair of sets S and S′ satisfies the subset property for a vertex x
can be solved in O(k) time. Let Sx be the set of vertices that can be visited in a play
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immediately after x. Observe that |Sx| is a lower bound on the number of arrows from
matrix x in our illustration of the game. Consider a vertex x and a rank i, and we want
to find an upper bound on the computation we do on x while it has rank i. Clearly, we
only need to consider incrementing the rank of x whenever a vertex in Sx has changed
its value and only if it is changed to either i (from i− 1) or to ⊥ (from n), because
otherwise, the sets S and S′ have not changed. Thus, we only do at most 2|Sx|+ 1
checks whether x satisfies the subset property. There are n+1 ranks, so in total for x,
we use at most (n+1)(2|Sx|+1) checks. Hence, in total over all x, we do O(n∑x |Sx|)
checks.

Lemma 109. The runtime of the A1 algorithm is O(nk ∑x |Sx|).

We will then finally consider how to check whether x satisfies the subset property
for a pair of sets S and S′. We will do so by constructing a strategy σ = σ(ε) for Eve
satisfying the property for any fixed ε > 0. We will construct the strategy σ from some
sequence of pairs of sets (of rows and columns) (R1,C1),(R2,C2), . . . ,(R`,C`). We will
let C∗i =

⋃i
j=1 C j and similar for R∗i . For convenience, we also define C∗0 as the empty

set of columns. We will define Ri from C∗i−1 as each row r 6∈ R∗i−1 such that, for all
c 6∈ C∗i−1, we have that Fr,c(x,V \ S) = 0. We will define Ci 6∈ C∗i=1 from Ri as each
column c such that there is a r ∈ Ri such that Fr,c(x,S \S′) > 0. The set R∗` is the first
set such that R∗`+1 is empty (clearly, by construction all sets Ri,Ci for i > ` would also
be empty).

Lemma 110. There is a strategy σ(ε) for all ε > 0 if and only if C∗` is the set of all
columns.

Proof. We will first argue that if C∗` is not all columns C, then the strategy τ that plays
uniformly over C′= (C\C∗` ) shows that no strategy σ(ε) exists for small enough ε > 0.
This is because any row r such that Fr,c(x,S \S′)> 0 for some c ∈C′ is also such that
Fr,c′(x,V \S)> 0 for some column c′ ∈C′. This is because otherwise r would be in Ri

for some i and then c would be in C∗` . Hence, the probability Fr,c′(x,V \ S) cannot be
more than a constant factor smaller than Fr,c(x,S\S′).

Otherwise, if C∗` =C, then let σ(ε) be the strategy that picks an i from the distribu-
tion D and then plays an action in Ri uniformly at random. The distribution D is such
that for all j ∈ {1, . . . , `−1} we have PrD [i = j]εδmin/m = PrD [i > j].

To argue that σ =σ(ε) satisfies the subset property for x,S,S′ consider each column
c. We have that c ∈C j for some j. Let p be the pr. with which a row in R j is played by
σ and thus, Fσ ,c(x,S\S′)≥ pδmin > 0. Any row r such that Fr,c(x,V \S)> 0 must be
outside R∗j by construction (and if such a row exists j < `). We play such rows with pr.
≤ PrD [i > j] and thus PrD [i > j]≥ Fσ ,c(x,V \S). We have that pm > PrD [i = j] (strict
because j < `) and thus,

Fσ ,c(x,S\S′)ε ≥ pδminε > δminε/mPrD [i = j]≥ PrD [i > j]≥ Fσ ,c(x,V \S) .

This completes the proof of the lemma.

Our algorithm for checking if a vertex x satisfies the subset property for sets S,S′ is
as follows: We will construct the sequence of sets (R1,C1),(R2,C2), . . . ,(R`,C`). To do
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3 :
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2 : 1 :

0∗

0∗ 0∗ 0∗

1∗

1∗

Figure 7.6: Purgatory 4. For clarity, the colors are omitted, except that 0∗ corresponds
to an edge to an absorbing vertex different from Win and 1∗ corresponds to an edge to
Win

so we will use a data structure. The data structure has the following properties: Initially,
for each column c, we will make a list Lc of the rows r such that Fr,c(x,V \S)> 0. We
will also have a counter for each row r that initially contains how many such columns
there are. Finally for each row r, there is a list Lr of columns such that Fr,c(x,S\S′)> 0.

The algorithm then uses the data structure as follows: Let i← 1. Add all the rows
with the counter at 0 to Ri. If Ri is the empty set, return whether C∗i−1 is all columns.
For each row r in Ri go through c ∈ Lr and subtract 1 from the counter of each row in
Lc. If a counter reach 0, add it to Ri+1. Increment i. Go to line 3.

The total running time the algorithm is O(∑r,c |supp(∆(x,r,c))|).

Lemma 111. We can check whether a vertex x satisfies the subset property for sets S
and S′ in time

O(∑
r,c
|supp(∆(x,r,c))|).

We therefore get that

Lemma 112. We can compute the set of vertices of value 1 in time

O

(
n∑

x
|Sx|∑

r,c
|supp(∆(x,r,c))|

)
.

Next, we will give a lower bound for patience: we prove that in some games, the
patience for every ε-optimal stationary strategy must be high. For a number k, let
purgatory k be the following game: There are 2+ k vertices, Win (which is vertex 0),
one vertex ⊥ which is absorbing and each other vertex i ∈ {1, . . . ,k} has a 2x2 matrix,
such that ∆(x,r,c) is a Dirac distribution over (1) i−1 for r = c, (2) k for r < c and (3)
⊥ for r > c. There is an illustration of Purgatory 4 in Figure 7.6.

It is easy to see that all vertices but ⊥ are in S1 using the value 1 property.
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Lemma 113 (Properties of the purgatory game). For any 0 < ε < 1/2 and any k ≥ 1,
there is a unique strategy for Eve with least patience which is ε-optimal in purgatory
k. That strategy has patience ε−2k−1

Proof. We will find the best strategy with patience 1/p for any number 0 < p < 1/2.
It is clear that the best strategy with patience 1/p is to play the strategy that maximizes
the pr. of eventually reaching i from vertex j for all j > i while having patience 1/p.
Let xk = 1− p and let xi = 1−

√
1− xi+1. We will argue that xi is the probability of

eventually reaching vertex i− 1 from vertex k for all i ∈ {1, . . . ,k} and that there is a
unique best strategy with patience 1/p.

The unique best strategy in vertex k is to play the top action with pr. 1− p and the
bottom action with pr. p. This ensures that the pr. xk of reaching k−1 from k is 1− p
if Adam plays the left column.

Consider now vertex i ∈ {1, . . . ,k−1}. For the purpose of finding good strategies
in i, we can view vertex i, when Eve plays her best strategy in j > i and Adam plays a
best response, as a smaller reachability game with 3 vertices, i.e. i−1 (as Win), ⊥ and
i, where ∆(i,r,c) is (1) a Dirac distribution over i−1 for r = c, (2) a Dirac distribution
over ⊥ for r > c and (3) a distribution that goes to ⊥ with pr. 1−xi−1 and to i with the
remaining pr. for r < c. See Figure 7.6.

Let pi be the probability with which a strategy σ plays the top row in vertex i. We
can then consider the game as a MDP, since we have fixed a stationary strategy for one
of the players. It is clear that the pr. to reach i−1 from i if Adam plays the right column
is strictly increasing in pi and the pr. to reach i−1 from i if Adam plays the left column
is strictly decreasing in pi. We will consider the strategy such that the pr. of reaching
i− 1 is equal no matter which column Adam plays (by the previous statement, this
strategy must then be optimal). Observe that the pr. of reaching i−1 if Adam always
plays the left column is pi (which is then also the pr. to reach i− 1 from i) and if he
always plays the right column it is pixi pi +(1− pi) (using that the pr. of reaching i−1
from i is pi). Thus, we have that

pi = pixi pi +(1− pi)⇒ 0 = p2
i /2xi− pi +1/2⇒ pi =

1±
√

1− xi

xi
.

We see that 1+
√

1−xi
xi

> 1 and thus the solution is pi =
1−
√

1−xi
xi

or that (xi−1 =)xi pi =

1−
√

1− xi.
Consider now that the strategy is exactly ε-optimal, implying that x1 = 1− ε . We

will argue that p = ε2k−1
. We will do so by arguing using induction in i that xi =

1−ε2k−1
, since xk = 1− p (this also shows that the strategy is indeed using patience 1/p

since the probabilities in the other vertices, which are pi =
xi−1

xi
, are strictly above 1/p).

We have already noted that x1 = 1−ε = 1−ε20
. We will next argue that xi = 1−ε2k−1

,
for i≥ 2 using that xi−1 = 1− ε2k−2

. We have that

1− ε
2k−2

= xi−1 = 1−
√

1− xi⇒
√

1− xi = ε
2k−2 ⇒ 1− ε

2k−1
= xi .

This completes the proof of the lemma.
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s :

2′ : 1′ :
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1′ :
0∗

0∗

1∗1∗

1∗
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0∗

0∗

1/2

1/2

Figure 7.7: Purgatory duel 2. For clarity, the colors are omitted, except that 0∗ corre-
sponds to an edge to an absorbing vertex different from Win and 1∗ corresponds to an
edge to Win

Concurrent reachability games are not symmetric in the players. E.g. Adam always
have an optimal strategy but Eve might not. We will next argue that Adam still requires
double exponential patience to play well.

Consider the following game called purgatory duel k which can be viewed as a
symmetric version of purgatory k. There are 3+ 2k vertices, Win (which is vertex 0),
one vertex ⊥ which is absorbing (and is also vertex 0′), and the start vertex s and each
other vertex {1, . . . ,k,1′, . . . ,k′} has a 2x2 matrix. Each vertex x ∈ {1, . . . ,k} is such
that ∆(x,r,c) is a Dirac distribution over (1) x− 1 for r = c, (2) s for r < c and (3) ⊥
for r > c. Each vertex x′ ∈ {1′, . . . ,k′} is such that ∆(x′,r,c) is a Dirac distribution over
(1) x−1′ for r = c, (2) s for r < c and (3) Win for r > c. The start vertex is 1x1 matrix
and is such that ∆(s,r,c) is a uniform distribution over k and k′. There is a illustration
of Purgatory Duel 2 in Figure 7.7.

We will say that a strategy σ for Eve mirrors a strategy τ for Adam, if σ(i) = τ(i′)
and σ(i′) = τ(i) for all i. Similarly, τ mirrors σ .

Lemma 114. The value of vertex s is 1/2. Also, for any ε > 0, any (1/2− ε)-optimal
strategy τ for Adam does not follow a Dirac distribution in i′ for any i′ ∈ {1′, . . . ,k′}.
Finally, every ε-optimal strategy is a mirror of an ε-optimal strategy

Proof. First, the value of vertex s is at most 1/2. This is because Adam can mirror any
strategy σ for Eve. This ensures that any play reaching Win is mirrored by an equally
likely play reaching ⊥. Thus, then the players follows these strategies, the pr. to reach
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Win is equal to the pr. to reach ⊥ (there might also be some positive pr. to not reach
neither, but Adam also wins those plays).

Fix ε > 0 and consider a strategy τ for Eve that plays a Dirac distribution in i′ ∈
{1′, . . . ,k′}. Then τ is not (1/2− ε)-optimal. We can see that as follows: Let σ be the
strategy for Eve that plays r = 1 when in j′ ∈ {(i+ 1)′, . . . ,k′} and the action which
is not equal to τ(i′) when in i′. This ensures that the play will always reach either
Win or s from k′. But then Eve can play an (ε/2)-optimal strategy for purgatory k in
{1, . . . ,k}, ensuring that Win is reached with pr. at least 1− ε/2. But then τ is not
(1/2− ε)-optimal.

Consider that Adam is following a strategy τ that is not playing a Dirac distribution
in i′ ∈ {1′, . . . ,k′} and Eve is playing an arbitrary strategy σ . Then, eventually play
reaches Win or ⊥ with pr. 1, because in every k+ 1 steps, either s is visited or either
Win or ⊥ is reached, and after s has been visited, k′ is next half the time and from k′ ⊥
is reached with positive pr.

Consider an ε-optimal strategy τ for Adam, for ε < 1/2. Then, let Eve’s mirror
strategy to τ be στ . Now, either Win or ⊥ is reached and because the strategies mirrors
each other, the pr. to reach Win is equal to that of reaching ⊥. Thus, we see that the
value is at most 1/2, implying that it is exactly 1/2.

It also follows that the strategies that are ε-optimal mirrors each other.

We will now argue that Eve’s (and thus Adam’s) 1
4 -optimal strategies requires high

patience.
To do so we will use the following lemma, showing that you can sometimes modify

a concurrent game (or any of its special cases) and get a game with less value. While
the proof is explicitly for concurrent reachability games, the proof is basically identical
for concurrent discounted and mean payoff games. In a game G, for a vertex v and a
duration T , let vT

G be the value of the time-limited game with duration T .

Lemma 115. Consider a concurrent reachability game G and a pair of vertices u,v,
such that for all T , we have that uT

G ≥ vT
G. Consider a vertex w such that for a pair of

actions, (r,c) we have that v∈ supp(∆(w,r,c)). Consider an alternate game G′ equal to
G, except that some of the probability mass is moved from v to u when playing (r,c) in
w, i.e. 0 < ∆(G,w,r,c)(v)−∆(G′,w,r,c)(v) = ∆(G′,w,r,c)(u)−∆(G,w,r,c)(u). Then
for all vertices z we have that zT

G ≤ zT
G′

Proof. The proof is by induction in T . The proof is trivial for T = 0, because zT
G =

0 = zT
G′ for all non-goal vertices (and the goal vertex Win has value 1). For T ≥ 1, we

have that zT−1
G ≤ zT−1

G′ . But, matrix games are monotone in their entries, so it follows
directly that for z 6= w we have that zT

G ≤ zT
G′ . Consider the matrix for wT

G compared to
wT

G′ . All entries but the one for (r,c) are smaller directly by induction. We also have
that vT

G ≤ uT
G ≤ uT

G′ , the first inequality by definition and the second by induction. We
thus see that all entries in wT

G are smaller than in wT
G′ . The lemma follows.

We are now ready to find the patience in concurrent reachability games.

Lemma 116. Any (1/4)-optimal strategy, for either player, in purgatory duel k has
patience at least (3/4)−2k−1

for each k
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Proof. We will show that the lemma is true for Eve’s strategies and that it is true for
Adam’s follows from Lemma 115. Consider an (1/4)-optimal strategy σ for Eve.
Fixing this strategy for Eve, we get a MDP for Adam. Clearly, in this MDP G′, we have
that 0=⊥T

G′ ≤ sT
G′ for all T . We can thus apply Lemma 115 to changing ∆(1′,1,1) from

⊥ to s. In the resulting game G′′, we still have that 0 = ⊥T
G′′ ≤ sT

G′′ and thus, we can
change ∆(1′,2,2) from ⊥ to s. Let the next game be G∗. Thus, for any i′ ∈ {1′, . . . ,k′},
the plays from i′ to ⊥ in G∗ all goes through s. Note that Adam can ensure that the
play reaches s from i′ and thus, when he plays optimally, do so. Thus, whenever s is
entered and Adam plays optimally, k is enter eventually with pr. 1. For the purpose of
the value, we can thus disregard s and vertices in {1′, . . . ,k′} and just view each edge
going to s as going to k instead. But the resulting game is purgatory k (in which Eve
has fixed his strategy) and Eve is playing a strategy that gives value at least 1/4, which
requires at least (3/4)−2k−1

patience, by Lemma 113.

7.5 Concurrent mean payoff games
In this section we consider concurrent mean payoff games. We will show that in gen-
eral, any ε-optimal strategy in some concurrent mean payoff games are quite complex.
We will first, however, show that finding the value of a concurrent mean payoff game
can be done in polynomial space.

Lemma 117 (Properties of concurrent mean payoff games). Concurrent mean payoff
games are determined and the value is the limit of the value of the corresponding
time-limited game as well as the limit of the corresponding discounted game, for the
discount factor going to 0 from above. There is an polynomial time algorithm similar
to Lemma 112, for finding the set of vertices where a finite memory strategy suffice to
ensure 1− ε (recall that all rewards are in {0,1}). For any fixed number n, there is
a polynomial time algorithm for approximating the value in a concurrent mean payoff
game with n vertices (i.e. the running time is polynomial in the number of actions)

We will not show this lemma, but simply note that the ε-optimal strategies known
for general concurrent mean payoff games can be viewed as playing the corresponding
discounted game with a variable discount factor that depends on how ‘nice’ the rewards
has been up to now. Basically, in each round you play the optimal strategy in the
corresponding discounted game with a discount factor γ . Whenever your rewards are
close to or better than the value, you decrease γ towards 0 and in each round your
rewards are much worse than the value you let γ increase, except not bigger than the
initial γ in the first round. Much of this section will argue that many natural candidates
for simpler types of strategies does not work.

We will show that approximating the value, however, can, as mentioned, be done
in polynomial space. The proof relies on Proposition 22 from [HKL+11], stating the
following:

Proposition 1. Let ε = 2− j, where j is some positive integer, and the probabilities be
rational numbers where the numerator and denominator have bitsize at most τ . Also,
let λ = ετmO(n2)

. Consider some state s and let the value of that state in the λ discounted
game be vλ and the value in mean payoff game be v, then |v− vλ |< ε .
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We will use that to again reduce to the existential theory over the reals. For a fixed
discount factor γ , we can easily express the value of the corresponding discounted
game, like we expressed the value of a concurrent reachability game. We have that the
value v is then v = limγ→0+ f (γ), where f is the found expression. I.e. for any ε , there
is a γ ′ such that for all γ < γ , we have that | f (γ)− v| ≤ ε . Also, that v > c means that
there is ε , such that v− ε > c.

The problem is thus to come up with a polynomial sized formula to express that λ

is ετmO(n2)
= 2− jτmO(n2)

.
That can be done as follows, using ` = O(n2) · log(m)+ log( jτ) many variables,

v0,v1, . . .v`−1:
v0 = 1/2

and for all 0 < i < `, we have that

vi = vi−1 · vi−1.

Using induction, we see that vi = 2−2i
, i.e., v1 = 1/2 = 2−20

and

vi = vi−1 · vi−1 = 2−2i−1 ·2−2i−1
= 2−2i−1−2i−1

= 2−2i

In particular,

v`−1 = 2−2` = 2−2O(n2)·log(m)+log( jτ)
= 2− jτmO(n2)

is the value we wanted for λ . Thus, for a given number v, we can test if the value of
a concurrent λ -discounted game is above v+ ε , which, using the proposition above,
implies that v is below the value of the corresponding concurrent mean payoff game.
On the other hand, the proposition also implies that if the value of the concurrent λ -
discounted game is below v− ε , then the value of the concurrent mean payoff game is
below v. Being able to answer these questions lets you easily approximate the value of
a concurrent mean payoff using binary search.

We get the following lemma.

Lemma 118. Approximating the value of a concurrent mean payoff game can be in
done in polynomial space

We will now consider a specific, well-studied example of a concurrent mean payoff
game, since it shows that many natural kinds of strategies do not suffice in general. The
game is called the big match and is defined as follows: There are 3 vertices, {0,s,1},
where the vertices in {0,1} are absorbing, and with value equal to their name. The last
vertex s has a 2x2-matrix and for all i, j for i 6= j, we have that c(s,1,1) = 1, and for
i 6= 1 6= j we have that c(s,1,1) = 0. Also, ∆(s,1, i) = s for each i, ∆(s,2,1) = 0 and
∆(s,2,2) = 1. There is an illustration in Figure 7.8. The value of the Big Match is 1/2.

Consider a finite-memory strategy σ for Eve. We will argue that σ cannot guarantee
ε (any strategy can guarantee −1, since the colors are between 0 and 1) for any 0 < ε .
Let τ be the stationary strategy for Adam that plays 1 with pr. ε/2. Then playing σ

against τ , we get an Markov chain, where the vertex space is pairs of memory states
and game vertices. In Markov chains, eventually, with pr. 1, a set of vertices S is
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s :
1

0∗

0

1∗

Figure 7.8: The Big Match

reached such that the set of vertices visited infinitely often is S. Such a set is called
ergodic. The set S can clearly only contain 1 game vertex, since whenever s is left, it
is never entered again. Hence, if S contains s, the pr. that play will ever reach {0,1}
is 0. In the MC we get from the players playing σ and τ , let Tε/2 be such that with pr.
ε/2 some ergodic set has been reached. Let τ ′ be the strategy that plays τ for Tε/2 and
afterwards plays 2.

When σ is played against τ ′, either we reach {0,1} and Adam plays 1 only finitely
many times, while in s (the latter because there are only finitely many numbers below
Tε/2). Thus, for Eve to win a play, the play needs to reach vertex 1. There are two ways
to do so, either Eve stops before Tε/2 or after. In the former case, the pr. to reach 1 is
only ε/2 (because Adam needs to play 2 at the time, which is only done with pr. ε/2).
The latter only happens with pr. ε/2 by definition of Tε/2 (because, Adam could play
2 for an arbitrary number of steps while following τ but s would not be left anyway).

We get the following lemma.

Lemma 119 (Properties of the Big Match). No finite memory strategy can guarantee
more than 0 in the Big Match.

The principle of sunken cost states that, when acting rationally, one should disre-
gard cost already paid. We will next argue that this does not apply (naively) to the Big
Match. A strategy following the principle of sunken cost would not depend on past
cost paid and thus, in each step T , there is a pr. pT of stopping for Eve. Such strategies
are called Markov strategies in the Big Match. Fix some Markov strategy σ for Eve.
We will argue, like before, that σ cannot guarantee more than ε for any ε > 0. Note
that Eve does not depend on the choices of Adam and thus, either she stops with pr. 1
or she does not. In the former case, Adam just plays 1 forever. When Eve stops, the
vertex reached is thus −1. Alternately, if Eve does not stop with pr. 1, there must be a
time T , such that she only stops with pr. ε after T (this is actually also the case even
if she stops with pr. 1). Adam’s strategy is then to play 1 for T steps and 2 thereafter.
Observe that the pr. to reach 1 is thus at most ε , in that it must be that Eve stops after
T . If she does not stop (or stops in 0), there will be only finitely many 1s.

We see the following:

Lemma 120 (Properties of the Big Match). No Markov strategy can guarantee more
than 0 in the Big Match
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Bibliographic references

We will now give the references for this chapter, split into a few paragraphs, each
corresponding to a section in the chapter.

John von Neumann’s work on matrix games [vNM44] (also called normal form
games), showing that they have a value and there exists optimal stationary strate-
gies, is typically considered the founding work in game theory. Besides that paper,
Dantzig [Dan65] showed the equivalence to linear programming, and thus that they
can be solved in polynomial time using e.g. Khachiyan’s [Kha79] work on the ellip-
soid method. There are also some results on how complex the strategies for matrix
games are: For any ε > 0, there exists an ε-optimal strategy that plays uniformly over
a multi-set of actions of size d(lnn)/ε2e as shown by Lipton and Young [LY94] (this
is a stronger requirement than patience). Also, as shown by Feder, Nazerzadeh and
Saberi [FNS07] there exists games such that any ε-optimal strategy has support at least
Ω( logn

ε2 ) (note that if, for some x, the support is Ω(x) then patience is also Ω(x)). Fi-
nally, as shown by Hansen, Ibsen-Jensen, Podolskii and Tsigaridas [HIJPT13], there is
an optimal strategy in any matrix game with patience less than (n+2)

n+2
2 /2n+1 and for

each k there exists games with n = m = 2k such that any optimal strategy has patience
at least nn/2/2n(1+o(1)) (there are also results for m and n not equal to 2k for some k, but
not quite as tight to the upper bound).

Shapley [Sha53] first considered concurrent games and focused on the class of
concurrent discounted payoff games. For these, he showed that they have a value and
that there are optimal stationary strategies, using in essence the proof we used for the
first 3 items of Lemma 96. The proof of the fourth item, i.e. that the value can be
approximated in PPAD, comes from the work of Etessami and Yannakakis [EY10].
The proof of the fifth item, an upper bound on the patience of ε-optimal strategies
appears in [IJ12].

Everett [Eve57] was the first to consider concurrent reachability games (formally,
he considered a slight generalization). In that paper, he showed that the games have
a value and ε-optimal stationary strategies (i.e. the first part of Lemma 100 and
Lemma 102). He also used the snowball game to show that Eve does not always
have an optimal strategy (i.e. Lemma 101). Finally, he introduced the notion of
patience for strategies. It was shown by Himmelberg, Parthasarathy, Raghavan and
Vleck [Par73, HPRV76] that Adam has an optimal strategy. Frederiksen and Mil-
tersen [FM13] showed that for each vertex x and action a (except for one action for
each vertex), there is a number cx,a and an integer dx,a, such that for any ε > 0, the
strategy that plays each action a′ in vertex x′ with pr. cx′,a′ε

dx′,a′ is ε-optimal (the last
action in each vertex is played with the remaining pr.). They used that to show that ap-
proximating the value (since the value can be irrational, it seems reasonable to approx-
imate) can be done in TFNP[NP], slightly inside PSPACE. Finding the set of vertices
of value 0, i.e. Lemma 105, is folklore. Finding the set of vertices of value 1, on the
other hand, i.e. Lemma 112, is by de Alfaro, Henzinger and Kupferman [dAHK98]
(their proof is different). Hansen, Koucký and Miltersen [HKM09] showed that pur-
gatory k requires patience ε2k−1

for any 1 > ε > 0 for Eve. Later, Chatterjee, Hansen
and Ibsen-Jensen [CHIJ17] showed that purgatory duel k requires patience (3/4)2k−1
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for any 0≤ ε < 1/4 for either player.
Gillette [Gil57] was the first to consider concurrent mean payoff games and in-

troduced the Big Match game we use as an example. He showed that the Big Match
does not have stationary strategies ensuring more than 0. Later, Blackwell and Fergu-
son [BF68] showed that the Big Match have a value and that value is 1/2 by showing
that some strategies that depends on the full history is ε-optimal. They also showed that
no optimal Markov strategy (i.e. Lemma 120) can ensure more than 0 in that game.
Next, Kohlberg [Koh74] extended this to show that all repeated games with absorbing
states have a value. Finally, Mertens and Neyman [MN81] showed that all concurrent
mean payoff games have a value (i.e the first part of Lemma 117). The strategies em-
ployed in all these papers kept track on the sum of over the rounds of the values of the
vertex in that round minus the color in that round (the strategy by Mertens and Neyman
set the memory to 0 if it should have been negative though). Finding the set of vertices
where for every ε > 0, a finite memory strategy can ensure value 1− ε was done by
Chatterjee and Ibsen-Jensen [CIJ15] (the middle part of Lemma 117). Furthermore,
finding the values in a game with a fixed number of vertices in polynomial time was
done by Hansen, Koucký, Lauritzen, Miltersen and Tsigaridas [HKL+11], informally
speaking by doing binary search for the values. That finite-memory strategies cannot
ensure more than 0 in the Big Match, i.e. Lemma 119 seems to be folklore. Hansen,
Ibsen-Jensen and Koucký [HIJK16] considered extending Markov strategies with a fi-
nite amount of space and showed that if the memory is a deterministic function of
the history, then no such strategy can ensure more than −1 in the Big Match. They
also showed, for any fixed ε > 0, that in round T one only needs O(log logT ) bits of
memory to play ε-optimal in any absorbing game. Finally, Hansen, Ibsen-Jensen and
Neyman [HIJN18] showed that Markov strategies extended with a single bit of space
suffice to play the Big Match ε-optimally, for any ε > 0 (naturally, the strategy used
randomisation to update the memory state).
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Chapter 8
Games with Signals
HUGO GIMBERT

Imperfect information. This chapter presents a few results about zero-sum games
with imperfect information. Those games are a generalization of concurrent games in
order to take into account the possibility that players might be imperfectly informed
about the current state of the game and the actions taken by their opponent, or even
their own action. We will also discuss situations where players may forget what they
used to know.

Before providing formal definitions of games with imperfect information, we give
several examples.

Simple poker. Our first example is a finite duration game which is a simplified ver-
sion of poker, inspired by Borel and von Neumann simplified poker [FF03]. This game
is played with 4 cards {♠,♥,♣,♦}.

• The goal of Eve and Adam is to win the content of a pot in which, initially, they
both put 1 euro.

• Eve receives a private random card, unknown by Adam.

• Eve decides whether to check or raise. If she checks then she wins the pot iff her
card is ♠.

• If Eve raises then Adam has two options: fold or call. If Adam folds then Eve
receives the pot. If Adam raises then both player add two euros in the pot and
Eve wins the pot iff her card is ♠.

A natural strategy for Eve is to raise when she has a spade and otherwise check.
Playing so, she reveals her card to Adam, and we will see that the optimal behaviour
for her consists in bluffing from time to time, i.e. raise although her card is not a spade.

281
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The distracted logician. Our second example is another finite duration game. A
logician is driving home. For that he should go through two crossings, and turn left
at the first one and right at the second one. This logician is very much absorbed in
his thoughts, trying to prove that P 6= NP, and is thus pretty distracted: upon taking a
decision, he cannot tell whether he already saw a crossing or not.

This simple example is useful to discuss the observability of actions and make a
distinction between mixed strategies and behavioral strategy.

Network controller. The following example is inspired from collision regulation in
Ethernet protocols: the controller of a network card has to share an Ethernet layer with
another network card, controller by another controller, possibly malicious.

When sending a data packet, the controller selects a delay in microseconds between
1 and 512 and transmits this delay to the network card. The other controller does the
same. The network cards try to send their data packet at the chosen dates. Choosing
the same date results in a data collision, and the process is repeated until there is no
collision, at that time the data can be sent.

The chosen delay has to be kept hidden from the opponent. This way, it can be
chosen randomly, which ensures that the data will eventually be sent with probability
1, whatever does the opponent.

Guess my set. Our fourth example is an infinite duration game, parametrized by some
integer n. The play is divided into three phases.

• In the first phase, Eve secretly chooses a subset X ( {1, . . . ,2n} of size n among
the
(2n

n

)
possibilities.

• In the second phase, Eve discloses to Adam 1
2

(2n
n

)
pairwise distinct sets of size n

which are all different from X .

• In the third phase, Adam aims at guessing X by trying up to 1
2

(2n
n

)
sets of size n. If

Adam succeeds in guessing X , the game restarts from the beginning. Otherwise,
Eve wins.

Clearly Adam has a strategy to prevent forever Eve to win: try up one by one all
those sets that were not disclosed by Eve. This strategy uses a lot of memory: Adam
has to remember the whole sequence of 1

2

(2n
n

)
sets disclosed by Eve. We will see

that a variant of this game can be represented in a compact way, using a number of
states polynomial in n. As a consequence, playing optimally a game with imperfect-
information and infinite duration might require a memory of size doubly-exponential
in the size of the game.

8.1 Notations
We consider stochastic games with signals, that are a standard tool in game theory
to model imperfect information in stochastic games [RSV06, Ren09]. When playing
a stochastic game with signals, players cannot observe the actual state of the game,
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nor the actions played by themselves or their opponent: the only source of infor-
mation of a player are private signals they receive throughout the play. Stochastic
games with signals subsume standard stochastic games [Sha53], repeated games with
incomplete information [Aum64], games with imperfect monitoring [RSV06], con-
current games [dAH00] and deterministic games with imperfect information on one
side [Rei84, CDHR07].

Like in previous chapters, V , C and A denote respectively the sets of vertices, colors
and actions.

Definition 24. An imperfect information arena A is a tuple (S,∆) where

• S is the set of signals

• ∆ : V ×A×A→D(V ×S×S×C) maps the current vertex and a pair of actions
to a probability distribution over vertices, pairs of signals and colors.

Initially, the game is in a state v0 ∈V chosen according to a probability distribution
δ0 ∈D(V ) known by both players; the initial state is v0 with probability δ0(v0). At each
step n∈N, both players simultaneously choose some actions a,b∈A They respectively
receive signals s, t ∈ S , and the game moves to a new state vn+1. This happens with
probability ∆(vn,a,b)(vn+1,c,d). This fixed probability is known by both players, as
well as the whole description of the game.

A play is a sequence (v0,a0,b0,s0, t0,c0),(v1,a1,b1,s1, t1,c1),(v2 . . . such that for
every n, the probability ∆(vn,an,bn)(vn+1,sn, tn,cn) is positive.

A sequence of signals for a player is realisable for Eve if it appears in a play, we
denote RE ⊆ S∗ the set of these sequence. Similarly for Adam.

An example. The simplified poker can be modelled as a stochastic game with signals.
Actions of players are public signals sent to both players. Also their the payoff of Eve
is publicly announced, when non-zero. Upon choosing whether to call or fold, Adam
cannot distinguish between states♠Raised and�Raised, in both cases he received
the sequence of signals ◦,raise. A graphical representation is provided on Figure 8.1.

The game is played with 4 cards {♠,♥,♣,♦}. We exploit the symmetry of payoffs
with respect to {♥,♣,♦} and identify these three colours as a single one, denoted �,
received initially by Eve with probability 3

4 . The set of vertices is an initial vertex
Start, a terminal vertex End plus the four states

{♠,�}×{Play,Raised} .

The set of colors are possible payoffs C = {0,−1,+1,−3,+3}.
The set of actions A is the union of actions of Eve AE = {·,check,raise} and

actions of Adam AA = {·,call,fold}.
The set of signals is {◦,♠,�} plus {check,raise,call,fold}×{0,−1,+1,−3,+3}.
The rules of the game, are defined by the set of legal transitions. Let c ∈ {♠,�}.
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Start

♠Play �Play

♠Raised �Raised

End

(·, ·) 1
4

Eve receives ♠
Adam receives ◦

(·, ·) 3
4

Eve receives �
Adam receives ◦

(raise, ·) (raise, ·)(check, ·)

+1

(check, ·)

-1

(·,call) +3

(·,fold,) +1

(·,call) −3

(·,fold) +1

Figure 8.1: The simplified poker game.

The following transitions are legal.

∆(Start, ·, ·)((c,Play),c,◦,0) =

{
1
4 if c =♠
3
4 if c =� .

∆((c,Play),check, ·)(End,checkx,checkx,x) = 1 where x =

{
+1 if c =♠
−1 if c =�.

∆((c,Play),raise, ·)((c,Raised),raise0,raise0,0) = 1

∆((c,Raised), ·,call)(End,callx,callx,x) = 1 where x =

{
+3 if c =♠
−3 if c =�.

∆((c,Raised), ·,fold)(End,fold1,fold1,+1) = 1
state End is absorbing with payoff 0.

To simplify the notations, we assumed in the general case that players share the
same set of actions and signals. As a consequence, other transitions than the legal ones
are possible. One can use a threat to guarantee that Eve plays check and raise after
receiving her card, by setting a heavy loss of −10 if she plays another action instead.
Same thing to enforce that Adam plays call or fold after receiving the signal raise.
When targeting applications, legal moves should be explicitly specified, typically using
an automaton to compute the set of legal actions depending on the sequence of signals.

Strategies: behavioral, mixed and general. Intuitively, players make their deci-
sions based upon the sequence of signals they receive, which is formalised with strate-
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gies. There are several natural classes of strategies to play games with signals, as
discussed in [CDH10b] and Section 4 in [BGG17].

A behavioural strategy of Eve associates with every realisable sequence of signals
a probability distribution over actions:

σ : RE →D(A) .

When Eve plays σ , after having received a sequence of signals s0, . . . ,sn she chooses
action a with probability σ(s0, . . . ,sn)(a). Strategies of Adam are the same, except
they are defined on RA.

Remark that in general a player may not observe which actions he actually played,
for example S might be a singleton in which case the players only knows the number
of steps so far.

A game has observable actions if there exists a mapping Act : S→ A such that

∆(v,a,b)(w,s, t)> 0 =⇒ (a = Act(s)∧b = Act(t)) .

In [BGG17, Lemma 4.6 and 4.7] it was shown that without loss of generality, one
can consider games where actions are observable and players play behavioural strate-
gies. The discussion is technical and beyond the scope of this book.

8.2 Finite duration
We start with some results on the very interesting class of game with finite duration.

A game has finite duration if there is a set of absorbing vertices L, called leaves,
such that every play eventually reaches L. In other words, the directed graph (V,E)
induced by all pairs (v,w) such that ∃a,b ∈ A,s, t ∈ S,∆(v,a,b)(w,s, t) > 0 is acyclic,
except for self loops on leaves.

Moreover, C is the set of real numbers, colours are called payoffs. At the moment
the play π reaches a leaf ` ∈ L for the first time, the game is essentially over: Eve
receives the sum of payoffs seen to far, denoted pay(π) and all future payoffs are 0.
Such plays are called terminal plays.

Once a terminal play occurs, the game is over. For this reason, in this section we
restrict realisable sequences of signals to the ones occurring in terminal plays and their
prefixes. This guarantees finiteness of RE and RA since

RE ∪RA ⊆ S≤n .

An initial distribution δ0 and two strategies σ and τ of Eve and Adam naturally
induce a probability distribution Pσ ,τ

δ0
on the set of terminal plays starting in one of

the vertices v0,δ0(v0)> 0. Players have opposite interests: Eve seeks to maximize her
expected payoff

Eσ ,τ
δ0

= ∑
terminal plays π

Pσ ,τ
δ0

(π) ·pay(π) ,

while Adam wants to minimize it.
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8.2.1 Existence and computability of the value
Next theorem gathers several folklore results.

Theorem 93 (Finite duration games). A game with finite duration and imperfect infor-
mation has a value: for every initial distribution δ0,

sup
σ

inf
τ
Eσ ,τ

δ0
= inf

τ
sup

σ

Eσ ,τ
δ0

.

This value is denoted val(δ0) and is computable 1. Both players have optimal strate-
gies.

Reduction to normal form. The main ingredient for proving this theorem is a trans-
formation of the game into a matrix game called its normal form.

The intuition is that a player, instead of choosing progressively her actions as she
receives new signals, may choose once for all at the beginning of the game how to react
to every possible sequence of signals she might receive in the future.

Fix an initial distribution δ0. In the normal form version the game, Eve picks
a deterministic strategy σ : RE → A while simultaneously Adam picks τ : RA → A.
Then the game is over and Eve receives payoff Eσ ,τ

δ0
. There are finitely many such

deterministic strategies, thus the normal form game is a matrix game. See Section 7.2
for more details about matrix games.

An example. In the simplified poker example, the reduction is as follows.
We rely on the formal description of the game at the end of Section 8.1 and perform

two simplifications. First, we only consider strategies playing moves according to the
rules, other strategies are strategically useless.

Deterministic strategies of Eve are mappings σ : {♠,�}→{check,raise}. Adam
has only two deterministic strategies: after the sequence ◦Raised, he should choose
between actions call and fold.

The normal form is

call fold

♠→ check,�→ check −0.5 −0.5
♠→ raise,�→ check 0 −0.5
♠→ raise,�→ raise −1.5 +1
♠→ check,�→ raise −2 +1

The first line corresponds to Eve never raising, thus her odds are +1 euro at 25% and
-1 at 75% thus an expected payoff of −0.5. The third line corresponds to Eve always
raising. If Adam calls then her odds are +3 at 25% and -3 at 75%, on average −1.5. If
Adam folds, she gets payoff +1.

Remark that the rows where Eve checks with♠ are dominated by the corresponding
row where Eve does not. Thus checking with♠ (slow playing) has no strategic interest,

1provided payoffs are presented in a way compatible with linear solvers, typically rational values.
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and by elimination of weakly dominated strategies, the normal form game is equivalent
to:

call fold

♠→ raise,�→ check 0 −0.5
♠→ raise,�→ raise −1.5 1

The value of this game is − 1
4 . Eve has a unique optimal strategy which consists in

playing the top row with probability 5
6 . In other words, she should bluff with probability

1
6 when she receives �. Adam has a unique optimal strategy which consists in calling
or folding with equal probability 1

2 .

Proof of Theorem 93. The example illustrates the correspondence between behavioural
strategies in the finite-duration game on one side and mixed strategies in the normal
form game on the other. In the general case, the correspondence can be stated as fol-
lows.

Lemma 121. Denote Strat the set of behavioural strategies, Stratd the subset of deter-
ministic strategies and D(Stratd) the set of strategies in the normal form game.

1. There is a mapping Φ : Strat→D(Stratd) which preserves payoffs:

∀σ ,τ ∈ Strat,Eσ ,τ
δ0

= ∑
σ ′,τ ′∈Stratd

Φ(σ)(σ ′) ·Φ(τ)(τ ′) ·Eσ ′,τ ′

δ0
.

2. Since actions are observable, there is a mapping Φ′ : D(Stratd)→ Strat which
preserves payoffs:

∀Σ,T ∈D(Strat), ∑
σ ′,τ ′∈Stratd

Σ(σ ′)T (τ ′)Eσ ′,τ ′

δ0
= EΦ′(σ),Φ′(τ)

δ0
.

3. Φ′ ◦Φ is the identity.

We assumed earlier that each player can observe its own actions. This hypothesis
is necessary for ii) and iii) to hold in general.

Proof. We start with i). Intuitively, all random choices of actions performed by a be-
havioural strategy σ of Eve can be done at the beginning of the play. Playing σ is
equivalent to playing each deterministic strategy σ ′ with probability

Φ(σ)(σ ′) = Πu∈RE σ(u)(σ ′(u)) .

We prove ii). Let Σ ∈ D(Strat). The definition of the behavioural strategy σ =
Φ′(Σ) is as follows. Let s0 . . .sk be a finite sequence of signals. Since actions are
observable, this defines unambiguously the sequence of corresponding actions a0 . . .ak
where ai = Act(si). We set σ(s0 . . .sk)(a) to be the probability that a deterministic
strategy chosen with Σ chooses action a after signals s0 . . .sk, conditioned on the fact
that it has already chosen action a0 . . .ak:

σ(s0 . . .sk)(a) = Σ
(
σ
′(s0 . . .sk) = a | ∀0≤ i≤ k,σ ′(s0 . . .si−1) = Act(si)

)
,

where the vertical pipe denotes a conditional probability.
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We proceed with the proof of Theorem 93. According to Theorem 92, the normal
form has a value and optimal strategies for each player. Denote valN the value and Σ]

and T ] the optimal strategies. Let σ ] = Φ′(Σ]). Then σ ] ensures a payoff of at least
valN in the imperfect information game, because for every strategy τ ,

Eσ ],τ
δ0

= EΦ′(Σ]),Φ′(Φ(τ))
δ0

= ∑
σ ′,τ ′∈Stratd

Σ
](σ ′)Φ(τ)(τ ′)Eσ ′,τ ′

δ0
≥ valN ,

where the first equalities are applications of Lemma 121 and the inequality is by opti-
mality of Σ]. Symmetrically, τ] = Φ′(T ]) guarantees ∀σ ,Eσ ,τ]

δ0
≤ valN . Thus the value

of the game with finite duration is valN and σ ] and τ] are optimal.

8.2.2 The Koller-Meggido-von Stengel reduction to linear program-
ming

The reduction of a finite-duration game with imperfect information to its normal form
proves that the value exists and is computable. However the corresponding algorithm
is computationally very expensive, it requires solving a linear program of size roughly
doubly-exponential in the size of the original game, since the normal form is a matrix
index by ARE ×ARA and the set of signal sequences might contain all sequences of S of
length ≤ n.

Koller, Meggido and von Stengel did provide a more efficient direct reduction to
linear programming. Strategies of Eve in the normal form game live in RARE while
her strategies in the game with imperfect information live in a space with exponen-
tially fewer dimensions, namely RRE×A. The direct reduction avoids this dimensional
blowup.

Theorem 94. The value of a game with imperfect information can be computed by a
linear program with |RE |+ |RA| variables.

As a consequence, in the particular case where the game graph is a tree then
|RE | ≤ n and |RA| ≤ n and the value can be computed in polynomial time, like stated
in [KMvS94].

Proof. The construction of the linear program relies on three key ideas.
First, representing a behavioral strategy σ : RE →D(A) of Eve as a plan π : RE →

[0,1] recursively defined by π(ε) = 1 and for every s0 · · ·sn ∈ RE ,s ∈ S,

π(s0 · · ·sn · s) = π(s0 · · ·sn) ·σ(s0 · · ·sn)(Act(s)) .

Remind that actions are observable and Act(s) denotes the action that Eve has just
played before receiving signal s. In the linear program, plans are represented by vari-
ables (pr)r∈RE

. Valuations corresponding to plans can be characterized by the follow-
ing equalities. First, pε = 1. Second, for every s0 . . .sn−1s,s0 . . .sn−1s′ ∈ RE ,

(Act(s) = Act(s′)) =⇒
(

ps0...sn−1s = ps0...sn−1s′
)

.
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We denote ps0...sn−1a the common value of all ps0...sn−1s with a = Act(s). The third
equality is ps0...sn−1 = ∑a∈A ps0...sn−1a .

The second key idea is to introduce variables evaluating the contribution of a (real-
isable) sequence of signals of Adam to the total expected payoff Eve. These contribu-
tions are represented by variables (vr)r∈RA .

The third key idea is to aggregate the product of transition probabilities along a
play. For every play (v0,a0,b0,s0, t0,c0), . . . ,(vk,ak,bk,sk, tk,ck) we denote E(π) the
product of all transition probabilities of π and rE(π) the sequence of signals of Eve in
this play:

E(π) = δ0(v0) ·∆(v0,a0,b0,s0, t0,c0) · · ·∆(vk,ak,bk,sk, tk,ck)

rE(π) = s0,s1, . . . ,sk .

We show that the following linear program with variables (pr)r∈RE , (vr)r∈RA has
an optimal solution which equals to val(δ0). For every sequences of signals r ∈ RA we
denote TA(r) the (possibly empty) set of terminal plays whose sequence of signals for
Adam is r.

Maximise vε subject to

(pr)r∈RE
is a plan of Eve

∀r ∈ RA,∀a ∈ A,

vr ≤ ∑
rs∈RA

s∈S,Act(s)=a

vrs + ∑
π∈T (r)

E(π) ·pay(π) · prE (π) (8.1)

For our purpose, it is enough to establish that the optimal solution of the LP is

val(δ0) = sup
σ

min
τ deterministic

Eσ ,τ
δ0

.

The reason is that in a matrix game, for every fixed strategy of Eve, Adam can mini-
mize the payoff by playing a single action with probability 1. Thus, according to the
reduction to normal form seen in the previous chapter, for every strategy σ of Eve,
there is a deterministic strategy τ of Adam which minimizes Eσ ,τ

δ0
.

We show first that for every feasible solution (pr)r∈RE , (vr)r∈RA of the linear pro-
gram, the strategy σ corresponding to the plan (pr)r∈RE guarantees that for every de-
terministic strategy τ , Eσ ,τ

δ0
≥ vε . Since τ is deterministic then Eσ ,τ

δ0
is the sum of all

E(π) ·pay(π) · prE (π) over plays π played according to τ thus a trivial induction shows
Eσ ,τ

δ0
≥ vε .

We show now that to every strategy σ of Eve, and to every deterministic optimal
answer τ of Adam, corresponds a feasible solution of the program such that vε = Eσ ,τ

δ0
.

Let (pr)r∈RE the plan corresponding to σ . For every r ∈ RA define vr be the expected
payoff of Eve in an auxiliary game where she plays σ and Adam plays τ and the payoff
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of Eve is turned to 0 whenever Adam signals sequence does not start with r. We show
that the linear constraint Equation (8.1) holds for every r ∈ RA and action a. Since τ is
deterministic then Equation (8.1) is an equality whenever a = τ(r). And since τ is an
optimal answer to σ , it is locally optimal in the sense where playing an action different
from τ(r) after r cannot be profitable to Adam, hence Equation (8.1) holds. Finally,
(pr)r∈RE , (vr)r∈RA is a feasible solution.

An example. The following linear program computes the value of the simplified
poker example.

Maximise vε subject to

∀r ∈ RE , 0≤ pr ≤ 1
p♠,check+ p♠,raise = 1
p�,check+ p�,raise = 1
vε ≤ v◦ ≤ v◦,check+ v◦,raise

v◦,check ≤
1
4
· p♠,check · (+1)+

3
4
· p�,check · (−1)

v◦,raise ≤
1
4
· p♠,raise · (+1)+

3
4
· p�,raise · (+1)

v◦,raise ≤
1
4
· p♠,raise · (+3)+

3
4
· p�,raise · (−3)

Setting x = p♠,check and y = p�,check, the solution is

1
4

max
(x,y)∈[0,1]2

(x−3y+min((1− x)+3(1− y),3(1− x)−9(1− y)))

=
1
4

max
(x,y)∈[0,1]2

min(4−6y,−6−2x+6y) =
1
4

max
y∈[0,1]

min(4−6y,−6+6y) ,

which is maximal when y = 5
6 and the solution is − 1

4 .

Nose scratch variant. Assume now that Eve does not have the perfect poker face:
whenever she has ♠ she scratches her nose with probability 1

2 whereas in general it
happens only with probability 1

6 . Only Adam is aware of this sign, which he receives
as a private signal s (scratch) or n (no scratch).

Compared to the perfect poker face situation, the situation is slightly better for
Adam: the value drops from − 1

4 to (− 1
4 −

1
10 ). The optimal bluff frequency of Eve

decreases from 1
6 to 1

10 . Computation details follow.

Maximise vε subject to
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∀u ∈ RE , 0≤ pu ≤ 1
p♠,c+ p♠,r = 1 p�,c+ p�,r = 1
vε ≤ vs+ vn vs ≤ vsc+ vsr vn ≤ vnc+ vnr

vsc ≤
1
4
· 1

2
· p♠,c · (+1)+

3
4
· 1

6
· p�,c · (−1)

vnc ≤
1
4
· 1

2
· p♠,c · (+1)+

3
4
· 5

6
· p�,c · (−1)

vsr ≤
1
4
· 1

2
· p♠,r · (+1)+

3
4
· 1

6
· p�,r · (+1)

vsr ≤
1
4
· 1

2
· p♠,r · (+3)+

3
4
· 1

6
· p�,r · (−3)

vnr ≤
1
4
· 1

2
· p♠,r · (+1)+

3
4
· 5

6
· p�,r · (+1)

vnr ≤
1
4
· 1

2
· p♠,r · (+3)+

3
4
· 5

6
· p�,r · (−3)

Set y = p�,c. Some elementary simplifications lead to the equivalent program:

max
0≤y≤1

1
8
(min(8−12y,−10+8y,6−8y,−12+12y))

The optimum is reached when 8y− 10 = 8− 12y i.e. when p�,c = 9
10 and is equal to

− 7
20 =− 1

4 −
1
10 .

8.3 Infinite duration

Games with infinite duration and imperfect information are a natural model for appli-
cations such as synthesis of controllers of embedded systems. This is illustrated by the
example of the network controller. Whereas in the previous section games of finite-
duration were equipped with real-valued payoffs, here we focus on Büchi conditions.

8.3.1 Playing games with infinite duration and imperfect informa-
tion

Notations used for games of finite duration are kept. On top of that we need to define
how probabilities are measured and the winning conditions.

Measuring probabilities. The choice of an initial distribution δ0 ∈ D(V ) and two
strategies σ : RE → D(A) and τ : RA → D(A) for Eve and Adam defines a Markov
chain on the set of all finite plays. This in turn defines a probability measure Pσ ,τ

δ0
on

the Borel-measurable subsets of ∆ω . The random variables Vn,An,Bn,Sn and Tn denote
respectively the n-th state, action of Eve, action of Adam, signal received by Eve and
Adam, and we denote πn the finite play πn =V0,A0,B0,S0,T0,V1, . . . ,Sn,Tn,Vn+1.
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The probability measure Pσ ,τ
δ0

is the only probability measure over ∆ω such that for
every v ∈V , Pσ ,τ

δ0
(V0 = v) = δ0(v) and for every n ∈ N,

Pσ ,τ
δ0

(Vn+1,Sn,Tn | πn)

= σ(S0 · · ·Sn−1)(An) · τ(T0 · · ·Tn−1)(Bn) ·∆(Vn,An,Bn)(Vn+1,Sn,Tn) ,

where we use standard notations for conditional probability measures.

Winning conditions. The set of colours is C = {0,1}. The reachability, safety, Büchi
and coBüchi condition condition are defined as follows:

Reach= {∃n ∈ N,Cn = 1}
Safety= {∀n ∈ N,Cn = 0}
Buchi= {∀m ∈ N,∃n≥ m,Cn = 1}
CoBuchi= {∃m ∈ N,∀n≥ m,Cn = 0} .

When the winning condition is Win, Eve and Adam use strategies σ and τ and the
initial distribution is δ0, then Eve wins the game with probability:

Pσ ,τ
δ0

(Win) .

Eve wants to maximise this probability, while Adam wants to minimise it.

8.3.2 The value problem.
The value problem is computationally intractable for games with infinite duration and
imperfect information. This holds even for the very simple case of blind one-player
games with reachability conditions. Those are games where the set of signals is a
singleton and actions of Adam have no influence on the transition probabilities. These
games can be seen as probabilistic automata, hence the undecidability result of Paz
applies.

Theorem 95 (Undecidability for blind one-player games). Whether Eve has a strategy
to win with probability ≥ 1

2 is undecidable, even in blind one-player games.

Actually, the value might not even exist.

Proposition 2 (The value may not be defined). There is a game with infinite duration
imperfect information and Büchi condition in which

sup
σ

inf
τ
Pσ ,τ

δ0
(Buchi) =

1
2
< 1 = inf

τ
sup

σ

Pσ ,τ
δ0

(Buchi) .

The value however exists for games with reachability condition. Although the value
problem is not decidable, there are some other interesting decision problems to con-
sider.
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8.3.3 Winning with probability 1 or > 0

Winning almost-surely or positively. A strategy σ for Eve is almost-surely winning
from an initial distribution δ0 if

∀τ,Pσ ,τ
δ0

(Win) = 1 .

When such an almost-surely strategy σ exists, the initial distribution δ0 is said to be
almost-surely winning (for Eve).

A less enjoyable situation for Eve is when she only has a positively winning strat-
egy. A strategy σ for Eve is positively winning from an initial distribution δ0 if

∀τ,Pσ ,τ
δ0

(Win)> 0 .

When such a strategy σ exists, the initial distribution δ is said to be positively winning
(for Eve). Symmetrically, a strategy τ for Adam is positively winning if it guarantees
∀σ ,Pσ ,τ

δ0
(Win)< 1.

The worst situation for Eve is when her opponent has an almost-surely winning
strategy τ , which thus ensures Pσ ,τ

δ0
(Win) = 0 whatever strategy σ is chosen by Eve.

Qualitative determinacy.

Theorem 96 (Qualitative determinacy). Stochastic games with signals and reachabil-
ity, safety and Büchi winning conditions are qualitatively determined: either Eve wins
almost-surely winning or Adam wins positively. Formally, in those games,(

∀τ,∃σ ,Pσ ,τ
δ0

(Win) = 1
)

=⇒
(
∃σ ,∀τ,Pσ ,τ

δ0
(Win) = 1

)
.

The proof of this result is given in the next section.
Since reachability and safety games are dual, a consequence of Theorem 96, is

that in a reachability game, every initial distribution is either almost-surely winning for
Eve, almost-surely winning for Adam, or positively winning for both players. When
a safety condition is satisfied almost-surely for a fixed profile of strategies, it trivially
implies that the safety condition is satisfied by all consistent plays, thus for safety
games winning surely is the same than winning almost-surely.

By contrast, co-Büchi games are not qualitatively determined:

Lemma 122. There is a co-Büchi game in which neither Eve has an almost-surely
winning strategy nor Adam has a positively winning strategy.

Proof. In this game, Eve observes everything, Adam is blind (he only observes his own
actions), and Eve’s objective is to visit only finitely many times the /-state. The initial
state is /. The set of actions is {a,b,c,d}. All transitions are deterministic.

On one hand, no strategy Σ is almost-surely winning for Eve for her co-Büchi
objective. Since both players can observe their actions, it is enough to prove that
no behavioral strategy σ ∈ C∗ → ∆(I) of Eve is almost-surely winning. Fix strat-
egy σ and assume towards contradiction that σ is almost-surely winning. We define
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a strategy τ such that Pσ ,τ

/ (Buchi) > 0. Strategy τ starts by playing only c. The

probability to be in state / at step n is x0
n = Pσ ,cω

/ (Vn =/) and since σ is almost-
surely winning then x0

n →n 0 thus there exists n0 such that x0
n0
≤ 1

2 . Then τ plays d
at step n0. Assuming the state was 2 when d was played, the probability to be in
state / at step n ≥ n0 is x1

n = Pσ ,cn0 dcω

/
(
Vn =/ |Vn0 =/

)
and since σ is almost-

surely winning there exists n1 such that x1
n1
≤ 1

4 . Then τ plays d at step n1. By in-
duction we keep defining τ this way so that τ = cn0−1dcn1−n0−1dcn2−n1−1d · · · . and
for every k ∈ N, Pσ ,τ

/
(
Vnk+1 =/ and Vnk+1−1 = 2 |Vnk =/

)
≥ 1− 1

2k+1 . Thus finally
Pσ ,τ

/ (Buchi)≥Πk(1− 1
2k+1 )> 0 which contradicts the hypothesis.

On the other hand, Adam does not have a positively winning strategy either. Intu-
itively, Adam cannot win positively because as time passes, either the play reaches state
1 or the chances that Adam plays action d drop to 0. When these chances are small,
Eve can play action c and she bets no more d will be played and the play will stay safe
in state 2. If Eve loses her bet then again she waits until the chances to see another d
are small and then plays action c. Eve may lose a couple of bets but almost-surely she
eventually is right and the CoBuchi condition is almost-surely fulfilled.

Finally neither Eve wins almost-surely nor Adam wins positively.

Decidability

Theorem 97. Deciding whether the initial distribution of a Büchi games, is almost-
surely winning for Eve is 2EXP-complete. For safety games, the same problem is EXP-
complete.

Concerning winning positively a safety or co-Büchi game, one can use Theorem 96
and the determinacy property: Adam has a positively winning strategy in the above
game if and only if Eve has no almost-surely winning strategy. Therefore, deciding
when Adam has a positively winning strategy can also be done, with the same com-
plexity.

Theorem 98. For reachability and Büchi games where either Eve is perfectly informed
about the state or Adam is better informed than Eve, deciding whether the initial dis-
tribution is almost-surely winning for Eve is EXP-complete. In safety games Eve is
perfectly informed about the state, the decision problem is in P.

8.3.4 Qualitative determinacy: proof of Theorem 96
Beliefs. The belief of a player is the set of possible states of the game, according to
the signals received by the player.

Definition 25 (Belief). Let A be an arena with observable actions. From an initial set
of states L⊆V , the belief of Eve after having received signal s is:

BEve(L,s) = {v ∈ V | ∃l ∈ L, t ∈ S such that ∆(l,s, t)(v,Act(s),Act(t)) > 0} .

Remark that in this definition we use the fact that actions of Eve are observable,
thus when he receives a signal s ∈C Eve can deduce he played action a1(c) ∈ I. The
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belief of Eve after having received a sequence of signals s1, . . . ,sn is defined inductively
by:

BEve(L,s1,s2, . . . ,sn) = BEve(BEve(L,s1, . . . ,sn−1),sn).

Beliefs of Adam are defined similarly. Given an initial distribution δ , we denote Bn
Eve

the random variable defined by

B0
Eve = supp(δ )

Bn+1
Eve = BEve(supp(δ ),C1, . . . ,Cn+1) = BEve(B

n
Eve,Cn+1) .

We will also rely on the notion of belief of belief, called here 2-belief, which,
roughly speaking, represents for one player the set of possible beliefs for his (or her)
adversary, as well as the possible current state.

Definition 26 (2-Belief). Let A be an arena with observable actions. From an initial
set L ⊆V ×P(V ) of pairs composed of a state and a belief for Adam, the 2-belief of
Eve after having received signal c is the subset of V ×P(V ) defined by:

B
(2)
Eve(L ,s) = {(v,BAdam(L, t)) | ∃(`,L) ∈L , t ∈ S,∆(v,s, t)(`,Act(s),Act(t))> 0} .

From an initial set L ⊆ V ×P(V ) of pairs composed of a state and a belief for
Adam, the 2-belief of Eve after having received a sequence of signals s1, . . . ,sn is de-
fined inductively by:

B
(2)
Eve(L ,s1,s2, . . . ,sn) = B

(2)
Eve

(
B

(2)
Eve (L ,s1, . . . ,sn−1) ,sn

)
.

There are natural definitions of 3-beliefs (beliefs on beliefs on beliefs) and even
k-beliefs however for our purpose, 2-beliefs are enough, in the following sense: in
Büchi games the positively winning sets of Adam can be characterised by fixed point
equations on sets of 2-beliefs, and some positively winning strategies of Adam with
finite-memory can be implemented using 2-beliefs.

Supports positively winning supports. Note that whether an initial distribution δ0 is
almost-surely or positively winning depends only on its support, because Pσ ,τ

δ0
(Win) =

∑v∈V δ0(v) ·Pσ ,τ
δ0

(Win | V0 = v). As a consequence, we will say that a support L ⊆ V
is almost-surely or positively winning for a player if there exists a distribution with
support L which has the same property.

In the sequel, we will denote LEve,=1 the set of supports almost-surely winning for
Eve and LAdam,>0 those positively winning for Adam.

Then the qualitative determinacy theorem is a corollary of the following lemma.

Lemma 123. In every Büchi game, every non-empty support which does not belong to
LAdam,>0 belongs to LEve,=1.

The proof of this lemma relies on the definition of a strategy called the maximal
strategy. We prove that this strategy is almost-surely winning from any initial distribu-
tion which is not positively winning for Adam.
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Definition 27 (Maximal strategy). For every non-empty support L ⊆ V we define the
set of L-safe actions for Eve as

ISafe(L) =
{

a ∈ A | ∀s ∈ S,(Act(s) = a) =⇒ (BEve(L,s) 6∈LAdam,>0)
}

,

in other words these are the actions which Eve can play without taking the risk that her
belief is positively winning for Adam.

The maximal strategy is the strategy of Eve which plays the uniform distribution on
ISafe(BEve) when it is not empty and plays the uniform distribution on A otherwise.
It is denoted σmax.

To play her maximal strategy at step n, Eve only needs to keep track of her belief
Bn

Eve, thus σmax can be implemented by Eve using a finite-memory device which keeps
track of the current belief. Such a strategy is said to be belief-based. We will use several
times the following technical lemma about belief-based strategies.

Lemma 124. Fix a Büchi game. Let L ⊆P(V ) and σ a strategy for player 1. Assume
that σ is a belief strategy, L is downward-closed (i.e. L ∈L ∧L′ ⊆ L =⇒ L′ ∈L )
and for every L ∈L \{ /0} and every strategy τ ,

Pσ ,τ
δL

(Reach)> 0 , (8.2)

Pσ ,τ
δL

(∀n ∈ N,Bn
Eve ∈L ) = 1 . (8.3)

Then σ is almost-surely winning for the Büchi game from any support L ∈L \{ /0}.

Proof. Since L is downward-closed then ∀L ∈L ,∀l ∈ L,{l} ∈L thus Section 8.3.3
implies

∀L ∈L ,∀l ∈ L,Pσ ,τ
δL

(Reach |V0 = l)> 0 . (8.4)

Once σ is fixed then the game is a one-player game with state space V × 2V and
imperfect information and Equation (8.4) implies that in this one-player game,

∀L ∈L ,∀l ∈ L,∀τ,Pτ

δL
(Reach |V0 = l)> ε , (8.5)

where N = |K| ·2|K| and ε = p|K|·2
|K|

min and pmin is the minimal non-zero transition prob-
ability. Moreover Equation (8.3) implies that in this one-player game the second com-
ponent of the state space is always in L , whatever strategy τ is played by player 2.
Remind the definition

Reach= {∃n ∈ N,Cn = 1} .

As a consequence, in this one-player game for every m ∈ N, and every behavioral
strategy τ and every l ∈V ,

Pτ

δL
(∃m≤ n≤ m+N,Cn = 1 | Km = l)≥ ε, (8.6)

whenever Pτ

δL
(Vm = l)> 0.



8.3. INFINITE DURATION 297

We use the Borel-Cantelli Lemma to conclude the proof. According to Equa-
tion (8.6), for every τ , L ∈L , m ∈ N,

Pτ

δL
(∃n,mN ≤ n < (m+1)N,Cn = 1 |VmN)≥ ε, (8.7)

which implies for every behavioral strategy τ and k,m ∈ N,

Pτ

δL
(∀n,((m ·N)≤ n < ((m+ k) ·N) =⇒ Cn 6= 1))≤ (1− ε)k .

Since ∑k (1− ε)k is finite, we can apply Borel-Cantelli Lemma for the events ({∀n,m ·
N ≤ n < (m+ k) ·N =⇒ Cn 6= 1})k and we get Pτ

δL
(∀n,m ·N ≤ n =⇒ Cn 6= 1) = 0

thus
Pτ

δL
(Buchi) = 1 . (8.8)

As a consequence σ is almost-surely winning for the Büchi game.

An important feature of the maximal strategy is the following.

Lemma 125. In a Büchi game with observable actions, let δ ∈ ∆(K) be an initial
distribution which is not positively winning for Adam, i.e. supp(δ ) 6∈LAdam,>0. Then
for every strategy τ of Adam

Pσmax,τ
δ

(∀n ∈ N,Bn
Eve 6∈LAdam,>0) = 1 . (8.9)

Proof. We only provide a sketch of proof. The proof is an induction based on the fact
that for every non-empty subset L⊆V ,

(L 6∈LAdam,>0) =⇒ (ISafe(L) 6= /0) .

Assume a contrario that ISafe(L) = /0 for some L 6∈LAdam,>0. Then for every action
a∈A there exists a signal sa ∈ S such that BEve(L,sa) 6= /0 and BEve(L,sa)∈LAdam,>0.
Since BEve(L,sa) 6= /0, the definition of the belief operator implies:

∃va ∈ L,wa ∈V, ta ∈ T, such that ∆(wa,sa, ta)(va,Act(s),Act(ta))> 0 .

But then Adam can win positively from L with the following strategy. At the first
round, Adam plays randomly any action in A. At the next round, Adam picks up
randomly a belief in LAdam,>0 and plays forever the corresponding positively winning
strategy. Remark that this strategy of Adam is not described as a behavioural strategy
but rather as a finite-memory strategy. Since actions are observable, such a finite-
memory strategy can be turned into a behavioural one, see [BGG17, Lemma 4.6 and
4.7].

Why is Adam strategy positively winning from L? Whatever action a ∈ A is played
by Eve, with positive probability she will receive signal sa, because Adam might play
the action Act(ta). Since BEve(L,sa) ∈ LAdam,>0 then there Adam might with pos-
itive probability play a strategy positively winning when the initial belief of Eve is
BEve(L,sa). Thus whatever action Eve chooses, she might lose with positive probabil-
ity.
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The notion of maximal strategy being defined, we can complete the proof of Theo-
rem 96. For that, we show that σmax is almost-surely winning from every support not
in LAdam,>0.

Reachability and safety conditions can be easily encoded as Büchi conditions, thus
it is enough to consider Büchi games.

The first step is to prove that for every L ∈LEve,=1, for every strategy τ of Adam,

Pσmax,τ
δL

(Safety)< 1 . (8.10)

We prove Equation (8.10) by contradiction. Assume Equation (8.10) does not hold for
some L ∈LEve,=1 and strategy τ:

Pσmax,τ
δL

(Safety) = 1 . (8.11)

Under this assumption we use τ to build a strategy positively winning from L, which
will contradict the hypothesis L ∈ LAdam,>0. Although τ is surely winning from L
against the particular strategy σmax, there is no reason for τ to be positively winning
from L against all other strategies of player 1.

However we can rely on τ in order to define another strategy τ ′ for Adam positively
winning from L. The strategy τ ′ is a strategy which gives positive probability to play τ

all along the play, as well as any strategy in the family of strategies (τn,B)n∈N,B∈LAdam,>0
defined as follows. For every B∈LAdam,>0 we choose a strategy τB positively winning
from B. Then τn,B is the strategy which plays the uniform distribution on A for the first
n steps then forgets past signals and switches definitively to τB.

A possible way to implement the strategy τ ′ is as follows. At the beginning of the
play player 2 tosses a fair coin. If the result is head then he plays τ . Otherwise he keeps
tossing coins and as long as the coin toss is head, player 2 plays randomly an action in
J . The day the coin toss is tail, he picks up randomly some B ∈LAdam,>0 and starts
playing τB.

Remark that this strategy of Adam is not described as a behavioural strategy but,
since actions are observable, such a finite-memory strategy can be turned into a be-
havioural one, see [BGG17, Lemma 4.6 and 4.7].

Now that τ ′ is defined, we prove it is positively winning from L. Let E be the event
‘player 1 plays only actions that are safe with respect to her belief’, i.e.

E = {∀n ∈ N,An ∈ ISafeL (Bn
Eve)} .

Then for every behavioral strategy σ :

• Either Pσ ,τ ′

δL
(E) = 1. In this case

Pσ ,τ ′

δL
(Safety)> 0 ,

because for every finite play π = v0a0b0s1t1v1 · · ·vn,(
Pσ ,τ ′

δL
(π)> 0

)
=⇒

(
Pσmax,τ ′

δL
(π)> 0

)
=⇒ Safety ,
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where the first implication holds because, by definition of σmax and E, for every
s1 · · ·sn ∈CS∗,supp(σ(s1 · · ·sn))⊆ supp(σmax(s1 · · ·sn)) while the second impli-
cation is from Equation (8.11). Thus Pσ ,τ

δL
(Safety)= 1 and we get Pσ ,τ ′

δL
(Safety)>

0 by definition of τ ′.

• Or Pσ ,τ ′

δL
(E)< 1. Then by definition of E there exists n ∈ N such that

Pσ ,τ ′

δL
(An 6∈ ISafeL (Bn

Eve))> 0 .

By definition of ISafeL it implies Pσ ,τ ′

δL

(
Bn+1

Eve ∈L
)
> 0, thus there exists B ∈

L such that Pσ ,τ ′

δL

(
Bn+1

Eve = B
)
> 0. By definition of τ ′ we get Pσ ,τn+1,B

δL

(
Bn+1

Eve = B
)
>

0, because whatever finite play v0, . . . ,vn+1 leads with positive probability to the
event {Bn+1

Eve = B}, the same finite play can occur with τn+1,B since τn+1,B plays
every possible action for the n+ 1 first steps. Since τn+1,B coincides with τrand

for the first n+ 1 steps then by definition of beliefs, Pσ ,τn+1,B
δL

(
Bn+1

Eve = B
)
> 0

and B⊆ {k ∈ K | Pσ ,τn+1,B
δL

(
Kn+1 = k |Bn+1

Eve = B
)
> 0}. Using the definition of

τB we get Pσ ,τn+1,B
δL

(CoBuchi)> 0.

As a consequence by definition of τ ′ we get Pσ ,τ ′

δL
(CoBuchi)> 0.

In both cases, for every σ , Pσ ,τ ′

δL
(CoBuchi) > 0 thus τ ′ is positively winning from L.

This contradicts the hypothesis L ∈LEve,=1. As a consequence we get Equation (8.10)
by contradiction.

Using Equation (8.10), we apply Lemma 124 to the collection LAdam,>0 and the
strategy σmax. The collection LAdam,>0 is downward-closed because LAdam,>0 is
upward-closed: if a support is positively winning for Adam then any greater support is
positively winning as well, using the same positively winning strategy.

Thus σmax is almost-surely winning for the Büchi game from every support in
LAdam,>0 i.e. every support which is not positively winning for Adam, hence the game
is qualitatively determined.

8.3.5 Decidability: proof of Theorem 97 and Theorem 98
A naïve algorithm

As a corollary of the proof of qualitative determinacy (Theorem 96), we get a maximal
strategy σmax for player 1 (see Definition 27) to win almost-surely Büchi games.

Corollary 19. If player 1 has an almost-surely winning strategy in a Büchi game with
observable actions then the maximal strategy σmax is almost-surely winning.

A simple algorithm to decide for which player a game is winning can be derived
from Corollary 19: this simple algorithm enumerates all possible belief strategies and
test each one of them to see if it is almost-surely winning. The test reduces to checking
positive winning in one-player co-Büchi games and can be done in exponential time.
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As there is a doubly exponential number of belief strategies, this can be done in
time doubly exponential. This algorithm also appears in [GS09b]. This settles the
upper bound for Theorem 97.

Matching complexity lower bounds are established in [BGG17], proving that this
enumeration algorithm is optimal for worst case complexity. While optimal in the
worst case, this algorithm is likely to be inefficient in practice. For instance, if player 1
has no almost-surely winning strategy, then this algorithm will enumerate every single
of the doubly exponential many possible belief strategies. Instead, we provide fixed
point algorithms which do not enumerate every possible strategy in Theorem 99 for
reachability games and Theorem 100 for Büchi games. Although they should perform
better on games with particular structures, these fixed point algorithms still have a
worst-case 2-EXPcomplexity.

A fixed point algorithm for reachability games

We turn now to the (fixed points) algorithms which compute the set of supports that are
almost-surely or positively winning for various objectives.

Theorem 99 (Deciding positive winning in reachability games). In a reachability game
each initial distribution δ is either positively winning for player 1 or surely winning for
player 2, and this depends only on supp(δ )⊆V . The corresponding partition of P(V )
is computable in time O

(
|G| ·2|V |

)
, where |G| denotes the size of the description of the

game, as the largest fixed point of a monotonic operator Φ : P(P(V ))→P(P(V ))
computable in time linear in |G|.

We denote T T the set of vertices whose colour is 1.

Proof. Let L∞ ⊆P(V \ T T ) be the greatest fixed point of the monotonic operator
Φ : P(P(V \T T ))→P(P(V \T T )) defined by:

Φ(L ) = {L ∈L | ∃ jL ∈ J,∀d ∈ T,(a2(d) = jL) =⇒ (BAdam(L,d) ∈L ∪{ /0)}} ,
(8.12)

in other words Φ(L ) is the set of supports such that player 2 has an action which
ensure his next belief will be in L , whatever signal d he might receive. Let σrand be
the strategy for player 1 that plays randomly any action.

We are going to prove that:

1. every support in L∞ is surely winning for player 2,

2. and σrand is positively winning from any support L⊆V which is not in L∞.

We start with proving the first item. To win surely from any support L∈L∞, player
2 uses the following belief strategy τB: when the current belief of player 2 is L ∈L∞

then player 2 plays an action jL defined as in Equation (8.12). By definition of Φ and
since L∞ is a fixed point of Φ, there always exists such an action. When playing with
the belief strategy τB, starting from a support in L∞, the beliefs of player 2 stay in
L∞ and never intersect T T because L∞ ⊆P(V \T T ). According to Equation (8.3)
of beliefs (Lemma 124), this guarantees the play never visits T T , whatever strategy is
used by player 1.
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We now prove the second item. Let L0 = P(V \ T T ) ⊇ L1 = Φ(L0) ⊇ L2 =
Φ(L1) . . . and L∞ be the limit of this sequence, the greatest fixed point of Φ. We
prove that for any support L ∈P(V ), if L 6∈L∞ then:

σrand is positively winning for player 1 from L . (8.13)

If L∩T T 6= /0, Equation (8.13) is obvious. To deal with the case where L∩T T = /0, we
define for every n∈N, Kn =P(V \T T )\Ln, and we prove by induction on n∈N that
for every L ∈Kn, for every initial distribution δL with support L, for every behavioral
strategy τ ,

Pσrand,τ
δL

(∃m,2≤ m≤ n+1,Vm ∈ T T )> 0 . (8.14)

For n = 0, Equation (8.14) is obvious because K0 = /0. Suppose that for some n ∈ N,
Equation (8.14) holds for every L′ ∈Kn, and let L ∈Kn+1 \Kn. Then by definition of
Kn+1,

L ∈Ln \Φ(Ln) . (8.15)

Let δL be an initial distribution with support L and τ any behavioral strategy for player
2. Let J0 ⊆ J be the support of τ(δL) and jL ∈ J0. According to Equation (8.15), by
definition of Φ, there exists a signal d ∈D such that a2(d) = jL and BAdam(L,d) 6∈Ln
and BAdam(L,d) 6= /0. According to Equation (8.3) of beliefs (Lemma 124), ∀k ∈
BAdam(L,d),Pσrand,τ

δL
(V2 = k∧D1 = d) > 0. If BAdam(L,d)∩T T 6= /0 then according

to the definition of beliefs, Pσrand,τ
δL

(V2 ∈ T T ) > 0. Otherwise BAdam(L,d) ∈P(V \
T T )\Ln =Kn hence distribution δd : k→ Pσrand,τ

δL
(V2 = k | D1 = d) has its support in

Kn. By inductive hypothesis, for every behavioral strategy τ ′,

Pσrand,τ
′

δd
(∃m ∈ N,2≤ m≤ n+1,Vm ∈ T T )> 0

hence using the shifting lemma and the definition of δd ,

Pσrand,τ
δ

(∃m ∈ N,3≤ m≤ n+2,Vm ∈ T T )> 0 ,

which completes the proof of the inductive step.
Hence Equation (8.14) holds for every behavioural strategy τ . Thus Equation (8.14)

holds as well for every general strategy τ .
To compute the partition of supports between those positively winning for player 1

and those surely winning for player 2, it is enough to compute the largest fixed point
of Φ. Since Φ is monotonic, and each application of the operator can be computed in
time linear in the size of the game (|G|) and the number of supports (2|V |) the overall
computation can be achieved in time |G| ·2|V |. To compute the strategy τB, it is enough
to compute for each L ∈L∞ one action jL such that (a2(d) = jL) =⇒ (BAdam(L,d) ∈
L∞).

As a byproduct of the proof one obtains the following bounds on time and probabil-
ities before reaching a target state, when player 1 uses the uniform memoryless strategy
σrand. From an initial distribution positively winning for the reachability objective, for
every strategy τ ,

Pσrand,τ
δ

(
∃n≤ 2|V |,Cn = 1

)
≥
(

1
pmin | A |

)2|V |

, (8.16)
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where pmin is the smallest non-zero transition probability.

A fixed point algorithm for Büchi games

To decide whether player 1 wins almost-surely a Büchi game, we provide an algorithm
which runs in doubly-exponential time. It uses the algorithm for reachability games as
a sub-procedure.

Theorem 100 (Deciding almost-sure winning in Büchi games). In a Büchi game each
initial distribution δ is either almost-surely winning for player 1 or positively winning
for player 2, and this depends only on supp(δ ) ⊆ V . The corresponding partition of

P(V ) is computable in time O
(

22|G|
)

, where |G| denotes the size of the description of
the game, as a projection of the greatest fixed point L∞ of a monotonic operator

Ψ : P(P(V )×V )→P(P(V )×V ) .

The operator Ψ is computable using as a nested fixed point the operator Φ of Theo-
rem 99. The almost-surely winning belief strategy of player 1 and the positively winning
2-belief strategy of player 2 can be extracted from L∞.

We sketch the main ideas of the proof of Theorem 100.
First, suppose that from every initial support, player 1 can win positively the reach-

ability game. Then she can do so using a belief strategy and according to Lemma 124,
this strategy guarantees almost-surely the Büchi condition.

In general though player 1 is not in such an easy situation and there exists a support
L which is not positively winning for her for the reachability objective. Then by qual-
itative determinacy, player 2 has a strategy to achieve surely her safety objective from
L, which is a fortiori surely winning for her co-Büchi objective as well.

We prove that in case player 2 can force with positive probability the belief of player
1 to be L eventually from another support L′, then player 2 has a general strategy to win
positively from L′. This is not completely obvious because in general player 2 cannot
know exactly when the belief of player 1 is L (he can only compute the 2-Belief, letting
him know all the possible beliefs player 1 can have). However player 2 can make blind
guesses, and be right with > 0 probability. For winning positively from L′, player 2
plays totally randomly until he guesses randomly that the belief of player 1 is L, at that
moment he switches to a strategy surely winning from L. Such a strategy is far from
being optimal, because player 2 plays randomly and in most cases he makes a wrong
guess about the belief of player 1. However there is a non zero probability for his guess
to be right.

Hence, player 1 should surely avoid her belief to be L or L′ if she wants to win
almost-surely. However, doing so player 1 may prevent the play from reaching target
states, which may create another positively winning support for player 2, and so on.
This is the basis of our fixed point algorithm.

Using these ideas, we prove that the set L∞ ⊆P(V ) of supports almost-surely
winning for player 1 for the Büchi objective is the largest set of initial supports from
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which:

player 1 has a strategy which win positively the reachability game
and also ensures at the same time her belief to stay in L∞. (†)

Property Equation (†) can be reformulated as a reachability condition in a new
game whose states are states of the original game augmented with beliefs of player 1,
kept hidden to player 2.

The fixed point characterisation suggests the following algorithm for computing the
set of supports positively winning for player 2: P(V )\L∞ is the limit of the sequence
/0=L ′

0 (L ′
0∪L ′′

1 (L ′
0∪L ′

1 (L ′
0∪L ′

1∪L ′′
2 ( . . .(L ′

0∪·· ·∪L ′
m =P(V )\L∞,

where

• from supports in L ′′
i+1 player 2 can surely guarantee the safety objective, under

the hypothesis that player 1 guarantees for sure her beliefs to stay outside L ′
i ,

• from supports in L ′
i+1 player 2 can ensure with positive probability the belief of

player 1 to be in L ′′
i+1 eventually, under the same hypothesis.

The overall strategy of player 2 positively winning for the co-Büchi objective con-
sists in playing randomly for some time until he decides to pick up randomly a belief
L of player 1 in some L ′′

i , bets that the current belief of player 1 is L and that player
1 guarantees for sure her future beliefs will stay outside L ′

i . He forgets the signals he
has received up to that moment and switches definitively to a strategy which guarantees
the first item. With positive probability, player 2 guesses correctly the belief of player
1 at the right moment, and future beliefs of player 1 will stay in L ′

i , in which case the
co-Büchi condition holds and player 2 wins.

In order to ensure the first item, player 2 makes use of the hypothesis about player
1 beliefs staying outside L ′

i . For that player 2 needs to keep track of all the possible
beliefs of player 1, hence the doubly-exponential memory. The reason is player 2 can
infer from this data structure some information about the possible actions played by
player 1: in case for every possible belief of player 1 an action i ∈ I creates a risk to
reach L ′

i then player 2 knows for sure this action is not played by player 1. This in
turn helps player 2 to know which are the possible states of the game. Finally, when
player 2 estimates the state of the game using his 2-beliefs, this gives a potentially more
accurate estimation of the possible states than simply computing his 1-beliefs.

The positively winning 2-belief strategy of player 2 has a particular structure. All
memory updates are deterministic except for one: from the initial memory state /0,
whatever signal is received there is non-zero chance that the memory state stays /0 but
it may as well be updated to several other memory states.
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Chapter 9
Timed Games
NICOLAS MARKEY, OCAN SANKUR

The ability to model real-time constraints is crucial when automata and games are used
for verification and synthesis. Timed automata [AD94] are a model of choice for rea-
soning about real-time systems: they extend finite-state automata with a finite number
of clocks, which are real-valued variables all growing at the same rate, used to measure
and constrain the elapse of time between various transitions in the automaton. Because
these clocks can take arbitrary non-negative values, the set of configurations of a timed
automaton is infinite. Still, reachability (and many other problems) remain decidable
in timed automata. The interested reader can find more background in [AD94], but we
will try to keep our presentation self-contained.

In this chapter, we consider game models based on timed automata; we call them
timed games throughout this chapter. In timed games, besides choosing which transi-
tions should be played, the players also decide how much time will elapse before each
transition. The elapsed time is determined using clocks, and the edges have guards
which determine clock values for which the edge can be taken.

Example 1. Figure 9.1 contains a timed game with clock x, where Eve’s objective is
to reach the vertex G. We will define these arenas as concurrent arenas: dashed edges
belong to Adam, and plain edges to Eve. Both players can take any edge at any time as
long as the guard is satisfied. For instance, Eve’s edge from `1 to `2 is only available
if clock x has value at most 1, while Adam’s edge from `1 to `3 is available if x is less
than 1.

In the next section, we define timed games and their semantics formally. Then we
introduce some classical tools needed to reason about the space of clock valuations,
and finally present an efficient algorithm for deciding the winner in timed games with
reachability objectives.
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`1

`5

`2

G

`3 `4
x≤ 1 x < 1

x≤ 1

x < 1,x := 0

x > 1 x≥ 2

Figure 9.1: Timed game A1.

9.1 Notations
We fix a finite set C of clock variables to be used in our timed games. Elements of RC

≥0,
which assign a value to each clock, are called valuations.

Clocks will be used to define clock constraints, which in turn are used in timed
automata to restrict the set of allowed behaviours: edges are decorated with clock
constraints defining conditions for their availability. An atomic clock constraint is a
formula of the form k � x �′ l or k � x− y �′ l where x,y ∈ C , k, l ∈ Z∪{−∞,∞}
and �,�′ ∈ {<,≤}. A clock constraint is a conjunction of atomic clock constraints.
A valuation ν : C → R≥0 satisfies a clock constraint g, denoted ν |= g, if all atomic
clock constraints are satisfied when each x∈C is replaced with its value ν(x). We write
ΦC for the set of clock constraints built on the clock set C .

For a subset R ⊆ C and a valuation ν , we denote with ν [R← 0] the valuation
defined by ν [R← 0](x) = 0 if x∈R and ν [R← 0](x) = ν(x) otherwise. Given d ∈R≥0
and a valuation ν , the valuation ν +d is defined by (ν +d)(x) = ν(x)+d for all x∈C .
We extend these operations to sets of valuations in the obvious way.

We now formally define timed games, which are finite representations that define
infinite-state, non-stochastic concurrent games.

Definition 28. A timed arena T is a tuple (L ,C ,EEve,EAdam,c), where L is a finite
set of locations, C is a finite set of clocks, EEve,EAdam ⊆L ×ΦC × 2C ×L are the
sets of edges respectively controlled by Eve and Adam, and c : EEve ∪EAdam → C is
the coloring function. A timed game is a pair (T ,Ω) where Ω ⊆ Cω a qualitative
objective.

A configuration of such a timed automaton is a pair (`,ν) where `∈L and ν : C →
R≥0. The set of configurations is the set of vertices of the infinite-state game defined
by T .

The actions of both players are pairs (d,e) where d ∈ R≥0 is a delay they want
to wait before playing their controlled action e. Action (d,e) is available for Eve
(resp. Adam) in configuration (`,ν) if e ∈ EEve(`) (resp. e ∈ EAdam(`)) and, writ-
ing e = (`,g,R, `′), if additionally ν + d |= g; in other terms, the clock constraint
(called guard hereafter) on e must hold true under the clock valuation reached after
elapsing d time units. We add an extra dummy action ⊥ for the case where some
player has no available action (this action is only available if no other actions are).

Once both players have selected an action available from configuration (`,ν), the
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action (d,e) with smallest delay is performed (by breaking ties in favor of Adam), lead-
ing to configuration (`′,(ν +d)[R← 0]): this corresponds to letting d time units elapse,
thereby reaching configuration (`,ν +d), and to following edge e (which by construc-
tion is available from (`,ν + d)). We define step((`,ν),(d,e)) for the configuration
(`′,(ν +d)[R← 0]) reached from (`,ν) by applying action (d,e).

This definition captures the concurrent nature of the interaction between a con-
troller (Eve) and its environment (Adam) in a real-time system, since none of the play-
ers knows in advance how long the opponent will want to wait before performing her
transition. The semantics of a timed arena (L ,C ,EEve,EAdam) can then formally be
defined in terms of a concurrent arena (following the definition of Section 8.1). The un-
derlying graph (V,E) is such that V = L ×RC

≥0, and E =V ×C×V ; the set of actions
of Eve is R≥0×EEve, and that of Adam is R≥0×EAdam; finally, the transition func-
tion, which is not stochastic in our case, maps any configuration (`,ν) and pair of
actions (dEve,eEve) and (dAdam,eAdam) to the edge ((`,ν),γ,step((`,ν),(d,e))), where
(d,e) = (dEve,eEve) and γ = c(eEve) if dEve < dAdam, and (d,a) = (dAdam,eAdam) and
γ = c(eAdam) otherwise.

A path in a timed arena T then is a path in its associated infinite-state concurrent
arena. The qualitative objective Ω can then be evaluated along runs of a timed arena in
the natural way.

Contrary to Chapter 7, in this chapter we only consider deterministic strategies1.
As a result, timed games are not determined, as illustrated in the following example.

`0 `1`2
0 < x < 10 < x < 1

Figure 9.2: Timed arena A2. Solid arrow is Eve’s, dashed one is Adam’s.

Example 2 (Timed Games are not determined). In the timed arena A2 defined in Fig-
ure 9.2, from configuration (`0,~0), Eve does not have a winning strategy to reach loca-
tion `1, but Adam does not have a winning strategy either to avoid `1. In fact, available
moves for both players consist in (d,(`0, `1)) with 0 < d < 1 for Eve, and (d′,(`0, `2))
with 0 < d′ < 1 for Adam. Thus, for any particular delay 0 < d < 1 chosen by Eve,
Adam has a possible delay d < d′ < 1 which leads to `2, which is losing for Eve. This
shows that Eve does not have a winning strategy. The argument is however symmetric,
and Adam also does not have a winning strategy to avoid `1. Timed games are thus
non determined.

Example 3 (Winning strategy on running example). Let us consider again the example
of Figure 9.1 and see whether Eve has a winning strategy from the initial configuration.
At the initial configuration `1,x = 0, Eve needs to make a move towards `2 while x≤ 1
since whenever x > 1, Adam can move to `5 which guarantees Eve’s lost. Assume the
game proceeds to `2 with any value x ≤ 1. Here, Eve can try to wait until x ≥ 2 and
go to G. However, if x < 1, then Adam can move to `3. From this location, Eve can
guarantee to come back to `2 with x= 1, and then move to G and win the game. Assume

1Adding randomization over the infinite sets of actions is beyond the scope of this chapter.
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now that from `1, the game proceeds to `3 with x = 0 due to Adam’s move. Again, Eve
can wait for 1 time unit, and go back to `2 with x = 1, and win the game. Hence, Eve
has a winning strategy from `1 for all x≤ 1, and from `2 for all values of x.

In this chapter, the main problem we are interested in is determining whether Eve
has a strategy for her reachability objective. Let~0 denote the clock valuation assign-
ing 0 to all clocks.

Problem 9 (Solving a timed reachability game).

INPUT: A timed arena T , initial location `0, and a reachability objective Reach(Win)

OUTPUT: Does Eve has a winning strategy in (T ,Reach(Win)) from configuration (`0,~0).

The difficulty of this problem is that the concurrent game ((V,E),∆,Ω) has an
infinite state-space, and players have infinitely many actions. We thus start by studying
a data structure to represent sets of states and operations to compute successors and
predecessors on these sets. We then give two algorithms to solve the above problem.
We also show how such a strategy for Eve can be computed and finitely represented.

9.2 State-Space Representation
We introduce a data structure to represent sets of clock valuations and manipulate them
efficiently in order to compute successors and predecessors in a given timed game. This
will allow us to use a fixed point characterization of the winning states analogous to
that in finite games as in Chapter 2.

A zone is any subset of RC
≥0 that can be defined using a clock constraint (hence

a zone is convex). We will see that sets of states that appear when exploring the
state space of a timed game can be represented using zones. We use the difference-
bound matrices to represent zones: this is one of the main data structures used in
timed-automata verification [Dil90, BM83]. The idea is to store, in a matrix, up-
per bounds on clocks and on differences of pairs of clocks. Formally, given a clock
set C = {x1, . . . ,xm}, we define C0 = C ∪ {x0} where x0 is seen as a special clock
which is always 0. A difference-bound matrix (DBM) is a |C0| × |C0| matrix with
coefficients in {≤,<}×Z. For any DBM M, the (i, j)-component of the matrix M
will be written (≺M

i, j,Mi, j) where ≺M
i, j is the inequality in {≤,<}, and Mi, j the integer

coefficient. A DBM M defines the zone

[M] =
{

v ∈ RC
≥0

∣∣∣ ∧
0≤i, j≤|C0|

v(xi)− v(x j)≺M
i, j Mi, j

}
,

where v(x0) = 0.

Example 4 (An example of a DBM). ] Consider the clock set C = {x1,x2} and the
zone Z defined by x1≤ 1∧x1−x2≤ 0∧x2≤ 3∧x2−x1≤ 2, which can be written as the
following DBM: For instance, M[2,0] = (≤,3) represents the constraint x2− x0 ≤ 3,
i.e., x2 ≤ 3. The diagram to the right of the figure represents the set [M].
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M =

(≤,0) (≤,0) (≤,0)
(≤,1) (≤,0) (≤,0)
(≤,3) (≤,2) (≤,0)


x1

x2

Figure 9.3: Example of a DBM

We now define elementary operations on DBMs which are used to explore the state
space of timed games. We start by giving set-theoretic definitions and then comment
on their computation with DBMs.

Let Post≥0(Z) denote the zone describing the time-successors of Z, and Pre≥0(Z)
the time-predecessors of Z. Formally,

Post≥0(Z) = {v ∈ RC
≥0 | ∃t ≥ 0. v− t ∈ Z}

Pre≥0(Z) = {v ∈ RC
≥0 | ∃t ≥ 0. v+ t ∈ Z}.

Given R⊆ C , we also define

ResetR(Z) = {v ∈ RC
≥0 | ∃v′ ∈ Z. v = v′[R← 0]}

UnresetR(Z) = {v ∈ RC
≥0 | ∃v′ ∈ Z. v′ = v[R← 0]}.

These operations, together with intersection, suffice to describe one-step successors
and predecessors by an edge of a timed automaton. For instance, given edge e =
(`,g,R, `′) and set S ⊆ RC

≥0, the set of states that are reached after letting time elapse
and taking edge e can be obtained as

Poste(S) = ResetR(Post≥0(S)∩G),

where G denotes the zone corresponding to the guard g. Similarly, we can compute the
predecessors of S by edge e as

Pree(S) = Pre≥0(G∩UnresetR(S)).

We illustrate these constructions on Figure 9.4.

x1

x2

Z
Post≥0(Z)

x1

x2

Z
Pre≥0(Z)

x1

x2

Z
Resetx2(Z)

x1

x2

Z

Unresetx2(Z)

Figure 9.4: Operations on zones

It is not hard to prove that the above operations preserve zones: if S is a zone, then
so is the result of any of these operations. Moreover, each single operation can be
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computed in time O(|C |3) using the DBM representation. The underlying algorithms
often modify some elements of the matrix and run an all-pairs shortest path algorithm,
namely the Floyd-Roy-Warshall algorithm, on a graph whose adjacency matrix is the
given DBM. Computing the shortest paths renders the DBM canonical; in fact, this
allows one to compute the tightest constraints on all differences of clock pairs, and this
can be shown to yield a unique representation of a given zone.

Let us call the above operations basic operations on DBMs [BY04].

Theorem 101 (Complexity of basic operations on DBMs). Given a DBM of size n×n,
any basic operation yields a DBM and can be computed in time O(n3).

Observe that a DBM always describes a convex subset of RC
≥0 since it is a con-

junction of convex clock constraints. However, the set of winning states is in general
non-convex in timed games. The simple arena of Figure 9.5 provides an example:
if Eve’s objective is to reach `1, then it should just avoid the configurations satisfy-
ing 1 ≤ x1,x2 ≤ 2. But this set of predecessors is then non-convex as shown in Fig-
ure 9.5. We thus have to work with unions of zones, also called federations of zones,
or federations for short.

` `1`2

−2≤ x1− x2 ≤ 1
∧ x2 ≤ 31≤ x1,x2 ≤ 2

x1

x2

Figure 9.5: Winning configurations (in `) for Eve to ensure reaching `1.

One particular operation that we need is complementation. The complement of a
convex set is of course not convex in general, but we can still compute, in polynomial
time, the complement of a DBM M, written Mc, as a federation of DBMs.

Theorem 102 (Complement of DBMs). The complement of a DBM of size n× n can
be computed as a federation of at most n(n−1) DBMs.

The above theorem is seen easily as follows. Since a DBM represents a conjunction
of constraints, the complement is computed easily as the disjunction of the complement
of each elementary constraint appearing in it. For instance, the complement of x1 ≤
1∧ x2 ≥ 2 is x1 > 1∨ x2 < 2, which can be represented as the federation of two zones.

In the rest of this chapter, we describe two algorithms to solve timed games using
the DBM data structure and the operations introduced above. Our algorithms are ex-
tensions of those used for finite games, but we explore the set of zones instead of the set
of vertices, and predecessor and successor operations are replaced by their zone-based
counterparts.

As for finite games, we are interested in computing a fixed point to determine
whether a given configuration is winning for Eve. We start by introducing the zone-
based counterparts of the controllable predecessors operator which is the main tool in
the algorithms.
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9.3 Controllable-Predecessor Operator
We present the controllable-predecessor operator which, given sets of states X and Y ,
returns the set of states from which Eve can reach X in one step, while avoiding states
of Y during Eve’s delay. Intuitively, the states in Y are the states from which Adam
may force an action leading outside of X , which Eve would better avoid.

Recall that V = L ×RC
≥0. The set of safe time-predecessors to reach X ⊆V while

avoiding Y ⊆V is defined as follows:

Pred≥0(X ,Y ) = {(`,ν) ∈V | ∃d ≥ 0. (`,ν +d) ∈ X ∧
∀d′ ∈ [0,d). (`,ν +d′) 6∈ Y}.

In words, from any configuration of Pred≥0(X ,Y ), the set X can be reached by delaying
while never crossing any configuration of Y on the way. For any X ⊆V , let us denote

Predc(X) = {(`,ν) ∈V | ∃e ∈ EEve(`). ∃(`′,ν ′) ∈ X . (`,ν)
e−→ (`′,ν ′)}.

This is the set of immediate predecessors of X by edges in EEve. Symmetrically, we de-
fine Predu(X) using EAdam instead of EEve. Our controllable-predecessor operator is
then defined as

π(X) = Pred≥0(X ∪Predc(X),Predu(V \X)).

Intuitively, the states in π(X) are those from which Eve can wait until she can take
a controllable transition to reach X , and so that no transitions that Adam could take
while Eve is waiting may lead outside of X .

Lemma 126. The operator π is order-preserving: if X ⊆ Y , then π(X)⊆ π(Y ).

Example 5 (Example for the controllable predecessor operator). Consider the timed
game to the left of Figure 9.6. In that game, Eve can reach her target when clock x2
reaches value 3 while x1 is in [1;4]. However, Adam can take the game to a bad state
when simultaneously x1 ∈ [1;2] and x2 ≤ 2. The diagram to the right of Figure 9.6
shows the set of winning valuations for Eve: it is computed as Pred≥0(X ,Y ) where
X = Predc({W}×R≥0) and Y = Predu({`0, `1}×R≥0).

`0

`1

W

1≤ x1 ≤ 4
∧ x2 = 3

1≤ x1 ≤ 2
∧ x2 ≤ 2

x1

x2 X

Y

π(W )

Figure 9.6: Controllable predecessors

Remark 12 (Reduction for zero-sum objectives). When considering zero-sum objec-
tives (which we do in this chapter), a turn-based arena can be built to decide whether
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Eve has a winning strategy (and possibly construct one). Intuitively, the turn-based
arena is obtained by letting Eve first pick a pair (d,e) with e ∈ EEve, and then letting
Adam either respect this choice (i.e., play a larger delay) or preempt Eve’s action by
choosing (d′,e′) with d′ ≤ d and e′ ∈ EAdam. Eve has a winning strategy in this turn-
based arena if, and only if she has one in the original game. However, this does not
apply to Adam; if he has a winning strategy, this only means that Eve does not have a
winning strategy in the original game.

Given T = (L ,C ,EEve,EAdam,c), we define the arena A = (V,VEve,VAdam,E,c′′)
with objective Ω, where VEve =L ×RC

≥0 and VAdam =L ×RC
≥0×(R≥0×EEve∪{⊥}).

The set of successors of configuration (`,ν)∈VEve is the set {(`,ν ,a) | a available at (`,ν)}.
From a configuration ((`,ν),(d,e)) ∈VAdam, several cases may occur:

• if Adam has no available action from (`,ν), or if he can only play actions (d′,e′)
with d′> d, then the only transition from ((`,ν),(d,e)) goes to step((`,ν),(d,e));

• Otherwise, for all actions (d′,e′) for Adam satisfying d′ ≤ d, there is a transition
from ((`,ν),(d,e)) to step((`,ν),(d′,e′)). Moreover, if Adam has an available
action (d′,e′) with d′ ≥ d, then there is also a transition from ((`,ν),(d,e)) to
step((`,ν),(d,e)).

From a configuration ((`,ν),⊥), there is a transition to step((`,ν),(d′,e′)) for each
available action (d′,e′) of Adam. The coloring function is defined as c′′((`,ν)) = c(`)
and c′′((`,ν),(d,e)) = c(`).

9.4 Backward Algorithm
Given the DBM data structure we presented, a backward fixed point algorithm follows
for computing the winning configurations in a timed game:

Theorem 103 (Correctness of the backward algorithm). For any timed game A and
target set G⊆VEve, the limit limk→∞ πk(G) exists, and is reached in a finite number of
steps. This limit is precisely the set of states from which the controller has a winning
strategy for reaching G.

Sketch. We briefly explain why the fixed point computation terminates and refer to [AMPS98,
CDF+05] for more details. The proof relies on the notion of regions. Intuitively, re-
gions are minimal zones, not containing any other zone. More precisely, writing K for
the maximal (absolute) integer constant appearing in the timed game, the set of regions
is the set of zones associated with DBMs (≺i, j,Mi, j) such that

• Mi, j ∈ [−K;K]∪{−∞;+∞} for all i and j;

• for all i 6= j,

– either Mi, j =−M j,i and ≺i, j =≺ j,i =≤,

– or |Mi, j +M j,i|= 1 and ≺i, j =≺ j,i =<,

– or (≺i, j,Mi, j) = (<,+∞) and (≺ j,i,M j,i) = (<,−K).
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The set of regions form a finite partition of RC
≥0. The main argument for the proof is

that the image by π of any finite union of regions is a finite union of regions. Since π

is non-decreasing, the sequence πk(G) converges after finitely many steps.
The fact that πk(G) may only contain winning configurations follows from our

construction, and can be proved easily by induction on k. One can also show that for
all configurations outside of πk(G), there is no strategy that is winning within k steps.
This follows since the definition of π(·) gives the actions to be played by Adam to
prevent Eve from winning. Note that this does not necessarily yield a winning strategy
for Adam, since the game is not determined.

9.5 Forward Algorithm
The backward algorithm we just presented is conceptually simple, but it is often not
very efficient in practice, as federations tend to grow too much in size in each iteration
of the computation. The forward algorithm we will now present is more efficient in
practice. It performs a forward exploration and only applies the controllable prede-
cessor along branches that actually reach the target state from the initial state. If the
witness trace is not excessively long, which is often the case in practice, this limits the
size of the federations.

We present below the algorithm proposed in [CDF+05], and as a first step, we
explain the untimed version of that algorithm, based on an algorithm of Liu and Smolka
for computing fixed points [LS98].

A Forward Algorithm for Finite-State Games
The original algorithm of Liu and Smolka is expressed in terms of pre-fixed points in
dependency graphs: a dependency graph is a pair G = (V,E) in which E ⊆ V × 2V

relates states with sets of states. For any order-preserving function f : 2V → 2V (order-
preserving meaning non-decreasing for the⊆-relation), a pre-fixed point is a set X ⊆V
for which f (X) ⊆ X ; it is a fixed point if f (X) = X . By Knaster-Tarski theorem, such
functions always admit a least pre-fixed point which is also the least fixed point.

Fix a dependency graph G = (V,E). For W ⊆ V , we define a mapping fW : 2V →
2V : for each X ⊆V , we let fW (X) =W ∪{v∈V | ∃(v,Y )∈ E. Y ⊆ X}. Clearly, X ⊆ X ′

implies fW (X)⊆ fW (X ′), so that fW admits a least (pre-)fixed point. The Liu-Smolka
algorithm aims at deciding whether a given vertex v0 ∈ V belongs to the least fixed
point of fW . Classical algorithms for computing least fixed points consist in iteratively
computing ( f i

W ( /0))i until convergence (assuming V is finite). Observe that this corre-
sponds to the algorithm of Theorem 103 for timed games. The Liu-Smolka algorithm
proceeds from v0, and explores the dependency graph until it can claim that v0 is, or
that it is not, in the least fixed point of fW .

Before tackling the algorithm, let us link least fixed points in dependency graphs
and winning sets in concurrent games (with reachability objectives): with a concurrent
arena C = (V,Act,δ ,c′) and a target set Win, we associate the dependency graph G =
(V,E), where (v,T ) ∈ E whenever v ∈V and T ⊆V is such that there exists an action a
for which T = {v′ | ∃a′ ∈Act. v′ = δ (v,a,a′)}. Then for any set X ⊆V , the set fWin(X)
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contains Win and all the states from which Eve can force a visit to X in one step.
We then have:

Proposition 3. The least fixed point of fWin in G corresponds to the set W of winning
states for Eve in C .

Proof. The winning states of Eve form a pre-fixed point of fWin containing Win: in-
deed, for any v∈ fWin(W ), either v∈Win, or Eve has an action to move from v to some
state in W . Hence v is winning, i.e., v ∈W .

Conversely, from any state v that is not in the least pre-fixed point X , for any edge (v,T ),
there is a state v′ ∈ T that again is not in X . This defines a strategy for Adam to avoid
reaching Win, so that Eve does not have a winning strategy from v.

Algorithm 9.1: Liu-Smolka algorithm for least fixed point of fW
Data: A dependency graph G = (V,E), a set W ⊆V , a node v0 ∈V
Result: Is v0 in the least fixed point of fW ?
for v ∈V do

if v ∈W then F(v) := 1;
else if v == v0 then F(v) := 0;
else F(v) :=⊥;

Dep(v0) := /0;
Wait := {(v,T ) ∈ E | v = v0};
while (Wait 6= /0 and F(v0) == 0) do

(v,T ) := pop(Wait);
if F(v) == 0 and ∀v′ ∈ T. F(v′) == 1 then // case 1

F(v) := 1;
Wait :=Wait∪Dep(v);

else if ∃v′ ∈ T. F(v′) == 0 then // case 2
Dep(v′) := Dep(v′)∪{(v,T )};

else if ∃v′ ∈ T. F(v′) ==⊥ then // case 3
F(v′) := 0;
Dep(v′) := {(v,T )};
Wait :=Wait∪{(w,U) ∈ E | w = v′};

return F(v0)

2

Algorithm 9.1 can be seen as an alternation of forward exploration and backward
propagation. Intuitively, the algorithm first explores the graph in a forward manner,
remembering for each node v the set Dep(v) of nodes that depend on v, and have
to be reexplored if the status of v is updated. For each v, the algorithm maintains a
value F(v), which is ⊥ if v has not been explored yet, 0 if v has been explored but not

2Our version of the algorithm slightly differs from the original one [LS98]: we let Dep(v′) := {(v,T )}
at the penultimate line of the while loop (which otherwise results in a wrong result, as already noticed
in [JLSØ13]), reinforce the condition for case 1 (which otherwise would not guarantee termination), and
reinforce the condition of the while loop to get earlier termination.
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yet been shown to be winning, and 1 if v is known to be winning. Whenever a vertex v
whose all successors are winning is found, the value of v is set to 1, and its parents
(in Dep(v)) are scheduled to be visited again to check whether their statuses have to
be changed. This is how the backward propagation is triggered; in fact, the search will
climb in the tree as long as the values of vertices can be updated to 1.

The correctness of this algorithm relies on the following lemma [LS98]:

Lemma 127 (Invariant). The following properties hold at the end of each run in the
while loop of Algorithm 9.1:

• for any v ∈V , if F(v) = 1, then v belongs to the least fixed point containing W;

• for any v ∈V with F(v) = 0, and any (v,T ) ∈ E, either (v,T ) ∈Wait or (v,T ) ∈
Dep(v′) for some v′ ∈ T with F(v′) = 0.

Proof. We fix an execution of Algorithm 9.1, and prove that both claims are true at the
beginning and end of each iteration through the while loop. To clarify the presentation,
we use superscript i to indicate the value of variables at the end of the i-th run through
the loop, so that Wait3 is the value of variable Wait after three iterations (and Wait0

is its value after initialization). In particular, (vi,T i) is the symbolic transition popped
from the Wait list during the i-th iteration (and is not defined for i = 0).

Let us first prove the first property: the initialization phase clearly enforces that if
F0(x)= 1, then x∈W , which is included in any fixed point of fW . Now, assume that the
property holds true at the beginning of the i-th run through the loop (i.e., if F i−1(x) = 1,
then x is in the least fixed point), and pick some x∈V such that F i(x) = 1. If F i−1(x) =
1, our result follows; if not, then the i-th iteration of the loop must have run via case 1,
hence F i−1(x′) = 1 for all x′ ∈ T i. By our induction hypothesis, this indicates that T i

is part of the least fixed point, and by definition of fW , x must also belong to the least
fixed point.

The second statement also clearly holds after initialization: initially, F0(x) = 0 only
for x = v0, and all transitions from v0 have been stored in Wait0. We now assume that
the property holds when entering the while loop for the i-th time, and consider x such
that F i(x) = 0 at the end of that loop. We pick (x,Y ) ∈ E.

• if the i-th run through the loop visits case 1, then already F i−1(x) = 0 (hence
x 6= vi). Then either (x,Y ) ∈Waiti−1, or (x,Y ) ∈ Depi−1(x′) for some x′ ∈ Y
with F(x′) = 0. In the former case: since x 6= vi, if (x,Y ) ∈ Waiti−1 then
also (x,Y ) ∈ Waiti; in the latter case: if (x,Y ) ∈ Depi−1(x′) for some x′ ∈ Y
with F(x′) = 0, then (i) either x′ = vi, and (x,Y ) ∈Waiti because Depi−1(vi) ⊆
Waiti (last line of case 1), (ii) or x′ 6= vi, and (x,Y ) ∈ Depi−1(x′) = Depi(x′) and
F i(x′) = F i−1(x′) = 0.

• if the i-th run goes to case 2, then again F i−1(x) = 0, and the induction hypoth-
esis applies: either (x,Y ) is in Waiti−1, or it is in Depi−1(x′) for some x′ ∈ Y
with F i−1(x′) = 0. For the latter case, observe that Depi−1(x′) ⊆ Depi(x′), and
F i(x′) = F i−1(x′) when running case 2; for the former case, we have Waiti =
Waiti−1 \ {(vi,T i)}, so that (x,Y ) remain in Waiti if (x,Y ) 6= (vi,T i); finally,
if (x,Y ) = (vi,T i), then case 2 precisely adds (vi,T i) to Depi(v′) for some v′ ∈ T i

with F i(v′) = 0, which concludes the proof for this case.
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• for case 3, we first consider the case where x is the state v′ selected at the be-
ginning of case 3: in that case, all transitions from x are added to Wait, so that
(x,Y ) ∈Waiti. Now, if x is not the selected state v′, then F i−1(x) = 0, and again
either x∈Waiti−1 or x∈Depi−1(x′) for some x′ ∈Y with F i−1(x′) = 0. The latter
case is preserved when running case 3; if x ∈Waiti−1: if (x,Y ) 6= (vi,T i), then
x ∈Waiti, while if (x,Y ) = (vi,T i), then (x,Y ) ∈ Depi(v′) for the state v′ ∈ T i

selected at the beginning of case 3 (and for which F i(v′) = 0).

As a corollary, if the algorithm terminates after n rounds of the while loop, then
either Fn(v0) = 1, or Fn(v0) = 0 and Waitn = /0.

• From the first claim of the lemma above, the former case entails that v0 belongs
to the least fixed point.

• Now consider the second case, and let B = {v ∈V | Fn(v) ∈ {⊥,1}}. We prove
that fW (B)⊆ B. For this, we pick v ∈ fW (B):

– if v ∈W , then F(v) is set to 1 initially, and may never be changed, so that
v ∈ B;

– otherwise, there is a transition (v,T ) such that T ⊆ B. If v /∈ B, then (v,T )∈
Depn(v′) for some v′ ∈ T with Fn(v′) = 0, which contradicts the fact that
T ⊆ B.

This proves that fW (B)⊆ B, so that B is a pre-fixed point of fW . It thus contains
the least (pre-)fixed point of fW , so that any state v not in B (i.e., with Fn(v) = 0)
for sure does not belong to that least fixed point. In particular, v0 is not in the
fixed point.

It remains to prove termination. For this, we first notice that, for any hyper-
edge (v,S), if (v,S) ∈ Depi(v′) then (v,S) ∈Wait j for some j < i, and if (v,S) ∈Wait j

or (v,S) ∈ Dep j(v′) for some v′, then F j(v) 6=⊥.
We then set

M = 2|Wait|+2 ∑
v s.t. F(v)=⊥

|{(v,S) ∈ E}|+ ∑
v s.t. F(v)=0

|Dep(v)|− ∑
v s.t. F(v)=1

|Dep(v)|

again writing Mi for the value of M after the i-th run through the while loop. This
value is at most 2|E| when entering the while loop for the first time; clearly, it can
never go below −|E|. We now prove that Mi < Mi−1, which implies termination of the
algorithm.

Consider the i-th run through the loop, popping (vi,T i) from Waiti−1 (which de-
creases M by 2). We consider all three cases:

• if case 1 applies, F i(v) is set to 1. The set Depi−1(v) is added to Waiti. This
globally leaves M unchanged, so that globally Mi = Mi−1−2;
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• if case 2 applies, Depi−1(v′) is augmented by (at most) one edge, and since
F i(v′) = 0, this increases M by at most 1. Hence globally Mi ≤Mi−1−1;

• finally, case 3 increases M by 1: the edges added to Wait are compensated by
the fact that F(v′) no longer is ⊥, and only one extra edge has to be considered
in the second sum. Hence again Mi ≤Mi−1−1.

This concludes the correctness proof of Algorithm 9.1.

Theorem 104. Algorithm 9.1 terminates, and returns 1 if, and only if, v0 belongs to
the least fixed point of fW .

Using Proposition 3, we get a forward algorithm for deciding if a given state of
a concurrent game is winning for Eve. This corresponds to the OTFUR algorithm
of [CDF+05].

Extension to Timed Games
We now explain how to adapt the algorithm above to (infinite-state) timed games.
For efficiency, the algorithm relies on zones (and DBMs); instead of computing whether
a given zone (`,Z) is winning, the algorithm maintains, for each zone S = (`,Z) it ex-
plores, a subzone (`,Z′) of configurations that it knows are winning; this subzone is
stored as F(S), and is updated during the execution. As in Algorithm 9.1, a waiting list
keeps track of the zones to be explored, and a dependency list stores the list of nodes
to be revisited upon update of the winning subzone of a zone. The algorithm is given
in Algorithm 9.2.

The correctness of the algorithm can be proven using the following lemma. We omit
the proof of this lemma, as it is tedious and and does not contain any difficult argument.

Lemma 128. The following properties hold at the end of each run through the while
loop of Algorithm 9.2:

• for any S ∈ Passed and any transition α , if T = Post≥0(Postα(S)) 6= /0, then
either (S,α,T ) ∈Wait, or T ∈ Passed and (S,α,T ) ∈ Dep(T );

• for any S ∈ Passed and q ∈ F(S), q is winning for Eve;

• for any S ∈ Passed and q ∈ S \F(S), either Wait contains a symbolic transi-
tion (S,α,S′) from S with S′ ∈ Passed, or

q /∈ Pred≥0

(
F(S)∪

⋃
S

c−→V
V∈Passed

Predc(F(V )),
⋃

S
u−→V

V∈Passed

Predu(V \F(V ))
)
∩S.

The proof is omitted but can be found in [CDF+05].
Using these invariants, we get the following result:

Lemma 129. If Algorithm 9.2 terminates, all configurations in F(S) for any S∈Passed
are winning for Eve; if additionally Wait = /0, then all configurations in S \F(S), for
any S ∈ Passed, are losing for Eve.
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Algorithm 9.2: Symbolic on-the-fly algorithm for timed reachability
Data: A reachability timed game G = (A ,Reach(Win)), a location `0 ∈L
Result: Is (`0,0) winning for Eve?
S0 := Post≥0(`0,0);
if c(S0) == Win then F(S0) := S0 else F(S0) := /0;
Passed := {S0}; // Passed stores all configurations for which F is defined
Dep(S0) := /0;
Wait := {(S0,α,T ) | T = Post≥0(Postα(S0)) 6= /0,α transition of G };
while (Wait 6= /0 and (v0,0) /∈ F(S0)) do

(S,α,T )) := pop(Wait);
if T ∈ Passed then // case A

Dep(T ) := Dep(T )∪{(S,α,T )};
W :=

Pred≥0

(
F(S)∪

⋃
S

c−→V
V∈Passed

Predc(F(V )),
⋃

S
u−→V

V∈Passed

Predu(V \F(V ))

)
∩

S;
if F(S)(W then

F(S) :=W ;
Wait :=Wait∪Dep(S);

else // case B
Passed := Passed∪{T};
if c(T ) == Win then

F(T ) := T
Wait :=Wait∪{(S,α,T )}

else
F(T ) := /0

Dep(T ) := {(S,α,T )};
Wait :=Wait∪{(T,α,U) |U = Post≥0(Postα(T )) 6=

/0,α transition of G };
if (v0,0) ∈ F(S0) then return 1 else return 0;
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Proof. The first statement corresponds to the second statement of Lemma 128. Now,
assume Waitn = /0 after termination at the n-th step, and let L = {q ∈L ×RC

≥0 | ∃S ∈
Passedn. q ∈ S\Fn(S)}, and M be the complement of L. For any S ∈ Passedn, we then
have M∩S⊆ Fn(S).

Pick q ∈ π(M)∪Win, where we abusively write Win to denote all configurations
with location colored Win. We prove that q ∈M:

• if q ∈Win: assume q ∈ L, and pick S ∈ Passedn such that q ∈ S \Fn(S). Since
q ∈ S, it holds c(S) = Win; but then Fn(S) is defined (since S ∈ Passedn), and it
equals S by initialization of F . This contradicts the fact that q ∈ S\Fn(S), hence
q ∈M.

• if q ∈ π(M): we again assume q ∈ L. Then for some S ∈ Passedn, q ∈ S\Fn(S).
By the third property of Lemma 128, q /∈W n (because Waitn is empty). Since
M∩U ⊆ Fn(U) for all U ∈ Passedn and Fn(U) = /0 for all U /∈ Passedn, and by
monotonicity, we get

q /∈ Pred≥0

(
(M∩S)∪

⋃
S

c−→V

Predc(M∩V ),
⋃

S
u−→V

Predu(V \ (M∩V ))

)
∩S.

Now, notice that any S ∈ Passedn is closed under Post≥0. Then

π(M)∩S = Pred≥0(M∪Predc(M),Predu(M))

= Pred≥0((M∩S)∪ (Predc(M)∩S),Predu(M)).

Now, it can be checked that Predc(M)∩S⊆
⋃

S
c−→V

Predc(M∩V ) and Predu(M)⊇⋃
S

u−→V
Predu(V \ (M∩V )). So the fact that q ∈ π(M) and q ∈ S leads to a con-

tradiction. This entails that q /∈ L, hence q ∈M.

In the end, we have proven that π(M)∪Win⊆M, so that M is a pre-fixed point of X 7→
π(X)∪Win, hence it contains all winning configurations of Eve and L only contains
losing configurations.

The procedure given in Algorithm 9.2 will in general not terminate: as in the case
of timed automata, the number of zones generated by the algorithm may be infinite.
This is classically avoided using extrapolation: this consists in abstracting the zones
being considered by larger zones, defined by only using integer constants less than
the maximal constant appearing in the timed arena (as we did for regions in the proof
of Theorem 103). This can be proven to preserve correctness, and makes the number
of zones finite. Termination follows by noticing that any triple (S,α,T ) may be added
to Wait only a finite number of times (bounded by the number of regions in T ). We can
then conclude:

Theorem 105. Algorithm 9.2 terminates when extrapolation is used, and returns 1 if,
and only if, (`0,0) is winning for Eve.
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Bibliographic references
Timed games were first introduced by Asarin, Maler, Pnueli and Sifakis [MPS95,
AMPS98], in a slightly different form. Our presentation is based on the algorithms
proposed by Liu and Smolka [LS98], and extended to timed games by Cassez, David,
Fleury, Larsen and Lime [CDF+05]; its main advantage is that it runs on-the-fly, build-
ing (part of) the arena while exploring it, and terminating as soon as a winning strategy
is found. A first on-the-fly algorithm was proposed by Tripakis and Altisen in [TA99],
but it was not fully on-the-fly as it would run on a quotient graph of the timed arena,
which involves an expensive preprocessing step.

Timed games—and already timed automata—may exhibit unrealistic behaviours,
such as finite-duration executions containing infinitely many transitions (often referred
to as Zeno behaviours). In our semantics, Adam may always prevent Eve from playing
her move by choosing a shorter delay than hers, even if it means selecting a convergent
sequence of delays. Figure 9.7 displays a simple example of such a situation: in that
game, Adam may prevent Eve from reaching her winning state q1 by always selecting
a delay shorter than the delay proposed by Eve.

q0 q1
x > 0

x > 0;x := 0

Figure 9.7: A timed game where Adam may prevent Eve from reaching q1

An alternative semantics of timed games was proposed by de Alfaro, Faella, Hen-
zinger, Majumdar, and Stoelinga [dAFH+03] to circumvent this problem: it consists in
blaming at each round the player playing the shortest delay, and declaring any player
losing (even if she reaches her goal) in case the infinite sequence of delays converges
and that player received infinitely many blames. For such a semantics, Eve has a win-
ning strategy in the game of Figure 9.7, which consists in proposing a converging se-
quence of delays, until her action is applied; such a strategy requires infinite memory,
but strategies with randomized delays can circumvent this [CHP08]. Other approaches
to avoid arbitrary-precision strategies have been explored in [BMS15, BFM15, LLTW14,
ORS14].

Timed games have been extended with weights, in order to model other quantities
besides time (e.g. energy consumption). This is somewhat similar to the finite-state
games extended with payoffs of Chapter 4; in the timed setting however, besides evolv-
ing along transitions in the game, the payoff is also modified when timed elapses, and
the change is proportional to the time spent. As proven in [BBR05, BBM06], opti-
mal reachability (a.k.a. the shortest-path problem) is undecidable in that setting, but
arbitrary-precise approximation of the optimal cost can be computed [BJM15].

Timed games with partial observability have been investigated in [BDMP03]: in that
setting, Eve only has partial observation of the state and clock valuation of the arena;
she also owns a finite set of clocks she can use to measure other delays. Whether Eve
has a winning strategy in such a setting has been proved decidable if the set of clocks
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and their precision are fixed; it is undecidable if they are not fixed. A different setting
was developed in [CDL+07], with stuttering-invariant strategies, which are triggered
by observation changes. The on-the-fly algorithm presented in this chapter can be
adapted to that setting [CDL+07].

The algorithm we presented in this chapter is implemented in the tool Uppaal
TiGa [BCD+07]. Uppaal TiGa has been applied on various cases [CJL+09], and com-
bined with reinforcement-learning techniques to efficiently synthesise, optimise and
evaluate strategies for stochastic timed games [DJL+15]. Another approach, relying
on abstraction-refinement techniques, was proposed in [EMP10]; it merges locations
so as to obtain simpler games, while weakening one player and strengthening her op-
ponent. Solving the smaller games provides approximations on the winning set, which
are used to refine the abstractions and accelerate their analyses. This approach is im-
plemented in the tool Synthia [PEM11].





Chapter 10
Pushdown Games
ARNAUD CARAYOL, OLIVIER SERRE

This chapter studies two-player games whose arena is defined by a pushdown system1.
The vertices of the arena are the configurations of the pushdown system (i.e., pairs
composed of a control state and a word representing the content of the stack) and the
edges of the arena are defined by the pushdown system’s transitions. For simplicity,
both the ownership of a configuration and the objective will only depend on the control
state of the configuration. Hence the partition of all the configurations between the two
players will simply be given by a partition the control states. We will mainly consider
the parity objective. Via a standard reduction (using a deterministic parity automaton,
see Section 1.4), parity pushdown game can be used to solve any pushdown game with
an ω-regular objectives (which in our setting is simply an ω-regular set of infinite
words over the alphabet of control states).

The main conceptual novelty of this chapter is that the arena is no longer finite.
However as these games are described by a finite amount of information: the push-
down system, the ownership partition and the ω-regular objective, they are amenable
to algorithmic treatment. The first natural problem in this line is to decide the winner
of the game from a given configuration. We will also consider the computation of finite
representations for the winning regions and the winning strategies.

10.1 Notations
A pushdown system is a tuple P = (Q,QEve,QAdam,Γ,∆,C) where:

• Q is a finite set of control states with Q = QEve ]QAdam which is partitioned
between the two players Eve and Adam. Moreover with each state q is associated
a colour c(q)∈C;

1We use here the term pushdown system rather than pushdown automaton to stress the fact that we are
not considering these devices as language acceptors but rather focus on the transitions systems they define.

327
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• Γ is the stack alphabet. There is a special bottom-of-stack symbol, denoted ⊥,
which does not belong to Γ; we let Γ⊥ denote the alphabet Γ∪{⊥};

• ∆ : Q×Γ⊥ → 2Q×{pop,push(γ)|γ∈Γ} is the transition relation. We additionally re-
quire that for all states p,q ∈ Q, (q,pop) /∈ ∆(p,⊥), i.e., the bottom of stack
symbol is never popped.

We call a pair (p,s) ∈ Q×⊥Γ∗ a configuration of P: p is the control state of the
configuration while s is its stack content. We let sh((p,s)) = |s| − 1 denote the stack
height of the configuration (p,s). Intuitively, if (q,push(γ ′)) belongs to ∆(p,γ), the
pushdown system in any configuration of the form (p,sγ) can go to state q after pushing
the symbol γ on top of the stack, leading to the configuration (q,sγγ ′). Similarly,
if (q,pop) belongs to ∆(p,γ), the pushdown system in any configuration of the form
(p,sγ) can go to the configuration (q,s) after poping the top symbol from the stack.

A pushdown system induces an arena A = (G,VEve,VAdam) called a pushdown
arena where

• the set of vertices is the set V = Q×⊥Γ∗ of configurations of P with VEve =
QEve×⊥Γ∗ and VAdam = QAdam×⊥Γ∗;

• the set E of edges induced by ∆ is

E ={((p,sγ),c(p),(q,s)) | (q,pop) ∈ ∆(p,γ)} ∪
{((p,sγ),c(p),(q,sγγ

′)) | (q,push(γ ′)) ∈ ∆(p,γ)}.

Remark 13. In this chapter, we deviate slightly from the general setting used in the
book as we colour vertices and not edges. Because we only consider qualitative objec-
tives, it is more convenient to consider the equivalent setting where we label vertices
by colours rather than edges which is the usual convention in pushdown games. In the
definition of a pushdown arena, the colour of an edge is uniquely determined by the
colour of the control state of the source vertex. Therefore, we also view in this chapter
plays as sequences of vertices rather than sequences of edges.

Finally, a pushdown game is a game played on a pushdown arena. In this chapter we
only consider qualitative objectives of the form Ω⊆Cω where C is the set of colours.
As in our definition, colours are associated to control states, the objective we consider
only depend on the sequence of control states of the configurations visited along a play.
By a slight abuse of notation, for a play π ∈ V ∗, we let π = (p1,s1)(p2,s2) · · · ∈ Ω

denotes the fact that the sequences of colours (c(pi))i≥1 belongs to Ω.

Example 6. Consider the pushdown system P = (Q,QEve,QAdam,Γ,∆) where:

• QEve = {q,r} and QAdam = {p}; c(p) = 1, c(q) = 2 and c(r) = 0.

• Γ = {γ} is a singleton.

• ∆(p,⊥)= {(p,push(γ))}, ∆(p,γ)= {(p,push(γ)),(q,pop)}, ∆(q,⊥)= {(r,push(γ))},
∆(q,γ) = {(q,pop)} and ∆(r,γ) = {(q,pop)}.
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Figure 10.1 depicts the part of the pushdown arena A induced by P when re-
stricted to the vertices reachable from (p,⊥).

Consider the reachability game (A ,Reach({0})). Then, every vertex of the form
(q,⊥v) is winning for Eve and every vertex of the form (p,⊥v) is winning for Adam as
Adam can always choose to push a γ-symbol while remaining in state p hence always
avoiding the state r (which is the only state with colour 0). If instead we consider,
the Büchi game Buchi({0,2}), then Eve is winning form all vertices. The strategy for
Adam consisting in always pushing a γ-symbol while remaining in state p results in a
play that infinitely often sees the colour 2.

(p,⊥) (p,⊥γ) (p,⊥γγ) (p,⊥γγγ)

(r,⊥γ) (q,⊥) (q,⊥γ) (q,⊥γγ) (q,⊥γγγ)

Figure 10.1: Pushdown arena from Example 6

As a pushdown arena is in general infinite, the winning region for Eve, i.e., the set of
winning vertices for Eve may not admit a finite presentation. Similarly, for objectives
for which finite-memory strategies exists, the question of whether such a strategy can
be finitely presented (and computed) is raised. Hence, we will in general distinguish
the following three algorithmic problems.

Problem 10 (Solving a pushdown game).
INPUT: A pushdown game G and an initial vertex v0

OUTPUT: Does Eve win G from v0?

Problem 11 (Computing the winning region).
INPUT: A pushdown game G

OUTPUT: Output a finite presentation of the set v of vertices from which Eve wins G

In Theorem 106, we will show that the winning region can be described by a finite-
state automaton for a large class of qualitative winning conditions.

Problem 12 (Computing a winning strategy).
INPUT: A pushdown game G

OUTPUT: Output a finite presentation of a strategy for Eve that is winning from any
vertex in the winning region for Eve in G

We will show, for parity pushdown games, that the winning strategy can be de-
scribed using either a finite-state automaton or a pushdown automaton (see Section 10.3.3).



330 CHAPTER 10. PUSHDOWN GAMES

10.2 Profiles and regularity of the winning regions
In this section, we consider a large class of objectives called prefix independent. For
these objectives, a pushdown game can be meaningfully decomposed by considering
the part of the game between the moment a symbol is pushed onto the stack and stop-
ping as soon as it is popped. As a consequence, we will see that for prefix independent
objectives, the winning region can be described using finite state automata.

To this extent, we introduce reduced games which start with a stack containing only
one symbol γ and stop as soon as this symbol is popped from the stack. If the symbol
is never popped, the objective is unchanged and otherwise the winner of the game is
determined by the state reached when popping the symbol.

Let G = (A ,Ω) be a pushdown game played on an arena A = (G,VEve,VAdam)
generated by a pushdown system P = (Q,QEve,QAdam,Γ,∆). For any subset R ⊆ Q
of control states of P , we define a new objective Ω(R) such that a play π belongs to
Ω(R) if one of the following happens:

• the play π belongs to Ω and does not contain any configuration with an empty
stack ( i.e., of the form (q,⊥) for some state q ∈ Q),

• the play π contains a configuration with the empty stack and the first such con-
figuration has a state in R.

More formally, letting V =VEve∪VAdam, VR = R×⊥Γ∗ and V⊥ = Q×{⊥}

Ω(R) = (Ω\V ∗V⊥V ω)∪ (V \V⊥)∗VRV ω

Finally, we let G (R) denote the game (A ,Ω(R)).
Remark that contrarily to the rest of the objectives considered in this chapter, Ω(R)

does depend on the sequences of vertices visited by the play and not only on their
colour. It would have been possible by a slight modification of the arena to only express
the objective on their colours. However, our choice simplifies the presentation of the
reduced games.

For any state q ∈ Q and any stack letter γ ∈ Γ, we denote by R(q,γ) the set of
subsets R⊆ Q for which Eve wins in G (R) from (q,⊥γ):

R(q,γ) = {R⊆ Q | (q,⊥γ) is winning for Eve in G (R)}

and we refer to R(q,γ) as the (q,γ)-profile of G .
An objective Ω⊆Cω is prefix independent if the following holds: for every u ∈Cω

and for every v ∈ C∗, u ∈ Ω if and only if vu ∈ Ω. The Büchi, co-Büchi and parity
objectives are examples of prefix independent objectives and the reachability objective
is not.

Remark 14. For a prefix independent objective, a play respecting a winning strategy
for Eve that starts in Eve’s winning region always stays in this region. Obviously this is
no longer true if the objective is not prefix independent. For instance in a reachability
game, a play following a winning strategy for Eve can leave the winning region of Eve
once the target has been reached.
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This simple property allows to use profiles to give an inductive characterization of
the winning region for Eve when the objective is prefix independent.

Proposition 4. Assume that Ω ⊆ Cω is prefix independent. Let s ∈ Γ∗, q ∈ Q and
γ ∈ Γ. Then Eve has a winning strategy in G from (q,⊥sγ) if and only if there exists
some R ∈R(q,γ) such that (r,⊥s) is winning for Eve in G for every r ∈ R.

Proof. Assume Eve has a winning strategy σ from (q,⊥sγ) in G . Consider the set
Πσ of all plays in G that starts from (q,⊥sγ) and where Eve respects σ . Define R to
be the (possibly empty) set that consists of all r ∈ Q such that there is a play in Πσ

of the form v0 · · ·vk(r,⊥s)vk+1 · · · where each vi for 0 ≤ i ≤ k is of the form (pi,⊥sti)
for some non-empty ti. In other words, R consists of all states that can be reached on
popping γ for the first time in a play where Eve respects σ . As seen in Remark 14, Eve
is winning from (r,⊥s) for all r ∈ R. It remains to show that R ∈R(q,γ).

To this end, define a (partial) function ξ as ξ ((p,⊥st)) = (p,⊥t) for every p ∈ Q
and set ξ−1((p,⊥t)) = (p,⊥st). Then ξ−1 is extended as a morphism over V ∗. Now a
winning strategy for Eve in G (R) is defined as follows:

• if some empty stack configuration has already been visited play any valid move,

• otherwise go to ξ (σ(ξ−1(π)), where π is the current play.

By definition of Πσ and R, it easily follows that the previous strategy is winning for
Eve in G (R), and therefore R ∈R(p,γ).

Conversely, let us assume that there is some R∈R(q,γ) such that (r,⊥s) is winning
for Eve in G for every r ∈ R. For every r ∈ R, let us denote by σr a winning strategy for
Eve from (r,⊥s) in G . Let σR be a winning strategy for Eve in G (R) from (q,⊥γ). Let
us define ξ and ξ−1 as in the direct implication and extend them as (partial) morphism
over V ∗. Define the following strategy σ for Eve in G for plays starting from (q,⊥sγ).
For any such play π ,

• if π does not contain a configuration of the form (p,⊥s) then we take σ(π) =
ξ−1(σR(ξ (π)));

• otherwise let π = π ′ · (r,⊥s) · π ′′ where π ′ does not contain any configuration
of the form (p,⊥s). If r does not belong to R, σ is undefined. Note that this
situation will never be encountered in a play respecting σ as σR ensures that
r ∈ R. If r ∈ R, one finally sets σ(π) = σr((r,⊥s)π ′′).

The strategy σ is a winning strategy for Eve in G from (q,⊥sγ). To see this, consider
a play π starting from (p,⊥sγ) and respecting σ .

If the play π does not contain configurations of the form (r,⊥s) for some r ∈ Q,
then the play ξ (π) starting in (p,⊥γ) respects σR and is won by Eve. As ξ (π) does
not contain configurations with an empty stack, it must be the case that ξ (π) ∈ Ω. As
Ω only depends on the colours of the states, it is also the case that π ∈Ω and hence, π

is winning for Eve.
If the play π can be decomposed as π ′(r,⊥s)π ′′ where π ′ does not contain any

configuration with the stack ⊥s, the play ξ (π ′(r,⊥s)) respects σR in G (R). As σR is
winning, it follows that r ∈ R. By definition of σ , (r,⊥s)π ′′ respects σr which being
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winning for Eve implies that (r,⊥s)π ′′ ∈Ω. As Ω is prefix independent, it follows that
π ∈Ω. �

Proposition 4 implies that the winning region of any pushdown game equipped with
a prefix independent objectives can be described by regular languages.

Theorem 106. Let G =(A ,Ω) be a pushdown game played on an arena A =(G,VEve,VAdam)
generated by a pushdown system P = (Q,QEve,QAdam,Γ,∆), and such that Ω⊆Cω is
prefix independent. Then for any state q ∈ Q, the set

Lq = {u ∈ Γ
∗ | (q,⊥u) ∈WEve}

is a regular language over the alphabet Γ.

Proof. Fix a control state q ∈Q, we consider a deterministic finite state automaton de-
fined as follows. Its set of control states consists of the subsets of Q and the initial state
is Sin = {p | (p,⊥) ∈WEve}. From the state S upon reading the letter γ the automaton
goes to the state {p | S∈R(p,γ)}. Finally a state S is final if and only if q∈ S. It is then
an immediate consequence of Proposition 4 that this automaton accepts the language
Lq. �

Remark 15. By a slight abuse, we can think of the |Q| automata in Theorem 106 as
a single automaton that is design to first read the stack content and finally reads the
control state q (in this latter step, from state S it either go to a final state if q ∈ S or to
a rejecting one otherwise).

Remark 16. Note that the characterisation in Theorem 106 is a priori not effective.
Indeed, to construct automata for the languages Lq one needs to be able to compute
all the (q,γ)-profiles R(q,γ) of G and compute the winner from configurations of the
form (q,⊥).

Consider, for instance, the objective over the set of the colours C = {0,1,#,$}

Ωpal = {w ∈Cω | w contains infinitely many factors of the form
#u$ũ# with u ∈ {0,1}∗}

where ũ denotes the mirror of the word u.
As a language of ω-words, this objective is accepted by a deterministic ω-pushdown

automaton with a Büchi acceptance condition. Between two consecutive occurrences
of the #-symbol, the automaton checks that the word w appearing in between these
two occurrences is of the form u$ũ for some word u ∈ {0,1}∗. This can be done in a
deterministic manner as follows. First the automaton pushes onto the stack a symbol
⊥′ (which will play the same role as the bottom of stack symbol) then it pushes onto
the stack all symbols in {0,1} that are read. Then when the first $-symbol is read, it
only allows to read the symbol that is on the top of the stack before popping it. Finally
when a #-symbol is read, if the top-most symbol of the stack is ⊥′ the unique final state
is visited. Hence ensuring that a final state is visited if the word w is of the required
form. If w contains several $ symbols or if the symbol read does not correspond to the
top of the stack, the automaton enters a non-final state is in which it waits for the next
#-symbol.
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For games with finite arenas and the Ωpal objective, deciding the winner reduces to
deciding the winner in a pushdown game with the Büchi objective which is decidable
as we will prove later in this chapter. The pushdown game is essentially a synchronized
product between the finite arena and the ω-pushdown automaton described previously.

However the problem of deciding the winner in a pushdown game with the Ωpal
objective is undecidable even if all vertices belong to Eve. The undecidability is proved
by a reduction from Post correspondance problem (PCP) which is a well-known to be
undecidable. Recall that an instance of PCP is a finite sequence (r1, `1), . . . ,(rn, `n) of
pairs of words over {0,1}. Such an instance is said to admit a solution if there exists a
sequence of indices i1 · · · ik ∈ [1,n]∗ such that:

ri1ri2 · · ·rik = `i1`i2 · · ·`ik .

The PCP problem is, given an instance, to decide if it admits a solution.
For an instance I = (`1,r1), . . . ,(`n,rn) of PCP, we construct a pushdown game GI

with the objective Ωpal such that Eve wins GI from (p?,⊥) if and only if I admits a
solution. In this game, Eve plays alone and the play is decomposed in two phases that
will repeat:

• in phase 1, Eve can push any index i in [1,n] while producing the sequence of
colors ri. As soon as at least one index has been pushed, she can also choose to
move to the sequence phase while producing the colour $.

• in phase 2, Eve must (until the bottom of stack symbol is reached) pop the top
most element of the stack i while producing the sequence of colours ˜̀i. When
the bottom of stack symbol is encountered, Eve goes back to the first phase while
producing the colour #.

If I has a solution i1 · · · ik then the strategy in which Eve always pushes this sequence
in phase 1 is winning for her. As i1 · · · ik is a solution of I, we have u= ri1 ·rik = `i1 · · ·`ik
and by construction of the game, the sequence of colors associated with the play is
(u$ũ)ω ∈Ωpal. Conversely if Eve has a winning strategy from (q?,⊥) then the sequence
of colours associated with the winning play belongs to Ωpal. In particular, it must
contain a factor of the form #u$ũ#. By construction of the game the sequence of indices
i1 · · · ik pushed while producing u is a solution of I.

10.2.1 Reachability Pushdown Game
We will see in the following section that for the parity condition and more generally
for any ω-regular winning conditions the (q,γ)-profiles can be computed for any q∈Q
and γ ∈ Γ. We start by the simpler case of the reachability objective.

At first sight, the reachability objective is not captured by Theorem 106 as it is
not prefix independent. However with a slight adaptation of the reduced game G (R)
Theorem 106 for the reachability condition. Intuitively we ask that the play stops as
soon as a target vertex is reached.

More formally, for a reachability objective Reach(F) and letting V =VEve∪VAdam
and VF = {v ∈V | c(v) ∈ F}:

Ω(R) = [(V \Q×{⊥})∗ ·VF ·V ω ]∪ [(V \ (Q×{⊥}∪VF))
∗ · (R×{⊥}) ·V ω ]
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It is easily shown that with this modification to the definition of profiles both Propo-
sition 4 and Theorem 106 are true for the reachability objective. In the special case of
the reachability objective, the set Profs of triples (p,γ,R) such that R ∈R(p,γ) can be
expressed as a smallest fixed point.

More precisely, Profs is the smallest subset of Q×Γ×P(Q) such that for p ∈ Q,
γ ∈ Γ and R⊆ Q, (p,γ,R) belongs Profs if either:

1. p ∈ QF = {q ∈ Q | c(q) ∈ F},

2. or p ∈ QEve and for some q ∈ Q,

• either (q,pop) ∈ ∆(p,γ) and q ∈ R,

• or (q,push(γ ′)) ∈ ∆(p,γ) and (q,γ ′,R′) ∈ Profs for some R′ ⊆ Q such that
for all p′ ∈ R′, (p′,γ,R) ∈ Profs.

3. or p ∈ QA and for all q ∈ Q the following hold:

• (q,pop) ∈ ∆(p,γ) implies q ∈ R,

• (q,push(γ ′))∈∆(p,γ) implies that there exists R′⊆Q such that (q,γ ′,R′)∈
Profs and for all p′ ∈ R′, (p′,γ,R) ∈ Profs.

Using this characterization, the set Profs can be computed using the standard method
for computing small-fixed point of a monotonic function by computing the sequence
of approximants Profs0 = /0 ⊆ Profs1 ⊆ Profs2 · · · until it stabilizes. More precisely,
for all i≥ 0, Profsi+1 is obtained by adding to Profsi all the tuples that can be inferred
using the properties (1), (2) and (3) above applied to Profsi. As at most |Q| · |Γ| ·2|Q|
tuples can be added, the sequence must stabilize in at most |Q| · |Γ| ·2|Q| steps. As the
computation of Profsi+1 from Profsi can be performed in polynomial time, the profils
in a reachability pushdown game can be computed in time p(|Q| · |Γ| · 2|Q|) for some
polynomial p.

Remark 17. In the case where Eve plays alone (i.e., Q = QEve), there is only on play
respecting a fixed strategy for Eve and as a result, one only need to compute profils of
the form (p,γ,R) with |R| ≤ 1. In this setting, the fixed point characterization yields a
polynomial time algorithm to compute the set of profiles.

10.3 Parity pushdown games

We now focus on the central case of parity objectives. In Section 10.3.1, we show how
to compute the set of profiles using a reduction to finite parity game.

For the rest of this section, we fix a parity pushdown game G played on an arena
A = (G,VEve,VAdam) generated by a pushdown system P = (Q,QEve,QAdam,Γ,∆).
We also let V =VEve∪VAdam and we let the colours used in the game be {0, . . . ,d}.
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10.3.1 Computing the Profiles
In this section we show how to build a parity game played on a finite arena that permits
to compute the profiles in G .

We first start with some terminology and a basic result. For an infinite play π =
v0v1 · · · , let Stepsπ be the set of indices of positions where no configuration of strictly
smaller stack height is visited later in the play. More formally,

Stepsπ = {i ∈ N | ∀ j ≥ i,sh(v j)≥ sh(vi)}.

Note that Stepsπ is always infinite and hence induces a factorisation of the play π into
finite pieces.

In the factorisation induced by Stepsπ , a factor vi · · ·v j is called a bump if sh(v j) =
sh(vi), called a Stair otherwise (that is, if sh(v j) = sh(vi)+1).

For any play π with Stepsπ = {n0 < n1 < · · ·}, we can define the sequence (c(π)i)i≥0 ∈
{0, . . . ,d}N by setting c(π)i = max{c(vk) | ni ≤ k≤ ni+1}. This sequence fully charac-
terises the parity objective.

Proposition 5. Let π be a play. Then π satisfies the parity condition if and only if
limsup((c(π)i)i≥0) is even.

Simulation Game

In the sequel, we build a new parity game G̃ over a finite arena Ã . This new game
simulates the original pushdown game, in the sense that the sequence of visited colours
during a correct simulation of some play π in G is exactly the sequence (c(π)i)i≥0.
Moreover, a play in which a player does not correctly simulate the pushdown game is
losing for that player. We shall see that the winning region in G̃ allows us to compute
the set of profiles {R(q,γ) | q ∈ Q and γ ∈ Γ}. Hence, by Theorem 106, it will imply
that one can solve a pushdown game as well as compute its winning region.

Before providing a precise description of the arena Ã , let us consider the following
informal description of this simulation game. We aim at simulating a play in the push-
down game from some initial vertex (pin,⊥). In Ã we keep track of only the control
state and the top stack symbol of the currently simulated configuration.

The interesting case is when it is in a control state p with top stack symbol α ,
and the player owning p wants to push a symbol β onto the stack and change the
control state to q. For every strategy of Eve, there is a certain set of possible (finite)
continuations of the play that will end with popping β from the stack. We require Eve
to declare a vector

−→
S = (S0, . . . ,Sd) of (d + 1) subsets of Q, where Si is the set of

all states the game can be in after popping β along those plays where in addition the
largest visited colour while β was on the stack is i.

Adam has then two choices. He can continue the game by pushing β onto the stack
and updating the state (we call this a pursue move). Otherwise, he can pick a set Si and
a state r ∈ Si, and continue the simulation from that state r (we call this a jump move).
If he does a pursue move, then he remembers the vector

−→
S claimed by Eve; if later on,

a pop transition is simulated, the play goes in a sink vertex and Evewins if and only if
the resulting state is in Sc where c is the largest colour seen in the current stack level
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(p,α,
−→
R ,c)

(p,α,
−→
R ,c,q,β )

∀(q,push(β )) ∈ ∆(p,α)

tt

If ∃(r,pop) ∈ ∆(p,α)
s.t. r ∈ Rc

ff

If ∃(r,pop) ∈ ∆(p,α)
s.t. r /∈ Rc

(p,α,
−→
R ,c,q,β ,

−→
S )

∀−→S ∈ (2Q)d+1

(q,β ,
−→
S ,c(q)) (r,α,

−→
R ,max(c, i,c(r))

∀r ∈ Si

ic(q)

0 1

Figure 10.2: Local structure of the arena Ã

(this information is encoded in the vertex, reset after each pursue move and updated
after each jump move). If Adamdoes a jump move to a state r in Si, the currently
stored value for c is updated to max(c, i,c(r)), which is the largest colour seen since
the current stack level was reached.

Therefore the main vertices of this new arena are of the form (p,α,
−→
R ,c), which

are controlled by the player who controls p. Intermediate vertices are used to han-
dle the previously described intermediate steps. The local structure is given in Fig-
ure 10.2. Two special sink vertices tt and ff are used to simulate pop moves. This
arena is equipped with a colouring function on the edges: an edge from a vertex
(p,α,

−→
R ,c,q,β ,

−→
S ) to a vertex (r,α,

−→
R ,max(c, i,c(r)) has colour i where i is the colour

of the simulated bump, an edge from a vertex (p,α,
−→
R ,c,q,β ,

−→
S ) to a vertex (q,β ,

−→
S c(q))

simulating a jump move has colour c(q), the loop on tt has colour 0 while the loop on
ff has colour 1; all other edges get the irrelevant colour 0.

We now formally describe arena Ã (we refer to Figure 10.2) and provide some
extra insight.

• The main vertices of Ã are those of the form (p,α,
−→
R ,c), where p ∈ Q, α ∈ Γ,

−→
R = (R0, . . . ,Rd) ∈ (2Q)d+1 and c ∈ {0, . . . ,d}. A vertex (p,α,

−→
R ,c) is reached

when simulating a finite play π in G such that:
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– The last vertex in π is (p,⊥sα) for some s ∈ Γ∗.

– Eveclaims that she has a strategy to continue π in such a way that if α is
eventually popped, the control state reached after popping belongs to Rm,
where m is the largest colour visited since the stack height was at least |sα|.

– The colour c is the largest one since the current stack level was reached
from a lower stack level.

A vertex (p,α,
−→
R ,c) is controlled by Eve if and only if p ∈ QEve.

• The vertices tt and ff are here to ensure that the vectors
−→
R encoded in the main

vertices are correct. They are both controlled by Eve and are sink vertices with a
self loop with colour 0 for tt and 1 for ff .

There is a transition from some vertex (p,α,
−→
R ,c) to tt, if and only if there exists

a transition rule (r, pop)∈ ∆(p,α), such that r ∈ Rc (this means that
−→
R is correct

with respect to this transition rule). Dually, there is a transition from a vertex
(p,α,

−→
R ,c) to ff if and only if there exists a transition rule (r, pop) ∈ ∆(p,α)

such that r /∈ Rc (this means that
−→
R is not correct with respect to this transition

rule).

• To simulate a transition rule (q, push(β )) ∈ ∆(p,α), the player that controls
(p,α,

−→
R ,c) moves to (p,α,

−→
R ,c,q,β ). This vertex is controlled by Eve who

has to give a vector
−→
S = (S0, . . . ,Sd) ∈ (2Q)d+1 that describes the control states

that can be reached if β is eventually popped. To describe this vector, she goes
to the corresponding vertex (p,α,

−→
R ,c,q,β ,

−→
S ).

Any vertex (p,α,
−→
R ,c,q,β ,

−→
S ) is controlled by Adam who chooses either to

simulate a bump or a stair. In the first case, he additionally has to pick the
maximal colour of the bump. To simulate a bump with maximal colour i, he
goes, through an edge coloured by i, to a vertex (r,α,

−→
R ,max(c, i,c(r))), for

some r ∈ Si.

To simulate a stair, Adam goes, through an edge coloured by c(q), to the vertex
(q,β ,

−→
S ,c(q)).

The last component of the vertex (that stores the largest colour seen since the cur-
rently simulated stack level was reached) has to be updated in all those cases. Af-
ter simulating a bump of maximal colour i, the maximal colour is max(c, i,c(r)).
After simulating a stair, this colour has to be initialized (since a new stack level
is simulated). Its value, is therefore c(q), which is the unique colour since the
(new) stack level was reached.

The edges for which we did not precise the colour are assigned colour 0.
The following theorem relates this new game G̃ and the profiles in the pushdown

game G .

Theorem 107. The following holds.
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(i) A configuration (pin,⊥) is winning for Eve in G if and only if (pin,⊥,( /0, . . . , /0),c(pin))

is winning for Eve in G̃ .

(ii) For every q∈Q, γ ∈Γ and R⊆Q, R∈R(q,γ) if and only if (q,γ,(R, . . . ,R),c(q))
is winning for Eve in G̃ .

The rest of the section is devoted to the proof of Theorem 107. We only prove point
(i) as the proof of point (ii) is a subpart of the proof of (i).

Factorisation of a play in G .

Recall that, for an infinite play π = v0v1 · · · in G , Stepsπ denotes the set of indices of
positions where no configuration of strictly smaller stack height is visited later in the
play. Note that Stepsπ is always infinite and hence induces a factorisation of the play π

into finite pieces.
Indeed, for any play π with Stepsπ = {n0 < n1 < · · ·}, one can define the sequence

(πi)i≥0 by setting πi = vni · · ·vni+1 . Note that each of the Λi is either a bump or a stair.
We designate (πi)i≥0 as the rounds factorisation of π and we let c(πi) denotes the
largest colour in πi.

Factorisation of a play in G̃ .

Recall that in Ã only some edges have a relevant colour while all others get colour 0.
Hence, to represent a play, we only keep the relevant colours of edges. More precisely,
we only need to encode the colours in {0, . . . ,d} that appears when simulating a bump:
a play will be represented as a sequence of vertices together with colours in {0, . . . ,d}
that correspond to (relevant) colours appearing on edges.

For any play in G̃ , a round is a factor between two visits through vertices of the
form (p,α,

−→
R ,c). We have the following possible forms for a round:

• The round is of the form

(p,α,
−→
R ,c)(p,α,

−→
R ,c,q,β )(p,α,

−→
R ,c,q,β ,

−→
S )i(r,α,

−→
R ,max(c, i,c(s)))

and corresponds therefore to the simulation of a rule pushing β followed by a
sequence of moves that ends by popping β . Moreover i is the largest colour
encountered while β was on the stack.

• The round is of the form

(p,α,
−→
R ,c)(p,α,

−→
R ,c,q,β )(p,α,

−→
R ,c,q,β ,

−→
S )c(q)(q,β ,

−→
S ,c(q))

and corresponds therefore to the simulation of a rule pushing a symbol β leading
to a new stack level below which the play will never go. We designate it as a
stair.
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For any play π̃ = v0v1v2 · · · in G̃ , we consider the subset of indices corresponding
to vertices of the form (p,α,

−→
R ,c). More precisely:

Roundsπ̃ = {n | vn = (p,α,
−→
R ,c), p ∈ Q, α ∈ Γ,

−→
R ∈ (2Q)d+1, 0≤ c≤ d}

Therefore, the set Roundsπ̃ induces a natural factorisation of π̃ into rounds.

Definition 29 (Rounds factorisation). For a (possibly finite) play π̃ = v0v1v2 · · · , we
call rounds factorisation of π̃ , the (possibly finite) sequence (π̃i)i≥0 of rounds defined
as follows. Let Roundsπ̃ = {n0 < n1 < n2 < · · ·}, then for all 0≤ i < |Roundsπ̃ |, define
π̃i = vni · · ·vni+1 .

Therefore, for every i≥ 0, the first vertex in π̃i+1 equals the last one in π̃i. Moreover,
π̃ = π̃1 � π̃2 � π̃3 � ·· · , where π̃i � π̃i+1 denotes the concatenation of π̃i with π̃i+1
without its first vertex. Finally, the colour of a round is the unique colour in {0, . . . ,d}
appearing in the round.

In order to prove both implications of Theorem 107 , we build from a winning
strategy for Eve in one game a winning strategy for her in the other game. The main ar-
gument to prove that the new strategy is winning is to prove a correspondence between
the factorisations of plays in both games.

Proof of the Direct Implication of Theorem 107

Assume that the configuration (pin,⊥) is winning for Eve in G , and let σ be a corre-
sponding winning strategy for her.

Using σ , we define a strategy σ̃ for Eve in G̃ from (pin,⊥,( /0, . . . , /0),c(pin)). This
strategy stores a finite play in G , that is an element in V ∗. This memory will be denoted
π . At the beginning π is initialized to the vertex (pin,⊥). We first describe σ̃ , and then
we explain how π is updated. Both the strategy σ̃ and the update of π , are described
for a round.

Choice of the move. Assume that the play is in some vertex (p,α,
−→
R ,c) for

p ∈ QEve. The move given by σ̃ depends on σ(π):

• If σ(π) = (r, pop), then Eve goes to tt (Proposition Proposition 6 will prove that
this move is always possible).

• If σ(π) = (q, push(β )), then Eve goes to (p,α,
−→
R ,c,q,β ).

In this last case, or in the case where p∈QAdam and Adam goes to (p,α,
−→
R ,c,q,β ),

we also have to explain how Eve behaves from (p,α,
−→
R ,c,q,β ). She has to provide

a vector
−→
S ∈ (2Q)d+1 that describes which states can be reached if β is eventually

popped, depending on the largest colour visited in the meantime. In order to define−→
S , Eve considers the set of all possible continuations of π · (q,sαβ ) (where (p,sα)
denotes the last vertex of π) where she respects her strategy σ . For each such play,
she checks whether some configuration of the form (r,sα) is visited after π · (q,sαβ ),
that is if the stack level of β is eventually left. If it is the case, she considers the first
configuration (r,sα) appearing after π · (q,σαβ ) and the largest colour i since β was
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on the stack. For every i ∈ {0, . . .d}, Si, is exactly the set of states r ∈ Q such that the
preceding case happens. More formally,

Si ={r | ∃ π · (q,sαβ )v0 · · ·vk(r,sα) · · · play in G where Eve respects σ and s.t.
sh(v j)> |σα|, ∀ j = 0, . . . ,k, and max({c(v j) | j = 0, . . . ,k}∪{c(q)}) = i}

Finally, we set
−→
S = (S0, . . . ,Sd) and Eve moves to (p,α,

−→
R ,c,q,β ,

−→
S ).

Update of π . The memory π is updated after each visit to a vertex of the form
(p,α,

−→
R ,c). We have two cases depending on the kind of the last round:

• The round is a bump, and therefore a bump of colour i (where i is the colour of
the round) starting with some transition (q, push(β )) and ending in a state r ∈ Si
was simulated. Let (p,sα) be the last vertex in π . Then the memory becomes
π extended by (q,sαβ ) followed by a sequence of moves, where Eve respects
σ , that ends by popping β and reach (r,sα) while having i as largest colour. By
definition of Si such a sequence of moves always exists.

• The round is a stair and therefore we have simulated a transition (q, push(β )). If
(p,sα) denotes the last vertex in π , then the updated memory is π · (q,sαβ ).

Therefore, with any finite play π̃ in G̃ in which Eve respects her strategy σ̃ , is
associated a finite play π in G . An immediate induction shows that Eve respects σ in
π . The same arguments works for an infinite play π̃ , and the corresponding play π is
therefore infinite, starts from (pin,⊥) and Eve respects σ in that play. Therefore it is a
winning play.

The following proposition is a direct consequence of how σ̃ was defined.

Proposition 6. Let π̃ be a finite play in G̃ that starts from (pin,⊥,( /0, . . . , /0),c(pin)),
ends in a vertex of the form (p,α,

−→
R ,c), and where Eve respects σ̃ . Let π be the play

associated with π̃ built by the strategy σ̃ . Then the following holds:

1. π ends in a vertex of the form (p,sα) for some s ∈ Γ∗.

2. c is the largest colour visited in π since α was pushed.

3. Assume that π is extended, that Eve keeps respecting σ and that the next move
after (p,σα) is to some vertex (r,σ). Then r ∈ Rc.

Proposition Proposition 6 implies that the strategy σ̃ is well defined when it pro-
vides a move to tt. Moreover, one can deduce that, if Eve respects σ̃ , ff is never
reached.

For plays that do not visits tt nor ff , using the definitions of Ã and σ̃ , we easily
deduce the following proposition.

Proposition 7. Let π̃ be an infinite play in G̃ that starts from (pin,⊥,( /0, . . . , /0), c(pin)),
and where Eve respects σ̃ . Let π be the associated play built by the strategy σ̃ , and let
(πi)i≥0 be its rounds factorisation. Let (π̃i)i≥0 be the rounds factorisation of π̃ . Then,
for every i≥ 1 the following hold:
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1. π̃i is a bump if and only if πi is a bump

2. π̃i has colour c(πi).

Proposition 7 implies that for any infinite play π̃ in G̃ starting from (pin,⊥,( /0, . . . , /0),
c(pin)) where Eve respects σ̃ , the sequence of visited colours in π̃ is (c(π)i)i≥0 for the
corresponding play π in G . Hence, using Proposition 5 we conclude that π̃ is winning
if and only if π is winning. As π is winning for Eve, it follows that π̃ is also winning
for her.

Proof of the Converse Implication of Theorem 107

Note that in order to prove the converse implication of Theorem 107 one could follow
the direct implication and consider the point of view of Adam. Nevertheless the proof
we give here starts from a winning strategy for Eve in G̃ and deduces a strategy for her
in G : this induces a more involved proof but has the advantage to lead to an effective
construction of a winning strategy for Eve in G if one has an effective strategy for her
in G̃

Assume now that Eve has a winning strategy σ̃ in G̃ from (pin,⊥,( /0, . . . , /0),c(pin)).
Using σ̃ , we build a strategy σ for Eve in G for plays starting from (pin,⊥).

The strategy σ uses, as memory, a stack Π, to store the complete description of a
play in G̃ . Recall here that a play in G̃ is represented as a sequence of vertices together
with colours in {0, . . .d}. Up to coding we can assume that we distinguish for free
between stairs and bumps for transitions from vertices of the form (p,α,

−→
R ,c,q,β ,

−→
S ).

The stack alphabet of Π is the set of vertices of Ã together with the colours
{0, . . . ,d}. In the following, top(Π) will denote the top stack symbol of Π while
StCont(Π) will be the word obtained by reading Π from bottom to top (without consid-
ering the bottom-of-stack symbol of Π). In any play where Eve respects σ , StCont(Π)

will be a play in G̃ that starts from (pin,⊥,( /0, . . . , /0),c(pin)) and where Eve respects
her winning strategy σ̃ . Moreover, for any play π where Eve respects σ , we will always
have that top(Π) = (p,α,

−→
R ,c) if and only if the current configuration in π is of the

form (p,sα). Finally, if Eve keeps respecting σ , and if α is eventually popped the con-
figuration reached will be of the form (r,s) for some r ∈ Ri, where i is the largest visited
colour since α was on the stack. Initially, Π only contains (pin,⊥,( /0, . . . , /0),c(pin)).

In order to describe σ , we assume that we are in some configuration (p,sα) and
that top(Π) = (p,α,

−→
R ,c). We first describe how Eve plays if p ∈ QEve, and then we

explain how the stack is updated.

• Choice of the move. Assume that p ∈ QEve and that Eve has to play from some
vertex (p,sα). For this, she considers the value of σ̃ on StCont(Π).

If it is a move to tt, Eve plays a transition (r, pop) for some state r∈Rc. Lemma 130
will prove that such an r always exists.

If the move given by σ̃ is to go to some vertex (p,α,
−→
R ,c,q,β ), then Eve applies

the transition (q, push(β )).
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• Update of Π. Assume that the last move, played by Eve or Adam, was to go from
(p,sα) to some configuration (r,s). The update of Π is illustrated by Figure 10.3
and explained in what follows. Eve pops in Π until she finds some configuration
of the form (p′,α ′,

−→
R′ ,c′, p′′,α,

−→
R ) that is part of a stair. This configuration is

therefore in the stair that simulates the pushing of α onto the stack. Eve updates
Π by pushing c in Π followed by (r,α ′,

−→
R′ ,max(c′,c,c(r))).

Assume that the last move, played by Eve or Adam, was to go from (p,sα)

to some configuration (q,sαβ ), and let (p,α,
−→
R ,c,q,β ,

−→
S ) = σ̃(StCont(Π) ·

(p,α,
−→
R ,c,q,β )). Intuitively,

−→
S describes which states Eve can force a play

to reach if β is eventually popped. Eve updates Π by successively pushing
(p,α,

−→
R ,c,q,β ), (p,α,

−→
R ,c,q,β ,

−→
S ), and (q,β ,

−→
S ,c(q)).

The following lemma gives the meaning of the information stored in Π.

Lemma 130. Let π be a finite play in G , where Eve respects σ , that starts from (pin,⊥)
and that ends in a configuration (p,sα). We have the following facts:

1. top(Π) = (p,α,
−→
R ,c) with

−→
R ∈ (2Q)d+1 and 0≤ c≤ d.

2. StCont(Π) is a finite play in G̃ that starts from (pin,⊥,( /0, . . . , /0),c(pin)), that
ends with (p,α,

−→
R ,c) and where Eve respects σ̃ .

3. c is the largest colour visited since α was pushed.

4. If π is extended by some move that pops α , the configuration (r,s) that is reached
is such that r ∈ Rc.

Proof. The proof goes by induction on π . We first show that the last point is a conse-
quence of the second and third points. To aid readability, one can refer to Figure 10.3.
Assume that the next move after (p,sα) is to apply a transition (r, pop) ∈ ∆(p,α). The
second point implies that (p,α,

−→
R ,c) is winning for Eve in G̃ . If p ∈ QEve, by defini-

tion of σ , there is some edge from that vertex to tt, which means that r ∈ Rc and allows
us to conclude. If p ∈ QAdam, note that there is no edge from (p,α,

−→
R ,c) (winning

position for Eve) to the (losing) vertex ff . Hence we conclude in the same way.
Let us now prove the other points. For this, assume that the result is proved for

some play π , and let π ′ be an extension of π . We have two cases, depending on how π ′

extends π:

• π ′ is obtained by applying a push transition. The result is trivial in that case.

• π ′ is obtained by applying a pop transition. Let (p,sα) be the last configuration
in π , and let

−→
R be the last vector component in top(Π) when in configuration

(p,sα). By the induction hypothesis, it follows that π ′ = π · (r,s) with r ∈ Rc.
Considering how Π is updated, and using the fourth point, we easily deduce that
the new strategy stack Π is as desired (one can have a look at Figure 10.3 for
more intuition).



10.3. PARITY PUSHDOWN GAMES 343

· · ·

(p ′,
α
′, −→R
′,c ′)

(p ′,
α
′, −→R
′,c ′,p ′′,

α
)

(p ′,
α
′, −→R
′,c ′,p ′′,

α
, −→R

)

(p ′′,
α
, −→R

,col(p ′′))

(p,
α
, −→R

,c)

· · ·

(p′,s)
s = s′α ′

(p′′,sα) (p,sα) max. col. = c

max. col. = c′

· · ·

(p ′,
α
′, −→R
′,c ′)

(p ′,
α
′, −→R
′,c ′,p ′′,

α
)

(p ′,
α
′, −→R
′,c ′,p ′′,

α
, −→R

)

c

(r,
α
′, −→R
′,m

ax(c ′,c,col(r)))

(p′,s)
s = s′α ′

(r,s)
max. col.=
max(c′,c,col(r))

Figure 10.3: Updating the strategy’s stack Π
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�

Actually, we easily deduce a more precise result.

Lemma 131. Let π be a finite play in G starting from (pin,⊥) and where Eve respects
σ . Let (πi)i≥0 be its rounds factorisation. Let π = StCont(Π), where Π denotes the
strategy’s stack in the last vertex of π . Let (πi)i=0,...,k be the rounds factorisation of π .
Then the following holds:

• πi is a bump if and only if πi is a bump.

• πi has colour c(π)i.

Both Lemma 130 and Lemma 131 are for finite plays. A version for infinite plays
would allow us to conclude. Let π be an infinite play in G . We define an infinite
version of π by considering the limit of the stack contents (StCont(Πi))i≥0 where Πi is
the strategy’s stack after the first i moves in π . It is easily seen that such a limit always
exists, is infinite and corresponds to a play won by Eve in G̃ . Moreover the results of
Lemma 131 apply.

Let π be a play in G with initial vertex (pin,⊥), and where Eve respects σ , and let
π be the associated infinite play in G̃ . Therefore π is won by Eve. Using Lemma 131
and Proposition 5, we conclude, as in the direct implication that π is winning.

10.3.2 Solving the Game and Computing the Winning Region and
Strategy

Combining Theorem 107 and Theorem 106, we obtain the following upper bounds
regarding the problem of deciding the winner in a pushdown game and on constructing
a finite state automaton recognising the winning region (in the sense of Remark 15).

Theorem 108. Let G be a parity pushdown game using colours {0, . . . ,d− 1} and
played on an arena generated by a pushdown system with n control states and with a
stack alphabet of size m. Then the following holds

(i) One can construct in time O(md2nd2
) a deterministic finite state automaton with

2n states recognising the winning region of Eve in G .

(ii) One can decide in time O(md2nd2
+ |s|), for any configuration (p,⊥s), whether

it is winning for Eve in G .

Proof. Consider the parity game G̃ from Section 10.3.1. Let n = |Q| and m = |Γ|.
Then G̃ is played on an arena with O(nm22nd) vertices and it uses d colours. Hence,
computing the winning region of this later game can be achieved in time O(md2nd2

),
see Chapter 2.

Using, Theorem 107, it follows that the set of profiles can be computed in time
O(md2nd2

), and by Theorem 106 (and its proof) we know that we can construct (in the
same time complexity) a deterministic finite state automaton with 2n states recognising
the winning region WEve.
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The upper bound for the second item simply follows from the fact that running a
deterministic automaton on a word is performed in linear time in the length of the word.
�

Regarding lower bound, the following result shows that the previous upper bound
is optimal. Note that it is enough to consider a reachability objective.

Theorem 109. Let G be a reachability pushdown game. Then the following problem
is hard for EXP: decide whether (p,⊥) is winning for Eve in G .

Proof. The lower bound is established by reducing the halting problem for alternating
linear space bounded Turing machine.

Consider an alternating linear space bounded Turing machine M . We can safely
assume that M has a unique tape and on an input of size n it uses at most n tape squares.
Let Q = Q∃∪Q∀ be the states of the Turing machine where Q∃ are the existential states
and Q∀ are the universal ones; we let qa be the (unique) accepting state of the machine.
Call A the tape alphabet and let T ⊆ Q×A×Q×A×{←,→} the transition table of
the machine. A configuration of M is a word C of the form uqv ∈ A∗QA∗ of length
n+1 (the meaning being that M is in state q and that the tape contains uv).

We now informally describe a two-player game simulating a computation of M
and argue that it can be encoded as a reachability pushdown game. Think first of M
as being non-deterministic, i.e. Q∀ = /0 and call C0 the initial configuration. A run
of M can be encoded as a word r = C0]t0]C1]t1]C2]t2]C3] · · · where for every i ≥ 0,
ti ∈ T is a transition of M that can be applied in configuration Ci and Ci+1 is the
configuration reached from Ci by applying ti; it is accepting if some ti is a transition to
the accepting state of M . A way to encode such r with a pushdown game is that Eve
pushes symbols in the stack to describe r and to use the control states to impose some
structural constraints on the sequence of pushed symbols:

• The first pushed configuration is C0.

• Every configuration pushed has the right form, i.e. it is a word in A∗QA∗ of
length n+1.

• Every configuration C is followed by some pattern ]t] and the transition t in
this pattern can be applied from the configuration. This is ensured by storing in
the control state of the pushdown process the state of M and the content of the
currently read cell in C.

To ensure these properties a linear number of control states suffices.
Of course, this is not enough because Eve could cheat and push a configuration

Ci+1 = x0x1 · · ·xn which is not the successor of Ci = y0y1 · · ·yn by ti. To avoid this, after
she described a configuration (say Ci+1) and pushed the ] symbol, Adam can stop the
simulation and claim a mistake by indicating the index k of a wrong update in Ci+1. If
so, the game goes to a special mode where the following is performed:

• the ] symbol is popped as well as the next n− i symbols;

• the current top symbol is xi and it is stored in the control state of the pushdown
process



346 CHAPTER 10. PUSHDOWN GAMES

• the players keep popping until a ] symbol is seen and the next symbol ti is also
stored in the control state

• then the players pop n− i−1 symbols and then considering the next three sym-
bols they can check whether the update was correct or not (there are several cases
depending whether the reading tape was at distance at most 1 of the position of
index i).

Again, this can be implemented thanks to a linear number of control states in the push-
down process.

In case Eve cheats the play loops in a non-final sink configuration. Otherwise it
loops in a final sink configuration.

Now, if the Turing Machine M is alternating, the only difference is that the choice
of the transition ti is made by Eve if the control state in Ci is existential and by Adam
if it is universal. The rest of the game is unchanged (in particular Eve is still in charge
of describing all configurations, regardless of whom picks the transition).

It is then immediate to check that Eve has a winning strategy in this game if and
only if the Turing machine accepts from its initial configuration. �

10.3.3 Pushdown and Regular Winning Strategies

In Section 10.3.1, we have seen that the proof of Theorem 107 shows that a winning
strategy for Eve (when it exists) can be implemented by pushdown automaton that
reads the pushdown system transitions chosen by the players and indicates Eve moves
by a function depending only of the current control state and the top-most stack symbol
of the strategy automaton.

In this section, we present a different reduction whose aim is to be able to compute a
positional winning strategy for Eve which furthermore can be implemented by a finite
state automata. As an added benefit, we will see that this strategy is uniform in the
sense that it is winning from every vertex of the winning region of Eve.

For the rest of this section, we fix a parity pushdown game G played on an arena
A = (G,VEve,VAdam) generated by a pushdown system P = (Q,QEve,QAdam,Γ,∆).
We also let V =VEve∪VAdam and we let the colours used in the game be {0, . . . ,d}.

A summary is a triple (p,c,q) ∈ Q×{0, . . . ,d}×Q. A set S of summaries is com-
plete if (p1,c1,q),(q,c2, p2) ∈ S implies that (p1,max(c1,c2), p2) ∈ S; it is winning
if (p,c, p) ∈ S implies that c is even. For R ⊆ Q, a set of R-summaries is a set of
summaries S ⊆ R×{0, . . . ,d}×R. Associated with some stack content s, a summary
(p,c,q) aims to encode the existence of a sequence of moves from (p,s) to (q,s) where
the top symbol of s is never removed and where c is the largest colour visited in the
sequence.

Let P ⊆ QEve and γ ∈ Γ⊥. A (P,γ)-local strategy for Eve is a partial function σγ :
P→ Q×{pop,push(γ) | γ ∈ Γ} such that σγ(p) ∈ ∆(p,γ) for all p ∈ P. Equivalently
it is a selection for every state in P of a consistent transition of P when the top symbol
is γ . For a subset R⊆Q, we say that σγ pops in R if σγ(q) = (r, pop) implies r ∈ R. We
say that a (P,γ)-local strategy is safe if σγ(p) = (q, push(α)) implies that P∈R(q,α).
From now on, we only allowed safe local strategies.
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Let R⊆ Q and γ ∈ Γ. We associate with (R,γ) the subset

W (R,γ) = {q | R ∈R(q,γ)}

By a small abuse of notation we let W ( /0,⊥) = {q | (q,⊥) ∈WEve}. Remark that for
every q ∈W (R,γ)∩QAdam and (r, pop) ∈ ∆(q,γ) one has r ∈ R.

We now define a new game Ĝ played on a finite arena and equipped with an ω-
regular objective. We start by an informal description of plays in Ĝ and later formally
describe the arena and the objective.

A play in Ĝ begins by an initialisation phase:

• The play starts in (⊥,R) where R =W ( /0,⊥) = {q | (q,⊥) ∈WEve}.

• From there, Eve chooses σ⊥ an (R,⊥)-local strategy and a set of R-summaries
that is both complete and winning. Then, the play goes to (⊥,R,σ⊥,S).

Then, the plays goes for rounds of the following form:

• From a vertex (γ,R,σγ ,S), where γ ∈ Γ, R ⊆ Q, σγ is an (R,γ)-local strategy
and S is a set of R-summaries, Eve chooses for every α ∈ Γ a (W (R,α),α))-
local strategy σα that pops in R and a set of W (R,α)-summaries Sα that is both
complete and winning. The play then goes in (γ,R,σγ ,S,(σα ,Sα)α∈Γ).

• Then, Adam chooses some α in Γ and the play goes in (α,W (R,α),σα ,Sα).

Consider a tuple (γ,R,σγ ,S,(σα ,Sα)α∈Γ) where γ ∈ Γ, R⊆Q, σγ is an (R,γ)-local
strategy, S is a set of R-summaries, and, for every α ∈ Γ, σα is a (W (R,α),α))-local
strategy σα that pops in R and Sα is a set of W (R,α)-summaries that is both complete
and winning. The tuple (γ,R,σγ ,(σα ,Sα)α∈Γ) is consistent if, for every (p,r) ∈ R2,
one has (p,max(c(p),c,c(r)),r) ∈ S as soon as we are in one of the following two
situations (the second one being the degenerated version of the first one).

• There exists α ∈ Γ, (q,c,q′) ∈ Sα such that

(i) either p∈QEve and (q,push(α)) =σγ(p), or p∈QAdam and (q,push(α))∈
∆(p,γ), and

(ii) either q′ ∈QEve and (r,pop)=σα(q′), or q′ ∈QAdam and (r,pop)∈∆(q′,α).

Intuitively, if with state p and top symbol γ one can push α and go to state q from
which we know that we can later go back to the same stack content with state q′

and maximal colour c, and finally pop γ and end in state r, then we conclude that
we can go from p to r while seeing max(c(p),c,c(r)) as the maximal colour.

• There exists α ∈ Γ and q ∈W (R,α) such that

(i) either p∈QEve and (q,push(α)) =σγ(p), or p∈QAdam and (q,push(α))∈
∆(p,γ), and

(ii) either q ∈ QEve and (r,pop) = σα(q), or q ∈ QAdam and (r,pop) ∈ ∆(q,α),

(iii) c = c(q).
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Intuitively, if with state p and top symbol γ one can push α and go to state q and
directly pops γ and end in state r, then we conclude that we can go from p to r
while seeing max(c(p),c(q),c(r)) as the maximal colour.

In the previous informal description, the only allowed choices for (σα ,Sα)α∈Γ are
those that leads to consistent tuples. Formally, we define the arena Â as follows:

• There is a special initial vertex (⊥,W ( /0,⊥)) controlled by Eve.

• For every γ ∈ Γ⊥, every R ⊆ Q, every (R,γ)-local strategy σγ and every set of
R-summaries that is both complete and winning there is a vertex (γ,R,σγ ,S)
controlled by Eve.

• There is a vertex (γ,R,σγ ,S,(σα ,Sα)α∈Γ) controlled by Adam for every consis-
tent such tuple.

• From every vertex (γ,R,σγ ,S) there is an edge to every vertex of the form
(γ,R,σγ ,S,(σα ,Sα)α∈Γ).

• From every vertex (γ,R,σγ ,S,(σα ,Sα)α∈Γ) there is an edge to (α,W (R,α),σα ,Sα)
for every α ∈ Γ.

Hence, a play in Ĝ from the initial vertex (γ0,R0) = (⊥,W ( /0,⊥)) is a sequence of
vertices

π̂ =(⊥,R0)(γ0,R0,σ0,S0)(γ0,R0,σ0,S0,(σ
1
α ,S

1
α)α∈Γ))(γ1,R1,σ1,S1)

(γ1,R1,σ1,S1,(σ
2
α ,S

2
α)α∈Γ))(γ2,R2,σ2,S2) · · ·

with σi = σ i
γi

and Si = Si
γi

for every i≥ 1.
It is losing for Eve if there exists (qi)i≥0,(pi)i≥0 ∈ QN and (ci)i≥0 ∈ {0, . . . ,d}N

such that limsup(ci)i≥0 is odd and for every i≥ 0 one has

• (qi,ci, pi) ∈ Si; and

• either pi ∈QEve and (qi+1,push(γi+1))=σi(pi,γi) or pi ∈QAdam and (qi+1,push(γi+1))∈
∆((pi,γi).

Note that it is easily seen that the previous objective is an ω-regular one.
We denote by Ĝ the previous game. The following result relies on the connection

between Ĝ and the original pushdown game G .

Theorem 110. Eve has a finite memory winning strategy in Ĝ from (⊥,W ( /0,⊥)).

Proof. As the game Ĝ is played on a finite arena and equipped with an ω-regular
objective, it suffices to prove that Eve has a winning strategy from (⊥,W ( /0,⊥)).

Consider a positional strategy σ for Eve in G that is winning on the whole winning
region WEve. Note that existence of positional winning strategies is ensure because G
is a parity game.
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Let s ∈ ⊥Γ∗ be some stack content. We define a set of summaries Sσ
s associated

with s (and σ ) by letting

Ss
σ ={(p,c,q) | ∃π = v0 · · ·vk with k > 0, v0 = (p,s), vk = (q,s), sh(vi)≥ sh(v0)

for all 0≤ i≤ k, and such that Eve respects σ in π and c is the largest
colour visited in π}

and, for every (p,c,q) ∈ Ss
σ , we select a play πs

(p,c,q) that witnesses (p,c,q) ∈ Ss
σ .

Using σ we define a strategy σ̂ for Eve in Ĝ and we later argue that it is winning
for her from (⊥,W ( /0,⊥)).

• At the beginning of the play in (⊥,R) with R=W ( /0,⊥), Eve moves to (⊥,R,σ⊥,S)
where σ⊥(r) = σ((r,⊥)) for every r ∈ R, and S = S⊥σ

• Assume the current play is

π̂ =(⊥,R0)(γ0,R0,σ0,S0)(γ0,R0,σ0,S0,(σ
1
α ,S

1
α)α∈Γ))(γ1,R1,σ1,S1) · · ·(γk,Rk,σk,Sk)

and let sπ̂ = γ0 · · ·γk. Then, Eve goes to (γk,Rk,σk,Sk,(σ
k+1
α ,Sk+1

α )α∈Γ)) with
σ k+1

α (r) = σ((r,sπ̂ α)) for every r such that (r,sπ̂ α) ∈WEve and Sk+1
α = Sπ̂α

σ .

Assume now by contradiction that σ̂ is not winning and consider a losing play

π̂ =(⊥,R0)(γ0,R0,σ0,S0)(γ0,R0,σ0,S0,(σ
1
α ,S

1
α)α∈Γ))(γ1,R1,σ1,S1)

(γ1,R1,σ1,S1,(σ
2
α ,S

2
α)α∈Γ))(γ2,R2,σ2,S2) · · ·

Hence, there exists (qi)i≥0,(pi)i≥0 ∈QN and (ci)i≥0 ∈{0, . . . ,d}N such that limsup(ci)i≥0
is odd and for every i≥ 0 one has

• (qi,ci, pi) ∈ Si; and

• either pi ∈QEve and (qi+1,push(γi+1))=σi(pi,γi) or pi ∈QAdam and (qi+1,push(γi+1))∈
∆((pi,γi).

Now, consider the play

π = π
γ0
(q0,c0,p0)

π
γ0γ1
(q1,c1,p1)

π
γ0γ1γ2
(q2,c2,p2)

π
γ0γ1γ2γ3
(q3,c3,p3)

· · ·

Then it is easily seen by definition that π is losing (because π̂ is) while Eve respects
her winning strategy σ , which leads a contradiction and concludes the proof. �

Following Theorem 110, fix a finite memory winning strategy σ̂ for Eve in Ĝ from
(⊥,W ( /0,⊥)). Using σ̂ we define a positional strategy σ for Eve in G .

First, we inductively associate, with any word s ∈ ⊥Γ∗, a finite play π̂s in Ĝ where
Eve respects her strategy σ̂ :

• If s=⊥, we let π̂s =(⊥,W ( /0,⊥))(⊥,W ( /0,⊥),σ⊥,S) where (⊥,W ( /0,⊥),σ⊥,S)=
σ̂((⊥,W ( /0,⊥))).
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• If s = s′β for some β ∈ Γ, let σ̂(π̂s′) = (γ,R,σγ ,S,(σα ,Sα)α∈Γ)) and define

π̂s = π̂s′(γ,R,σγ ,S,(σα ,Sα)α∈Γ))(β ,W (R,β ),σβ ,Sβ ).

Now, for every configuration (q,s) with q ∈ QEve, we let (γ,R,σγ ,Sγ) be the last
vertex in π̂s and if q ∈ R we let σ((q,s)) = σγ(q) and otherwise we pick an arbitrary
transition for σ((q,s)) as (q,s) will be a losing position for Eve (see Proposition 8
below).

The following is a direct rephrasing of the proof of Theorem 106.

Proposition 8. Let s ∈ Γ∗⊥ and let (γ,R,σγ ,S) be the last vertex in π̂s. Then R = {p |
(p,s) ∈WEve}.

The following is a consequence of Proposition 8 and of the requirement that in
a vertex (γ,R,σγ ,S) Eve should only propose (W (R,α),α)-local strategies that pops
in R.

Proposition 9. Let π be an infinite play in G starting from some winning position
for Eve and where Eve respects strategy σ . Then any vertex visited in π is a winning
position for Eve.

Proof. It suffices to prove that the property is true for the second vertex in π (and then
conclude by induction as the strategy π is positional). If the initial vertex belongs to
Adam, then by definition all possible successors are winning for Eve (otherwise the
initial one would be winning for Adam as well by prefix independence of the parity
objective). If the initial vertex is controlled by Eve there are two cases depending
whether her move is to push or pop a symbol. If the move is to pop a symbol then, by
construction, the state reached belong to R where the last vertex in π̂s is (γ,R,σγ ,S),
if s denote the stack content after popping: hence, by Proposition 8 we conclude. If
the move is to push a symbol then the result follows directly from the fact that we only
consider safe local strategies and by Proposition 8. �

The following is an easy consequence of the notion of consistent tuples.

Proposition 10. Let (p,s) ∈V and let (γ,R,σγ ,S) be the last vertex in π̂s. Assume that
p∈ R. Let π = v0 · · ·vk be a finite play in G such that k > 0, v0 = (p,s), sh(vi)≥ sh(v0)
for every 0 < i < k and vk = (q,s) for some q ∈ Q. Then (p,c,q) ∈ S where c is the
largest colour visited in π .

Proof. We do the proof only when we assume that the inequality sh(vi) ≥ sh(v0) is
strict. The case where it is large is then a consequence of the fact that S is complete
with successive application of the strict case. The proof is by induction on k. The
base case is when k = 2, and it corresponds to the degenerated case in the definition
of consistent tuple. Now for the general case, when k > 2, one simply considers the
play v1 · · ·vk−1, applies the induction hypothesis and conclude with the definition of
consistent tuple again. �

We are now ready to conclude and prove that σ is a winning strategy for Eve.
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Theorem 111. The positional strategy σ is winning for Eve on the whole winning
region in G .

Proof. Consider an infinite play π = v0v1 · · · starting from some winning position for
Eve. Then by Proposition 9 we know that the play stays in the winning region.

By contradiction assume that π is losing. We distinguish between two cases de-
pending whether there is some vertex that is infinitely visited or not in π .

• Assume that there is a vertex v = (q,s) that appears infinitely often in π and
choose one of minimal stack height. Let k0 be such that vk0 = v and such that
sh(v j)≥ sh(v) for every j≥ k0. Let (ki)i≥0 be the increasing sequence of integers
ki ≥ k0 such that vki = v. We claim that the largest colour visited in the segment
vki · · ·vki+1 is even: indeed, it is a direct consequence of Proposition 10 and of the
fact that the set of summaries we consider are winning. We then conclude that
the largest colour infinitely visited in π is even hence, leading a contradiction.

• Assume that no vertex is infinitely often visited in π . As the parity objective
is prefix independent we can assume without loss of generality that there is no
visited vertex with stack-height strictly smaller than h = sh(v0). Factorise π

as vi0 · · ·vi1−1vi1 · · ·vi2−1vi2 · · ·vi3−1 · · · where sh(vi j) = sh(vi j+1−1) = h+ j and
sh(vk)> h+ j for all k ≥ j+1 (equivalently stack height h+ j is left forever in
v j+1). Call s j the stack content in vi j and consider the infinite play π̂ defined as
the limit of the increasing (for prefix ordering) sequence of finite plays (π̂s j) j≥0:
it is a play in Ĝ where Eve respects σ̂ hence, it is winning for her. Now let vi j =
(q j,s j), vi j+1−1 = (p j,s j) and let c j be the largest colour visited in vi j · · ·vi j+1−1.
Then, as we assume that π is losing one has limsup(ci)i≥0 is odd. Moreover, if
one lets

π̂ =(⊥,R0)(γ0,R0,σ0,S0)(γ0,R0,σ0,S0,(σ
1
α ,S

1
α)α∈Γ))(γ1,R1,σ1,S1)

(γ1,R1,σ1,S1,(σ
2
α ,S

2
α)α∈Γ))(γ2,R2,σ2,S2) · · ·

one has that

– (qi,ci, pi) ∈ Si (by Proposition 10); and

– either pi ∈ QEve and (qi+1,push(γi+1)) = σi(pi,γi) (by definition of σ ) or
pi ∈ QAdam and (qi+1,push(γi+1)) ∈ ∆((pi,γi) (by definition of σ ).

This means that π̂ is losing, leading a contradiction.

Hence, we conclude that π is winning which concludes the proof. �

Remark 18. Note that the previous strategy σ can be computed by a finite state au-
tomaton.

Bibliographic references
The decidability of pushdown parity games is a consequence of the decidability of
monadic second-order logic (MSO) on the infinite complete binary tree [Rab69b]. The
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key observation is that any pushdown arena can be defined using MSO in the infinite
complete binary tree ∆2. Indeed every node in ∆2 can be identified with the binary
word encoding the path from the root to this node. Now, if one chooses a fixed-length
encoding for the stack alphabet Γ and for the set of states, a configuration (p,s) can
be associated to the node of ∆2 encoded by sp. Using this representation, the effect
of a transition of the pushdown system can easily be captured by an MSO-formula.
As a consequence, any property expressible in MSO on the arena can be effectively
translated into equivalent MSO-property on the full binary tree.

This observation can be used to decide the winner of the game from any given
vertex (i.e., Problem 1). It is indeed possible to write an MSO formula ϕEve(x) which
expresses that Eve wins the games from x, see [Wal02] for parity games with possibly
uncountable arenas. In the simpler case of pushdown arenas in which all vertices have a
bounded outdegree writing such a formula is straightforward (see for instance [Cac03,
Section 2.3.4]).

Rabin’s lemma can be used to show that the winning regions are regular sets of
configurations, as defined in Theorem 106. Recall that Rabin’s lemma states that if
the infinite tree ∆2 satisfies an existential MSO-formula ∃X , ϕ(X) then there exists a
regular set of nodes R such that ∆2 satisfies ϕ[R]. Furthermore, a finite automaton
accepting R can be effectively constructed from ϕ . If we consider the formula ϕ(X) =
∀x, x ∈ X ⇔ ϕEve(x), we immediately obtain a finite automaton accepting the binary
encodings of the configurations in the winning region for Eve. This automaton can
easily be transformed to accept the configurations as in Theorem 106.

Using similar arguments, one can derive the existence of a regular positional win-
ning strategy for both players in the sense of Section 10.3.3.

Although effective, these results do not provide tight upper-bounds as they rely on
the translation of MSO properties into equivalent parity tree automata which is non-
elementary in the alternation rank of the formula. In the sequel of this bibliographic
note, we will focus on the history of decision procedures for pushdown games which
provide explicit complexity bounds.

The first result on pushdown games can be traced back to the work of Büchi,
which shows that the set of configurations reachable from the initial configuration of
a pushdown system forms a regular language and hence can be represented by a finite
state automaton [Büc64]. While Büchi’s procedure is exponential, Caucal showed that
this problem can be solved in polynomial time [Cau88]. The improved algorithm is
a saturation process where transitions are incrementally added to a finite automaton.
This technique was simplified and adapted to two-player reachability pushdown games
where the target set is a regular set of configurations by Bouajjani et al. in [BEM97]
and independently in [FWW97]. This saturation approach corresponds to the fixpoint
characterization of strategy profiles in Section 10.2.1. This method was latter extended
to Büchi pushdown games [Cac02] and finally to parity pushdown games [HO09]. We
refer the reader to [CH14] for a survey of this method.

The decidability of parity pushdown games was established in [Wal01] where Walukiewicz
gives algorithms to compute winning strategies for both players from a given config-
uration based on a deterministic pushdown automaton reading the moves of the play
(as in Section 10.3.3). In this article, it is also shown that deciding the winner in a
two-player pushdown reachability game is hard for EXP. In [Ser03, Cac02], the win-



10.3. PARITY PUSHDOWN GAMES 353

ning region for both players was shown to be regular based on similar arguments as
those presented in Section 10.2. The proof presented in this chapter follows [Ser04],
except for the construction of a regular winning strategy given in Section 10.3.3 which
is novel.

Kupferman and Vardi in [KV00] reduced deciding the winner in a parity push-
down game to the emptiness problem for two-way alternating parity tree automata. In
[Var98], Vardi had previously shown that this emptiness problem for this model of au-
tomata is in EXP. In addition, this approach permits to compute a finite automaton
accepting the winning region for both players, as well as regular winning strategies
for both players. The reduction is very close to the reduction to the decidability of
MSO on the full binary tree sketched in the beginning of this section, but by replacing
MSO-formulas with two-way alternating parity tree automata, one can obtain optimal
complexity (see [Cac02] for a survey of this approach). A similar approach was used
by Serre in [Ser06b] to study parity one-counter games (i.e. parity pushdown games
with a one-letter stack alphabet): by a reduction to the emptiness problem for two-way
alternating parity word automaton, one obtains a PSPACE upper bound (which is also
a matching lower bound).

They were many subsequent works on extensions of parity pushdown games. One
line of research considered non-regular winning conditions, based on properties of the
stack behaviour along the play [CDT02, BSW03, Gim04, Ser06a]. Another line of re-
search focused on considering games played on infinite arenas generated by extensions
of pushdown automata, mainly higher-order pushdown automata and collapsible push-
down automata, mostly motivated by connections with higher-order recursion schemes
(for further references on the topic we refer to [BCH+21, CS21]).
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Chapter 11
Games with Counters
SYLVAIN SCHMITZ

Just like timed games arise from timed systems and pushdown games from pushdown
systems, counter games arise from (multi-)counter systems. Those are finite-state sys-
tems further endowed with a finite number of counters whose values range over the
natural numbers, and are widely used to model and reason about systems handling dis-
crete resources. Such resources include for instance money on a bank account, items
on a factory line, molecules in chemical reactions, organisms in biological ones, repli-
cated processes in distributed computing, etc. As with timed or pushdown systems,
counter systems give rise to infinite graphs that can be turned into infinite game arenas.

One could populate a zoo with the many variants of counter systems, depending
on the available counter operations. One of the best known specimens in this zoo are
Minsky machines [Min67], where the operations are incrementing a counter, decre-
menting it, or testing whether its value is zero. Minsky machines are a universal
model of computation: their reachability problem is undecidable, already with only
two counters. From the algorithmic perspective we promote in this book, this means
that the counter games arising from Minsky machines are not going to be very inter-
esting, unless perhaps if we restrict ourselves to a single counter. A more promising
species in our zoo are vector addition systems with states [Gre78, HP79]—or, equiv-
alently, Petri nets [Pet62]—, where the only available operations are increments and
decrements. Vector addition systems with states enjoy a decidable reachability prob-
lem [May81, Kos82, Lam92, Ler11], which makes them a much better candidate for
studying the associated games.

In this chapter, we focus on vector games, that is, on games defined on arenas de-
fined by vector addition systems with states with a partition of states controlled by Eve
and Adam. As we are going to see in Section 11.1, those games turn out to be undecid-
able already for quite restricted objectives and just two counters. We then investigate
two restricted classes of vector games.

1. In Section 11.2, we consider one-counter games. These can be reduced to the

355
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pushdown games of Chapter 10 and are therefore decidable. Most of the section
is thus devoted to proving sharp complexity lower bounds, already in the case of
so-called countdown games.

2. In Section 11.3, we turn our attention to the main results of this chapter. By
suitably restricting both the systems, with an asymmetry condition that forbids
Adam to manipulate the counters, and the objective, with a monotonicity con-
dition that ensures that Eve’s winning region is upwards closed—meaning that
larger counter values make it easier for her to win—, one obtains a class of de-
cidable vector games where finite memory strategies are sufficient.

• This class is still rich enough to find many applications, and we zoom in
on the connections with resource-conscious games like energy games and
bounding games in Section 11.4—a subject that will be taken further in
Chapter 12.

• The computational complexity of asymmetric monotonic vector games is
now well-understood, and we devote Section 11.5 to the topic; Table 11.1
at the end of the chapter summarises these results.

11.1 Vector games
A vector system is a finite directed graph with a partition of the vertices and weighted
edges. Formally, it is a tuple V = (L ,A,LEve,LAdam,k) where k ∈ N is a dimension,
L is a finite set of locations partitioned into the locations controlled by Eve and Adam,
i.e., L = LEve]LAdam, and A⊆L ×Zk×L is a finite set of weighted actions. We
write ` ~u−→ `′ rather than (`,~u, `′) for actions in A. A vector addition system with states
is a vector system where LAdam = /0, i.e., it corresponds to the one-player case.

Example 7 (vector system). Figure 11.1 presents a vector system of dimension two
with locations {`,`′} where ` is controlled by Eve and `′ by Adam.

` `′−1,−1 −1,0

−1,0

2,1

Figure 11.1: A vector system.

The intuition behind a vector system is that it maintains k counters c1, . . . ,ck as-
signed to integer values. An action ` ~u−→ `′ ∈ A then updates each counter by adding
the corresponding entry of ~u, that is for all 1 ≤ j ≤ k, the action performs the update
c j := c j +~u( j).

Before we proceed any further, let us fix some notations for vectors in Zk. We
write ‘~0’ for the zero vector with ~0( j) def= 0 for all 1 ≤ j ≤ k. For all 1 ≤ j ≤ k, we
write ‘~e j’ for the unit vector with ~e j( j) def= 1 and ~e j( j′) def= 0 for all j′ 6= j. Addition



11.1. VECTOR GAMES 357

and comparison are defined componentwise, so that for instance ~u ≤~u′ if and only if
for all 1 ≤ j ≤ k, ~u( j) ≤ ~u′( j). We write w(` ~u−→ `′) def= ~u for the weight of an action
and w(π) def= ∑1≤ j≤|π|w(π j) for the cumulative weight of a finite sequence of actions
π ∈ A∗. For a vector ~u ∈ Zk, we use its infinity norm ‖~u‖ def= max1≤ j≤k |~u( j)|, hence
‖~0‖ = 0 and ‖~e j‖ = ‖−~e j‖ = 1, and we let ‖` ~u−→ `′‖ def= ‖w(` ~u−→ `′)‖ = ‖~u‖ and
‖A‖ def= maxa∈A ‖w(a)‖. Unless stated otherwise, we assume that all our vectors are
represented in binary, hence ‖A‖ may be exponential in the size of V .

11.1.1 Arenas and Games
A vector system gives rise to an infinite graph GN

def= (V,E) over the set of vertices V def=

(L ×Nk)]{⊥}. The vertices of the graph are either configurations `(~v) consisting of
a location `∈L and a vector of non-negative integers~v∈Nk—such a vector represents
a valuation of the counters c1, . . . ,ck—, or the sink ⊥.

Consider an action in a= (` ~u−→ `′) in A: we see it as a partial function a:L ×Nk 7→
L ×Nk with domain doma def= {`(~v) |~v+~u≥~0} and image a(`(~v)) def= `′(~v+~u); let also
domA def=

⋃
a∈A doma. This allows us to define the set E of edges as a set of pairs

E def= {(`(~v),a(`(~v))) | a ∈ A and `(~v) ∈ doma}
∪ {(`(~v),⊥) | `(~v) 6∈ domA}∪{(⊥,⊥)} ,

where In((v,v′)) def= v and Out((v,v′)) def= v′ for all edges (v,v′) ∈ E. There is therefore
an edge (v,v′) between two configurations v = `(~v) and v′ = `′(~v′) if there exists an
action ` ~u−→ `′ ∈ A such that ~v′ =~v+~u. Note that, quite importantly, ~v+~u must be
non-negative on every coordinate for this edge to exist. If no action can be applied,
there is an edge to the sink ⊥, which ensures that E is total: for all v ∈V , there exists
an edge (v,v′) ∈ E for some v′, and thus there are no ‘deadlocks’ in the graph.

The configurations are naturally partitioned into those in VEve
def= LEve×Nk con-

trolled by Eve and those in VAdam
def= LAdam×Nk controlled by Adam. Regarding the

sink, the only edge starting from ⊥ loops back to it, and it does not matter who of Eve
or Adam controls it. This gives rise to an infinite arena AN

def= (GN,VEve,VAdam) called
the natural semantics of V .

Although we work in a turn-based setting with perfect information, it is some-
times enlightening to consider the partial map ∆:V ×A 7→ E defined by ∆(`(~v),a) def=
(`(~v),a(`(~v))) if `(~v) ∈ doma and ∆(`(~v),a) def= (`(~v),⊥) if `(~v) 6∈ domA. Note that a
sequence π over E that avoids the sink can also be described by an initial configuration
`0(~v0) paired with a sequence over A.

Example 8 (natural semantics). Figure 11.2 illustrates the natural semantics of the
system of Figure 11.1; observe that all the configurations `(0,n) for n ∈ N lead to the
sink.

A vector system V = (L ,A,LEve,LAdam,k), a colouring c:E →C, and an objec-
tive Ω ⊆ Cω together define a vector game G = (AN(V ),c,Ω). Because AN(V ) is
an infinite arena, we need to impose restrictions on our colourings c:E → C and the
qualitative objectives Ω⊆Cω ; at the very least, they should be recursive.
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⊥

0

1

2

3

0 1 2 3 401234

Figure 11.2: The natural semantics of the vector system of Figure 11.1: a circle (resp.
a square) at position (i, j) of the grid denotes a configuration `(i, j) (resp. `′(i, j)) con-
trolled by Eve (resp. Adam).

There are then two variants of the associated decision problem:

• the given initial credit variant, where we are given V , c, Ω, a location `0 ∈
L and an initial credit ~v0 ∈ Nk, and ask whether Eve wins G from the initial
configuration `0(~v0);

• the existential initial credit variant, where we are given V , c, Ω, and a location
`0 ∈ L , and ask whether there exists an initial credit ~v0 ∈ Nk such that Eve
wins G from the initial configuration `0(~v0).

Let us instantiate the previous abstract definition of vector games. We first consider
two ‘reachability-like’ objectives, where C def= {ε,Win} and Ω

def= Reach, namely con-
figuration reachability and coverability. The difference between the two is that, in the
configuration reachability problem, a specific configuration ` f (~v f ) should be visited,
whereas in the coverability problem, Eve attempts to visit ` f (~v′) for some vector ~v′

componentwise larger or equal to~v f .1

Problem 13 (configuration reachability vector game with given initial credit).
INPUT: A vector system V = (L ,A,LEve,LAdam,k), an initial location `0 ∈L , an

initial credit~v0 ∈ Nk, and a target configuration ` f (~v f ) ∈L ×Nk.

OUTPUT: Does Eve have a strategy to reach `(~v) from `0(~v0)? That is, does she
win the configuration reachability game (AN(V ),c,Reach) from `0(~v0), where
c(e) = Win if and only if In(e) = ` f (~v f )?

Problem 14 (coverability vector game with given initial credit).
INPUT: A vector system V = (L ,A,LEve,LAdam,k), an initial location `0 ∈L , an

initial credit~v0 ∈ Nk, and a target configuration ` f (~v f ) ∈L ×Nk.

OUTPUT: Does Eve have a strategy to reach `(~v′) for some~v′ ≥~v f from `0(~v0)? That
is, does she win the coverability game (AN(V ),c,Reach) from `0(~v0), where
c(e) = Win if and only if In(e) = ` f (~v′) for some~v′ ≥~v f ?

1The name ‘coverability’ comes from the the literature on Petri nets and vector addition systems with
states, because Eve is attempting to cover ` f (~v f ), i.e., to reach a configuration ` f (~v′) with~v′ ≥~v f .



11.1. VECTOR GAMES 359

Example 9 (Objectives). Consider the target configuration `(2,2) in Figures 11.1
and 11.2. Eve’s winning region in the configuration reachability vector game is WEve =
{`(n+1,n+1) | n ∈ N}∪{`′(0,1)}, displayed on the left in Figure 11.3. Eve has in-
deed an obvious winning strategy from any configuration `(n,n) with n≥ 2, which is to
use the action ` −1,−1−−−−−→ ` until she reaches `(2,2). Furthermore, in `′(0,1)—due to
the natural semantics—, Adam has no choice but to use the action `′ 2,1−−−→ `: therefore
`′(0,1) and `(1,1) are also winning for Eve.

⊥

0

1

2

3

0 1 2 3 401234 ⊥

0

1

2

3

0 1 2 3 401234

Figure 11.3: The winning regions of Eve in the configuration reachability game (left)
and the coverability game (right) on the graphs of Figures 11.1 and 11.2 with target
configuration `(2,2). The winning vertices are in filled in green, while the losing ones
are filled with white with a red border; the sink is always losing.

In the coverability vector game, Eve’s winning region is WEve = {`(m + 2,n +
2), `′(m+ 2,n+ 2), `′(0,n+ 1), `(1,n+ 2), `′(2m+ 2,1), `(2m+ 3,1) | m,n ∈ N} dis-
played on the right in Figure 11.3. Observe in particular that Adam is forced to use
the action `′ 2,1−−−→ ` from the configurations of the form `′(0,n+1), which brings him
to a configuration `(2,n+2) coloured Win in the game, and thus the configurations of
the form `(1,n+1) are also winning for Eve since she can play ` −1,0−−−−→ `′. Thus the
configurations of the form `(2m+ 3,n+ 1) are also winning for Eve, as she can play
the action ` −1,0−−−−→ `′ to a winning configuration `′(2m+2,n+1) where all the actions
available to Adam go into her winning region.

Remark 19 (Location reachability). One can notice that coverability is equivalent to
location reachability, where we are given a target location ` f but no target vector, and
want to know whether Eve have a strategy to reach ` f (~v) for some~v.

Indeed, in both configuration reachability and coverability, we can assume without
loss of generality that ` f ∈LEve is controlled by Eve and that~v f =~0 is the zero vector.
Here is a LOGSPACE reduction to that case. If `0(~v0) = ` f (~v f ) in the case of configu-
ration reachability, or `0 = ` f and ~v0 ≥~v f in the case of coverability, the problem is
trivial. Otherwise, any winning play must use at least one action. For each incoming
action a = (` ~u−→ ` f ) of ` f , create a new location `a controlled by Eve and replace a by
` ~u−→ `a

~0−→ ` f , so that Eve gains the control right before any play reaches ` f . Also add
a new location , controlled by Eve with actions `a

−~v f−−−→ ,, and use ,(~0) as target
configuration.

Remark 20 (Coverability to reachability). There is a LOGSPACE reduction from cov-
erability to configuration reachability. By Remark 19, we can assume without loss of
generality that ` f ∈ LEve is controlled by Eve and that ~v f =~0 is the zero vector. It
suffices therefore to add an action ` f

−~e j−−−→ ` f for all 1≤ j ≤ k.
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Departing from reachability games, the following is a very simple kind of safety
games where C def= {ε,Lose} and Ω

def= Safe; Figure 11.4 shows Eve’s winning region
in the case of the graphs of Figures 11.1 and 11.2.

Problem 15 (non-termination vector game with given initial credit).
INPUT: A vector system V = (L ,A,LEve,LAdam,k), an initial location `0 ∈L , and

an initial credit~v0 ∈ Nk.

OUTPUT: Does Eve have a strategy to avoid the sink ⊥ from `0(~v0)? That is, does she
win the non-termination game (AN(V ),c,Safe) from `0(~v0), where c(e) = Lose
if and only if In(e) =⊥?

⊥

0

1

2

3

0 1 2 3 401234

Figure 11.4: The winning region of Eve in the non-termination game on the graphs of
Figures 11.1 and 11.2.

Finally, one of the most general vector games are parity games, where C def= {1, . . . ,d}
and Ω

def= Parity. In order to define a colouring of the natural semantics, we assume
that we are provided with a location colouring lcol:L →{1, . . . ,d}.

Problem 16 (parity vector game with given initial credit).
INPUT: A vector system V = (L ,A,LEve,LAdam,k), an initial location `0 ∈L , an

initial credit ~v0 ∈ Nk, and a location colouring lcol:L → {1, . . . ,d} for some
d > 0.

OUTPUT: Does Eve have a strategy to simultaneously avoid the sink ⊥ and fulfil the
parity objective from `0(~v0)? That is, does she win the parity game (AN(V ),c,Parity)

from `0(~v0), where c(e) def
= lcol(`) if In(e) = `(~v) for some~v ∈Nk, and c(e) def

= 1 if
In(e) =⊥?

Remark 21 (Non termination to parity). There is a LOGSPACE reduction from non-
termination to parity. Indeed, the two games coincide if we pick the constant location
colouring defined by lcol(`) def

= 2 for all ` ∈L in the parity game.

Remark 22 (Coverability to parity). There is a LOGSPACE reduction from coverability
to parity. Indeed, by Remark 19, we can assume that ` f ∈LEve is controlled by Eve
and that the target credit is~v f =~0 the zero vector. It suffices therefore to add an action
` f

~0−→ ` f and to colour every location ` 6= ` f with lcol(`) def
= 1 and to set lcol(` f )

def
= 2.

The existential initial credit variants of Problems 13 to 16 are defined similarly,
where~v0 is not given as part of the input, but existentially quantified in the question.
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11.1.2 Undecidability

The bad news is that, although Problems 13 to 16 are all decidable in the one-player
case—see the bibliographic notes Section 11.5.3 at the end of the chapter—, they be-
come undecidable in the two-player setting.

Theorem 112 (Undecidability of vector games). Configuration reachability, cover-
ability, non-termination, and parity vector games, both with given and with existential
initial credit, are undecidable in any dimension k ≥ 2.

Proof. By Remarks 20 and 21, it suffices to prove the undecidability of coverability
and non-termination. For this, we exhibit reductions from the halting problem of de-
terministic Minsky machines with at least two counters.

Formally, a deterministic Minsky machine with k counters M =(L ,A,k) is defined
similarly to a vector addition system with states with additional zero test actions a =
(` i ?0=−−→ `′). The set of locations contains a distinguished ‘halt’ location `halt, and for
every ` ∈ L , exactly one of the following holds: either (i) (` ~ei−→ `′) ∈ A for some
0 < i ≤ k and `′ ∈L , or (ii) (` i ?0=−−→ `′) ∈ A and (` −~ei−−−→ `′′) ∈ A for some 0 < i ≤ k
and `′, `′′ ∈L , or (iii) ` = `halt. The semantics of M extends the natural semantics
by handling zero tests actions a = (` i ?0=−−→ `′): we define the domain as doma def= {`(~v) |
~v(i) = 0} and the image by a(`(~v)) def= `(~v). This semantics is deterministic, and from
any starting vertex of AN(M ), there is a unique play, which either eventually visits
`halt and then the sink in the next step, or keeps avoiding both `halt and the sink
indefinitely.

The halting problem asks, given a deterministic Minsky machine and an initial lo-
cation `0, whether it halts, that is, whether `halt(~v) is reachable for some~v∈Nk starting
from `0(~0). The halting problem is undecidable in any dimension k≥ 2 [Min67]. Thus
the halting problem is akin to the coverability of `halt(~0) with given initial credit~0,
but on the one hand there is only one player and on the other hand the machine can
perform zero tests.

7→deterministic Minsky machine vector system

 ` `′ ` `′

 `

`′′

`′

`

`′′

`′
i?0=

`′

/

~ei ~ei

−~ei

i ?0=

−~ei

~0

~0

−~ei

Figure 11.5: Schema of the reduction in the proof of Theorem 112.

Here is now a reduction to Problem 14. Given an instance of the halting problem,
i.e., given a deterministic Minsky machine M = (L ,A,k) and an initial location `0,
we construct a vector system V def= (L ]L?0=

] {/},A′,L ,L?0=
] {/},k) where all

the original locations are controlled by Eve and L?0=
]{/} is a set of new locations
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controlled by Adam. We use L?0=
as a set of locations defined by

L?0=

def= {`′
i?0=
| ∃` ∈L . (` i ?0=−−→ `′) ∈ A}

and define the set of actions by (see Figure 11.5)

A′ def= {` ~ei−→ `′ | (` ~ei−→ `′) ∈ A}∪{` −~ei−−−→ `′′ | (` −~ei−−−→ `′′) ∈ A}
∪ {`

~0−→ `′
i?0=
, `′

i?0=

~0−→ `′, `′
i?0=

−~ei−−−→/ | (` i ?0=−−→ `′) ∈ A} .

We use `0(~0) as initial configuration and `halt(~0) as target configuration for the con-
structed coverability instance. Here is the crux of the argument why Eve has a win-
ning strategy to cover `halt(~0) from `0(~0) if and only if the Minsky machine halts.
Consider any configuration `(~v). If (` ~ei−→ `′) ∈ A, Eve has no choice but to ap-
ply ` ~ei−→ `′ and go to the configuration `′(~v+~ei) also reached in one step in M . If
{` i ?0=−−→ `′, ` −~ei−−−→ `′′} ∈ A and ~v(i) = 0, due to the natural semantics, Eve cannot use
the action ` −~ei−−−→ `′′, thus she must use `

~0−→ `′
i?0=

. Still due to the natural semantics,
Adam cannot use `′

i?0=

−~ei−−−→/, thus he must use `′
i?0=

~0−→ `′. Hence Eve regains the con-
trol in `′(~v), which was also the configuration reached in one step in M . Finally, if
{` i ?0=−−→ `′, ` −~ei−−−→ `′′} ∈ A and ~v(i) > 0, Eve can choose: if she uses ` −~ei−−−→ `′′, she
ends in the configuration `′′(~v−~ei) also reached in one step in M . In fact, she should
not use `

~0−→ `′
i?0=

, because Adam would then have the opportunity to apply `′
i?0=

−~ei−−−→/
and to win, as / is a deadlock location and all the subsequent moves end in the sink.
Thus, if M halts, then Eve has a winning strategy that simply follows the unique play
of M , and conversely, if Eve wins, then necessarily she had to follow the play of M
and thus the machine halts.

Further note that, in a deterministic Minsky machine the halting problem is simi-
larly akin to the complement of non-termination with given initial credit~0. This means
that, in the vector system V = (L ]L?0=

]{/},A′,L ,L?0=
]{/},k) defined earlier,

Eve has a winning strategy to avoid the sink from `0(~0) if and only if the given Minsky
machine does not halt from `0(~0), which shows the undecidability of Problem 15.

Finally, let us observe that both the existential and the universal initial credit vari-
ants of the halting problem are also undecidable. Indeed, given an instance of the halt-
ing problem, i.e., given a deterministic Minsky machine M = (L ,A,k) and an initial
location `0, we add k new locations `k, `k−1, . . . , `1 with respective actions ` j

−~e j−−−→ ` j
and ` j

j ?0=−−−→ ` j−1 for all k ≥ j > 0. This modified machine first resets all its counters
to zero before reaching `0(~0) and then performs the same execution as the original ma-
chine. Thus there exists an initial credit~v such that the modified machine reaches `halt
from `k(~v) if and only if for all initial credits ~v the modified machine reaches `halt
from `k(~v), if and only if `halt was reachable from `0(~0) in the original machine. The
previous construction of a vector system applied to the modified machine then shows
the undecidability of the existential initial credit variants of Problems 14 and 15. �
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11.2 Games in dimension one
Theorem 112 leaves open whether vector games might be decidable in dimension one.
They are indeed decidable, and more generally we learned in Chapter 10 that one-
counter games—with the additional ability to test the counter for zero—were decidable
and in fact PSPACE-complete. This might seem to settle the case of vector games in
dimension one, except that the one-counter games of Chapter 10 only allow integer
weights in {−1,1}, whereas we allow arbitrary updates in Z with a binary encoding.
Hence the PSPACE upper bound of Chapter 10 becomes an EXPSPACE one for succinct
one-counter games.

Corollary 20 (One-dimensional vector games are in EXPSPACE). Configuration reach-
ability, coverability, non-termination, and parity vector games, both with given and
with existential initial credit, are in EXPSPACE in dimension one.

The goal of this section is therefore to establish that this EXPSPACE upper bound
is tight (in most cases), by proving a matching lower bound in Section 11.2.2. But
first, we will study a class of one-dimensional vector games of independent interest in
Section 11.2.1: countdown games.

11.2.1 Countdown Games

A one-dimensional vector system V = (L ,A,LEve,LAdam,1) is called a countdown
system if A ⊆ L ×Z<0 ×L , that is, if for all (` z−→ `′) ∈ A, z < 0. We consider
the games defined by countdown systems, both with given and with existential initial
credit, and call the resulting games countdown games.

Theorem 113 (Countdown games are EXP-complete). Configuration reachability and
coverability countdown games with given initial credit are EXP-complete.

Proof. For the upper bound, consider an instance, i.e., a countdown system V =
(L ,A,LEve,LAdam,1), an initial location `0 ∈L , an initial credit n0 ∈ N, and a tar-
get configuration ` f (n f ) ∈L ×N. Because every action decreases strictly the counter
value, the reachable part of the natural semantics of V starting from `0(n0) is finite and
of size at most 1+ |L | · (n0 + 1), and because n0 is encoded in binary, this is at most
exponential in the size of the instance. As seen in Chapter 2, such a reachability game
can be solved in time polynomial in the size of the finite graph, thus in EXP overall.

For the lower bound, we start by considering a game played over an exponential-
time Turing machine, before showing how to implement this game as a countdown
game. Let us consider for this an arbitrary Turing machine M working in deterministic
exponential time 2p(n) for some fixed polynomial p and an input word w = a1 · · ·an of
length n, which we assume to be positive. Let m def= 2p(n) ≥ n. The computation of M
on w is a sequence of configurations C1,C2, . . . ,Ct of length t ≤ m. Each configuration
Ci is of the form .γi,1 · · ·γi,m/ where . and / are endmarkers and the symbols γi, j are
either taken from the finite tape alphabet Γ (which includes a blank symbol 2) or a
pair (q,a) of a state from Q and a tape symbol a. We assume that the set of states Q
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C1

C2

...

Ci−1

Ci

...

Ct

0 1 2 3 · · · j−1 j j+1 · · · m m+1

.

.

.

.

.

/

/

/

/

/q0,a1 a2 a3 · · · 2 2 2 · · · 2

a′1 q1,a2 a3 · · · 2 2 2 · · · 2

...
...

...

· · · γi−1, j−1 γi−1, j γi−1, j+1 · · ·

· · · γi, j · · ·

...

qfinal,2 2 2 · · · 2 2 2 · · · 2

Figure 11.6: The computation of M on input w = a1 · · ·an. This particular picture
assumes M starts by rewriting a1 into a′1 and moving to the right in a state q1, and
empties its tape before accepting its input by going to state qfinal.

contains a single accepting state qfinal. The entire computation can be arranged over a
t×m grid where each line corresponds to a configuration Ci, as shown in Figure 11.6.

We now set up a two-player game where Eve wants to prove that the input w is
accepted. Let Γ′ def= {.,/}∪Γ∪ (Q×Γ). Rather than exhibiting the full computation
from Figure 11.6, the game will be played over positions (i, j,γi, j) where 0 < i ≤ m,
0≤ j≤m+1, and γi, j ∈ Γ′. Eve wants to show that, in the computation of M over w as
depicted in Figure 11.6, the jth cell of the ith configuration Ci contains γi, j. In order to
substantiate this claim, observe that the content of any cell γi, j in the grid is determined
by the actions of M and the contents of (up to) three cells in the previous configura-
tion. Thus, if i > 1 and 0 < j < m+1, Eve provides a triple (γi−1, j−1,γi−1, j,γi−1, j+1)
of symbols in Γ′ that yield γi, j according to the actions of M , which we denote by
γi−1, j−1,γi−1, j,γi−1, j+1 ` γi, j, and Adam chooses j′ ∈ { j− 1, j, j+ 1} and returns the
control to Eve in position (i−1, j′,γi−1, j′). Regarding the boundary cases where i = 0
or j = 0 or j = m+ 1, Eve wins immediately if j = 0 and γ = ., or if j = m+ 1 and
γ = /, or if i = 0 and 0 < j ≤ n and γ = a j, or if i = 0 and n < j ≤ m and γ = 2, and
otherwise Adam wins immediately. The game starts in a position (t, j,(qfinal,a)) for
some 0 < t ≤ m, 0 < j ≤ m, and a ∈ Γ of Eve’s choosing. It should be clear that Eve
has a winning strategy in this game if and only if w is accepted by M .

We now implement the previous game as a coverability game over a countdown
system V def= (L ,A,LEve,LAdam,1). The idea is that the pair (i, j) will be encoded
as (i− 1) · (m+ 2)+ j+ 2 in the counter value, while the symbol γi, j will be encoded
in the location. For instance, the endmarker . at position (1,0) will be represented
by configuration `.(2), the first input (q0,a1) at position (1,1) by `(q0,a1)(3), and the
endmarker / at position (m,m+ 1) by `/(m · (m+ 2)+ 1). The game starts from the
initial configuration `0(n0) where n0

def= m · (m+2)+1 and the target location is ,.
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We define for this the sets of locations

LEve
def= {`0,,,/}∪{`γ | γ ∈ Γ

′} ,
LAdam

def= {`(γ1,γ2,γ3) | γ1,γ2,γ3 ∈ Γ
′}∪{`= j | 0 < j ≤ n}∪{`1≤?≤m−n+1} .

The intention behind the locations `= j ∈LAdam is that Eve can reach , from a config-
uration `= j(c) if and only if c = j; we accordingly define A with the following actions,
where / is a deadlock location:

`= j
− j−1−−−−−→/ , `= j

− j−−→, .

Similarly, Eve should be able to reach , from `1≤?≤m−n+1(c) if and only if 1 ≤ c ≤
m−n+1, which is implemented by the actions

`1≤?≤m−n+1
−m+n−2−−−−−−−−→/ , `1≤?≤m−n+1

−1−−→, , , −1−−→, .

Note this last action also ensures that Eve can reach the location , if and only if she can
reach the configuration ,(0), thus the game can equivalently be seen as a configuration
reachability game.

Regarding initialisation, Eve can choose her initial position, which we implement
by the actions

`0
−1−−→ `0 `0

−1−−→ `(qfinal,a) for a ∈ Γ .

Outside the boundary cases, the game is implemented by the following actions:

`γ
−m−−−→ `(γ1,γ2,γ3) for γ1,γ2,γ3 ` γ ,

`(γ1,γ2,γ3)
−k−−→ `γk for k ∈ {1,2,3} .

We handle the endmarker positions via the following actions, where Eve proceeds
along the left edge of Figure 11.6 until she reaches the initial left endmarker:

`.
−m−2−−−−−−→ `. , `.

−1−−→ `=1 , `/
−m−1−−−−−−→ `. .

For the positions inside the input word w = a1 · · ·an, we use the actions

`(q0,a1)
−2−−→ `=1 , `a j

−2−−→ `= j for 1 < j ≤ n .

Finally, for the blank symbols of C1, which should be associated with a counter value c
such that n+3≤ c≤ m+3, we use the action

`2
−n−2−−−−−→ `1≤?≤m−n+1 .

�

Theorem 114 (Existential countdown games are EXPSPACE-complete). Configura-
tion reachability and coverability countdown games with existential initial credit are
EXPSPACE-complete.
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Proof. For the upper bound, consider an instance, i.e., a countdown system V =
(L ,A,LEve,LAdam,1), an initial location `0, and a target configuration ` f ∈L . We
reduce this to an instance of configuration reachability with given initial credit in a one-
dimensional vector system by adding a new location `′0 controlled by Eve with actions
`′0

1−→ `′0 and `′0
0−→ `0, and asking whether Eve has a winning strategy starting from

`′0(0) in the new system. By Corollary 20, this configuration reachability game can be
solved in EXPSPACE.

For the lower bound, we reduce from the acceptance problem of a deterministic
Turing machine working in exponential space. The reduction is the same as in the
proof of Theorem 113, except that now the length t of the computation is not bounded
a priori, but this is compensated by the fact that we are playing the existential initial
credit version of the countdown game. �

Originally, countdown games were introduced with a slightly different objective,
which corresponds to the following decision problem.

Problem 17 (zero reachability with given initial credit).
INPUT: A countdown system V = (L ,T,LEve,LAdam,1), an initial location `0 ∈L ,

and an initial credit n0 ∈ N.

OUTPUT: Does Eve have a strategy to reach a configuration `(0) for some ` ∈ L ?
That is, does she win the zero reachability game (AN(V ),c,Reach) from `0(n0),
where c(e) = Win if and only if In(e) = `(0) for some ` ∈L ?

Theorem 115 (Countdown to zero games are EXP-complete). Zero reachability count-
down games with given initial credit are EXP-complete.

Proof. The upper bound of Theorem 113 applies in the same way. Regarding the lower
bound, we modify the lower bound construction of Theorem 113 in the following way:
we use `0(2 · n0 + 1) as initial configuration, multiply all the action weights in A by
two, and add a new location `zero with an action , −1−−→ `zero. Because all the counter
values in the new game are odd unless we reach `zero, the only way for Eve to bring the
counter to zero in this new game is to first reach ,(1), which occurs if and only if she
could reach ,(0) in the original game. �

11.2.2 Vector Games in Dimension One
Countdown games are frequently employed to prove complexity lower bounds. Here,
we use them to show that the EXPSPACE upper bounds from Corollary 20 are tight in
most cases.

Theorem 116 (The complexity of vector games in dimension one). Configuration
reachability, coverability, and parity vector games, both with given and with existen-
tial initial credit, are EXPSPACE-complete in dimension one; non-termination vec-
tor games in dimension one are EXP-hard with given initial credit and EXPSPACE-
complete with existential initial credit.
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Proof. By Theorem 114, configuration reachability and coverability vector games with
existential initial credit are EXPSPACE-hard in dimension one. Furthermore, Remark 22
allows to deduce that parity is also EXPSPACE-hard. Finally, we can argue as in the
upper bound proof of Theorem 114 that all these games are also hard with given initial
credit: we add a new initial location `′0 controlled by Eve with actions `′0

1−→ `′0 and
`′0

0−→ `0 and play the game starting from `′0(0).
Regarding non-termination, we can add a self loop , 0−→, to the construction of

Theorems 113 and 114: then the only way to build an infinite play that avoids the sink
is to reach the target location ,. This shows that the games are EXP-hard with given
initial credit and EXPSPACE-hard with existential initial credit. Note that the trick of
reducing existential to given initial credit with an initial incrementing loop `′0

1−→ `′0
does not work, because Eve would have a trivial winning strategy that consists in just
playing this loop forever. �

11.3 Asymmetric games
Theorem 112 shows that vector games are too powerful to be algorithmically relevant,
except in dimension one where Theorem 116 applies. This prompts the study of re-
stricted kinds of vector games, which might be decidable in arbitrary dimension. This
section introduces one such restriction, called asymmetry, which turns out to be very
fruitful: it yields decidable games (see Section 11.5), and is related to another class of
games on counter systems called energy games (see Section 11.4).

Asymmetric Games A vector system V = (L ,A,LEve,LAdam,k) is asymmetric if,
for all locations `∈LAdam controlled by Adam and all actions (` ~u−→ `′)∈A originating
from those, ~u =~0 the zero vector. In other words, Adam may only change the current
location, and cannot interact directly with the counters.

Example 10 (Asymmetric vector system). Figure 11.7 presents an asymmetric vec-
tor system of dimension two with locations partitioned as LEve = {`,`2,1, `-1,0} and
LAdam = {`′}. We omit the labels on the actions originating from Adamś locations,
since those are necessarily the zero vector. It is worth observing that this vector system
behaves quite differently from the one of Example 7 on p. 356: for instance, in `′(0,1),
Adam can now ensure that the sink will be reached by playing the action `′ 0,0−−−→ `-1,0,
whereas in Example 7, the action `′ −1,0−−−−→ ` was just inhibited by the natural seman-
tics.

11.3.1 The Case of Configuration Reachability
In spite of the restriction to asymmetric vector systems, configuration reachability re-
mains undecidable.

Theorem 117 (Reachability in asymmetric vector games is undecidable). Configura-
tion reachability asymmetric vector games, both with given and with existential initial
credit, are undecidable in any dimension k ≥ 2.
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` `′

`2,1

`-1,0

−1,−1 −1,0

2,1

−1,0

Figure 11.7: An asymmetric vector system.

Proof. We first reduce from the halting problem of deterministic Minsky machines to
configuration reachability with given initial credit. Given an instance of the halting
problem, i.e., given M = (L ,A,k) and an initial location `0 where we assume without
loss of generality that M checks that all its counters are zero before going to `halt, we
construct an asymmetric vector system V def= (L ]L?0=

]Lk,A′,L ]L ′
?0=
,L?0=

,k) where
all the original locations and Lk are controlled by Eve and L?0=

is controlled by Adam.

7→deterministic Minsky machine asymmetric vector system

 ` `′ ` `′

 `

`′′

`′

`

`′′

`′
i?0=

`′

`i `halt

~ei ~ei

−~ei

i ?0=

−~ei

~0

~0

~0
~0

∀ j 6= i .−~e j

Figure 11.8: Schema of the reduction in the proof of Theorem 117.

We use L?0=
and Lk as two sets of locations disjoint from L defined by

L?0=

def= {`′
i?0=
∈L ×{1, . . . ,k} | ∃` ∈L . (` i ?0=−−→ `′) ∈ A}

Lk
def= {`i | 1≤ i≤ k}

and define the set of actions by (see Figure 11.8)

A′ def= {` ~ei−→ `′ | (` ~ei−→ `′) ∈ A}∪{` −~ei−−−→ `′′ | (` −~ei−−−→ `′′) ∈ A}
∪ {`

~0−→ `′
i?0=
, `′

i?0=

~0−→ `′, `′
i?0=

~0−→ `i | (` i ?0=−−→ `′) ∈ A}

∪ {`i
−~e j−−−→ `i, `i

~0−→ `halt | 1≤ i, j ≤ k, j 6= i} .

We use `0(~0) as initial configuration and `halt(~0) as target configuration for the con-
structed configuration reachability instance. Here is the crux of the argument why Eve
has a winning strategy to reach `halt(~0) from `0(~0) if and only if the Minsky machine
halts, i.e., if and only if the Minsky machine reaches `halt(~0). Consider any config-
uration `(~v). If (` ~ei−→ `′) ∈ A, Eve has no choice but to apply ` ~ei−→ `′ and go to the
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configuration `′(~v+~ei) also reached in one step in M . If {` i ?0=−−→ `′, ` −~ei−−−→ `′′} ∈ A
and ~v(i) = 0, due to the natural semantics, Eve cannot use the action ` −~ei−−−→ `′′, thus
she must use `

~0−→ `′
i?0=

. Then, either Adam plays `′
i?0=

~0−→ `′ and Eve regains the con-
trol in `′(~v), which was also the configuration reached in one step in M , or Adam
plays `′

i?0=

~0−→ `i and Eve regains the control in `i(~v) with ~v(i) = 0. Using the ac-

tions `i
−~e j−−−→ `i for j 6= i, Eve can then reach `i(~0) and move to `halt(~0). Finally,

if {` i ?0=−−→ `′, ` −~ei−−−→ `′′} ∈ A and~v(i)> 0, Eve can choose: if she uses ` −~ei−−−→ `′′, she
ends in the configuration `′′(~v−~ei) also reached in one step in M . In fact, she should
not use `

~0−→ `′
i?0=

, because Adam would then have the opportunity to apply `′
i?0=

~0−→ `i,
and in `i(~v) with ~v(i) > 0, there is no way to reach a configuration with an empty ith
component, let alone to reach `halt(~0). Thus, if M halts, then Eve has a winning strat-
egy that mimics the unique play of M , and conversely, if Eve wins, then necessarily
she had to follow the play of M and thus the machine halts.

Finally, regarding the existential initial credit variant, the arguments used in the
proof of Theorem 112 apply similarly to show that it is also undecidable. �

In dimension one, Theorem 116 applies, thus configuration reachability is decid-
able in EXPSPACE. This bound is actually tight.

Theorem 118 (Asymmetric vector games are EXPSPACE-complete in dimension one).
Configuration reachability asymmetric vector games, both with given and with existen-
tial initial credit, are EXPSPACE-complete in dimension one.

Proof. Let us first consider the existential initial credit variant. We proceed as in The-
orems 113 and 114 and reduce from the acceptance problem for a deterministic Turing
machine working in exponential space m = 2p(n). The reduction is mostly the same
as in Theorem 113, with a few changes. Consider the integer m− n from that reduc-
tion. While this is an exponential value, it can be written as m− n = ∑0≤e≤p(n) 2e · be

for a polynomial number of bits b0, . . . ,bp(n). For all 0 ≤ d ≤ p(n), we define md
def=

∑0≤e≤d 2e ·be; thus m−n+1 = mp(n)+1.
We define now the sets of locations

LEve
def= {`0,,}∪{`γ | γ ∈ Γ

′}∪{`k
γ | 1≤ k ≤ 3}∪{`= j | 0 < j ≤ n}

∪ {`1≤?≤md+1 | 0≤ d ≤ p(n)}∪{`1≤?≤2d | 1≤ d ≤ p(n)} ,

LAdam
def= {`(γ1,γ2,γ3) | γ1,γ2,γ3 ∈ Γ

′} .

The intention behind the locations `= j ∈LEve is that Eve can reach ,(0) from a config-
uration `= j(c) if and only if c = j; we define accordingly A with the action `= j

− j−−→,.
Similarly, Eve should be able to reach ,(0) from `1≤?≤md+1(c) for 0≤ d ≤ p(n) if and
only if 1 ≤ c ≤ md + 1, which is implemented by the following actions: if bd+1 = 1,
then

`1≤?≤md+1+1
0−→ `1≤?≤2d+1 , `1≤?≤md+1+1

−2d+1
−−−−−→ `1≤?≤md+1 ,

and if bd+1 = 0,

`1≤?≤md+1+1
0−→ `1≤?≤md+1 ,
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and finally

`1≤?≤m0+1
−b0−−−→ `=1 , `1≤?≤m0+1

0−→ `=1 ,

where for all 1≤ d ≤ p(n), `1≤?≤2d (c) allows to reach ,(0) if and only if 1≤ c≤ 2d :

`1≤?≤2d+1
−2d
−−−→ `1≤?≤2d , `1≤?≤2d+1

0−→ `1≤?≤2d ,

`1≤?≤21
−1−−→ `=1 , `1≤?≤21

0−→ `=1 .

The remainder of the reduction is now very similar to the reduction shown in The-
orem 113. Regarding initialisation, Eve can choose her initial position, which we im-
plement by the actions

`0
−1−−→ `0 `0

−1−−→ `(qfinal,a) for a ∈ Γ .

Outside the boundary cases, the game is implemented by the following actions:

`γ
−m−−−→ `(γ1,γ2,γ3) for γ1,γ2,γ3 ` γ ,

`(γ1,γ2,γ3)
0−→ `k

γk
`k

γk
−k−−→ `γk for k ∈ {1,2,3} .

We handle the endmarker positions via the following actions, where Eve proceeds
along the left edge of Figure 11.6 until she reaches the initial left endmarker:

`.
−m−2−−−−−−→ `. , `.

−1−−→ `=1 , `/
−m−1−−−−−−→ `. .

For the positions inside the input word w = a1 · · ·an, we use the actions

`(q0,a1)
−2−−→ `=1 , `a j

−2−−→ `= j for 1 < j ≤ n .

Finally, for the blank symbols of C1, which should be associated with a counter value c
such that n+3 ≤ c ≤ m+3, i.e., such that 1 ≤ c−n−2 ≤ m−n+1 = mp(n)+1, we
use the action

`2
−n−2−−−−−→ `1≤?≤mp(n)+1 .

Regarding the given initial credit variant, we add a new location `′0 controlled by
Eve and let her choose her initial credit when starting from `′0(0) by using the new
actions `′0

1−→ `′0 and `′0
0−→ `0. �

11.3.2 Asymmetric Monotone Games
The results on configuration reachability might give the impression that asymmetry
does not help much for solving vector games: we obtained in Section 11.3.1 exactly
the same results as in the general case. Thankfully, the situation changes drastically if
we consider the other types of vector games: coverability, non-termination, and parity
become decidable in asymmetric vector games. The main rationale for this comes from
order theory, which prompts the following definitions.
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Quasi-orders A quasi-order (X ,≤) is a set X together with a reflexive and transitive
relation ≤ ⊆ X ×X . Two elements x,y ∈ X are incomparable if x 6≤ y and y 6≤ x, and
they are equivalent if x≤ y and y≤ x. The associated strict relation x < y holds if x≤ y
and y 6≤ x.

The upward closure of a subset S ⊆ X is the set of elements greater or equal to the
elements of S: ↑S def= {x∈ X | ∃y∈ S .y≤ x}. A subset U ⊆ X is upwards closed if ↑U =
U . When S = {x} is a singleton, we write more simply ↑x for its upward closure and
call the resulting upwards closed set a principal filter. Dually, the downward closure
of S is ↓S def= {x ∈ X | ∃y ∈ S . x ≤ y}, a downwards closed set is a subset D ⊆ X such
that D = ↓D, and ↓x is called a principal ideal. Note that the complement X \U of an
upwards closed set U is downwards closed and vice versa.

Monotone Games Let us consider again the natural semantics AN(V ) of a vector
system. The set of vertices V = L ×Nk ∪{⊥} is naturally equipped with a partial
ordering: v≤ v′ if either v = v′ =⊥, or v = `(~v) and v′ = `(~v′) are two configurations
that share the same location and satisfy ~v(i) ≤~v′(i) for all 1 ≤ i ≤ k, i.e., if ~v ≤~v′ for
the componentwise ordering.

Consider a set of colours C and a vertex colouring vcol:V → C of the natural se-
mantics AN(V ) of a vector system, which defines a colouring c:E →C where c(e) def=
vcol(In(e)). We say that the colouring vcol is monotonic if C is finite and, for every
colour p∈C, the set vcol−1(p) of vertices coloured by p is upwards closed with respect
to ≤. Clearly, the colourings of coverability, non-termination, and parity vector games
are monotonic, whereas those of configuration reachability vector games are not. By
extension, we call a vector game monotonic if its underlying colouring is monotonic.

Lemma 132 (Simulation). In a monotonic asymmetric vector game, if Eve wins from
a vertex v0, then she also wins from v′0 for all v′0 ≥ v0.

Proof. It suffices for this to check that, for all v1 ≤ v2 in V ,

(colours) vcol(v1) = vcol(v2) since vcol is monotonic;

(zig Eve) if v1,v2 ∈ VEve, a ∈ A, and ∆(v1,a) = v′1 6= ⊥ is defined, then v′2
def= ∆(v2,a)

is such that v′2 ≥ v′1: indeed, v′1 6= ⊥ entails that v1 is a configuration `(~v1) and
v′1 = `′(~v1 +~u) for the action a = (` ~u−→ `′) ∈ A, but then v2 = `(~v2) for some
~v2 ≥~v1 and v′2 = `′(~v2 +~u)≥ v′1;

(zig Adam) if v1,v2 ∈VAdam, a ∈ A, and ∆(v2,a) = v′2 is defined, then v′1
def= ∆(v1,a)≤

v′2: indeed, either v′2 =⊥ and then v′1 =⊥, or v′2 6=⊥, thus v2 = `(~v2), v′2 = `′(~v2),
and a = (`

~0−→ `′) ∈ A (recall that the game is asymmetric), but then v1 = `(~v1)
for some~v1 ≤~v2 and thus v′1 = `′(~v1)≤ v′2.

The above conditions show that, if σ :E∗ → A is a strategy of Eve that wins from v0,
then by simulating σ starting from v′0—i.e., by applying the same actions when given
a pointwise larger or equal history—she will also win. �

Note that Lemma 132 implies that WEve is upwards closed: v0 ∈WEve and v0 ≤ v′0
imply v′0 ∈WEve. Lemma 132 does not necessarily hold in vector games without the
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asymmetry condition. For instance, in both Figures 11.3 and 11.4 on p. 359, `′(0,1) ∈
WEve but `′(1,2) ∈WAdam for the coverability and non-termination objectives. This is
due to the fact that the action `′ −1,0−−−−→ ` is available in `′(1,2) but not in `′(0,1).

Well-quasi-orders What makes monotonic vector games so interesting is that the
partial order (V,≤) associated with the natural semantics of a vector system is a well-
quasi-order. A quasi-order (X ,≤) is well (a wqo) if any of the following equivalent
characterisations hold [Kru72, SS12]:

• in any infinite sequence x0,x1, · · · of elements of X , there exists an infinite se-
quence of indices n0 < n1 < · · · such that xn0 ≤ xn1 ≤ ·· ·—infinite sequences in
X are good—,

• any strictly ascending sequence U0 (U1 ( · · · of upwards closed sets Ui ⊆ X is
finite—X has the ascending chain condition—,

• any non-empty upwards closed U ⊆ X has at least one, and at most finitely many
minimal elements up to equivalence; therefore any upwards closed U ⊆ X is a
finite union U =

⋃
1≤ j≤n ↑x j of finitely many principal filters ↑x j—X has the

finite basis property.

The fact that (V,≤) satisfies all of the above is an easy consequence of Dickson’s
Lemma [Dic13].

Pareto Limits By the finite basis property of (V,≤) and Lemma 132, in a monotonic
asymmetric vector game, WEve =

⋃
1≤ j≤n ↑` j(~v j) is a finite union of principal filters.

The set Pareto def= {`1(~v1), . . . , `n(~vn)} is called the Pareto limit or Pareto frontier of
the game. Both the existential and the given initial credit variants of the game can
be reduced to computing this Pareto limit: with existential initial credit and an initial
location `0, check whether `0(~v) ∈ Pareto for some~v, and with given initial credit and
an initial configuration `0(~v0), check whether `0(~v) ∈ Pareto for some~v≤~v0.

Example 11 (Pareto limit). Consider the asymmetric vector system from Figure 11.7
on p. 368. For the coverability game with target configuration `(2,2), the Pareto limit
is Pareto= {`(2,2), `′(3,2), `2,1(0,1), `-1,0(3,2)}, while for the non-termination game,
Pareto = /0: Eve loses from all the vertices. Observe that this is consistent with Eve’s
winning region in the coverability energy game shown in Figure 11.12.

Example 12 (Doubly exponential Pareto limit). Consider the one-player vector system
of Figure 11.9, where the meta-decrement from `0 to `1 can be implemented using O(n)
additional counters and a set L ′ of O(n) additional locations by the arguments of the
forthcoming Theorem 125.

For the coverability game with target configuration ` f (~0), if `0 is the initial location
and we are given initial credit m ·~e1, Eve wins if and only if m≥ 22n

, but with existential
initial credit she can start from `0(~e2) instead. We have indeed Pareto∩ ({`0, `1, ` f }×
Nk) = {`0(~e2), `0(22n ·~e1), `1(~0), ` f (~0)}. Looking more in-depth into the construction
of Theorem 125, there is also an at least double exponential number of distinct minimal
configurations in Pareto.
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`0 `1

` f

−22n ·~e1

−~e2 ~0

Figure 11.9: A one-player vector system with a large Pareto limit.

Finite Memory Besides having a finitely represented winning region, Eve also has
finite memory strategies in asymmetric vector games with parity objectives; the follow-
ing argument is straightforward to adapt to the other regular objectives from Chapter 2.

Lemma 133 (Finite memory suffices in parity asymmetric vector games). If Eve has a
strategy winning from some vertex v0 in a parity asymmetric vector game, then she has
a finite-memory one.

Proof. Assume σ is a winning strategy from v0. Consider the tree of vertices visited by
plays consistent with σ : each branch is an infinite sequence v0,v1, . . . of elements of V
where the maximal priority occuring infinitely often is some even number p. Since
(V,≤) is a wqo, this is a good sequence: there exists infinitely many indices n0 < n1 <
· · · such that vn0 ≤ vn1 ≤ ·· · . There exists i < j such that p = maxni≤n<n j vcol(vn) is
the maximal priority occurring in some interval vni ,vni+1 , . . . ,vn j−1 . Then Eve can play
in vn j as if she were in vni , in vn j+1 as if she were in vni+1 and so on, and we prune the
tree at index n j along this branch so that vn j is a leaf, and we call vni the return node of
that leaf. We therefore obtain a finitely branching tree with finite branches, which by
König’s Lemma is finite.

The finite tree we obtain this way is sometimes called a self-covering tree. It is
relatively straightforward to construct a finite memory structure (M,m0,δ ) (as defined
in Section 1.5) from a self-covering tree, using its internal nodes as memory states
plus an additional sink memory state m⊥; the initial memory state m0 is the root of the
tree. In a node m labelled by `(~v), given an edge e = (`(~v′), `′(~v′+~u)) arising from
an action ` ~u−→ `′ ∈ A, if ~v′ ≥~v and m has a child m′ labelled by `′(~v+~u) in the self-
covering tree, then either m′ is a leaf with return node m′′ and we set δ (m,e) def= m′′, or
m′ is an internal node and we set δ (m,e) def= m′; in all the other cases, δ (m,e) def= m⊥. �

Example 13 (doubly exponential memory). Consider the one-player vector system of
Figure 11.10, where the meta-decrement from `1 to `0 can be implemented using O(n)
additional counters and O(n) additional locations by the arguments of the forthcoming
Theorem 125 on p. 387.

For the parity game with location colouring lcol(`0)
def
= 2 and lcol(`1)

def
= 1, note that

Eve must visit `0 infinitely often in order to fulfil the parity requirements. Starting from
the initial configuration `0(~0), any winning play of Eve begins by

`0(~0)
0−→ `1(~0)

~e1−−→ `1(~e1)
~e1−−→ ·· · ~e1−−→ `1(m ·~e1)

−22n

−−−−→ `0((m−22n
) ·~e1)
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`0 `1

2 1

−22n ·~e1

~0
~e1

Figure 11.10: A one-player vector system witnessing the need for double exponential
memory.

for some m ≥ 22n
before she visits again a configuration—namely `0((m−22n

) ·~e1)—
greater or equal than a previous configuration—namely `0(~0)—and witnesses a max-
imal even parity in the meantime. She then has a winning strategy that simply re-
peats this sequence of actions, allowing her to visit successively `0(2(m− 22n

) ·~e1),
`0(3(m− 22n

) ·~e1), etc. In this example, she needs at least 22n
memory to remember

how many times the `1
~e1−−→ `1 loop should be taken.

Attractor Computation for Coverability

So far, we have not seen how to compute the Pareto limit derived from Lemma 132 nor
the finite memory structure derived from Lemma 133. These objects are not merely
finite but also computable. The simplest case is the one of coverability asymmetric
monotonic vector games: the fixed point computation of Section 2.1 for reachability
objectives can be turned into an algorithm computing the Pareto limit of the game.

Fact 20 (Computable Pareto limit). The Pareto limit of a coverability asymmetric vec-
tor game is computable.

Proof. Let ` f (~v f ) be the target configuration. We define a chain U0 ⊆U1 ⊆ ·· · of sets
Ui ⊆V by

U0
def= ↑` f (~v f ) , Ui+1

def=Ui∪Pre(Ui) .

Observe that for all i, Ui is upwards closed. This can be checked by induction over i: it
holds initially in U0, and for the induction step, if v ∈Ui+1 and v′ ≥ v, then either

• v = `(~v) ∈ Pre(Ui)∩VEve thanks to some ` ~u−→ `′ ∈ A such that `′(~v+~u) ∈Ui;
therefore v′ = `(~v′) for some ~v′ ≥ ~v is such that `′(~v′ +~u) ∈ Ui as well, thus
v′ ∈ Pre(Ui)⊆Ui+1, or

• v = `(~v) ∈ Pre(Ui)∩VAdam because for all `
~0−→ `′ ∈ A, `′(~v) ∈ Ui; therefore

v′= `(~v′) for some~v′≥~v is such that `′(~v′)∈Ui as well, thus v′ ∈ Pre(Ui)⊆Ui+1,
or

• v ∈Ui and therefore v′ ∈Ui ⊆Ui+1.

By the ascending chain condition, there is a finite rank i such that Ui+1 ⊆Ui and
then WEve =Ui. Thus the Pareto limit is obtained after finitely many steps. In order to
turn this idea into an algorithm, we need a way of representing those infinite upwards
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closed sets Ui. Thankfully, by the finite basis property, each Ui has a finite basis Bi such
that ↑Bi =Ui. We therefore compute the following sequence of sets

B0
def= {` f (~v f )} Bi+1

def= Bi∪minPre(↑Bi) .

Indeed, given a finite basis Bi for Ui, it is straightforward to compute a finite basis for
the upwards closed Pre(Ui). This results in Algorithm 11.1 below. �

Algorithm 11.1: Fixed point algorithm for coverability in asymmetric vector
games.

Data: A vector system and a target configuration ` f (~v f )
B0←{` f (~v f )} ;
i← 0 ;
repeat

Bi+1← Bi∪minPre(↑Bi) ;
i← i+1 ;

until ↑Bi ⊇ Bi+1;
return minBi = Pareto(G )

While this algorithm terminates thanks to the ascending chain condition, it may
take quite long. For instance, in Example 12, it requires at least 22n

steps before it
reaches its fixed point. This is a worst-case instance, as it turns out that this algorithm
works in 2EXP; see the bibliographic notes at the end of the chapter. Note that such
a fixed point computation does not work directly for non-termination or parity vector
games, due to the need for greatest fixed points.

11.4 Resource-conscious games

Vector games are very well suited for reasoning about systems manipulating discrete
resources, modelled as counters. However, in the natural semantics, actions that would
deplete some resource, i.e., that would make some counter go negative, are simply
inhibited. In models of real-world systems monitoring resources like a gas tank or a
battery, a depleted resource would be considered as a system failure. In the energy
games of Section 11.4.1, those situations are accordingly considered as winning for
Adam. Moreover, if we are modelling systems with a bounded capacity for storing
resources, a counter exceeding some bound might also be considered as a failure, which
will be considered with bounding games in Section 11.4.2.

These resource-conscious games can be seen as providing alternative semantics
for vector systems. They will also be instrumental in establishing complexity upper
bounds for monotonic asymmetric vector games later in Section 11.5, and are strongly
related to multidimensional mean payoff games, as will be explained in Section 12.2
of Chapter 12.
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11.4.1 Energy Semantics
Energy games model systems where the depletion of a resource allows Adam to win.
This is captured by an energy semantics AE(V ) def= (V,EE,VEve,VAdam) associated with
a vector system V : we let as before V def= (L ×Nk)]{⊥}, but define instead

EE
def= {(`(~v), `′(~v+~u) | ` ~u−→ `′ ∈ A and~v+~u≥~0}
∪ {(`(~v),⊥) | ∀` ~u−→ `′ ∈ A .~v+~u 6≥~0}∪{(⊥,⊥)} .

In the energy semantics, moves that would result in a negative component lead to the
sink instead of being inhibited.

Example 14 (Energy semantics). Figure 11.11 illustrates the energy semantics of the
vector system depicted in Figure 11.1 on p. 356. Observe that, by contrast with the
natural semantics of the same system depicted in Figure 11.2, all the configurations
`′(0,n) controlled by Adam can now move to the sink.

⊥

0

1

2

3

0 1 2 3 401234

Figure 11.11: The energy semantics of the vector system of Figure 11.1: a circle (resp.
a square) at position (i, j) of the grid denotes a configuration `(i, j) (resp. `′(i, j)) con-
trolled by Eve (resp. Adam).

Given a colouring c:E→C and an objective Ω, we call the resulting game (AE(V ),c,Ω)
an energy game. In particular, we shall speak of configuration reachability, coverabil-
ity, non-termination, and parity energy games when replacing AN(V ) by AE(V ) in
Problems 13 to 16; the existential initial credit variants are defined similarly.

Example 15 (Energy games). Consider the target configuration `(2,2) in Figures 11.1
and 11.11. Eve’s winning region in the configuration reachability energy game is
WEve = {`(n+ 2,n+ 2) | n ∈ N}, displayed on the left in Figure 11.12. In the cover-
ability energy game, Eve’s winning region is WEve = {`(m+2,n+2), `′(m+3,n+2) |
m,n ∈ N} displayed on the right in Figure 11.12.

The reader might have noticed that the natural semantics of the asymmetric system
of Figure 11.7 and the energy semantics of the system of Figure 11.1 are essentially
the same. This correspondence is quite general.

Lemma 134 (Energy vs. asymmetric vector games). Energy games and asymmetric
vector games are LOGSPACE-equivalent for configuration reachability, coverability,
non-termination, and parity, both with given and with existential initial credit.
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⊥
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Figure 11.12: The winning regions of Eve in the configuration reachability energy
game (left) and the coverability energy game (right) on the graphs of Figures 11.1
and 11.11 with target configuration `(2,2). The winning vertices are in filled in green,
while the losing ones are filled with white with a red border; the sink is always losing.

Proof. Let us first reduce asymmetric vector games to energy games. Given V , c, and
Ω where V is asymmetric and Eve loses if the play ever visits the sink ⊥, we see that
Eve wins (AN(V ),c,Ω) from some v ∈ V if and only if she wins (AE(V ),c,Ω) from
v. Of course, this might not be true if V is not asymmetric, as seen for instance in
Examples 9 and 15.

Conversely, let us reduce energy games to asymmetric vector games. Consider V =
(L ,A,LEve,LAdam,k), a colouring c defined from a vertex colouring vcol by c(e) def=
vcol(In(e)), and an objective Ω, where vcol and Ω are such that Eve loses if the play
ever visits the sink⊥ and such that, for all π ∈C∗, p∈C, and π ′ ∈Cω , π pπ ′ ∈Ω if and
only if π ppπ ′ ∈Ω (we shall call Ω stutter-invariant, and the objectives in the statement
are indeed stutter-invariant). We construct an asymmetric vector system V ′ def= (L ]
LA,A′,LEve]LA,LAdam,k) where we add the following locations controlled by Eve:

LA
def= {`a | a = (` ~u−→ `′) ∈ A and ` ∈LAdam} .

We also modify the set of actions:

A′ def= {` ~u−→ `′ | ` ~u−→ `′ ∈ A and ` ∈LEve}
∪ {`

~0−→ `a, `a
~u−→ `′ | a = (` ~u−→ `′) ∈ A and ` ∈LAdam} .

Figure 11.7 presents the result of this reduction on the system of Figure 11.1. We define
a vertex colouring vcol′ of AN(V

′) with vcol′(v) def= vcol(v) for all v ∈L ×Nk ]{⊥}
and vcol′(`a(~v))

def= vcol(`(~v)) if a=(` ~u−→ `′)∈A. Then, for all vertices v∈V , Eve wins
from v in the energy game (AE(V ),c,Ω) if and only if she wins from v in the vector
game (AN(V

′),c′,Ω). The crux of the argument is that, in a configuration `(~v) where
` ∈LAdam, if a = (` ~u−→ `′) ∈ A is an action with ~v+~u 6≥~0, in the energy semantics,
Adam can force the play into the sink by playing a; the same occurs in V ′ with the
natural semantics, as Adam can now choose to play `

~0−→ `a where Eve has only `a
~u−→ `′

at her disposal, which leads to the sink. �

In turn, energy games with existential initial credit are related to the multi-dimensional
mean payoff games of Chapter 12.
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11.4.2 Bounded Semantics

While Adam wins immediately in an energy game if a resource gets depleted, he also
wins in a bounding game if a resource reaches a certain bound B. This is a hard upper
bound, allowing to model systems where exceeding a capacity results in failure, like
a dam that overflows and floods the area. We define for a bound B ∈ N the bounded
semantics AB(V ) = (V B,EB,V B

Eve,V
B
Adam) of a vector system V by

V B def= {`(~v) | ` ∈L and ‖~v‖< B} ,
EB def= {(`(~v), `′(~v+~u)) | ` ~u−→ `′ ∈ A,~v+~u≥~0, and ‖~v+~u‖< B}
∪ {(`(~v),⊥) | ∀` ~u−→ `′ ∈ A .~v+~u 6≥~0 or ‖~v+~u‖ ≥ B}∪{(⊥,⊥)} .

As usual, V B
Eve

def= V B ∩LEve ×Nk and V B
Adam

def= V B ∩LAdam ×Nk. Any edge from
the energy semantics that would bring to a configuration `(~v) with ~v(i) ≥ B for some
1 ≤ i ≤ k leads instead to the sink. All the configurations in this arena have norm less
than B, thus |V B| = |L |Bk + 1, and the qualitative games of Chapter 2 are decidable
over this arena.

Our focus here is on non-termination games played on the bounded semantics
where B is not given as part of the input, but quantified existentially. As usual, the
existential initial credit variant of Problem 18 is obtained by quantifying ~v0 existen-
tially in the question.

Problem 18 (bounding game with given initial credit).

INPUT: A vector system V = (L ,A,LEve,LAdam,k), an initial location `0 ∈L , and
an initial credit~v0 ∈ Nk.

OUTPUT: Does there exist B∈N such that Eve has a strategy to avoid the sink⊥ from
`0(~v0) in the bounded semantics? That is, does there exist B ∈ N such that she
wins the bounding game (AB(V ),c,Safe) from `0(~v0), where c(e) def

= Lose if and
only if In(e) =⊥?

Lemma 135. There is a LOGSPACE reduction from parity asymmetric vector games to
bounding games, both with given and with existential initial credit.

Proof. Given an asymmetric vector system V = (L ,A,LEve,LAdam,k), a location
colouring lcol:L → {1, . . . ,2d}, and an initial location `0 ∈L , we construct a vector
system V ′ of dimension k′ def= k+ d as described in Figure 11.13, where the priorities
in V for p ∈ {1, . . . ,d} are indicated above the corresponding locations.

If Eve wins the bounding game played over V ′ from some configuration `0(~v0),
then she also wins the parity vector game played over V from the configuration `0(~v′0)
where~v′0 is the projection of~v0 to Nk. Indeed, she can play essentially the same strat-
egy: by Lemma 132 she can simply ignore the new decrement self loops, while the
actions on the components in {k+1, . . . ,k+d} ensure that the maximal priority visited
infinitely often is even—otherwise some decrement −~ek+p would be played infinitely
often but the increment~ek+p only finitely often.
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7→asymmetric vector system V vector system V ′

 `

2p

`′ ` `′
~u

∀1≤ i≤ k .−~ei

~u

∀1≤ j ≤ p .~ek+ j

~0

 `

2p−1

`′ ` `′
~u

∀1≤ i≤ k .−~ei

~u−~ek+p

 `

2p

`′ ` `′
~0 ~0 ~0

∀1≤ j ≤ p .~ek+ j

 `

2p−1

`′ ` `′
~0 −~ek+p

Figure 11.13: Schema of the reduction to bounding games in the proof of Lemma 135.

Conversely, consider the parity game G played over AN(V ) with the colouring
defined by lcol. Then the Pareto limit of the game is finite, thus there exists a natural
number

B0
def= 1+ max

`0(~v0)∈Pareto(G )
‖~v0‖ (11.1)

bounding the norms of the minimal winning configurations. For a vector~v in Nk, let us
write ~v

B0 for the vector ‘capped’ at B: for all 1 ≤ i ≤ k, ~v
B0(i) def=~v(i) if ~v(i) < B0 and

~v
B0 def= B0 if~v(i)≥ B0.

Consider now some configuration `0(~v0) ∈ Pareto(G ). As seen in Lemma 133,
since `0(~v0) ∈WEve(G ), there is a finite self-covering tree witnessing the fact, and an
associated winning strategy. Let H(`0(~v0)) denote the height of this self-covering tree
and observe that all the configurations in this tree have norm bounded by ‖~v0‖+‖A‖ ·
H(`0(~v0)). Let us define

B def= B0 +(‖A‖+1) · max
`0(~v0)∈Pareto(G )

H(`0(~v0)) . (11.2)

This is a bound on the norm of the configurations appearing on the (finitely many) self-
covering trees spawned by the elements of Pareto(G ). Note that B ≥ B0 +(‖A‖+ 1)
since a self-covering tree has height at least one.

Consider the non-termination game GB
def=(AB(V ′),c′,Safe) played over the bounded

semantics defined by B, where c′(e)=Lose if and only if In(e)=⊥. Let~b def=∑1≤p≤d(B−
1) ·~ek+p.

Claim 3. If `0(~v) ∈WEve(G ), then `0(~v
B0 +~b) ∈WEve(GB).

Indeed, by definition of the Pareto limit Pareto(G ), if `0(~v) ∈WEve(G ), then there
exists~v0 ≤~v such that `0(~v0) ∈ Pareto(G ). By definition of the bound B0, ‖~v0‖< B0,
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thus~v0 ≤~v
B0 . Consider the self-covering tree of height H(`0(~v0)) associated to `0(~v0),

and the strategy σ ′ defined by the memory structure from the proof of Lemma 133.
This is a winning strategy for Eve in G starting from `0(~v0), and by Lemma 132, it is
also winning from `0(~v

B0).

Here is how Eve wins GB from `0(~v
B0 +~b). She essentially follows the strategy σ ′,

with two modifications. First, whenever σ ′ goes to a return node `(~v) instead of a
leaf `(~v′)—thus ~v ≤~v′—, the next time Eve has the control, she uses the self loops to
decrement the current configuration by~v′−~v. This ensures that any play consistent with
the modified strategy remains between zero and B−1 on the components in {1, . . . ,k}.
(Note that if she never regains the control, the current vector never changes any more
since V is asymmetric.)

Second, whenever a play in G visits a location with even parity 2p for some p
in {1, . . . ,d}, Eve has the opportunity to increase the coordinates in {k+1, . . . ,k+ p}
in GB. She does so and increments until all these components reach B−1. This ensures
that any play consistent with the modified strategy remains between zero and B−1 on
the components in {k+1, . . . ,k+ p}. Indeed, σ ′ guarantees that the longest sequence
of moves before a play visits a location with maximal even priority is bounded by
H(`0(~v0)), thus the decrements −~ek+p introduced in GB by the locations from G with
odd parity 2p−1 will never force the play to go negative. �

The bound B defined in Equation (11.2) in the previous proof is not constructive,
and possibly much larger than really required. Nevertheless, one can sometimes show
that an explicit B suffices in a bounding game. A simple example is provided by the
coverability asymmetric vector games with existential initial credit arising from Re-
mark 22, i.e., where the objective is to reach some location ` f . Indeed, it is rather
straightforward that there exists a suitable initial credit such that Eve wins the game
if and only if she wins the finite reachability game played over the underlying di-
rected graph over L where we ignore the counters. Thus, for an initial location `0,
B0 = |L | · ‖A‖+1 bounds the norm of the necessary initial credit, while a simple path
may visit at most |L | locations, thus B = B0 + |L | · ‖A‖ suffices for Eve to win the
constructed bounding game.

In the general case of bounding games with existential initial credit, an explicit
bound can be established. The proof goes along very different lines and is too involved
to fit in this chapter, but we refer the reader to [JLS15, CJLS17] for details.

Theorem 119 (Bounds on bounding). If Eve wins a bounding game with existential
initial credit defined by a vector system V = (L ,A,LEve,LAdam,k), then an initial
credit ~v0 with ‖~v0‖ = (4|L | · ‖A‖)2(k+2)3

and a bound B = 2(4|L | · ‖A‖)2(k+2)3
+ 1

suffice for this.

Theorem 119 also yields a way of handling bounding games with given initial
credit.
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11.5 The complexity of asymmetric monotone games
Unlike general vector games and configuration reachability asymmetric ones, cover-
ability, non-termination, and parity asymmetric vector games are decidable. We survey
in this section the best known complexity bounds for every case; see Table 11.1 at the
end of the chapter for a summary.

11.5.1 Upper Bounds
We begin with complexity upper bounds. The main results are that parity games with
existential initial credit can be solved in coNP, but are in 2EXP with given initial credit.
In both cases however, the complexity is pseudo-polynomial if both the dimension k
and the number of priorities d are fixed, which is rather good news: one can hope that,
in practice, both the number of different resources (encoded by the counters) and the
complexity of the functional specification (encoded by the parity condition) are tiny
compared to the size of the system.

Existential Initial Credit

Counterless Strategies Consider a strategy τ of Adam in a vector game. In all
the games we consider, uniform positional strategies suffice over the infinite arena
AN(V ) = (V,E,VEve,VAdam): τ maps vertices in V to edges in E. We call τ counter-
less if, for all locations ` ∈ LAdam and all vectors ~v,~v′ ∈ Nk, τ(`(~v)) = τ(`(~v′)). A
counterless strategy thus only considers the current location of the play.

Lemma 136 (Counterless strategies). Let V = (L ,A,LEve,LAdam,k) be an asym-
metric vector system, `0 ∈ L be a location, and lcol:L → {1, . . . ,d} be a location
colouring. If Adam wins from `0(~v) for every initial credit~v in the parity game played
over V with lcol, then he has a single counterless strategy such that he wins from `0(~v)
for every initial credit~v.

Proof. Let AAdam
def= {(` ~u−→ `′) ∈ A | ` ∈ LAdam} be the set of actions controlled by

Adam. We assume without loss of generality that every location ` ∈LAdam has either
one or two outgoing actions, thus |LAdam| ≤ |AAdam| ≤ 2|LAdam|. We proceed by
induction over |AAdam|. For the base case, if |AAdam| = |LAdam| then every location
controlled by Adam has a single outgoing action, thus any strategy for Adam is trivially
counterless.

For the induction step, consider some location ˆ̀∈LAdam with two outgoing actions
al

def= ˆ̀ ~0−→ `l and ar
def= ˆ̀ ~0−→ `r. Let Vl and Vr be the vector systems obtained from V by

removing respectively ar and al from A, i.e., by using Al
def= A\{ar} and Ar

def= A\{al}.
If Adam wins the parity game from `(~v) for every initial credit~v in either Vl or Vr, then
by induction hypothesis he has a counterless winning strategy winning from `(~v) for
every initial credit~v, and the same strategy is winning in V from `(~v) for every initial
credit~v.

In order to conclude the proof, we show that, if Adam loses in Vl from `0(~vl) for
some~vl ∈Nk and in Vr from `0(~vr) for some~vr ∈Nk, then there exists~v0 ∈Nk such that
Eve wins from `0(~v0) in V . Let σl and σr denote Eve’s winning strategies in the two
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games. By a slight abuse of notations (justified by the fact that we are only interested
in a few initial vertices), we see plays as sequences of actions and strategies as maps
A∗ → A.Consider the set of plays consistent with σr starting from `0(~vr). If none of
those plays visits ˆ̀, then Eve wins in V from `0(~vr) and we conclude. Otherwise, there
is some finite prefix π̂ of a play that visits ˆ̀(~̂v) for some vector ~̂v =~vr +w(π̂). We let
~v0

def=~vl +~̂v and show that Eve wins from `0(~v0).
We define now a strategy σ for Eve over V that switches between applying σl

and σr each time ar is used and switches back each time al is used. More precisely,
given a finite or infinite sequence π of actions, we decompose π as π1a1π2a2π3 · · ·
where each segment π j ∈ (A \ {al ,ar})∗ does not use either al nor ar and each a j ∈
{al ,ar}. The associated mode m( j) ∈ {l,r} of a segment π j is m(1) def= l for the ini-
tial segment and otherwise m( j) def= l if e j−1 = al and m( j) def= r otherwise. The l-
subsequence associated with π is the sequence of segments π(l) def= πl1al2−1πl2al3−1πl3 · · ·
with mode m(li)= l, while the r-subsequence is the sequence π(r) def= π̂ar1−1πr1ar2−1πr2 · · ·
with mode m(ri) = r prefixed by π̂ . Then we let σ(π) def= σm(π(m)) where m ∈ {l,r} is
the mode of the last segment of π .

Consider an infinite play π consistent with σ starting from `0(~v0). Since~v0≥~vl and
~v0 ≥~vr +w(π̂), π(l) and π(r) starting from `0(~v0) are consistent with simulating—in
the sense of Lemma 132—σl from `0(~vl) and σr from `0(~vr). Let π ′ be a finite prefix
of π . Then w(π ′) = w(π ′(l)) + w(π ′(r)) where π ′(l) is a prefix of π(l) and π ′(r)
of π(r), thus w(π ′(l)) ≤ ~vl and w(π ′(r)) ≤ ~vr +w(π̂), thus w(π ′) ≤ ~v0: the play π

avoids the sink. Furthermore, the maximal priority seen infinitely often along π(l) and
π(r) is even (note that one of π(l) and π(r) might not be infinite), thus the maximal
priority seen infinitely often along π is also even. This shows that σ is winning for Eve
from `0(~v0). �

We are going to exploit Lemma 136 in Theorem 122 in order to prove a coNP upper
bound for asymmetric games with existential initial credit: it suffices in order to decide
those games to guess a counterless winning strategy τ for Adam and check that it is
indeed winning by checking that Eve loses the one-player game arising from τ . This
last step requires an algorithmic result of independent interest.

One-player Case Let V =(L ,A,k) be a vector addition system with states, lcol:L →
{1, . . . ,d} a location colouring, and `0 ∈L an initial location. Then Eve wins the par-
ity one-player game from `0(~v0) for some initial credit ~v0 if and only if there exists
some location such that

• ` is reachable from `0 in the directed graph underlying V and

• there is a cycle π ∈ A∗ from ` to itself such that w(π) ≥ 0 and the maximal
priority occurring along π is even.

Indeed, assume we can find such a location `. Let π̂ ∈ A∗ be a path from `0 to ` and
~v0(i)

def= max{‖w(π ′)‖ | π ′ is a prefix of π̂π} for all 1 ≤ i ≤ k. Then `0(~v0) can reach
`(~v0 +w(π̂)) in the natural semantics of V by following π̂ , and then `(~v0 + ~W (π̂)+
nw(π))≥ `(~v0+w(π̂)) after n repetitions of the cycle π . The infinite play arising from
this strategy has an even maximal priority.
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Conversely, if Eve wins, then there is a winning play π ∈ Aω from `0(~v0) for some
~v0. Recall that (V,≤) is a wqo, and we argue as in Lemma 133 that there is indeed such
a location `.

Therefore, solving one-player parity vector games boils down to determining the
existence of a cycle with non-negative effect and even maximal priority. We shall
use linear programming techniques in order to check the existence of such a cycle in
polynomial time [KS88].

Let us start with a relaxed problem: we call a multi-cycle a non-empty finite set of
cycles Π and let w(Π) def= ∑π∈Π w(π) be its weight; we write t ∈ Π if t ∈ π for some
π ∈ Π. Let M ∈ 2A be a set of ‘mandatory’ subsets of actions and F ⊆ A a set of
‘forbidden’ actions. Then we say that Π is non-negative if w(Π) ≥~0, and that it is
suitable for (M,F) if for all A′ ∈ M there exists t ∈ A′ such that t ∈ Π, and if for all
t ∈ F , t 6∈Π. We use the same terminology for a single cycle π .

Lemma 137 (Linear programs for suitable non-negative multi-cycles). Let V be a
vector addition system with states, M ∈ 2A, and F ⊆ A. We can check in polynomial
time whether V contains a non-negative multi-cycle Π suitable for (M,F).

Proof. We reduce the problem to solving a linear program. For a location `, let in(`) def=
{(`′ ~u−→ `) ∈ A | `′ ∈L } and out(`) def= {(` ~u−→ `′) ∈ A | `′ ∈L } be its sets of incoming
and outgoing actions. The linear program has a variable xa for each action a∈ A, which
represents the number of times the action a occurs in the multi-cycle. It consists of the
following constraints:

∀` ∈L , ∑
a∈in(`)

xa = ∑
a∈out(`)

xa , (multi-cycle)

∀a ∈ A, xa ≥ 0 , (non-negative uses)

∀i ∈ {1, . . . ,k}, ∑
a∈A

xa ·w(t)(i)≥ 0 , (non-negative weight)

∑
a∈A

xa ≥ 0 (non empty)

∀A′ ∈M, ∑
a∈A′

xa ≥ 0 , (every subset in M is used)

∀a ∈ F, xa = 0 . (no forbidden actions)

As solving a linear program is in polynomial time Theorem 2, the result follows. �

Of course, what we are aiming for is finding a non-negative cycle suitable for
(M,F) rather than a multi-cycle. Let us define for this the relation ` ∼ `′ over L if
` = `′ or if there exists a non-negative multi-cycle Π suitable for (M,F) such that `
and `′ belong to some cycle π ∈Π.

Fact 21. The relation ∼ is an equivalence relation.

Proof. Symmetry and reflexivity are trivial, and if ` ∼ `′ and `′ ∼ `′′ because ` and `′

appear in some cycle π ∈ Π and `′ and `′′ in some cycle π ′ ∈ Π′ for two non-negative
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multi-cycles Π and Π′ suitable for (M,F), then up to a circular shift π and π ′ can be
assumed to start and end with `′, and then (Π \ {π})∪ (Π′ \ {π ′})∪{ππ ′} is also a
non-negative multi-cycle suitable for (M,F). �

Thus ∼ defines a partition L /∼ of L . In order to find a non-negative cycle π

suitable for (M,F), we are going to compute the partition L /∼ of L according to ∼.
If we obtain a partition with a single equivalence class, we are done: there exists such
a cycle. Otherwise, such a cycle if it exists must be included in one of the subsystems
(P,A∩ (P×Zk × P),k) induced by the equivalence classes P ∈ L /∼. This yields
Algorithm 11.2, which assumes that we know how to compute the partition L /∼.
Note that the depth of the recursion in Algorithm 11.2 is bounded by |L | and that
recursive calls operate over disjoint subsets of L , thus assuming that we can compute
the partition in polynomial time, then Algorithm 11.2 also works in polynomial time.

Algorithm 11.2: cycle(V ,M,F)

Data: A vector addition system with states V = (L ,A,k), M ∈ 2A, F ⊆ A
if |L |= 1 then

if V has a non-negative multi-cycle suitable for (M,F) then
return true

L /∼← partition(V ,M,F) ;
if |L /∼|= 1 then

return true
foreach P ∈L /∼ do

if cycle((P,A∩ (P×Zk×P),k),M,F) then
return true

return false

It remains to see how to compute the partition L /∼. Consider for this the set
of actions A′ def= {a | ∃Π a non-negative multi-cycle suitable for (M,F) with a ∈Π} and
V ′ = (L ′,A′,k) the subsystem induced by A′.

Claim 4. There exists a path from ` to `′ in V ′ if and only if `∼ `′.

Proof. If `∼ `′, then either `= `′ and there is an empty path, or there exist Π and π ∈Π

such that ` and `′ belong to π and Π is a non-negative multi-cycle suitable for (M,F),
thus every action of π is in A′ and there is a path in V ′.

Conversely, if there is a path π ∈ A′∗ from ` to `′, then ` ∼ `′ by induction on π .
Indeed, if |π|= 0 then `= `′. For the induction step, π = π ′a with π ′ ∈ A′∗ a path from
` to `′′ and a = (`′′ ~u−→ `′) ∈ A′ for some ~u. By induction hypothesis, ` ∼ `′′ and since
a ∈ A′, `′′ ∼ `′, thus `∼ `′ by transitivity shown in Fact 21. �

By Claim 4, the equivalence classes of ∼ are the strongly connected components
of V ′. This yields the following polynomial time algorithm for computing L /∼.

Together, Lemma 137 and Algorithms 11.2 and 11.3 yield the following.



11.5. THE COMPLEXITY OF ASYMMETRIC MONOTONE GAMES 385

Algorithm 11.3: partition(V ,M,F)

Data: A vector addition system with states V = (L ,A,k), M ∈ 2A, F ⊆ A
A′← /0;
foreach a ∈ A do

if V has a non-negative multi-cycle suitable for (M∪{{a}},F) then
A′← A′∪{a}

V ′← subsystem induced by A′ ;
return SCC(V ′)

Lemma 138 (Polynomial-time detection of suitable non-negative cycles). Let V be a
vector addition system with states, M ∈ 2A, and F ⊆ A. We can check in polynomial
time whether V contains a non-negative cycle π suitable for (M,F).

Finally, we obtain the desired polynomial time upper bound for parity in vector
addition systems with states.

Theorem 120 (Existential one-player parity vector games are in P). Whether Eve wins
a one-player parity vector game with existential initial credit is in P.

Proof. Let V = (L ,A,k) be a vector addition system with states, lcol:L → {1, . . . ,
d} a location colouring, and `0 ∈ L an initial location. We start by trimming V to
only keep the locations reachable from `0 in the underlying directed graph. Then, for
every even priority p ∈ {1, . . . ,d}, we use Lemma 138 to check for the existence of a
non-negative cycle with maximal priority p: it suffices for this to set M def= {lcol−1(p)}
and F def= lcol−1({p+1, . . . ,d}). �

Upper Bounds We are now equipped to prove our upper bounds. We begin with
a nearly trivial case. In a coverability asymmetric vector game with existential initial
credit, the counters play no role at all: Eve has a winning strategy for some initial credit
in the vector game if and only if she has one to reach the target location ` f in the finite
game played over L and edges (`,`′) whenever ` ~u−→ `′ ∈ A for some ~u. This entails
that coverability asymmetric vector games are quite easy to solve.

Theorem 121 (Existential coverability asymmetric vector games are in P). Coverabil-
ity asymmetric vector games with existential initial credit are P-complete.

Regarding non-termination and parity, we exploit Lemma 136 and thm. 120.

Theorem 122 (Existential parity asymmetric vector games are in coNP). Non-termination
and parity asymmetric vector games with existential initial credit are in coNP.

Proof. By Remark 21, it suffices to prove the statement for parity games. By Lemma 136,
if Adam wins the game, we can guess a counterless winning strategy τ telling which
action to choose for every location. This strategy yields a one-player game, and by
Theorem 120 we can check in polynomial time that τ was indeed winning for Adam.
�
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Finally, in fixed dimension and with a fixed number of priorities, we can simply
apply the results of Section 11.4.2.

Corollary 21 (Existential fixed-dimensional parity asymmetric vector games are pseu-
do-polynomial). Parity asymmetric vector games with existential initial credit are in
pseudo-polynomial time if the dimension and the number of priorities are fixed.

Proof. Consider an asymmetric vector system V = (L ,A,LEve,LAdam,k) and a loca-
tion colouring lcol:L →{1, . . . ,2d}. By Lemma 135, the parity vector game with ex-
istential initial credit over V problem reduces to a bounding game with existential ini-
tial credit over a vector system V ′ = (L ′,A′,L ′

Eve,L
′

Adam,k+d) where L ′ ∈O(|L |)
and ‖A′‖= ‖A‖. By Theorem 119, it suffices to consider the case of a non-termination
game with existential initial credit played over the bounded semantics AB(V ′) where
B is in (|L ′| · ‖A′‖)O(k+d)3

. Such a game can be solved in linear time in the size
of the bounded arena using attractor techniques, thus in O(|L | ·B)k+d , which is in
(|L | · ‖A‖)O(k+d)4

in terms of the original instance. �

Given Initial Credit

Theorem 123 (Upper bounds for asymmetric vector games). Coverability, non-termination,
and parity asymmetric vector games with given initial credit are in 2EXP. If the dimen-
sion is fixed, they are in EXP, and if the number of priorities is also fixed, they are in
pseudo-polynomial time.

11.5.2 Lower Bounds
Let us turn our attention to complexity lower bounds for monotonic asymmetric vector
games. It turns out that most of the upper bounds shown in Section 11.5.1 are tight.

Existential Initial Credit

In the existential initial credit variant of our games, we have the following lower bound
matching Theorem 122, already with a unary encoding.

Theorem 124 (Existential non-termination asymmetric vector games are coNP-hard).
Non-termination, and parity asymmetric vector games with existential initial credit are
coNP-hard.

Proof. By Remark 21, it suffices to show hardness for non-termination games. We
reduce from the 3SAT problem: given a formula ϕ =

∧
1≤i≤m Ci where each clause

Ci is a disjunction of the form `i,1 ∨ `i,2 ∨ `i,3 of literals taken from X = {x1,¬x1,x2,
¬x2, . . . ,xk,¬xk}, we construct an asymmetric vector system V where Eve wins the
non-termination game with existential initial credit if and only if ϕ is not satisfiable;
since the game is determined, we actually show that Adam wins the game if and only
if ϕ is satisfiable.

Our vector system has dimension 2k, and for a literal ` ∈ X , we define the vector

~u`
def=

{
~e2n−1−~e2n if `= xn ,

~e2n−~e2n−1 if `= ¬xn .
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We define V def= (L ,A,LEve,LAdam,2k) where

LEve
def= {ϕ}∪{`i, j | 1≤ i≤ m,1≤ j ≤ 3} ,

LAdam
def= {Ci | 1≤ i≤ m} ,

A def= {ϕ
~0−→Ci | 1≤ i≤ m}∪{Ci

~0−→ `i, j, `i, j
~u`i, j−−→ ϕ | 1≤ i≤ m,1≤ j ≤ 3} .

We use ϕ as our initial location. Let us call a map v:X → {0,1} a literal assignment;
we call it conflicting if there exists 1≤ n≤ k such that v(xn) = v(¬xn).

Assume that ϕ is satisfiable. Then there exists a non-conflicting literal assignment v
that satisfies all the clauses: for each 1≤ i≤m, there exists 1≤ j≤ 3 such that v(`i, j) =
1; this yields a counterless strategy for Adam, which selects (Ci, `i, j) for each 1≤ i≤m.
Consider any infinite play consistent with this strategy. This play only visits literals `
where v(`) = 1. There exists a literal ` ∈ X that is visited infinitely often along the
play, say ` = xn. Because v is non-conflicting, v(¬xn) = 0, thus the location ¬xn is
never visited. Thus the play uses the action ` ~e2n−1−~e2n−−−−−−−−→ ϕ infinitely often, and never
uses any action with a positive effect on component 2n. Hence the play is losing from
any initial credit.

Conversely, assume that ϕ is not satisfiable. By contradiction, assume that Adam
wins the game for all initial credits. By Lemma 136, he has a counterless winning
strategy τ that selects a literal in every clause. Consider a literal assignment that maps
each one of the selected literals to 1 and the remaining ones in a non-conflicting man-
ner. By definition, this literal assignment satisfies all the clauses, but because ϕ is not
satisfiable, it is conflicting: necessarily, there exist 1 ≤ n ≤ k and 1 ≤ i, i′ ≤ m, such
that τ selects xn in Ci and ¬xn in Ci′ . But this yields a winning strategy for Eve, which
alternates in the initial location ϕ between Ci and Ci′ , and for which an initial credit
~e2n−1 +~e2n suffices: a contradiction. �

Note that Theorem 124 does not apply to fixed dimensions k ≥ 2. We know by
Corollary 21 that those games can be solved in pseudo-polynomial time if the number
of priorities is fixed, and by Theorem 122 that they are in coNP.

Given Initial Credit

With given initial credit, we have a lower bound matching the 2EXP upper bound of
Theorem 123, already with a unary encoding. The proof itself is an adaptation of the
proof by Lipton [Lip76] of EXPSPACE-hardness of coverability in the one-player case.

Theorem 125 (Coverability and non-termination asymmetric vector games are 2EXP-hard).
Coverability, non-termination, and parity asymmetric vector games with given initial
credit are 2EXP-hard.

Proof. We reduce from the halting problem of an alternating Minsky machine M =
(L ,A,LEve,LAdam,k) with counters bounded by B def= 22n

for n def= |M |. Such a ma-
chine is similar to an asymmetric vector system with increments ` ~ei−→ `′, decrements
` −~ei−−−→ `′, and zero test actions ` i ?0=−−→ `′, all restricted to locations ` ∈LEve; the only
actions available to Adam are actions `

~0−→ `′. The set of locations contains a distin-
guished ‘halt’ location `halt ∈L with no outgoing action. The machine comes with
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the promise that, along any play, the norm of all the visited configurations `(~v) satisfies
‖~v‖< B. The halting problem asks, given an initial location `0 ∈L , whether Eve has a
winning strategy to visit `halt(~v) for some~v ∈ Nk from the initial configuration `0(~0).
This problem is 2EXP-complete if k ≥ 3 by standard arguments [FMR68].

Let us start by a quick refresher on Lipton’s construction [Lip76]; see also [Esp98]
for a nice exposition. At the heart of the construction lies a collection of one-player

gadgets implementing level j meta-increments ` 22 j ·~c−−−−→ `′ and level j meta-decrements

` −22 j ·~c−−−−−→ `′ for some unit vector~c using O( j) auxiliary counters and poly( j) actions,
with precondition that the auxiliary counters are initially empty in ` and post relation
that they are empty again in `′. The construction is by induction over j; let us first
see a naive implementation for meta-increments. For the base case j = 0, this is just a
standard action ` 2~c−−→ `′. For the induction step j+1, we use the gadget of Figure 11.14
below, where~x j,~̄x j,~z j,~̄z j are distinct fresh unit vectors: the gadget performs two nested
loops, each of 22 j

iterations, thus iterates the unit increment of ~c a total of
(
22 j)2

=

22 j+1
times. A meta-decrement is obtained similarly.

` `′
22 j ·~x j 22 j ·~z j ~̄x j−~x j ~̄z j−~z j ~c −22 j ·~̄z j −22 j ·~̄x j

~0

~0

Figure 11.14: A naive implementation of the meta-increment ` 22 j+1 ·~c−−−−−→ `′.

Note that this level ( j+1) gadget contains two copies of the level j meta-increment
and two of the level j meta-decrement, hence this naive implementation has size exp( j).
In order to obtain a polynomial size, we would like to use a single shared level j gad-
get for each j, instead of hard-wiring multiple copies. The idea is to use a ‘dispatch
mechanism,’ using extra counters, to encode the choice of unit vector ~c and of return
location `′. Let us see how to do this in the case of the return location `′; the mech-
anism for the vector ~c is similar. We enumerate the (finitely many) possible return

locations `0, . . . , `m−1 of the gadget implementing ` 22 j+1 ·~c−−−−−→ `′. We use two auxil-
iary counters with unit vectors ~r j and ~̄r j to encode the return location. Assume `′

is the ith possible return location, i.e., `′ = `i in our enumeration: before entering
the shared gadget implementation, we initialise ~r j and ~̄r j by performing the action
` i ·~r j +(m− i) ·~̄r j−−−−−−−−−−−−→ ·· · . Then, where we would simply go to `′ in Figure 11.14 at the
end of the gadget, the shared gadget has a final action · · ·

~0−→ `return j leading to a dispatch
location for returns: for all 0≤ i < m, we have an action `return j

−i ·~r j− (m− i) ·~̄r j−−−−−−−−−−−−−−→ `i
that leads to the desired return location.

Let us return to the proof. Consider an instance of the halting problem. We first
exhibit a reduction to coverability; by Remark 22, this will also entail the 2EXP-
hardness of parity asymmetric vector games. We build an asymmetric vector system
V = (L ′,A′,L ′

Eve,LAdam,k′) with k′ = 2k+O(n). Each of the counters ci of M is
paired with a complementary counter c̄i such that their sum is B throughout the sim-
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ulation of M . We denote by ~ci and ~̄ci the corresponding unit vectors for 1 ≤ i ≤ k.
The vector system V starts by initialising the counters c̄i to B by a sequence of meta-

increments `′i−1
22n ·~̄ci−−−−−→ `′i for 1 ≤ i ≤ k, before starting the simulation by an action

`′k
~0−→ `0. The simulation of M uses the actions depicted in Figure 11.15. Those main-

tain the invariant on the complement counters. Regarding zero tests, Eve yields the
control to Adam, who has a choice between performing a meta-decrement that will fail
if c̄i < 22n

, which by the invariant is if and only if ci > 0, or going to `′.

7→alternating Minsky machine asymmetric vector system

 ` `′ ` `′
~ei ~ci−~̄ci

 ` `′ ` `′
−~ei −~ci +~̄ci

 ` `′ `

`′

`halt

i ?0= ~0

~0

~0

−22n ·~̄ci

 ` `′ ` `′
~0 ~0

Figure 11.15: Schema of the reduction to coverability in the proof of Theorem 125.

It is hopefully clear that Eve wins the coverability game played on V starting from
`′0(

~0) and with target configuration `halt(~0) if and only if the alternating Minsky ma-
chine halts.

Regarding non-termination games, we use essentially the same reduction. First
observe that, if Eve can ensure reaching `halt in the alternating Minsky machine, then
she can do so after at most |L |Bk steps. We therefore use a ‘time budget’: this is an
additional component in V with associated unit vector~t. This component is initialised
to |L |Bk = |L |2k2n

before the simulation, and decreases by one at every step; see
Figure 11.16. We also add a self loop `halt

~0−→ `halt. Then the only way to avoid the
sink and thus to win the non-termination game is to reach `halt.

We still need to extend our initialisation phase. It suffices for this to implement

a gadget for k-meta-increments ` 2k2 j ·~c−−−−−→ `′ and k-meta-decrements ` −2k2 j ·~c−−−−−−→ `′;

this is the same argument as in Lipton’s construction, with a base case ` 2k
−−→ `′ for

j = 0. Then we initialise our time budget through |L | successive k-meta-increments

` 2k2n ·~t−−−−−→ `′. �

The proof of Theorem 125 relies crucially on the fact that the dimension is not
fixed: although k ≥ 3 suffices in the alternating Minsky machine, we need O(|M |)
additional counters to carry out the reduction. A separate argument is thus needed in
order to match the EXP upper bound of Theorem 123 in fixed dimension.
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7→alternating Minsky machine asymmetric vector system

 ` `′ ` `′
~ei ~ci−~̄ci−~t

 ` `′ ` `′
−~ei −~ci +~̄ci−~t

 ` `′ `

`′

`halt

i ?0= −~t
~0

~0

−22n ·~̄ci

 ` `′ ` `′
~0 ~0 −~t

Figure 11.16: Schema of the reduction to non-termination in the proof of Theorem 125.

Theorem 126 (Fixed-dimensional coverability and non-termination asymmetric vector
games are EXP-hard). Coverability, non-termination, and parity asymmetric vector
games with given initial credit are EXP-hard in dimension k ≥ 2.

Proof. We exhibit a reduction from countdown games with given initial credit, which
are EXP-complete by Theorem 113. Consider an instance of a configuration reach-
ability countdown game: a countdown system V = (L ,A,LEve,LAdam,1) with ini-
tial configuration `0(n0) and target configuration ,(0)—as seen in the proof of The-
orem 113, we can indeed assume that the target credit is zero; we will also assume
that Eve controls , and that the only action available in , is , −1−−→ ,. We con-
struct an asymmetric vector system V ′ of dimension 2 such that Eve can ensure reach-
ing ,(0,n0) from `0(n0,0) in V ′ if and only if she could ensure reaching ,(0) from
`0(n0) in V . The translation is depicted in Figure 11.17.

7→countdown system asymmetric vector system

 ` `′ ` `′
−n −n,n

 ` `′

n = min{n′ | ∃`′′ ∈L . ` −n′−−−→ `′′ ∈ A}
` `′

−n 0,0 −n,n

 ` `′

n 6= min{n′ | ∃`′′ ∈L . ` −n′−−−→ `′′ ∈ A}
`

`′

,

−n 0,0

−n,n

n0−n+1,−n0 +n−1

−1,1

0,0

Figure 11.17: Schema of the reduction in the proof of Theorem 126.

The idea behind this translation is that a configuration `(c) of V is simulated by
a configuration `(c,n0− c) in V ′. The crucial point is how to handle Adamś moves.
In a configuration `(c,n0− c) with ` ∈LAdam, according to the natural semantics of
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V , Adam should be able to simulate an action ` −n−−→ `′ if and only if c ≥ n. Observe
that otherwise if c < n and thus n0− c > n0− n, Eve can play to reach , and win
immediately. An exception to the above is if n is minimal among the decrements in `,
because according to the natural semantics of V , if c < n there should be an edge to
the sink, and this is handled in the second line of Figure 11.17.

Then Eve can reach ,(0,n0) if and only if she can cover ,(0,n0), if and only if
she can avoid the sink thanks to the self loop , 0,0−−−→,. This shows the EXP-hardness
of coverability and non-termination asymmetric vector games in dimension two; the
hardness of parity follows from Remarks 21 and 22. �

11.5.3 Dimension One

Bibliographic references
Vector Addition Systems with States In their one-player version, i.e. in vector ad-
dition systems with states, all the games presented in Section 11.1 are decidable.
With given initial credit, configuration reachability is simply called ‘reachability’ and
was first shown decidable by Mayr [May81] (with simpler proofs in [Kos82, Lam92,
Ler11]) and recently shown to be of non-elementary complexity [CLL+19]. Coverabil-
ity and non-termination are considerably easier, as they are EXPSPACE-complete [Lip76,
Rac78] and so is parity [Hab97]. With existential initial credit, the problems are
markedly simpler: configuration reachability becomes EXPSPACE-complete, while
coverability is in NL and non-termination and parity can be solved in polynomial time
by Theorem 120 using linear programming techniques [KS88].

Undecidability of Vector Games The undecidability results of Section 11.1.2 are
folklore. One can find undecidability proofs in [ABd03, RSB05]; non-termination
was called ‘deadlock-freedom’ by Raskin et al. [RSB05]. Configuration reachability is
undecidable even in very restricted cases, like the robot games of [NPR16].

Succinct One-Counter Games One-dimensional vector systems are often called one-
counter nets in the literature, by contrast with one-counter automata where zero tests
are allowed. The EXPSPACE-completeness of succinct one-counter games was shown
by Hunter [Hun15]. Countdown games were originally defined with given initial
credit and a zero reachability objective, and shown EXP-complete in [JLS08]; see also
[Kie13] for a variant called hit-or-run games. The hardness proofs for Theorems 113
and 114 are adapted from [JOS18], where countdown games with existential initial
credit were first introduced.

Asymmetric Vector Games The asymmetric vector games of Section 11.3 appear
under many guises in the literature: as ‘and-branching’ vector addition systems with
states in [LMSS92], as ‘vector games’ in [Kan95], as ‘B-games’ in [RSB05], as ‘single
sided’ vector addition games in [AMSS13], and as ‘alternating’ vector addition systems
with states in [CS14].
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The undecidability of configuration reachability shown in Section 11.3.1 was al-
ready proven by Lincoln et al. [LMSS92] and used to show the undecidability of
propositional linear logic; Kanovich [Kan95, Kan16] refines this result to show the
undecidability of the (!,⊕)-Horn fragment of linear logic. Similar proof ideas are used
for Boolean BI and separation logic in [LWG13, BK14].

Asymmetric Monotone Vector Games The notion of asymmetric infinite games
over a well-quasi-ordered arena constitutes a natural extension of the notion of well-
structured systems of [AČJT00] and [FS01], and was undertaken in [ABd03, RSB05].
The decidability of coverability and non-termination through wqo arguments like those
of Fact 20 was shown by Raskin et al. [RSB05]. More advanced wqo techniques were
needed for the first decidability proof of parity in [AMSS13]. See also [SS12] for more
on the algorithmic uses of wqos.

By analysing the attractor computation of Section 11.3.2, one can show that Al-
gorithm 11.1 works in 2EXP, thus matching the optimal upper bound from Theo-
rem 123: this can be done using the Rackoff-style argument of [CS14] and the analysis
of [BG11], or by a direct analysis of the attractor computation algorithm [LS19].

Energy Games An alternative take on energy games is to see a vector system V =
(L ,A,LEve,LAdam,k) as a finite arena with edges ` ~u−→ `′ coloured by~u, thus with set
of colours C def= Zk. For an initial credit ~v0 ∈ Nk and 1 ≤ i ≤ k, the associated energy
objective is then defined as

Energy~v0
(i) def=

{
π ∈ Eω

∣∣∣∣∣ ∀n ∈ N .

(
~v0(i)+ ∑

0≤ j≤n
c(π)(i)

)
≥ 0

}
,

that is, π is winning if the successive sums of weights on coordinate i are always non-
negative. The multi-energy objective then asks for the play π to belong simultaneously
to Energy~v0

(i) for all 1≤ i≤ k. This is a multiobjective in the sense of the forthcoming
Chapter 12. Multi-energy games are equivalent to non-termination games played on
the arena AE(V ) defined by the energy semantics.

The relationship with energy games was first observed in [AMSS13]. The equiva-
lence with mean payoff games in dimension one was first noticed by Bouyer et al. [BFL+08].
A similar connection in the multi-dimensional case was established in [CDHR10, VCD+15]
and will be discussed in Chapter 12.

Complexity Table 11.1 summarises the complexity results for asymmetric vector
games. For the upper bounds with existential initial credit of Section 11.5.1, the ex-
istence of counterless winning strategies for Adam was originally shown by Brázdil
et al. [BJK10] in the case of non-termination games; the proof of Lemma 136 is a
straightforward adaptation using ideas from [CD12] to handle parities. An alternative
proof through bounding games is presented in [CJLS17].

The coNP upper of Theorem 122 was shown soon after Brázdil et al.’s work by
Chatterjee et al. [CDHR10] in the case of non-termination games. The extension of
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Theorem 122 to parity was shown by [CRR14] by a reduction from parity to non-
termination games somewhat reminiscent of ?. The proof of Theorem 122 takes a
slightly different approach using Lemma 138 for finding non-negative cycles, which
is a trivial adaptation of a result by Kosaraju and Sullivan [KS88]. The pseudo-
polynomial bound of Corollary 21 is taken from [CJLS17].

For the upper bounds with given initial credit of Section 11.5.1, regarding cov-
erability, the 2EXP upper bound of Theorem 123 was first shown by Courtois and
Schmitz [CS14] by adapting Rackoff’s technique for vector addition systems with
states [Rac78]. Regarding non-termination, the first complexity upper bounds were
shown by Brázdil et al. [BJK10] and were in kEXP, thus non-elementary in the size
of the input. Very roughly, their argument went as follows: one can extract a pseudo-
polynomial existential Pareto bound B in the one-player case from the proof of Theo-
rem 120, from which the proof of Lemma 136 yields a 2|A|(B+ |L |) existential Pareto
bound in the two-player case, and finally by arguments similar to ? a tower of k ex-
ponentials on the given initial credit problem. The two-dimensional case with a unary
encoding was shown a bit later to be in P by Chaloupka [Cha13]. Finally, a match-
ing 2EXP upper bound (and pseudo-polynomial in any fixed dimension) was obtained
by Jurdziński et al. [JLS15]. Regarding parity, Jančar [Jan15] showed how to obtain
non-elementary upper bounds by reducing to the case of [BJK10], before a tight 2EXP
upper bound (and pseudo-polynomial in fixed dimension with a fixed number of prior-
ities) was shown in [CJLS17].

The coNP hardness with existential initial credit in Theorem 124 originates from
[CDHR10]. The 2EXP-hardness of both coverability and non-termination games with
given initial credit from Theorem 125 was shown in [CS14] by adapting Lipton’s con-
struction for vector addition systems with states [Lip76]; similar proofs can be found
for instance in [DJLL12, BHSS12]. The hardness for EXP-hardness in dimension two
was first shown by [FJLS11].

The NP∩ coNP upper bounds in dimension one from Section 11.5.3 are due to
Bouyer et al. [BFL+08] for given initial credit and Chatterjee and Doyen [CD12] for
existential initial credit.

Some Applications Besides their many algorithmic applications for solving various
types of games, vector games have been employed in several fields to prove decid-
ability and complexity results, for instance for linear, relevance, or separation log-
ics [LMSS92, Kan95, Urq99, LWG13, BK14, Kan16], simulation and bisimulation
problems [Kie13, AMSS13, CS14, JOS18], resource-bounded logics [ABDL18], or-
chestration synthesis [GVF+18], as well as model-checking probabilistic timed au-
tomata [JLS08].
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Table 11.1: The complexity of asymmetric vector games.

Dimension

Game Initial credit Fixed k = 1 Fixed k ≥ 2 Arbitrary

configuration reachability - EXPSPACE-complete undecidable
Theorem 118 Theorem 117 [LMSS92]

coverability
existential P-complete

Theorem 121

given in NP∩ coNP EXP-complete 2EXP-complete
Theorems 123 and 126 [FJLS11, CS14] Theorems 123 and 125 [CS14]

non-termination
existential in NP∩ coNP in coNP coNP-complete

[CD12] Theorems 122 and 124 [CDHR10]

given in NP∩ coNP EXP-complete 2EXP-complete
[BFL+08] Theorems 123 and 126 [FJLS11, JLS15] Theorems 123 and 125 [CS14, JLS15]

parity
existential in NP∩ coNP in coNP coNP-complete

[CD12] Theorems 122 and 124 [CDHR10, CRR14]

given EXP-complete 2EXP-complete
Theorems 123 and 126 [FJLS11, CJLS17] Theorems 123 and 125 [CS14, CJLS17]
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Chapter 12
Games with multiple objectives
MICKAEL RANDOUR

Up to this chapter, we have mostly been interested in finding strategies that achieve a
single objective or optimise a single payoff function. Our goal here is to discuss what
happens when one goes further and wants to build strategies that (i) ensure several
objectives, or (ii) provide richer guarantees than the simple worst-case or expectation
ones used respectively in zero-sum games and Markov decision processes (MDPs).

Consider case (i). Such requirements arise naturally in applications: for instance,
one may want to define a trade-off between the performance of a system and its energy
consumption. A model of choice for this is the natural multidimensional extension of
the games of Chapter 4, where we consider weight vectors on edges and combinations
of objectives.

In case (ii), we base our study on stochastic models such as MDPs (Chapter 5). We
will notably present how to devise controllers that provide strong guarantees in a worst-
case scenario while behaving efficiently on average (based on a stochastic model of its
environment built through statistical observations); effectively reconciling the rational
antagonistic behaviour of Adam, used in games, with the stochastic interpretation of
uncontrollable interaction at the core of MDPs.

Stepping into the multi-objective world is like entering a jungle: the sights are
amazing but the wildlife is overwhelming. Providing an exhaustive account of exist-
ing multi-objective models and the latest developments in their study is a task doomed
to fail: simply consider the combinatorial explosion of all the possible combinations
based on the already non-exhaustive set of games studied in the previous chapters.
Hence, our goal here is to guide the reader through their first steps in the jungle, high-
lighting the specific dangers and challenges of the multi-objective landscape, and dis-
playing some techniques to deal with them. To that end, we focus on models studied
in Chapter 2, Chapter 4, Chapter 5 and Chapter 11, and multi-objective settings that
extend them. We favour simple, natural classes of problems, that already suffice to
grasp the cornerstones of multi-objective reasoning.

399
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Chapter outline In Section 12.1, we illustrate the additional complexity of multi-
objective games and how relations between different classes of games that hold in the
single-objective case often break as soon as we consider combinations of objectives.

The next two sections are devoted to the simplest form of multi-objective games:
games with conjunctions of classical objectives. In Section 12.2, we present the classi-
cal case of multidimensional mean payoff and energy games, which preserve relatively
nice properties with regard to their single-objective counterparts. In Section 12.3, we
discuss the opposite situation of total payoff and shortest path games: their nice single-
objective behaviour vanishes here.

In the last two sections, we explore a different meaning of multi-objective through
so-called rich behavioural models. Our quest here is to find strategies that provide
several types of guarantees, of different nature, for the same quantitative objective.
In Section 12.4, we address the problem of beyond worst-case synthesis, which com-
bines the rational antagonistic interpretation of two-player zero-sum games with the
stochastic nature of MDPs. We will study the mean payoff setting and see how to con-
struct strategies that ensure a strict worst-case constraint while providing the highest
expected value possible. In Section 12.5, we briefly present percentile queries, which
extend probability threshold problems in MDPs to their multidimensional counterparts.
Interestingly, randomised strategies become needed in this context, whereas up to Sec-
tion 12.5, we only consider deterministic strategies as they suffice.

We close the chapter with the usual bibliographic discussion and pointers towards
some of the many recent advances in multi-objective reasoning.

12.1 From one to multiple dimensions
For the first part of this chapter, we consider multidimensional quantitative games.
With regard to the formalism of Chapter 4, the only change to the arena is the set of
colours associated with edges: we now have vectors in Rk where k ∈N>0 is the dimen-
sion of the game. As before, for computational purposes, it makes sense to restrict our
colouring to rational numbers, and for the sake of simplicity, we even consider integers
only without loss of generality. Hence, c : E→ Zk.

For the weighted games of Chapter 4, where a single quantitative objective f is
considered, we know that the value of the game exists. In most cases, optimal strategies
do too, which makes the problems of computing the value and solving the game for a
given threshold morally equivalent. In our simple multidimensional setting, we focus
on conjunctions of objectives. Similarly to what we did in the one-dimension case, we
will write f≥~x with~x ∈Qk to define the (qualitative) winning condition

f≥~x =
k⋂

i=1

{π ∈ Pathsω(G) | fi(π)≥~xi}

where fi(π) represents the evaluation of f on the sequence of colours in the i-th dimen-
sion and ~xi represents the i-th component of vector ~x. Hence we consider the natural
semantics where we want to satisfy the original objective f component-wise.
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v0 v1

(−1,−1)

(−1,−1)

(1,−1) (−1,1)

Figure 12.1: A simple multidimensional mean payoff game where Eve needs infinite
memory to play (Pareto-)optimally.

Example 16. Consider the simple one-player game in Figure 12.1 fitted with the mean
payoff objective MeanPayoff− (recall that two variants exist depending on the use
of lim-sup or lim-inf). Let us first recall that in the single-objective case, memoryless
strategies suffice to play optimally (Corollary 6). In this game, such strategies permit to
achieve payoffs (1,−1), (−1,−1) and (−1,1). Intuitively, (−1,−1) is not interesting
since we can do better with (1,−1) or (−1,1). On the other hand, these two other
payoffs are incomparable and thus should not be discriminated a priori. In the multi-
objective world, there is usually no total order between the outcomes of a game — fixing
a total order would actually boil down to transforming the game into a one-dimension
game — which is why there is in general no optimal strategy but rather Pareto-optimal
ones. Intuitively, a strategy is Pareto-optimal if there exists no other strategy yielding a
payoff which is as good in all dimensions and strictly better in at least one dimension.

Definition 30 (Pareto-optimal strategy). Given a k-dimension game G based on the
conjunction of k maximising (w.l.o.g.) quantitative objectives ( fi)

k
i=1, a strategy σ for

Eve is said to be Pareto-optimal if it guarantees a payoff~x ∈ Rk such that for all other
strategy σ ′ of Eve ensuring payoff ~x′ 6= ~x, it holds that ~xi >~x′i for some dimension
i ∈ {1, . . . ,k}.

The concept of Pareto-optimality has an important consequence on multi-objective
problems: the correspondence between solving a value problem and computing an op-
timal strategy that holds in the single-objective case does not carry over. Indeed, one
may now be interested in computing the Pareto frontier consisting of all Pareto vec-
tors achievable by Eve. This comes at great cost complexity-wise as this frontier may
include many points, and in some settings, even an infinite number of Pareto vectors
(see Section 12.5 for examples), sometimes forcing us to resort to approximation. This
requires specific techniques that go beyond the focus of this chapter, hence in the fol-
lowing we mostly discuss the value problem, also referred to as ‘solving the game’ for
a given threshold vector.

Example 17. Let us go back to Example 16 and fix objective MeanPayoff−≥~x where~x=
(0,0). As discussed before, this threshold cannot be achieved by a memoryless strategy.
Actually, this is also the case for any finite-memory strategy. Indeed, any finite-memory
strategy induces an ultimately periodic play, where either (a) the periodic part only
visits v0 (resp. v1), yielding payoff (1,−1) (resp. (−1,1)) thanks to prefix independence
of the mean payoff (Chapter 4), or (b) it visits both, in which case the mean payoff is of
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the form

~y = MeanPayoff−(π) =
a · (1,−1)+2 ·b · (−1,−1)+ c · (−1,1)

a+2 ·b+ c

where a,c ∈ N and b ∈ N>0. Observe that ~y1 +~y2 = −4 · b/(a+ 2 · b+ c), which is
strictly less than zero for any value of the parameters. Hence~x = (0,0) is not achiev-
able. Now consider what happens with infinite memory: let σ be the strategy of Eve
that visits ` times v0, then ` times v1, and then repeats forever with increasing values
of `. The mean payoff of the resulting play is the limit of the previous equation when
a = c = ` tends to infinity, with b = 1: intuitively, the switch between v0 and v1 becomes
negligible in the long run and the mean payoff is 1

2 · (1,−1)+ 1
2 · (−1,1) = (0,0).

Remark 23. While Eve cannot achieve (0,0) with finite memory, she can achieve (i.e.,
ensure at least) any payoff (−ε,−ε) for 0 < ε < 1, using sufficient memory: for in-
stance, by taking b = 1 and a = c = d 1

ε
−1e. In that sense, the payoff~x = (0,0) achiev-

able by an infinite-memory strategy can be seen as the supremum of payoffs achievable
by finite-memory strategies. Actually, this is exactly how we defined strategy σ : Eve
plays according to an infinite sequence of finite-memory strategies parametrised by `,
such that each strategy of the sequence ensures mean payoff (−ε,−ε), with ε → 0
when `→ ∞.

Example 18. The reasoning above holds similarly for MeanPayoff+. With finite-
memory, the lim-sup variant coincides with the lim-inf one: because the play is ulti-
mately periodic, the limit exists. With infinite-memory, Eve can actually achieve the
payoff~x′ = (1,1), witnessing a gap with the lim-inf variant. To do so, she has to play a
strategy that alternates between v0 and v1 while staying in each vertex for a sufficiently
long period such that the current mean over the corresponding dimension gets close
to 1. Getting these means closer and closer to 1 and using the lim-sup component-wise
then suffices to achieve payoff~x′. This is in stark contrast to the lim-inf variant, which
cannot achieve any payoff (ε,ε) for ε > 0 (the Pareto vectors correspond to linear
combinations of simple cycles, as hinted before).

Theorem 127. Multidimensional mean payoff games require infinite-memory strate-
gies for Eve. Furthermore, the lim-inf and lim-sup variants are not equivalent, i.e.,
their winning regions are in general not identical.

This theorem already shows the first signs of our single-objective assumptions
crumbling in the multi-objective world: we jump from memoryless determinacy to
needing infinite memory, and objectives that were equivalent both in games and MDPs
turn out to be different here. Buckle up, as this was only our first step.

12.2 Mean payoff and energy
Another well-known equivalence in one-dimension is the one between mean payoff
and energy games (in the existential initial credit form), mentioned in Chapter 4. The
reduction is trivial: Eve has a winning strategy (and an initial credit) in the energy game
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if and only if she has a strategy to ensure mean payoff at least equal to zero in the mean
payoff game played over the same arena. Intuitively, the mean payoff strategy of Eve
has to reach a subgame where she can ensure that all cycles formed are non-negative
(see cycle games in Chapter 4). The initial credit (which can be as high as Eve wants)
offsets the cost of reaching such a subgame as well as the low point of cycles in it
(which can be negative but is bounded).

How does it fare in multiple dimensions? The study of vector games with energy
semantics in Chapter 11 gives the following result.

Theorem 128. Solving multidimensional energy games is coNP-complete. Exponen-
tial-memory strategies suffice and are required for Eve, and memoryless ones suffice
for Adam.

Based on Theorem 127 and Example 17, it is clear that the aforementioned equiva-
lence holds no more, as mean payoff games benefit from infinite memory while energy
games do not. In Example 17, the strategy that achieves~x = (0,0) for the mean payoff
does so by switching infinitely often but with decreasing frequency between v0 and v1:
the switch becomes negligible in the limit which is fine for the mean payoff. Still, this
would lead the energy to drop below zero eventually, whatever the initial credit chosen
by Eve, hence showing why the reduction does not carry over.

12.2.1 Finite memory
Game-theoretic models are generally used in applications, such as controller synthesis,
where one actually wants to implement a winning strategy when it exists. This is why
finite-memory strategies have a particular appeal. Hence it is interesting to study what
happens when we restrict Eve to finite-memory strategies in multidimensional mean
payoff games.

We first observe that when both players use finite-memory strategies, the resulting
play is ultimately periodic, hence the lim-inf and lim-sup variants coincide (the limit
exists) and take the value of the mean over the periodic part.

Proposition 11. The lim-sup and lim-inf variants of multidimensional mean payoff
games coincide under finite memory, i.e., their winning regions are identical in all
games.

We now go back to the relationship with energy games. In the following, we write
~0 for the k-dimension vector (0, . . . ,0). When restricting both players to finite mem-
ory, we regain the equivalence between mean payoff and energy games by a natural
extension of the argument sketched above for one-dimension games.

Theorem 129. For all arena and initial vertex, Eve has a winning strategy for the
existential initial credit multidimensional energy game if and only if she has a finite-
memory winning strategy for the multidimensional (lim-inf or lim-sup) mean payoff
game with threshold~0.

Proof. Let A be an arena coloured by integer vectors of dimension k and v0 be the
initial vertex. We first consider the left-to-right implication. Assume that Eve has a
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strategy σ and some initial credit~c0 ∈ Nk such that she wins the energy objective over
A . By Theorem 128, we may assume σ to be finite-memory and M = (M,m0,δ )
to be its memory structure. Let Aσ be the classical product of the arena with this
memory structure (A ×M ) restricted to the choices made by σ . We claim that any
cycle in Aσ is non-negative in all dimensions (we simply project paths of Aσ to Cω

to interpret them as we do for paths in A ). By contradiction, assume that there exists
a cycle whose sum of weights is strictly negative in some dimension. Then the play
reaching this cycle and looping in it forever is a play consistent with σ that is losing
for the energy objective, contradicting the hypothesis. Hence, it is indeed the case that
all reachable cycles in Aσ are non-negative in all dimensions. Thus, σ ensures mean
payoff at least equal to zero in all dimensions (for lim-inf and lim-sup variants).

In the opposite direction, assume that σ is a finite-memory winning strategy for
MeanPayoff−

≥~0
(or equivalently MeanPayoff+

≥~0
). Using the same argument as before,

we have that all cycles in Aσ are non-negative. Therefore there exists some initial
credit ~c0 ∈ Nk such that σ satisfies the energy objective. As a trivial bound, one may
take initial credit |V | · |M| ·W in all dimensions, where |V | is the number of vertices
of A , |M| the number of memory states of M , and W is the largest absolute weight
appearing in the arena: this quantity bounds the lowest sum of weights achievable
under an acyclic path. �

Observe that the finite-memory assumption is crucial to lift mean payoff winning
strategies to the energy game. Intuitively, the reasoning would break for a strategy like
the one used in Example 17 because the memory structure would need to be infinite
and Aσ would actually not contain any cycle but an infinite path of ever-decreasing
energy such that no bound on the initial credit could be established.

Also, note that Theorem 129 makes no mention of the specific variant of mean
payoff used. This is because both players play using finite-memory: Eve by hypothesis
and Adam thanks to the equivalence and Theorem 128. Hence, Proposition 11 applies.
To sum up, we obtain the following.

Corollary 22. Solving multidimensional mean payoff games under finite-memory is
coNP-complete. Exponential-memory strategies suffice and are required for Eve, and
memoryless ones suffice for Adam.

12.2.2 Infinite memory
We now turn to the general case, where Eve is allowed to use infinite memory. By Ex-
ample 18, we already know that lim-sup and lim-inf variants are not equivalent. We
will cover the lim-sup case in details and end with a brief overview of the lim-inf one.

Lim-sup variant
Without loss of generality, we fix the objective MeanPayoff+

≥~0
(one can always modify

the weights in the arena and consider the shifted-game with threshold zero). We have
seen in Example 18 that Eve could focus on each dimension independently and alter-
natively in such a way that in the limit, she obtains the supremum in each dimension.
This is the core idea that we will exploit.
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Lemma 139. Let A be an arena such that from all vertex v∈V and for all dimension i,
1 ≤ i ≤ k, Eve has a winning strategy for {π ∈ Pathsω(G) | MeanPayoff+i (π) ≥ 0}.
Then, from all vertex v ∈V , she has a winning strategy for MeanPayoff+

≥~0
.

Hence, being able to win in each dimension separately suffices to guarantee win-
ning in all dimensions simultaneously. Note that the converse is obvious.

Proof. For each vertex v ∈ V and dimension i, 1 ≤ i ≤ k, let σ v
i be a winning strategy

for Eve from v for {π ∈ Pathsω(G) | MeanPayoff+i (π)≥ 0}.
Let Tσ v

i
be the infinite tree obtained by unfolding σ v

i : it represents all plays consis-
tent with this strategy. Formally, such a tree is obtained inductively as follows:

• The root of the tree represents v.

• Given a node1 η representing the branch (i.e., prefix of play) ρ starting in vertex
v and ending in vertex vη , we add children as follows:

– if vη ∈ VEve, η has a unique child representing the vertex Out(e) reached
through edge e = σ v

i (ρ);

– otherwise η has one child for each possible successor of vη , i.e., for each
Out(e) such that e ∈ E and In(e) = vη .

For ε > 0, we declare a node η of Tσ v
i

to be ε-good if the mean over dimension i on the
path from the root to η is at least −ε (as usual, we project this path to Cω to evaluate
it). For ` ∈ N, let T̂ i,`

v,ε be the tree obtained from Tσv
i

by removing all descendants of

ε-good nodes that are at depth at least `: hence, all branches of T̂ i,`
v,ε have length at least

` and their leaves are ε-good.
We first show that T̂ i,`

v,ε is a finite tree. By König’s Lemma [Kön36], we only need
to show that every branch is finite. By contradiction, assume it is not the case and there
exists some infinite branch. By construction, it implies that this branch contains no
ε-good node after depth `. Thus, the corresponding play π , which is consistent with
σ v

i , necessarily has MeanPayoff+i (π)≤−ε . This contradicts the hypothesis that σ v
i is

winning for dimension i. Hence the tree is indeed finite.
Based on these finite trees, we now build an infinite-memory strategy for Eve that

will be winning for the conjunct objective MeanPayoff+
≥~0

: it is presented as Algo-
rithm 12.1.

Recall that W is the largest absolute weight in the game. Consider the situation
whenever an iteration of the for-loop ends. Let M be the number of steps the play
followed σ v

i during this loop execution. Then, the mean payoff in dimension i is at
least −L·W−M·ε

L+M ≥ −L·W−M·ε
M . Since M ≥ L·W

ε
by definition, we obtain that the mean

payoff in dimension i is at least −2 · ε .
Observe that since all trees are finite, we always exit the for-loop eventually, hence

ε tends to zero. Therefore, the supremum mean payoff is at least zero in all dimensions,
which makes this strategy winning for MeanPayoff+

≥~0
. �

1Nodes refer to the tree, vertices to the arena.
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Algorithm 12.1: Winning strategy σ for MeanPayoff+
≥~0

ε ← 1
loop

for i = 1 to k do
Let v be the current vertex, L the length of the play so far
`←

⌈L·W
ε

⌉
Play according to σ v

i until a leaf of T̂ i,`
v,ε is reached

ε ← ε

2

This construction is tight in the sense that infinite memory is needed for Eve, as
previously proved. For Adam, we show a better situation. The proof scheme will also
be the base of the upcoming algorithm.

Lemma 140. Memoryless strategies suffice for Adam in multidimensional lim-sup
mean payoff games.

Proof. The proof works by induction on the number of vertices of the arena. The base
case |V | = 1 is trivial. Assume the only vertex belongs to Adam. If there exists a self
loop (recall we allow several edges per pair of vertices) which has a negative weight on
some dimension, Adam wins by looping on it forever. In the opposite case, he cannot
win.

Now assume |V | ≥ 2. For i ∈ {1, . . . ,k}, let W i
Adam be the winning region of Adam

for the complement of {π ∈ Pathsω(G) | MeanPayoff+i (π)≥ 0}, i.e., the region where
Adam has a strategy to force a strictly negative mean payoff in dimension i (as studied
in Chapter 4). Let W disj

Adam =
⋃k

i=1 W i
Adam. We have two cases.

First, W disj
Adam = /0. Then, Eve can win all one-dimension games from everywhere

and by Lemma 139, she can also win for MeanPayoff+
≥~0

. Thus, Adam has no winning
strategy.

Second, W disj
Adam 6= /0. Then, there exists i ∈ {1, . . . ,k} such that W i

Adam 6= /0. In
this set, Adam has a memoryless winning strategy τi to falsify the winning condition
{π ∈ Pathsω(G) | MeanPayoff+i (π)≥ 0} (because one-dimension mean payoff games
are memoryless determined, as proved in Corollary 6). This strategy also falsifies
MeanPayoff+

≥~0
, hence W i

Adam is part of the winning region for Adam — we denote it

WAdam, as usual. By prefix independence of the mean payoff, the attractor W i,Pre
Adam =

AttrAdam(W i
Adam) is also part of WAdam. We denote by τPre the corresponding attractor

strategy of Adam. Moreover, the graph restricted to V \W i,Pre
Adam constitutes a proper

arena A ′.
Let W ′Adam be the winning region of Adam in A ′ for the original winning condition

MeanPayoff+
≥~0

. The arena A ′ has strictly less vertices than A since we removed the

non-empty region W i
Adam. Hence we can apply the induction hypothesis: Adam has a

memoryless winning strategy τ ′ in W ′Adam. The region V \ (W i,Pre
Adam∪W ′Adam) is winning

for Eve in A ′ by determinacy. But it is also winning in A , i.e., the original game, since
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Adam cannot force the play to go in W i,Pre
Adam from there (otherwise it would be part of

the attractor too).
We define the following memoryless strategy for Adam, which we claim is winning

from WAdam =W i,Pre
Adam∪W ′Adam:

τ(v) =


τPre(v) if v ∈W i,Pre

Adam \W i
Adam,

τi(v) if v ∈W i
Adam,

τ ′(v) if v ∈W ′Adam.

Since we already know that Eve wins from V \WAdam, it remains to prove that τ is
winning from WAdam to conclude. Consider any play π consistent with τ and starting
in WAdam. Two cases are possible. First, the play eventually reaches W i

Adam and Adam
switches to τi: then prefix independence of the mean payoff guarantees that Adam
wins. Second, the play never reaches W i

Adam: then π necessarily stays in A ′, and τ ′ is
winning from W ′Adam in A ′. Therefore, τ does win from everywhere in WAdam, while
being memoryless, which ends the proof. �

We use the core reasoning of this proof to build an algorithm solving multidimen-
sional lim-sup mean payoff games (Algorithm 12.2). It uses as a black box a rou-
tine that computes (in pseudo-polynomial time) the winning vertices for Eve in one-
dimension mean payoff games. This subalgorithm, presented in Section 4.3, is here
dubbed SolveOneDimMeanPayoff, and takes as parameters the arena and the consid-
ered dimension.

Algorithm 12.2: Solver for multidimensional lim-sup mean payoff games
Data: Arena A with vertices V
Result: WEve, the winning region of Eve for MeanPayoff+

≥~0
A ′←A ; V ′←V
repeat

LosingVertices← false

for i = 1 to k do
W i

Adam←V ′ \SolveOneDimMeanPayoff(A ′, i)
if W i

Adam 6= /0 then
V ′←V ′ \W i

Adam
A ′←A ′[V ′] /* Restriction of A ′ to V ′ */
LosingVertices← true

until LosingVertices= false

return V ′

Intuitively, we iteratively remove vertices that are declared losing for Eve because
Adam can win on some dimension from them. Since removing vertices based on some
dimension i may decrease the power of Eve and her ability to win for another dimen-
sion i′, we need the outer loop: in the end, we ensure that V ′ contains exactly all the
vertices from which Eve has a winning strategy for each dimension. By Lemma 139
and the proof of Lemma 140, we know that this is equal to WEve.
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We recall (Section 1.7) that, given an arena A and a set of vertices X , A [X ] denotes
the subarena induced by X .

Remark 24. The restriction A ′[V ′] induces a proper subarena. Indeed, we have that
W i

Adam = AttrAdam(W i
Adam) since any vertex v from which Adam can force to reach

W i
Adam also belongs to W i

Adam by prefix independence of the mean payoff.

We wrap up with the following theorem.

Theorem 130. Solving multidimensional lim-sup mean payoff game is in NP∩ coNP.
Infinite-memory strategies are required for Eve and memoryless ones suffice for Adam.
Furthermore, the winning regions can be computed in pseudo-polynomial time, through
at most |V | · k calls to an algorithm solving one-dimension mean payoff games.

Proof. The correctness of Algorithm 12.2 follows from Lemma 139 and Lemma 140,
and its complexity is trivial to assess, using SolveOneDimMeanPayoff as a pseudo-
polynomial black-box. The memory bounds follow from Lemma 139, Lemma 140
and Theorem 127. Hence, only the NP∩ coNP membership remains. Recall that the
decision problem under study is: given an arena A and an initial vertex v0, does v0
belong to WEve or not?

We first prove that the problem is in NP. A non-deterministic algorithm guesses
the winning region WEve containing v0 and witness memoryless strategies σi for all
dimensions (we know that memoryless strategies suffice by Corollary 6). Then, it
checks for every dimension i, for every vertex v ∈WEve, that σi is winning. This boils
down to solving a polynomial number of one-player one-dimension mean payoff games
for Adam over the arenas Aσi obtained by fixing σi.2 As noted in Section 4.3, it can be
done in polynomial time using Karp’s algorithm for finding the minimum cycle mean
in a weighted digraph [Kar78]. By Lemma 139, we know that if the verification checks
out, Eve has a winning strategy in WEve for objective MeanPayoff+

≥~0
.

Finally, we prove coNP membership. The algorithm guesses a memoryless winning
strategy τ for Adam (from v0). The verification then consists in checking that Eve has
no winning strategy in the arena Aτ . This can be done using Algorithm 12.2, through
|V | · k calls to SolveOneDimMeanPayoff. In this case however, such calls only need
to solve one-player one-dimension mean payoff games for Eve, which again can be
done in polynomial time, resorting to Karp’s algorithm. Thus, the verification takes
polynomial time in total, and coNP membership follows. �

Lim-inf variant
For the sake of conciseness, we give only a brief sketch. Without loss of generality, we
fix the objective MeanPayoff−

≥~0
. We know that infinite-memory strategies are needed

for Eve by Theorem 127. Again, things look better for Adam.

Lemma 141. Memoryless strategies suffice for Adam in multidimensional lim-inf mean
payoff games.

2The arena Aσ induced by applying a strategy σ on arena A can be obtained through the product
A ×M , with M the memory structure of σ , as presented in Section 1.6.
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Sketch. We mention the sketch as it is interesting in its own right. Recall that Chap-
ter 4 presented a general recipe, due to Gimbert and Zielonka [GZ04, GZ05], to prove
memoryless determinacy. Clearly, such a recipe cannot work here due to Theorem 127.
Still, a similar result by Kopczyński deals with half-positional determinacy [Kop06].
This new recipe states that if the objective of Eve is both prefix independent and convex,
then memoryless strategies suffice for Adam. We already know that MeanPayoff−

≥~0
is

prefix independent. An objective is said to be convex if it is closed under combinations
(shuffling): if two infinite sequences of colours π = ρ1ρ2 . . . and π ′ = ρ ′1ρ ′2 . . . , with all
ρi, ρ ′i being finite prefixes, belong to the objective, then π ′′ = ρ1ρ ′1ρ2ρ ′2 . . . does too.
Conjunctions of lim-inf mean payoff are convex, hence the result applies here. Note
that this approach corresponds to the one presented in Theorem 16: submixing objec-
tives are also called concave, and Eve’s objective being convex implies that Adam’s
objective is concave; hence the reasoning above. �

Remark 25. Lim-sup mean payoff objectives are not convex, hence the ad-hoc proof
in Lemma 140. Consider the integer sequence π = (2)50

(−4)51
(2)52

(−4)53
. . . where

the length of the i-th sequence of numbers is 5i−1. One can prove that at the end of
each sequence of 2’s (resp. −4’s), the mean is above (and tends to) 1 (resp. is ex-
actly −3). Let π ′ be the sequence obtained by swapping all 2’s and −4’s. We have
MeanPayoff+(π) = MeanPayoff+(π ′)≥ 1, hence π,π ′ ∈ MeanPayoff+≥0.

Still, by shuffling π and π ′ in one-one alternation, we build π ′′ = 2,−4,2,−4 . . . ,
which is such that MeanPayoff+(π ′′) = −1, hence π ′′ 6∈ MeanPayoff+≥0. Hence lim-
sup mean payoff is not convex.

Complexity-wise, multidimensional lim-inf mean payoff games look a lot like mul-
tidimensional energy games, even though we proved they are not equivalent without
memory restrictions.

Theorem 131. Solving multidimensional lim-inf mean payoff games is coNP-complete.
Infinite-memory strategies are required for Eve and memoryless ones suffice for Adam.

We discussed memory through Example 17 and Lemma 141. The coNP-hardness
can be shown through a reduction from 3UNSAT similar to the one used for existen-
tial initial credit multidimensional energy games in Section 11.5. The matching upper
bound relies on memoryless strategies being sufficient for Adam, and the capacity to
solve one-player instances of multidimensional lim-inf mean payoff games in poly-
nomial time. The latter problem is addressed by reduction to detecting non-negative
multi-cycles in graphs (which can be done in polynomial time based on [KS88]).

Wrap-up
We have seen that multidimensional mean payoff games and multidimensional energy
games behave relatively well. Sure, infinite memory is needed for Eve in general for
the former, but complexity-wise, the gap with one-dimension games is small and even
non-existent for the lim-sup variant. Furthermore, if we are interested in finite-memory
strategies, the equivalence with energy games is preserved. Hence, we may say that
both mean payoff and energy games hold up nicely in the multidimensional world.
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12.3 Total payoff and shortest path
In this section, we turn to two other objectives deeply studied in Chapter 4: we study
total payoff and shortest path games. We will see that the multidimensional setting has
dire consequences for both.

12.3.1 Total payoff vs. mean payoff
We start with total payoff games. As for the mean payoff, we explicitly consider the two
variants, TotalPayoff+ and TotalPayoff−, for the lim-sup and lim-inf definitions
respectively. While Chapter 4 was written using the lim-sup variant, all results are
identical for the lim-inf one in one-dimension games [GS09a].

Recall that one-dimension total payoff games are memoryless determined and solv-
ing them is in NP∩ coNP (even in UP∩ coUP [GS09a]). Furthermore, Chapter 4 taught
us that total payoff can be seen as a refinement of mean payoff, as it permits to reason
about low (using the lim-inf variant) and high (using the lim-sup one) points of partial
sums along a play when the mean payoff is zero. We formalize this relationship in the
next lemma, and study what happens in multiple dimensions.

Lemma 142. Fix an arena A and an initial vertex v0 ∈ V . Let A, B, C and D denote
the following assertions.

A. Eve has a winning strategy for MeanPayoff+
≥~0

.

B. Eve has a winning strategy for MeanPayoff−
≥~0

.

C. There exists~x ∈Qk such that Eve has a winning strategy for TotalPayoff−≥~x.

D. There exists~x ∈Qk such that Eve has a winning strategy for TotalPayoff+≥~x.

In one-dimension games (k = 1), all four assertions are equivalent. In multidimen-
sional ones (k > 1), the only implications that hold are: C =⇒ D =⇒ A and C =⇒
B =⇒ A. All other implications are false in general.

Lemma 142 is depicted in Figure 12.2: the only implications that carry over to
multiple dimensions are depicted by solid arrows.

A : ∃σA |= MeanPayoff+
≥~0

D : ∃~x ∈Qk, ∃σD |= TotalPayoff+≥~x

B : ∃σB |= MeanPayoff−
≥~0

C : ∃~x ∈Qk, ∃σC |= TotalPayoff−≥~x

Figure 12.2: Equivalence between mean payoff and total payoff games. Dashed impli-
cations are only valid in one-dimension games. We use σ |= Ω as a shortcut for ‘σ is
winning from v0 for Ω’.
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Proof. The implications that remain true in multiple dimensions are the trivial ones.
First, satisfaction of the lim-inf version of a given objective clearly implies satisfaction
of its lim-sup version by definition. Hence, B =⇒ A and C =⇒ D. Second, consider a
play π ∈ TotalPayoff−≥~x (resp. TotalPayoff+≥~x) for some~x ∈Qk. For all dimension
i ∈ {1, . . . ,k}, the corresponding sequence of mean payoff infima (resp. suprema) over
prefixes can be lower-bounded by a sequence of elements of the form ~xi

` with ` the
length of the prefix. We can do this because the sequence of total payoffs over prefixes
is a sequence of integers: it always achieves the value of its limit ~xi instead of only
tending to it asymptotically as could a sequence of rationals (such as the mean pay-
offs). Since ~xi

` tends to zero over an infinite play, we do have that π ∈ MeanPayoff−
≥~0

(resp. MeanPayoff+
≥~0

). Thus, C =⇒ B and D =⇒ A. Along with the transitive closure
C =⇒ A, these are all the implications preserved in multidimensional games.

In one-dimension games, all assertions are equivalent. As seen before, lim-inf and
lim-sup mean payoff games coincide as memoryless strategies suffice for both players.
Thus, we add A =⇒ B and D =⇒ B by transitivity. Second, consider a memoryless
(w.l.o.g.) strategy σB for Eve for MeanPayoff−

≥~0
. Let π be any consistent play. Then

all cycles in π are non-negative, otherwise Eve cannot ensure winning with σB (because
Adam could pump the negative cycle). Thus, the sum of weights along π is at all times
bounded from below by −(|V | − 1) ·W (for the longest acyclic prefix), with W the
largest absolute weight, as usual. Therefore, we have B =⇒ C, and we obtain all other
implications by transitive closure.

For multidimensional games, all dashed implications are false.

1. To show that implication D =⇒ B does not hold, consider the Eve-owned one-
player game where V = {v} and the only edges are two self loops of weights
(1,−2) and (−2,1). Clearly, any finite vector ~x ∈ Q2 for TotalPayoff+≥~x can
be achieved by an infinite-memory strategy consisting in playing both loops suc-
cessively for longer and longer periods, each time switching after getting back
above threshold~x in the considered dimension. However, it is impossible to build
any strategy, even with infinite memory, that satisfies MeanPayoff−

≥~0
as the lim-

inf mean payoff would be at best a linear combination of the two cycle values,
i.e., strictly less than zero in at least one dimension in any case.

2. Lastly, consider the game in Figure 12.1 where we modify the weights to add a
third dimension with value 0 on the self loops and −1 on the other edges. As
already proved, the strategy that plays for ` steps in the left cycle, then goes for
` steps in the right one, then repeats for `′ > ` and so on, is a winning strategy
for MeanPayoff−

≥~0
. Nevertheless, for any strategy of Eve, the play is such that

either (i) it only switches between v0 and v1 a finite number of times, in which
case the sum in dimension 1 or 2 decreases to infinity from some point on; or
(ii) it switches infinitely often and the sum in dimension 3 decreases to infinity.
In both cases, objective TotalPayoff+≥~x is not satisfied for any vector ~x ∈ Q3.
Hence, B =⇒ D is falsified.

We only need to consider these two cases: all other dashed implications are false as
they would otherwise contradict the last two cases by transitivity. �
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We see that the relationship between mean payoff and total payoff games breaks
in multiple dimensions. Nonetheless, one may still hope for good properties for the
latter, as one-dimension total payoff games are in NP∩ coNP (Section 4.6). This hope,
however, will not last long.

12.3.2 Undecidability
In contrast to mean payoff games, total payoff ones become undecidable in multiple
dimensions.

Theorem 132. Total payoff games are undecidable in any dimension k ≥ 5.

Proof. We use a reduction from two-dimensional robot games [NPR16], which were
mentioned in Chapter 11. They are a restricted case of configuration reachability vector
games, recently proved to be already undecidable. Using the formalism of Chapter 11,
they are expressible as follows: V = (L = {`0, `1},A,LEve = {`0},LAdam = {`1})
and A ⊆ L × [−M,M]2 ×L for some M ∈ N. The game starts in configuration
`0(x0,y0) for some x0,y0 ∈ Z and the goal of Eve is to reach configuration `0(0,0):
solving such a game is undecidable.

The reduction is as follows. Given a robot game V , we build a five-dimension
total payoff game G such that Eve wins in G if and only if she wins in V . Let
G = (A ,TotalPayoff+

≥~0
) (we will discuss the lim-inf case later), where arena A

has vertices V =VEve]VAdam with VEve = {vinit,v0,vstop} and VAdam = {v1}, and E is
built as follows:

• if (`i,(a,b), ` j) ∈ A, then (vi,(a,−a,b,−b,0),v j) ∈ E,

• (v0,(0,0,0,0,1),vstop) ∈ E and (vstop,(0,0,0,0,0),vstop) ∈ E,

• (vinit,(x0,−x0,y0,−y0,−1),v0) ∈ E (where (x0,y0) is the initial credit in V ).

The initial vertex is vinit. Intuitively, dimensions 1 and 2 (resp. 3 and 4) encode the
value of the first counter (resp. second counter) and its opposite at all times. The initial
credit is encoded thanks to the initial edge, then the game is played as in the vector
game, with the exception that Eve may branch from v0 to the absorbing vertex vstop,
which has a zero self loop. The role of the last dimension is to force Eve to branch
eventually (if she aims to win).

We proceed to prove the correctness of the reduction. First, let σG be a winning
strategy of Eve in G . We claim that Eve can also win in V . Any play π consistent with
σG necessarily ends in vstop: otherwise its lim-sup total payoff on the last dimension
would be −1 (as the sum always stays at −1). Due to the branching edge and the
self loop having weight zero in all first four dimensions, we also have that the current
sum on these dimensions must be non-negative when branching, otherwise the total
payoff objective would be falsified. By construction of A , the only way to achieve
this is to have a sum exactly equal to zero in all first four dimensions (as dimensions
1 and 2 are opposite at all times and so are 3 and 4). Finally, observe that obtaining
a partial sum of (0,0,0,0,−1) in v0 is equivalent to reaching configuration `0(0,0)
in V . Hence, we can easily build a strategy σV in V that mimics σG in order to win
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the robot game. This strategy σV could in general use arbitrary memory (since we
start with an arbitrary winning strategy σG ) while formally robot games as defined
in [NPR16] only allow strategies to look at the current configuration. Still, from σV ,
one can easily build a corresponding strategy that meets this restriction (V being a
configuration reachability game, there is no reason to choose different actions in two
visits of the same configuration). Hence, if Eve wins in G , she also wins in V .

For the other direction, from a winning strategy σV in V , we can similarly define a
strategy σG that mimics it in G to reach v0 with partial sum (0,0,0,0,−1), and at that
point, branches to vstop. Such a strategy ensures reaching the absorbing vertex with a
total payoff of zero in all dimensions, hence is winning in G .

Thus, the reduction holds for lim-sup total payoff. Observe that the exact same rea-
soning holds for the lim-inf variant. Indeed, the last dimension is always −1 outside
of vstop, hence any play not entering vstop also has its lim-inf below zero in this di-
mension. Furthermore, once vstop is entered, the sum in all dimensions stays constant,
hence the limit exists and both variants coincide. �

An almost identical reduction can be used for shortest path games.

Theorem 133. Shortest path games are undecidable in any dimension k ≥ 4.

Remark 26. For the sake of consistency, we use the convention established in Sec-
tion 4.5: the shortest path payoff takes the opposite of the sum of weights along a path
and Eve aims to maximise it (which is equivalent to minimising this sum in the natural
interpretation of the shortest path objective). Hence, paths not reaching the target are
assigned payoff −∞.

Proof. The proof is almost identical to the last one. We use objective ShortestPath≥~0
with target edge (vstop,(0,0,0,0),vstop) and drop the last dimension in arena A : it is
now unnecessary as the shortest path objective by definition will force Eve to branch
to vstop, as otherwise the value of the play would be −∞ in all dimensions. The rest of
the reasoning is the same as before. �

Remark 27. The decidability of total payoff games with k ∈ {2,3,4} dimensions and
shortest path games with k ∈ {2,3} dimensions remains an open question. Further-
more, our undecidability results crucially rely on weights being in Z: they do not hold
when we restrict weights to N.

Memory

Let us go back to the game used in Item 1 in the proof of Lemma 142: we have seen
that for any threshold~x ∈ Q2, Eve has an infinite-memory strategy that is winning for
TotalPayoff+≥~x. In other words, she can ensure an arbitrarily high total payoff with
infinite memory. Yet, it is easy to check that there exists no finite-memory strategy
of Eve that can achieve a finite threshold vector in the very same game: alternating
would still be needed, but the negative amount to compensate grows boundlessly with
each alternation, thus no amount of finite memory can ensure to go above the threshold
infinitely often. This simple game highlights a huge gap between finite and infinite
memory: with finite memory, the total payoff on at least one dimension is −∞; with
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infinite memory, the total payoff in both dimensions may be as high as Eve wants. This
further highlights the untameable behaviour of multidimensional total payoff games.

Wrap-up

Multiple dimensions are a curse for total payoff and shortest path games as both be-
come undecidable. This is in stark contrast to mean payoff and energy games, which
remain tractable, as seen in Section 12.2. The bottom line is that most of the equiva-
lences, relationships, and well-known behaviours of one-dimension games simply fall
apart when lifting them to multiple dimensions.

12.4 Beyond worst-case synthesis
We now turn to a completely different meaning of multi-objective. Let us take a few
steps back. Throughout this book, we have studied two types of interaction between
players: rational, antagonistic interaction between Eve and Adam; and stochastic inter-
action with a random player. Consider the quantitative settings of Chapter 4 and Chap-
ter 5. In the zero-sum two-player games of the former, Adam is seen as a purely
antagonistic adversary, so the goal of Eve is to ensure strict worst-case guarantees,
i.e., a minimal performance level against all possible strategies of Adam. In the MDPs
of the latter, Eve interacts with randomness (through actions or random vertices) and
she wants to ensure a good expected value for the considered payoff.

For most objectives, these two paradigms yield elegant and simple solutions: e.g.,
memoryless strategies suffice for both games and MDPs with a mean payoff objective.
Nevertheless, the corresponding strategies have clear weaknesses: strategies that are
good for the worst-case may exhibit suboptimal behaviours in probable situations while
strategies that are good for the expected value may be terrible in some unlikely but
possible situations. A natural question, of theoretical and practical interest, is to build
— synthesize — strategies that combine both paradigms: strategies that both ensure
(a) some worst-case threshold no matter how the adversary behaves (i.e., against any
arbitrary strategy) and (b) a good expectation against the expected behaviour of the
adversary (given as a stochastic model). We call this task beyond worst-case synthesis.

The goal of this section is to illustrate the complexity of beyond worst-case synthe-
sis and how it requires fine-tuned interaction between the worst-case and average-case
aspects. To that end, we focus on a specific case: the synthesis of finite-memory strate-
gies for beyond worst-case mean payoff objectives. Due to the highly technical nature
of this approach, we will not present all its details, but rather paint in broad strokes
its cornerstones. We hope to give the reader sufficient intuition and understanding to
develop a clear view of the challenges arising from rich behavioural models, and some
of the techniques that come to the rescue.

12.4.1 The decision problem
Our goal is to mix the games of Chapter 4 and the MDPs of Chapter 5, so we need to
go back and forth between these models.
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Two-player game. As before, we start with an arena A = (G = (V,E),VEve,VAdam),
where the vertices are split between Eve’s and Adam’s. This arena represents the antag-
onistic interaction between Eve and Adam, so we consider a worst-case constraint on
the corresponding game. We study a single mean payoff function, so our colouring is
c : E→ Z. Let α ∈Q be the worst-case threshold: we are looking for a strategy of Eve
that is winning for objective MeanPayoff−>α . Two things to note: first, we consider the
lim-inf variant w.l.o.g. as we focus on finite-memory strategies (recall Proposition 11);
second, we use a strict inequality as it will ease the formulation of the upcoming results.

Markov decision process. To make the connection with MDPs, we fix a finite-
memory randomised strategy for Adam in the arena A , τst. Recall that a randomised
strategy is a function Paths(G)→D(E), where D(E) denotes the set of all probability
distributions over E. As usual, we may build Aτst , the product of the arena A with the
memory structure of τst, restricted to the choices made by τst. Since τst is assumed to
be stochastic, what we obtain is not a one-player game for Eve, but an MDP.

To understand this relationship, it is easier to consider the alternative — and equiv-
alent — formalism of MDPs, based on random vertices (as used for stochastic games
in Chapter 6). Assume for instance that τst is a randomised memoryless strategy, i.e.,
a function VAdam→D(E). Then, the MDP Aτst is immediately obtained by replacing
each Adam’s vertex v by a random vertex such that δ (v) = τst(v), i.e., the probabilistic
transition function uses the same probability distributions as Adam’s strategy. For-
mally, we build the MDP P = Aτst = (G,VEve,VRand =VAdam,δ = τst).

In contrast to Chapter 6, we explicitly allow the transition function to assign prob-
ability zero to some edges of the underlying graph G, i.e., the support of δ (v) in some
vertex v∈VRand might not include all edges e∈ E such that In(e) = v. This is important
as far as modelling is concerned, as in our context, transition functions will be defined
according to a stochastic model for Adam, and we cannot reasonably assume that such a
model always involves all the possible actions of Adam. Consequently, given the MDP
P , we define the subset of edges Eδ = {e ∈ E | In(e) ∈VRand =⇒ δ (In(e))(e)> 0},
representing all edges that either start in a vertex of Eve, or are chosen with non-
zero probability by the transition function δ . Edges in E \ Eδ will only matter in
the two-player game interpretation, whereas all MDP-related concepts, such as end-
components, are defined with regard to edges in Eδ exclusively.

Beyond worst-case problem. Let us sum up the situation: we have a two-player
arena A with a mean payoff objective MeanPayoff−>α and a finite-memory stochas-
tic model for Adam yielding the MDP Aτst . Now, let β ∈ Q be the expected value
threshold we want to ensure in the MDP (i.e., on average against the stochastic model
of Adam).

Problem 19 (Beyond worst-case mean payoff problem).
INPUT: An arena A , a finite-memory stochastic model τst, an initial vertex v0, two

thresholds α,β ∈Q

OUTPUT: Does Eve have a finite-memory strategy σ such that σ is winning for objec-
tive MeanPayoff−>α from v0 in A and Eσ

A
τst ,v0

[MeanPayoff−]> β?
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We assume β > α , otherwise the problem trivially reduces to the classical worst-
case analysis: if all plays consistent with σ have mean payoff greater than α ≥ β then
the expected value is also greater than α — and thus greater than β — regardless of
the stochastic model.

12.4.2 The approach in a nutshell
We present our solution to the beyond worst-case (BWC) problem in Algorithm 12.3.
We give an intuitive sketch of its functioning in the following, and illustrate it on a toy
example.

Inputs and outputs
The algorithm takes as input: an arena A in and its (integer) colouring cin, a finite-
memory stochastic model of Adam τ in, a worst-case threshold α in, an expected value
threshold β in, and an initial vertex vin0 . Its output is YES if and only if there exists a
finite-memory strategy of Eve satisfying the BWC problem.

The output as described in Algorithm 12.3 is Boolean: the algorithm answers
whether a satisfying strategy exists or not, but does not explicitly construct it (to avoid
tedious formalization within the pseudocode). Nevertheless, we sketch the synthesis
process in the following and we highlight the role of each step of the algorithm in
the construction of a winning strategy, as producing a witness winning strategy is a
straightforward by-product of the process we apply to decide satisfaction of the BWC
problem.

Preprocessing
The first part of the algorithm is dedicated to the preprocessing of the arena A in and the
stochastic model τ in given as inputs in order to apply the second part of the algorithm
on a modified arena A and stochastic model τst, simpler to manipulate. We show in
the following that the answer to the BWC problem on the modified arena is YES if and
only if it is also YES on the input arena, and we present how a winning strategy of Eve
in A can be transferred to a winning strategy in A in.

The preprocessing is composed of four main steps. First, we modify the colouring
function cin in order to consider the equivalent BWC problem with thresholds (0, β )
instead of (α in, β in). This classical trick is used to get rid of explicitly considering the
worst-case threshold in the following, as it is equal to zero.

Second, observe that any strategy that is winning for the BWC problem must also
be winning for the classical worst-case problem, as solved in the two-player games
of Chapter 4. Such a strategy cannot allow visits of any vertex from which Eve can-
not ensure winning against an antagonistic adversary because mean payoff is a pre-
fix independent objective (hence it is not possible to ‘win’ it over the finite prefix up
to such a vertex). Thus, we reduce our study to A w, the subarena induced by Eve’s
worst-case winning vertices — which we compute in pseudo-polynomial time thanks to
SolveWorstCaseMeanPayoff(A in,cp) (implementing the algorithm of Section 4.3).
Note that we use the modified colouring and that A w is a proper arena (same argument
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Algorithm 12.3: Solver for the beyond worst-case mean payoff problem

Data: Arena A in = (Gin = (V in,E in),V in
Eve,V

in
Adam), colouring cin : E in→ Z,

finite-memory stochastic model τ in for Adam with memory structure
M and initial memory state m0, worst-case and expected value
thresholds α in = a/b,β in ∈Q, α in < β in, initial vertex vin0 ∈V in

Result: YES if and only if Eve has a finite-memory strategy σ for the BWC
problem from vin0 for thresholds pair (α in,β in)

/* Preprocessing */

if α in 6= 0 then
Modify the colouring: ∀e ∈ E in, cp(e)← b · cin(e)−a
Consider the new thresholds pair (0,β ← b ·β in−a)

else
cp← cin

Vwc← SolveWorstCaseMeanPayoff(A in,cp)
if vin0 6∈Vwc then

return NO

else
A w←A in[Vwc] /* Restriction of A in to Vwc */
Let A ←A w×M = (G = (V,E),VEve,VAdam) be the arena obtained by
product with the memory structure of Adam’s stochastic model τ in

Let v0← (vin0 ,m0) be the corresponding initial vertex in A
Let c be the transcription of cp in A such that e = (v,m)→ (v′,m′) has
colour c(e) = c iff v c−→ v′ in A w according to cp

Let τst be the memoryless transcription of τ in on A
Let P ←Aτst = (G,VEve,VRand =VAdam,δ = τst) be the corresponding
MDP /* Random vertices formalism */

/* Main algorithm */
Compute Uw the set of maximal winning end components of P
Modify the colouring:

∀e ∈ E, c′(e)←

{
c(e) if ∃U ∈Uw s.t. {In(e),Out(e)} ⊆U
0 otherwise

Compute the maximal expected value β ∗ from v0 in P using c′

if β ∗ > β then
return YES

else
return NO

as Remark 24). Obviously, if from the initial vertex vin0 , Eve cannot win the worst-case
problem, then the answer to the BWC problem is NO.

Third, we build arena A , the product of A w and the memory structure of Adam’s
stochastic model τ in. Intuitively, we expand the initial arena by integrating the memory
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elements in the graph. Note that this does not modify the power of Adam in the two-
player interpretation of the arena.

Fourth, the finite-memory stochastic model τ in on A in clearly translates to a mem-
oryless stochastic model τst on A . This will help us obtain elegant proofs for the
second part of the algorithm.
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Figure 12.3: Beyond worst-case mean payoff problem: U2 and U3 are maximal winning
end components, U1 is losing.

Example 19. In order to illustrate several notions and strategies, we will consider the
arena depicted in Figure 12.3 throughout our presentation. The stochastic model of
Adam is memoryless and is described by the probabilities written close to the start of
outgoing edges. The colouring (weights) is written besides them.

We consider the BWC problem with the worst-case threshold α = 0. Observe that
this arena satisfies the assumptions guaranteed at the end of the preprocessing part of
the algorithm. That is, the worst-case threshold is zero, a worst-case winning strat-
egy of Eve exists in all vertices (e.g., the memoryless strategy choosing edges (v1,v9),
(v3,v5), (v6,v9), (v9,v10) and (v10,v9) in their respective starting vertices), and the
stochastic model is memoryless, as explained above.

Analysis of end components
The second part hence operates on an arena A such that from all vertices, Eve has
a strategy to achieve a strictly positive mean payoff value (recall that α = 0). We
consider the MDP P = Aτst and notice that the underlying graphs of A and P are
the same thanks to τst being memoryless. The following steps rely on the analysis of
end components (ECs) in the MDP, i.e., strongly connected subgraphs in which Eve
can ensure to stay when playing against Adam’s stochastic model (Definition 14).
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The motivation to the analysis of ECs is the following. It is well-known that under
any arbitrary strategy σ of Eve in P , the probability that vertices visited infinitely
often along a play constitute an EC is one (Lemma 69). Recall that the mean payoff
is prefix independent, therefore the value of any play only depends on those colours
that are seen infinitely often. Hence, the expected mean payoff Eσ

P,v0
[MeanPayoff−]

depends uniquely on the value obtained in the ECs. Inside an EC, we can compute the
maximal expected value that can be achieved by Eve, and this value is the same in all
vertices of the EC, as established in Theorem 63.

Consequently, in order to satisfy the expected value requirement, an acceptable
strategy for the BWC problem has to favor reaching ECs with a sufficient expectation,
but under the constraint that it should also ensure satisfaction of the worst-case require-
ment. As we show in the following, this constraint implies that some ECs with high
expected values may still need to be avoided because they do not permit to guarantee
the worst-case requirement. This is the cornerstone of the classification of ECs that
follows.

Classification of end components
Let E ⊆ 2V denote the set of all ECs in P . Notice that by definition, only edges in Eδ ,
as defined earlier, are involved to determine which sets of vertices form an EC in P .
As such, for any EC U ∈ E , there may exist edges from E \Eδ starting in U , such that
Adam can force leaving U when using an arbitrary strategy in A . Still these edges
will never be used by the stochastic model τst. This remark will be important to the
definition of strategies of Eve that guarantee the worst-case requirement, as Eve needs
to be able to react to the hypothetical use of such an edge. We will see that it is also the
case inside an EC.

Now, we want to consider the ECs in which Eve can ensure that the worst-case
requirement will be fulfilled (i.e., without having to leave the EC): we call them win-
ning ECs (WECs). The others will need to be eventually avoided, hence will have zero
impact on the expectation of a finite-memory strategy satisfying the BWC problem.
So we call the latter losing ECs (LECs). The subtlety of this classification is that it
involves considering the ECs both in the MDP P , and in the arena A .

Formally, let U ∈ E be an EC. It is winning if, in the subarena induced by U , from
all vertices, Eve has a strategy to ensure a strictly positive mean payoff against any
strategy of Adam that only chooses edges which are assigned non-zero probability by
τst, or equivalently, edges in Eδ . This can be interpreted as looking at arena Aδ , which
is the restriction of A to edges in Eδ .

We denote W ⊆ E the set of such ECs. Non-winning ECs are losing: in those,
whatever the strategy of Eve played against the stochastic model τst (or any strategy
with the same support), there exists at least one play for which the mean payoff is not
strictly positive (even if its probability is zero, its mere existence is not acceptable for
the worst-case requirement).

Example 20. Note that an EC is winning if Eve has a worst-case winning strategy from
all vertices. This point is important as it may well be the case that winning strategies
exist in a strict subset of vertices of the EC. This does not contradict the definition of
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Figure 12.4: End component U2 is losing. The set of maximal winning end components
is Uw = W = {U1,U3}.

ECs as strongly connected subgraphs, as the latter only guarantees that every vertex
can be reached with probability one, and not necessarily surely. Hence one cannot call
upon the prefix independence of the mean payoff to extend the existence of a winning
strategy to all vertices.

Such a situation can be observed on the arena of Figure 12.4, where the EC U2
is losing (because from v1, the play (v1v3v4)

ω can be forced by Adam, yielding mean
payoff −1/3 ≤ 0), while its sub-EC U3 is winning. From v1, Eve can ensure to reach
U3 almost-surely, but not surely, which is critical in this case.

Maximal winning end components
Based on these definitions, observe that Algorithm 12.3 does not actually compute the
set W containing all WECs, but rather the set Uw ⊆ W , defined as Uw = {U ∈ W |
∀U ′ ∈W ,U ⊆U ′ =⇒ U =U ′}, i.e., the set of maximal WECs (MWECs).

The intuition on why we can restrict our study to this subset is as follows. If an EC
U1 ∈ W is included in another EC U2 ∈ W , i.e., U1 ⊆U2, we have that the maximal
expected value achievable in U2 is at least equal to the one achievable in U1. Indeed,
Eve can reach U1 with probability one (by virtue of U2 being an EC and U1 ⊆ U2)
and stay in it forever with probability one (by virtue of U1 being an EC): hence the
expectation of such a strategy would be equal to what can be obtained in U1 thanks to
the prefix independence of the mean payoff. This property implies that it is sufficient
to consider MWECs in our computations.

As for why we do it, observe that the complexity gain is critical. The number of
WECs can be as large as |W | ≤ |E | ≤ 2|V |, that is, exponential in the size of the input.
Yet, the number of MWECs is bounded by |Uw| ≤ |V | as they are disjoint by definition:
for any two WECs with a non-empty intersection, their union also constitutes an EC,
and is still winning because Eve can essentially stick to the EC of her choice.

The computation of the set Uw is executed by a recursive subalgorithm calling
polynomially-many times an oracle solving the worst-case problem (e.g., following the
pseudo-polynomial-time algorithm of Section 4.3). Roughly sketched, this algorithm
computes the maximal EC decomposition of an MDP (in polynomial time by Theo-
rem 66), then checks for each EC U in the decomposition (their number is polynomial)
if U is winning or not, which requires a call to an oracle solving the worst-case thresh-
old problem on the corresponding subgame. If U is losing, it may still be the case that
a sub-EC U ′ ( U is winning. Therefore we recurse on the MDP reduced to U , where
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vertices from which Adam can win in U have been removed (they are a no-go for Eve).
Hence the stack of calls is also at most polynomial.

Lemma 143. The set Uw of MWECs can be computed in pseudo-polynomial time, and
deciding if a set of vertices U ⊆V belongs to Uw is in NP∩ coNP.

The complexity follows from Theorem 39 and PNP∩coNP = NP∩ coNP [Bra79].

Example 21. Consider the running example in Figure 12.3. Note that vertices v1, v2
and v5 do not belong to any EC: given any strategy of Eve in P , with probability one,
any consistent play will only visit these vertices a finite number of times (Lemma 69).
The set of MWECs is Uw = {U2,U3}. Obviously, these ECs are disjoint. The set of
WECs is larger, W = Uw∪{{v9,v10},{v6,v7}}.

End component U1 is losing: in the subarena Aδ [U1], Adam’s strategy consisting
in always picking the −1 edge guarantees a negative mean payoff. Note that this edge
is present in Eδ as it is assigned probability 1/2 by the stochastic model τst. Here,
we witness why it is important to base our definition of WECs on Aδ rather than A .
Indeed, in A [U2], it is also possible for Adam to guarantee a negative mean payoff
by always choosing edges with weight −1. However, to achieve this, Adam has to
pick edges that are not in Eδ : this will never happen against the stochastic model and
as such, this can be watched by Eve to see if Adam uses an arbitrary antagonistic
strategy, and dealt with. If Adam conforms to Eδ , i.e., if he plays in Aδ , he has to
pick the edge of weight 1 in v7 and Eve has a worst-case winning strategy consisting in
always choosing to go in v7. This EC is thus classified as winning. Note that for U3, in
both subarenas A [U3] and Aδ [U3], Eve can guarantee a strictly positive mean payoff
by playing (v9 v10)

ω : even arbitrary strategies of Adam cannot endanger Eve in this
case.

Lastly, consider the arena depicted in Figure 12.4. While U2 is a strict superset of
U3, the former is losing whereas the latter is winning, as explained above. Hence, the
set Uw is equal to {U1,U3}.

Ensure reaching winning end components
As discussed, under any arbitrary strategy of Eve, vertices visited infinitely often form
an EC with probability one (Lemma 69). Now, if we take a finite-memory strategy that
satisfies the BWC problem, we can refine this result and state that they form a winning
EC with probability one. Equivalently, let Inf(π) denote the set of vertices visited
infinitely often along a play π: we have that the probability that a play π is such that
Inf(π) = U for some U ∈ E \W is zero. The equality is crucial. It may be the case,
with non-zero probability, that Inf(π) = U ′ ( U , for some U ′ ∈ W , and U ∈ E \W
(hence the recursive algorithm to compute Uw). It is clear that Eve should not visit all
the vertices of a LEC forever, as then she would not be able to guarantee the worst-case
threshold inside the corresponding subarena.3

Lemma 144. For any initial vertex v0 and finite-memory strategy σ that satisfies the
BWC problem, it holds that Pσ

P,v0
[{π | Inf(π) ∈W }] = 1.

3This is no longer true if Eve may use infinite memory: there may still be some incentive to stay in a
LEC. But this goes beyond the scope of our overview.



422 CHAPTER 12. GAMES WITH MULTIPLE OBJECTIVES

We denote Vneg = V \
⋃

U∈Uw
U the set of vertices that, with probability one, are

only seen a finite number of times when a (finite-memory) BWC satisfying strategy is
played, and call them negligible vertices.

Our ultimate goal here is to modify the colouring of P from c to c′, such that a
classical optimal strategy for the expected value problem (Theorem 70) using this new
colouring c′ will naturally avoid LECs and prescribe which WECs are the most interest-
ing to reach for a BWC strategy on the initial arena A and MDP P with colouring c.
For the sake of readability, let us simply use P and P ′ to refer to MDP P with
respective colourings c and c′.

Observe that the expected value obtained in P by any BWC satisfying strategy
of Eve only depends on the weights of edges involved in WECs, or equivalently, in
MWECs (as the set of plays that are not eventually trapped in them has measure zero).
Consequently, we define colouring c′ as follows: we keep the weights unchanged in
edges that belong to some U ∈ Uw, and we put them to zero everywhere else, i.e.,
on any edge involving a negligible vertex. Weight zero is taken because it is lower
than the expectation granted by WECs, which is strictly greater than zero by definition
(as α = 0).

Example 22. Consider U1 in Figure 12.3. This EC is losing as argued before. The opti-
mal expectation achievable in P[U1] by Eve is 4: this is higher than what is achievable
in both U2 and U3. Note that there exists no WEC included in U1. By Chapter 5, we
know that, from v1, any strategy of Eve will see its expectation bounded by the maximum
between the optimal expectations of the ECs U1, U2 and U3. Our previous arguments
further refine this bound by restricting it to the maximum between the expectations of
U2 and U3. Indeed, Eve cannot benefit from the expected value of U1 while using finite
memory, as being trapped in U1 induces the existence of plays losing for the worst-case
constraint. Hence there is no point in playing inside U1 and Eve may as well cross it
directly and try to maximise its expectation using the WECs, U2 and U3. The set of
negligible vertices in P is Vneg = V \ (U2 ∪U3) = {v1,v2,v3,v4,v5}. We depict P ′

in Figure 12.5.
In the arena depicted in Figure 12.4, we already observed that E = {U1,U2,U3}

and W = Uw = {U1,U3}. Consider the negligible vertex v1 ∈Vneg =U2 \U3. A finite-
memory strategy of Eve may only take the edge (v1,v3) finitely often in order to ensure
the worst-case requirement. If Eve were to play this edge repeatedly, the losing play
(v1v3v4)

ω would exist (while of probability zero). Therefore, Eve can only ensure that
U3 is reached with a probability arbitrarily close to one, and not equal to one, because
at some point, she has to switch to edge (v1,v2) (after a bounded time since Eve uses a
finite-memory strategy).

Reach the highest valued winning end components
We compute the maximal expected mean payoff β ∗ that can be achieved by Eve in P ′,
from v0. This computation takes polynomial time and memoryless strategies suffice
to achieve the maximal value, as established in Theorem 70. As seen before, such a
strategy reaches an EC of P ′ with probability one. Basically, we build a strategy that
favours reaching ECs with high associated expectations in P ′.
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Figure 12.5: Putting all weights outside MWECs to zero naturally drives the optimal
expectation strategy in P ′, depicted by the thick edges, toward the highest valued
MWECs. ECs are annotated with their corresponding optimal expectations in the orig-
inal MDP P and the modified MDP P ′.

We argue that the ECs reached with probability one by this strategy are necessarily
WECs in P . Clearly, if a WEC is reachable instead of a losing one, it will be favoured
because of the weights definition in P ′ (expectation is strictly higher in WECs). Thus
it remains to check if the set of WECs is reachable with probability one from any vertex
in V . That is the case because of the preprocessing: we know that all vertices are
winning for the worst-case requirement. Clearly, from any vertex in A = V \

⋃
U∈E U ,

Eve cannot ensure to stay in A (otherwise it would form an EC) and thus must be
able to win the worst-case requirement from reached ECs. Now for any vertex in
B =

⋃
U∈E U \

⋃
U∈Uw

U , i.e., vertices in LECs and not in any winning sub-EC, Eve
cannot win the worst-case by staying in B, by definition of LEC. Since we know Eve
can ensure the worst-case by hypothesis, it is clear that she must be able to reach
C =

⋃
U∈Uw

U from any vertex in B, as claimed.

Inside winning end components

Based on that, we know that WECs of P will be reached with probability one when
maximizing the expected value in P ′. Let us first consider what we can say about such
ECs if we assume that Eδ = E, i.e., if the stochastic model τst maps all possible edges
to non-zero probabilities. We establish a finite-memory combined strategy σ cmb of Eve
that ensures (i) worst-case satisfaction while yielding (ii) an expected value ε-close to
the maximal expectation inside the EC.

For two well-chosen parameters K,L ∈ N, it is informally defined as follows: in
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phase (a), play a memoryless expected value optimal strategy σ e for K steps and mem-
orise Sum∈Z, the sum of weights along these steps; in phase (b), if Sum> 0, go to (a),
otherwise play a memoryless worst-case optimal strategy σwc for L steps, then go to
(a). In (a), Eve tries to increase her expectation and approach the optimal one, while
in (b), she compensates, if needed, losses that occurred in (a).

The two memoryless strategies exist on the subarena induced by the EC: by defi-
nition of ECs, based on Eδ , the stochastic model of Adam will never be able to force
leaving the EC against the combined strategy.

A key result to our approach is the existence of values for K and L such that (i) and
(ii) are verified. We see plays as sequences of periods, each starting with phase (a).

First, for any K, it is possible to define L(K) such that any period composed of
phases (a)+(b) ensures a mean payoff at least 1/(K+L)> 0. Periods containing only
phase (a) trivially induce a mean payoff at least 1/K as they are not followed by phase
(b). Both rely on the weights being integers. As the length of any period is bounded
by (K +L), the inequality remains strict for the mean payoff of any play, granting (i).

Now, consider parameter K. Clearly, when K→ ∞, the expectation over phase (a)
tends to the optimal one. Nevertheless, phases (b) also contribute to the overall expec-
tation of the combined strategy, and (in general) lower it so that it is strictly less than
the optimal for any K,L ∈N. Hence to prove (ii), we not only need that the probability
of playing phase (b) decreases when K increases, but also that it decreases faster than
the increase of L, needed to ensure (i), so that overall, the contribution of phases (b)
tends to zero when K → ∞. This is indeed the case and is proved using (rather tech-
nical) results bounding the probability of observing a mean payoff significantly (more
than some ε) different than the optimal expectation along a phase (a) of length K ∈N:
this probability decreases exponentially when K increases, while L only needs to be
polynomial in K.

Theorem 134. Let U ∈ W be a WEC, τst be such that Eδ = E, v0 ∈U be the initial
vertex, and let β ∗ ∈ Q be the maximal expected value achievable by Eve in EC U.
Then, for all ε > 0, there exists a finite-memory strategy of Eve that satisfies the BWC
problem for the thresholds pair (0, β ∗− ε).

Example 23. Consider the subarena Aδ [U3] =A [U3] from Figure 12.3 and the initial
vertex v10. Clearly, the worst-case requirement can be satisfied, that is why the EC is
classified as winning. Always choosing to go to v9 when in v10 is an optimal memory-
less worst-case strategy σwc that guarantees a mean payoff α∗ = 1. Its expectation is
Eσwc

(A [U3])τst ,v10
[MeanPayoff−] = 1. On the other hand, the strategy σ e that always se-

lects the edge going to v11 is optimal regarding the expected value criterion: it induces
expectation β ∗ =

(
0+
(
1/2 ·9+1/2 · (−1)

))
/2 = 2 against the stochastic model τst.

However, it can only guarantee a mean payoff of value −1/2 in the worst-case.
By the reasoning above, we know that it is possible to find finite-memory strate-

gies satisfying the BWC problem for any thresholds pair (0, 2− ε), ε > 0. In par-
ticular, consider the thresholds pair (0, 3/2). We build a combined strategy σ cmb

as sketched before. Let K = L = 2: the strategy plays the edge (v10,v11) once, then
if the edge of value 9 has been chosen by Adam, it chooses (v10,v11) again; other-
wise it chooses the edge (v10,v9) once and then resumes choosing (v10,v11). This
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strategy satisfies the BWC problem. In the worst-case, Adam always chooses the −1
edge, but each time he does so, the −1 is followed by two +1 thanks to the cycle
v10v9v10. Strategy σ cmb hence guarantees a mean payoff equal to (0−1+1+1)/4 =
1/4 > 0 in the worst-case. For the expected value requirement, we can build the in-
duced Markov chain (A [U3])σcmb,τst (Figure 12.6) and check that its expectation is

Eσcmb

(A [U3])τst ,v10
[MeanPayoff−] = 5/3 > 3/2 (Chapter 4).

v10
Sum> 0

v11

v10
Sum≤ 0

v9

1
2

1
2

0

−1

1

1

9

Figure 12.6: Markov chain induced by the combined strategy σ cmb and the stochastic
model τst over the WEC U3 of A .

Remark 28. Memoryless strategies do not suffice for the BWC problem, even with
randomisation. Indeed, the edge (v10,v11) cannot be assigned a non-zero probability
as it would endanger the worst-case requirement (since the play (v10v11)

ω cycling on
the edge of weight −1 would exist and have a negative mean payoff). Hence, the only
acceptable memoryless strategy is σwc, which has only an expectation of 1.

Now, consider what happens if Eδ ( E. Then, if Adam uses an arbitrary strategy,
he can take edges of probability zero, i.e., in E \Eδ , either staying in the EC, or leav-
ing it. In both cases, this must be taken into account in order to satisfy the worst-case
constraint as it may involve dangerous weights (recall that zero-probability edges are
not considered when an EC is classified as winning or not). Fortunately, if this were
to occur, Eve could switch to a worst-case winning memoryless strategy σ sec, which
exists in all vertices thanks to the preprocessing, to preserve the worst-case require-
ment. Regarding the expected value, this has no impact as it occurs with probability
zero against τst. The strategy to follow in WECs hence adds this reaction procedure to
the combined strategy: we call it the witness-and-secure strategy σwns.

Theorem 135. Let U ∈W be a WEC, v0 ∈U be the initial vertex, and β ∗ ∈Q be the
maximal expected value achievable by Eve in EC U. Then, for all ε > 0, there exists
a finite-memory strategy of Eve that satisfies the BWC problem for the thresholds pair
(0, β ∗− ε).

Example 24. Consider the WEC U2 in Figure 12.3 and the initial vertex v6 ∈U2. Eve
can ensure a strictly positive mean payoff in the subarena Aδ [U2], but not in A [U2].
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Indeed, it is easy to see that by always choosing the −1 edges (which requires an edge
(v7,v6) ∈ E \Eδ ), Adam can ensure a negative mean payoff whatever the strategy of
Eve. However, there exists a strategy that ensures the worst-case constraint, i.e., that
yields a strictly positive mean payoff against any strategy of Adam, by leaving the
EC. Let σ sec be the memoryless strategy that takes the edge (v6,v9) and then cycle on
(v10v9)

ω forever: it guarantees a mean payoff of 1 > 0.
For a moment, consider the EC U2 in Aδ . Graphically, it means that the −1 edge

from v7 to v6 disappears. In the subarena Aδ [U2], there are two particular memoryless
strategies. The optimal worst-case strategy σwc guarantees a mean payoff of 1/2 > 0
by choosing to go to v7. The optimal expectation strategy σ e yields an expected mean
payoff of 3 by choosing to go to v8 (naturally this strategy yields the same expectation
whether we consider edges in Eδ or in E). Based on them, we build the combined
strategy σ cmb of Eve as defined earlier and by Theorem 134, for any ε > 0, there are
values of K and L such that it satisfies the BWC problem for thresholds (0, 3− ε) in
Aδ [U2]. For instance, for K = L = 2, we have Eσcmb

(A [U2])τst ,v6
[MeanPayoff−] = 13/6.

We construct the witness-and-secure strategy σwns based on σ cmb and σ sec as
described above. In this case, that means playing as σ cmb until the −1 edge from
v7 to v6 is taken by Adam. This strategy ensures a worst-case mean payoff equal to
1 > 0 thanks to σ sec and yields expectation Eσwns

(A [U2])τst ,v6
[MeanPayoff−] = 13/6 for

K = L = 2.
Finally, notice that securing the mean payoff by switching to σ sec is needed to

satisfy the worst-case requirement if Adam plays in E \Eδ . Also, observe that it is
still necessary to alternate according to σ cmb in Aδ [U2] and that playing σ e is not
sufficient to ensure the worst-case (because Eve has to deal with the −1 edge from v8
to v6 that remains in Eδ ).

Global strategy synthesis
In summary, (a) LECs should be avoided and will be by a strategy that optimises the
expectation on the MDP P ′; (b) in WECs, Eve can obtain (ε-closely) the expectation
of the EC and ensure the worst-case threshold.

Hence, we finally compare the value β ∗ computed by Algorithm 12.3 with the
expected value threshold β : (i) if it is strictly higher, we conclude that there exists a
finite-memory strategy satisfying the BWC problem, and (ii) if it is not, we conclude
that there does not exist such a strategy.

To prove (i), we establish a finite-memory strategy in A , called global strategy
σglb, of Eve that ensures a strictly positive mean payoff against an antagonistic adver-
sary, and ensures an expected mean payoff ε-close to β ∗ (hence, strictly greater than β )
against the stochastic adversary modeled by τst (i.e., in P). The intuition is as follows.
We play the memoryless optimal strategy of P ′ for a sufficiently long time, defined by
a parameter N ∈ N, in order to be with probability close to one in a WEC (the conver-
gence is exponential by results on absorption times in Markov chains). Then, if we are
inside a WEC, we switch to the corresponding witness-and-secure strategy (there is a
different one for each MWEC) which, as sketched in the previous paragraph, ensures
the worst-case and the expectation thresholds. If we are not yet in a WEC, then we
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switch to a worst-case winning strategy, which always exists thanks to the preprocess-
ing. Thus the mean payoff of plays that do not reach WECs is strictly positive. Since
in WECs we are ε-close to the maximal expected value of the EC, we can conclude
that it is possible to play the optimal expectation strategy of P ′ for sufficiently long to
obtain an overall expected value which is arbitrarily close to β ∗, and still guarantee the
worst-case threshold in all consistent plays.

To prove (ii), it suffices to understand that only ECs have an impact on the ex-
pectation, and that LECs cannot be used forever without endangering the worst-case
requirement.

Note that given a winning strategy on A , it is possible to build a corresponding
winning strategy on A in by reintegrating the memory states of τ in in the memory
structure of the winning strategy of Eve. Hence Algorithm 12.3 is correct and complete.

Theorem 136. If Algorithm 12.3 answers YES, then there exist values of the param-
eters such that the pure finite-memory global strategy σglb satisfies the BWC mean
payoff problem. In the opposite case, there exists no finite-memory strategy that satis-
fies the BWC mean payoff problem.

Example 25. Consider the arena in Figure 12.3 and the associated MDP P . Follow-
ing Chapter 5, analysis of the maximal ECs U1, U2 and U3 reveals that the maximal
expected mean payoff achievable in P is 4. It is for instance obtained by the memory-
less strategy that chooses to go to v2 from v1 and to v4 from v3. Observe that playing
in U1 forever is needed to achieve this expectation. By Lemma 144, this should not
be allowed as the worst-case cannot be ensured if it is. Indeed, Adam can produce
worst-case losing plays by playing the −1 edge. Clearly, the maximal expected value
that Eve can ensure while guaranteeing the worst-case requirement is thus bounded by
the maximal expectation in P ′, i.e., by 3, as depicted in Figure 12.5. Let σ e denote an
optimal memoryless expectation strategy in P ′ that tries to enter U2 by playing (v1,v2)
and (v3,v5), and then plays edge (v6,v8) forever (thick edges in Figure 12.5).

Observe that Algorithm 12.3 answers YES for any thresholds pair (0, β ) such that
β < 3. For the sake of illustration, we construct the global strategy σglb as presented
earlier, with N = 6 and K = L = 2. For the first six steps, it behaves exactly as σ e. Note
that after the six steps, the probability of being in U2 is 1/4+ 1/8 = 3/8. Then, σglb

switches to another strategy depending on the current vertex (σwns or σwc) and sticks
to this strategy forever. In particular, if the current vertex belongs to U2, it switches
to σwns for K = L = 2, which guarantees the worst-case threshold and induces an
expectation of 13/6. By definition of σglb, if the current vertex after six steps is not in
U2, then σglb switches to σwc which guarantees a mean payoff of 1 by reaching vertex
v9 and then playing (v9v10)

ω . Overall, the expected mean payoff of σglb against τst is

Eσglb

A
τst ,v1

[MeanPayoff−]≥ 3
8
· 13

6
+

5
8
·1 =

23
16

.

Notice that by taking N, K and L large enough, it is possible to satisfy the BWC problem
for any β < 3 with the strategy σglb. Also, observe that the WEC U2 is crucial to
achieve expectations strictly greater than 2, which is the upper bound when limited to
EC U3. For instance, N = 25 and K = L = 2 implies an expectation strictly greater
than 2 for the global strategy.
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Lastly, note that in general, the maximal expectation achievable in P ′ (and thus in
P when limited to strategies that respect the worst-case requirement) may depend on
a combination of ECs instead of a unique one. This is transparent through the solving
of the expected value problem in the MDP P ′.

Complexity bounds

The input size of the algorithm depends on the size of the arena, the size of the mem-
ory structure for the stochastic model, and the encodings of probabilities, weights and
thresholds. We can prove that all computing steps require (deterministic) polynomial
time except for calls to an algorithm solving the worst-case threshold problem, which
is in NP∩coNP and not known to be in P (Theorem 39). Hence, the overall complexity
of the BWC problem is in NP∩coNP (using PNP∩coNP = NP∩coNP [Bra79]) and may
collapse to P if the worst-case problem were to be proved in P.

The BWC problem is at least as difficult as the worst-case problem thanks to a
trivial polynomial-time reduction from the latter to the former. Thus, membership to
NP∩ coNP can be seen as optimal regarding our current knowledge of mean payoff
games.

Theorem 137. The BWC mean payoff problem is in NP∩ coNP and at least as hard as
solving mean payoff games. Moreover, pseudo-polynomial-memory strategies may be
necessary for Eve and are always sufficient.

The memory bounds follow from the (involved) probability results used to deter-
mine the values of parameters K, L and N in the aforementioned strategies: such pa-
rameters need to be polynomial in the size of the arena but also in the probabilities,
weights and thresholds.

Thanks to the pseudo-polynomial-time algorithm of Section 4.3 for mean payoff
games, we obtain the following corollary.

Corollary 23 (Beyond worst-case for mean payoff games). Algorithm 12.3 solves the
BWC mean payoff problem in pseudo-polynomial time.

Wrap-up

As witnessed by our long overview, solving the beyond worst-case problem requires
much more involved techniques than solving the two individual problems, worst-case
and expected value, separately. Complexity-wise, it is fortunate that the problem stays
in NP∩ coNP, and is no more complex that simple mean payoff games. The multi-
objective nature of the problem still incurs a cost with regard to strategies: whereas
memoryless strategies suffice both in mean payoff games and mean payoff MDPs, we
here need pseudo-polynomial memory. Finally, note that Eve does not need to use
randomness: pure strategies still suffice.
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12.5 Percentile queries
We close this chapter by a quick detour to multidimensional MDPs. When considering
single-dimension MDPs with payoffs, as in Chapter 5, there are two different (yet
both natural) settings that arise depending on how one decides to aggregate play values
through the probability measure. Let P be an MDP, v an initial vertex, and f the payoff
function. In the first setting, Eve’s goal is to optimise the expected value of the payoff
function, that is, to find a strategy σ that maximises Eσ

P,v[ f ]. In the second setting, we
set a performance threshold to achieve for the payoff function, say α ∈ Q, essentially
creating the qualitative objective f≥α , and Eve aims to maximise the probability to
achieve this objective, i.e., she is looking for a strategy σ that maximises Pσ

P,v[ f≥α ].
The concept of percentile query extends the latter problem to multidimensional payoffs.

From now on, assume we have an MDP P with a multidimensional colouring
function c : E → Zk. Whether P uses actions as in Chapter 5 or random vertices as
in Chapter 6 does not matter for our discussion — both are equivalent modulo slight
modifications of the MDP. Recall that we denote by fi, 1≤ i≤ k, the projection of f to
its i-th component.

Problem 20 (Percentile query problem).
INPUT: An MDP P , an initial vertex v0, a payoff function f , q≥ 1 the number of per-

centile constraints in the query, q dimensions li ∈ {1, . . . ,k}, q value thresholds
αi ∈Q, q probability thresholds µi ∈Q∩ [0,1].

OUTPUT: Does Eve have a strategy σ such that σ is winning for the conjunction of q
constraints, called percentile query,

Q =
q∧

i=1

Pσ

P,v0
[ fli ≥ αi]≥ µi?

As usual, we also want to synthesize such a strategy σ if one exists. Note that
this percentile query framework permits to express rich properties, as each of the q
constraint can use a different dimension, value threshold and probability threshold. It
is also possible to have different constraints related to the same dimension, for example
to enforce different value thresholds for different quantiles.

The percentile query problem has been studied for a variety of payoff functions.
Our aim here is not to give an exhaustive account of the corresponding results and
techniques, but to highlight some new phenomena that arise in this setting, in compar-
ison to what we have seen up to now.

12.5.1 An additional leap in complexity
The expressiveness of percentile queries asks for richer classes of strategies, even in
very simple MDPs.

Example 26. Consider the single-player game depicted in Figure 12.7. Note that it is
an MDP (using only Dirac distributions). Consider the payoff function MeanPayoff−.
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v0

v1 v2

(0,0) (0,0)

(1,0) (0,1)

Figure 12.7: Randomised strategies are needed to achieve any percentile query of the
form Pσ

P,v0
[MeanPayoff−1 ≥ 1]≥ µ1∧Pσ

P,v0
[MeanPayoff−2 ≥ 1]≥ µ2 with µ1,µ2 > 0.

It is clear that due to its prefix independence, any play π ending in v1 (resp. v2) will
yield MeanPayoff−(π) = (1,0) (resp. (0,1)). Hence to achieve a percentile query

Q =
2∧

i=1

Pσ

P,v0
[MeanPayoff−i ≥ 1]≥ µi,

Eve must go toward vi with probability at least µi. If both probability thresholds are
non-zero, then this is only achievable by using randomness within Eve’s strategy.

Example 26 uses the mean payoff for the sake of consistency with the previous
sections, but observe that it can be emulated with virtually all objectives considered in
this book. In particular, using reachability with two target sets (corresponding to the
edges (1,0) and (0,1)) is sufficient.

While pure strategies were used in most chapters4 of this book, randomised strate-
gies have already been considered in specific settings, such as in Chapter 7, usually to
break some kind of symmetry and/or make one’s strategy hard to predict. In our setting
of percentile queries, we are still dealing with relatively simple models of games: we
consider turn-based, perfect information games. Yet, the need for randomness arises
from the expressiveness of our class of objectives, which in general require careful
balance between different stochastic options.

Example 27. Let us have another look at the MDP in Figure 12.7. Consider now
that the probability thresholds µ1 and µ2 in query Q are not fixed a priori. Instead,
we are interested in the set of vectors (µ1,µ2) that Eve can achieve. In particular, we
want to determine the Pareto frontier5 and the corresponding Pareto-optimal strategies.
What is interesting here is that, in our simple example, there is already an infinite,
non-countable, number of Pareto vectors. Indeed, Eve can ensure any vector (µ1,µ2)
such that µ1,µ2 ≥ 0 and µ1 + µ2 = 1 by simply taking the edge leading to vi with
probability µi.

Although the Pareto frontier consists of an infinite number of points in Example 27,
it can be represented in a finite way, as it is essentially obtained through linear com-
binations of two extreme vectors: (1,0) and (0,1). Interestingly, these two vectors
correspond to what can be achieved with pure strategies, and their convex hull yields
the Pareto frontier. So, the Pareto frontier can be represented as a convex polytope
whose vertex representation is given by the vectors achievable by pure strategies. This

4Without loss of generality as they suffice in the respective contexts of these chapters.
5One can easily adapt Definition 30 to this context.
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Figure 12.8: When restricted to pure strategies, there are still infinitely many Pareto
vectors for the query Pσ

P,v0
[MeanPayoff−1 ≥ 1]≥ µ1∧Pσ

P,v0
[MeanPayoff−2 ≥ 1]≥ µ2.

For example, (1,0), (0,1), (1/2,1/2), (3/4,1/4), (1/4,3/4) . . .

is not merely an artefact resulting from the simplicity of our example; similar phenom-
ena occur in many settings mixing MDPs and multiple objectives.

While the continuous aspect of the Pareto frontier stems from the possibility to
use randomness in strategies, complex Pareto frontiers are also to be expected when
restricting Eve to pure strategies.

Example 28. Consider the MDP in Figure 12.8. It uses the random vertices formalism
as in Section 12.4. This MDP is a slight adaptation of the one in Figure 12.7, the crux
being that when Eve tries to go to vi now, she has to cross ri, which has probability 1/2
to send her back to v0. In the long run, it does not really matter, as Eve will almost-
surely end up in v1 or v2 (Chapter 5). And if Eve is allowed to use randomness, we
obtain the same Pareto frontier as in the previous example. Yet, these random vertices
serve a purpose.

When restricted to pure strategies, Eve cannot use the inherent randomness of her
strategy to achieve any given vector (µ1,µ2), as she could in Example 27. Nonetheless,
by using memory, Eve is still able to achieve infinitely many Pareto vectors. For exam-
ple, by first choosing to go to r1, then r2 (if the play comes back to v0), then r1 again
(and then every time the play goes back to v0), Eve will achieve vector (3/4,1/4).

It is relatively easy to see that infinitely many Pareto vectors can be generated
with memory and no randomness in Example 28; for example all vectors of the form
(1− p, p) where p = 1/2n for n ∈ N. Still, all such vectors could already be generated
via randomised memoryless strategies as sketched before.

In particular, all vectors achievable by using memory and no randomness are of
the form (µ1,µ2), with µ1,µ2 ≥ 0 and µ1 + µ2 = 1 — but not all such vectors can be
achieved that way! Hence, by restricting the use of randomness, we have effectively
created ‘gaps’ in the Pareto frontier, and rendered its description much more difficult.
In full generality, it is usually necessary to use both randomness and memory to satisfy
percentile queries.

Proposition 12. Pareto-optimal strategies for the percentile query problem may re-
quire randomness and memory (possibly infinite depending on the payoff function).
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12.5.2 Complexity overview
We close our discussion of percentile queries with an overview of their complexity
for various payoffs studied in Chapter 2, Chapter 4, and Chapter 5. We sum up the
situation in Table 12.1. Some of these results are quite technical to establish, so our
goal here is only to highlight interesting elements with respect to everything that has
been discussed in the previous chapters and in our own.

Single-constraint
Single-dim. Multi-dim.

Multi-constraint Multi-constraint

Reach P P(P)·E(Q), PSPACE-h —

f ∈F P P
P(P)·E(Q)
PSPACE-h.

MeanPayoff+ P P P

MeanPayoff− P P(P)·E(Q) P(P)·E(Q)

ShortestPath
P(P)·Pps(Q) P(P)·Pps(Q) (one target) P(P)·E(Q)
PSPACE-h. PSPACE-h. PSPACE-h.

ε-gap DiscountedPayoff
Pps(P,Q,ε) Pps(P,ε)·E(Q) Pps(P,ε)·E(Q)

NP-h. NP-h. PSPACE-h.

Table 12.1: Complexity of percentile query problems for various payoffs. Here
F = {Inf,Sup,LimInf,LimSup}. Parameters P and Q respectively represent the
size of the MDP, and the size of the query; P(x), E(x) and Pps(x) respectively denote
polynomial, exponential and pseudo-polynomial time in parameter x. For the shortest
path, only non-negative weights can be used, as otherwise the problem is undecidable.

Let us take a moment to appreciate Table 12.1. First, the payoffs present in the
left column have all been discussed before; the only oddity being the notion of ε-gap
attached to the discounted payoff. Its presence is merely technical: we do not know if
percentile queries using the discounted payoff can be solved exactly (and it is linked
to long-standing open questions), but a slight relaxation of the problem, called ε-gap
problem, can be solved. Intuitively, this relaxation consists in allowing an ε-wide
uncertainty area around the value thresholds (αi) of the query. Second, some of the
expressiveness of the queries is hidden in the table. For example, when using Reach or
ShortestPath, one may consider different target sets in each constraint. Similarly,
when using DiscountedPayoff, the discount factors may vary across constraints.
Finally, when meaningful, the complexity is broken down into two parts, representing
the relative dependency toward the size of the MDP, and the size of the query. The
interest of this approach is that, in general and for practical applications, the model size
is large whereas the query, encoding a specification, is comparatively much smaller.
With that in mind, the polynomial dependency in the size of the MDP for most cases
can be seen as good news.

Now, let us compare to what we know outside of percentile queries. Note that
single-constraint queries correspond to the probability threshold problems in MDPs,
studied in Chapter 5. We see that in most cases, the jump to multiple dimensions
induces an exponential blow-up (in the number of constraints). If we compare to
two-player (non-stochastic) games, as studied in Section 12.1, Section 12.2, and Sec-
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tion 12.3, we see that the undecidability of shortest path objectives holds up if we
replace the antagonistic player Adam by stochasticity. On the complexity side, the
situation varies from payoff to payoff with, again, an interesting lack of symmetry be-
tween the two variants of mean payoff, in stark contrast to the single-dimension case.

Bibliographic references
As discussed in the introduction, the literature on multi-objective models is too vast to
provide a full account here. We therefore limit ourselves to some directions particularly
relevant to our focus.

Multidimensional games. Our presentation of mean payoff games is inspired by
Velner et al. [VCD+15]. Brenguier and Raskin studied the Pareto frontiers of these
games in [BR15]. While we considered conjunctions of mean payoff objectives, Velner
proved that Boolean combinations lead to undecidability [Vel15].

Energy games were discussed — through the prism of vector games — in Chap-
ter 11. The link between energy games and mean payoff games under finite memory
was established in [VCD+15]. While triple-exponential bounds on memory for Eve’s
strategies could be derived from [BJK10], the first exponential upper bounds were
proved by Chatterjee et al. [CRR14], also encompassing conjunctions with parity ob-
jectives. These bounds have since been refined [JLS15] but remain exponential; indeed,
it is known that exponential memory is necessary for Eve [CRR14].

The undecidability of total payoff games was first established by Chatterjee et al.
in [CDRR15] via reduction from the halting problem for two-counter machines: we
provided here a new, simpler proof based on robot games [NPR16]. This undecidabil-
ity result, along with the complexity barriers of mean payoff and total payoff games,
motivated the introduction of (multidimensional) window objectives: conservative vari-
ants of mean payoff and total payoff objectives that benefit from increased tractability
and permit to reason about time bounds [CDRR15]. They have since been studied in
a variety of contexts: variants of parity objectives [BHR16a], Markov decision pro-
cesses [BDOR20], timed games [MRS21], etc.

The undecidability of shortest path games is formally new, but the result was al-
ready established for MDPs by Randour et al. in [RRS17]. Here, we use the aforemen-
tioned new approach based on robot games.

Consumption games were studied by Brázdil et al. [BCKN12]: they have the flavor
of energy games but are actually incomparable. In such games, only negative weights
are used, and gaining energy can only be done through particular ‘reload edges’ that
refill the energy up to a predefined capacity.

Parts of our presentation of multidimensional games are inspired by [Ran14].

Combinations of different objectives. We focused on multidimensional games ob-
tained by conjunction of identical objectives. Conjunctions of heterogeneous objec-
tives have been studied in numerous different contexts, including mean payoff parity
games [CHJ05, DJL18], energy parity games [CD12, CRR14], average-energy games
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with energy constraints [BMR+18, BHM+17], energy mean payoff games [BHRR19],
or Boolean combinations of simple quantitative objectives [BHR16b]. While similar-
ities often exist across these different settings, ad hoc techniques are still needed and
complexity results may vary greatly. Developing a general framework encompassing
large classes of multi-objective problems is still a vastly unexplored challenge. Some
progress has been achieved recently with a focus on strategy complexity; we discuss it
further below.

Beyond worst-case synthesis. Our presentation is mostly inspired by Bruyère et
al. in [BFRR17], which introduced the BWC synthesis problem, and where all techni-
cal details can be found. As noted in [BFRR17], allowing large inequalities in the BWC
problem may require infinite-memory strategies. The case of infinite-memory strate-
gies was studied in [CR15] along with multidimensional BWC mean payoff problems.

BWC problems were studied for other objectives, such as shortest path [BFRR17]
or parity [BRR17]; and on other related models (e.g., [BKN16, AKV16]). BWC prin-
ciples have been implemented in the tool UPPAAL [DJL+14]. Boolean combinations
of objectives akin to the BWC problem have been considered in MDPs [BGR20].

The BWC framework aims to provide strategies that exhibit high performance in
normal operating conditions while offering a high-level of resilience in extreme con-
ditions. A kindred — but softer — approach is the study of strategies in MDPs that
achieve a trade-off between the expectation and the variance over the outcomes, giving
a statistical measure of the stability of the performance. Brázdil et al. have considered
the mean payoff with this philosophy in [BCFK17].

Percentile queries. The framework of percentile queries was introduced by Randour
et al. in [RRS17], where they studied a variety of payoffs: all results mentioned in
this chapter are from [RRS17]. As mentioned in Section 12.5.2, the percentile query
problem was established to be undecidable for the shortest path payoff when both pos-
itive and negative weights are allowed. The theory of percentile queries can be seen
as a quantitative follow-up to the work of Etessami et al. on reachability objectives,
in [EKVY08].

Several other problems have been considered on multidimensional MDPs. For ex-
ample, in [BBC+14], Brázdil et al. study two different problems based on the mean
payoff. On the one hand, they consider the optimisation of the expected value vector.
On the other hand, they show how to optimise the probability that the payoff vector is
above a threshold vector. Observe that, in comparison to percentile queries, the latter
problem asks for a bound on the joint probability of the thresholds, that is, the proba-
bility of satisfying all constraints simultaneously. In contrast, percentile queries bound
the marginal probabilities separately, which may allow for more modeling flexibility.
Another complementary approach was considered by Haase and Kiefer in [HK15]:
whereas percentile queries allow for conjunctions between probability constraints on
simple value inequalities, they consider only one probability constraint but allow for
conjunctions of value constraints within this single probability constraint. Hence, both
frameworks are incomparable.
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Various frameworks mixing concepts from beyond worst-case synthesis and per-
centile queries have been developed in the recent years, both in exact, formal ap-
proaches (e.g., [BGMR18, CKK17]), and in reinforcement learning (e.g., [KPR18,
CENR18, BCNV20]). Comparisons between percentile queries, beyond worst-case
synthesis, and other rich behavioural models can be found in [RRS14, BCH+16].

Pareto frontiers. As hinted throughout this chapter, the first step in understanding
multi-objective settings is often to fix acceptable performance thresholds and to focus
on the corresponding decision problem, asking if there exists a strategy to ensure these
thresholds. Yet, to fully embrace the complexity of multi-objective frameworks, to be
able to visualise the interplay between different (qualitative and quantitative) aspects
and the corresponding trade-offs, we have to look at Pareto frontiers. This endeavour
is generally difficult and one requires specific techniques to provide efficient approxi-
mations of Pareto frontiers — due to their complexity, exact computation is often out
of reach.

We already mentioned [BR15], which deals with Pareto frontiers in multidimen-
sional mean payoff games. A seminal approach in the case of MDPs was developed
by Forejt et al. in [FKP12]. In a nutshell, it consists in obtaining successive approx-
imations of the Pareto frontier by solving many one-dimension problems. Each of
these is obtained by reinterpreting the original k-objective problem as a weighted sum
of each individual objective. Having the weight assignment vary yields different one-
dimension problems, but also permits to approximate the real Pareto frontier from a
different angle, as each weight assignment morally corresponds to looking in a dif-
ferent direction within the k-dimension space. The crux is then to explore this space
efficiently by a clever choice of weights at each iteration.

Complex strategies. The additional expressive power of multi-objective games and
MDPs comes at a cost in terms of algorithmic complexity, but also with regard to
the classes of strategies that are necessary to play (Pareto-)optimally. We have seen
various examples in this chapter were Eve had to resort to strategies with (finite or
infinite) memory and/or randomness. In a similar spirit to the characterisations of
memoryless-determined objectives discussed in the early chapters of this book, recent
research has striven to characterise the need for complex strategies in broad classes of
multi-objective settings.

Recently, there has been a lot of progress on understanding the power of finite-
memory strategies, both in games [BRO+22, BRV23] and in MDPs [BORV21]. An
overview by Bouyer et al. is given in [BRV22]. With a particular focus on multi-
objective games, Le Roux et al. studied general conditions under which finite-memory
determinacy can be maintained through combinations of finite-memory determined ob-
jectives [RPR18].

With regard to randomness — which we have seen to be necessary in the most
general multi-objective settings, it is interesting to see that not all forms of random-
ness were created equal: when considering finite-memory (Section 1.5) randomised
strategies, one can put randomness in different parts of the memory structure (initial
state, update function, and/or ‘next-action’ function that exploits the memory to take a
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decision), with differences in terms of resulting power [MR22]. This is in contrast to
the celebrated Kuhn’s theorem in classical game theory, which crucially relies on the
availability of infinite memory.

Finally, as complex strategies are often prohibitive in practical applications, it is
sometimes interesting to consider multi-objective problems where one looks for strate-
gies of limited complexity. That is, even if the problem requires complex strategies
for (Pareto-)optimality, one may be interested in how good simple strategies can be.
For example, [DKQR20] develops techniques to explore the Pareto frontier of multi-
objective MDPs under the constraint that only pure (i.e., without randomness) and
limited-memory strategies should be considered. As seen in Example 28, such con-
straints often break the nice structure of (unrestricted) Pareto frontiers, which renders
their exploration (and representation) more difficult.
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Chapter 13
Multiplayer Games
ROMAIN BRENGUIER, OCAN SANKUR

In two player games seen so far, players had objectives that are opposite to each other’s,
so we were able to define them giving only Eve’s objective. Adam was seen as a purely
adversarial player. Such games are called zero-sum games since, in a quantitative set-
ting, the sum of the payoffs of the two players would sum up to zero in any outcome.
However, the objectives of the players are not entirely conflicting in all games. In par-
ticular, in multiplayer games, that is, games with more than two players, the binary
view of zero-sum games does not make sense; but there are also interesting examples
of non-zero sum games with only two players (we will see one below). In this setting,
winning strategies are no longer suitable to describe rational behaviours since the op-
ponents should no longer be seen as purely adversarial. In fact, when the objectives
of the players are not opposite, some cooperation becomes possible. Then, rather than
assuming that opponents are purely adversarial, it is interesting to study the possible
outcomes when they are simply rational, that is, follow the best strategy for their own
objectives. The notion of equilibria we will study in this chapter aims at describing
such rational behaviours.

If one is expecting for sure some specific strategies to be played by the opponents,
then the most rational response is to choose the best response, that is, the strategy that
is optimal for the player against the given strategies of the other players. Thus, if we
assign strategies to players, and if the players are all aware of the strategies of the other
players, then each player will be willing to change their strategy if theirs does not turn
out to be a best response. Such a situation is seen as unstable and is undesirable in many
applications of game theory. Nash equilibrium is defined simply as a stable situation in
such a setting: a strategy profile in which the strategy of each player is a best response
to the rest of the strategies. Thus, no player has any incentive to change their strategy.

We will see the formal definition of a Nash equilibrium in the next section. Let us
first consider the following example.

The following Hawk-Dove game was first presented by the biologists Smith and
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Table 13.1: The Hawk-Dove game. Each column corresponds to a strategy of P1 and
each line to a strategy of P2.

Hawk Dove
Hawk 0 , 0 1 , 4
Dove 4 , 1 3 , 3

Price, and shown in Table 13.1. Here, two animals are fighting for resources and can
choose to either act as a hawk or as a dove. If both player choose hawk they will have
to fight for resources, and thus only get payoff 0. If only one chooses hawk, they get a
high payoff of 4, because they get all the valuable resources for themselves, while the
dove gets 1: they get plenty of resources but gets hunted. When they both choose dove,
they both get a payoff of 3: they have to share resources but do not get hunted.

When a player chooses hawk then the best payoff for the opponent is obtained by
choosing dove, so as to avoid fighting for resources. So, dove is the best response to
hawk. Reciprocally, the best response to dove is to play hawk. There are two ‘equi-
libria’: (Hawk, Dove) and (Dove, Hawk), where no player has an interest in changing
their strategy. Note that the highest payoff a player can ensure (against all adversary
strategies) is only 1.

Nash showed the existence of such equilibria in normal-form games1, which may
require randomized strategies. This result revolutionized the field of economics, where
it is used to analyze competitions between firms or government economic policies for
example. Game theory and the concept of Nash equilibrium are now applied to diverse
fields: in finance to analyse the evolution of market prices, in biology to understand
the evolution of some species, in political sciences to explain public choices made by
parties.

In this chapter, we will first study the computation of Nash equilibria in multiplayer
concurrent games with ω-regular objectives. The algorithms we present here differ
from those that were given for normal-form games since ours are infinite-duration with
omega-regular objectives. We will then present extensions of this notion such as secure
and robust equilibria. The second result we develop is the notion of admissibility: this
is a different approach to the study of rational behaviours and consists in eliminating
for each player irrational choices of strategies.

13.1 Nash Equilibria for games in normal form
The normal form games we consider differ from the matrix games of Chapter 7, in
that each player has their own payoff. So for instance, when player 1 chooses column
Hawk, and player 2 chooses row Dove, the payoff for player 1 is fP1(Hawk,Dove) = 4.

1normal-form games are also called matrix games, see Chapter 7.
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Table 13.2: A game of medium access.

Emit Wait
Emit -1, -1 2, 0
Wait 0 , 2 0, 0

Let us call a vector of strategies specifying a strategy for each player a strategy profile.
In normal-form games, each cell of the table ∆ corresponds to a strategy profile.

Definition 31. A Nash equilibrium is a stable strategy profile in which strategy is a
best response against the other strategies.

Thus a Nash equilibrium is a stable situation in the sense that no player has an
incentive in changing their strategy. Nash proved that when players are allowed to
randomise among all their strategies, there always exists a Nash equilibrium.

Theorem 138 (Existence of Nash equilibria). In every normal-form game with a fi-
nite number of players, each having a finite number of pure strategies, there exists a
randomised Nash equilibrium.

Note that not all games contain pure Nash equilibria. For example, in the rock-
paper-scissors game, the best response to rock is paper, to paper is scissors, and to
scissors is rock, so none of these pure strategies can be an equilibrium.

For finding a pure Nash equilibrium in a normal-form game, there is a simple poly-
nomial time algorithm. For each strategy profile, we look for each player whether they
have a better response than their current strategy. If no player has a better response, the
strategy profile is a Nash equilibrium, otherwise we move to the next one, and if none
satisfies the condition then there is no equilibrium.

Example 29 (Medium Access Control). Consider a medium access control problem,
where several users share access to a wireless channel. A communication over the
channel is successful if there are no collisions, that is, if a single user is transmitting
their message only. During each slot, each user chooses either to transmit or to idle.
Intuitively, the number of packets transmitted without collision decreases with the num-
ber of users emitting in the same slot. Furthermore each attempt at transmitting has a
cost. An example payoff for two players, is represented in Table Table 13.2.

We encourage the reader to find the Nash equilibria of the above game.
The game described above corresponds to a single slot of this system. In a practical

scenario, there would be a succession of slots and the payoff would be the sum of
payoffs over all slots. Normal-form games are thus not sufficient to represent games
with repetitions and to study the evolution of the behaviours as the game evolves.

One possibility to model repetition is to use games in extensive form which are
games played on finite trees. However such games only model a fixed number of
repetitions unlike infinite or arbitrary duration games as studied in this book. We thus
study, in the rest of this chapter, algorithms for games played on graphs.
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Figure 13.1: Example of a three-player concurrent arena. The symbol ∗ on edges can
be replaced by either a or b.

13.1.1 Definitions
Definition 32. A multiplayer arena A with k players is a tuple 〈V,A,∆,(cP)P∈P〉,
where:

• V is a finite set of vertices;

• P = {1,2, . . . ,k} is the set of players;

• A is a finite set of actions, a tuple (aP)P∈P containing one action aP for each
player A is called a move, thus Ak is the set of possible moves;

• ∆ : V ×Ak → V is the transition function which associates to a pair of vertices
and moves the resulting state;

• (cP)P∈P is a tuple of colouring functions with cP : V →C for each P ∈P .

Example 30. A simple three-player concurrent game is represented in Figure 13.1.
Vertices are v0, v1, v2, v3 and v4. Players are named P1, P2, P3. The set of actions
is A = {a,b}. The transition relation is given by the edges in the graph, for instance
∆(s0,(a,b,a)) is v1. In our figures, ∗ represents an arbitrary action. The colouring
function is represented below vertices as tuples ranging over players. For instance,
a vertex labelled by (1,1,0) assigns the first two players the colour 1, and the third
player the colour 0, In particular, cP1(v2) = 1, and cP3(v2) = 0.

A history of the multiplayer arena A is a finite sequence of states and moves ending
with a state, i.e. a word in (V ·AP)∗ ·V . Note that unlike for two player games we
include actions in the history, because knowing the source and target vertices does not
mean you know which player chose which actions.

For a history π , we write πi the i-th vertex of π , starting from 0, and movei(π)
its i-th move, thus π = π0 ·move0(π · π1 · · ·moven−1(π) · πn, and with this notation
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movei(π)P is the i-th action of player P in h. The length |π| of such a history is n+1.
We write last(π) the last vertex of h, i.e. π|π|−1. A play ρ is an infinite sequence of
vertices and moves, i.e. an element of (V ·AP)ω .

Definition 33 (Strategy and coalition). A strategy is a function which associates an
action to each history. We often write σA for a strategy of player P. A coalition C is a
set of players in P , and we write−C for the remaining players, that is−C = Agt \C .
Let C be a coalition, a strategy σC for C is a function which associates a strategy σP
to each player P∈C . Given a strategy σC , when it is clear from the context, we simply
write σP for σC (P).

Definition 34 (Outcomes). A history π is compatible with the strategy σC for coali-
tion C if, for all k < |π| − 1 and all P ∈ C , we have (movek(π))P = σP(π≤ k), and
∆(πk,movek(π)) = πk+1. A play ρ is compatible with the strategy σC if all its prefixes
are. We write OutA (v0,σC ) for the set of plays in A that are compatible with strategy
σC and have initial vertex v0. Let OutA (σC ) denote the union of OutA (v0,σC ) for
all v0, and OutA (v0) the union of all OutA (v0,σC ). The subscript A can be omitted
if it is clear from the context. These paths are called outcomes of σC from v0.

Note that when the coalition C is composed of all the players the outcome from a
given state is unique.

Example 31. Consider in the example of Figure 13.1, the following strategies:

• P1 always plays a, i.e. σP1(π) = a for all histories π;

• P2 plays a in v0 if it is the first state and then always plays b, i.e. σP2(v0) = a and
σP2(π) = b for all π 6= v0;

• P3 always plays b, i.e. σP3(π) = b.

The outcome from v0 in that case is

Out(v0,σ{P1,P2,P3}) = v0 · (a,a,b) · v2 · (a,b,b) · v4 · (a,b,b)·
(v0 · (a,b,b) · v1 · (a,b,b) · v3 · (a,b,b))ω

Definition 35 (Multiplayer game). A payoff function associates a real number to each
outcome. We will be mostly be interested in solving games with qualitative objectives,
that is payoffs that take values 0 and 1. A multiplayer game (A ,( fP)P∈P) is given by
a multiplayer arena A , an initial vertex v0 and payoff function fP for each player P.
When fP is qualitative we simply write ΩP for the corresponding objective.

13.1.2 The Nash equilibrium problem
In this section we will present an algorithm to compute Nash equilibria in multiplayer
games. The problem we are interested in is to decide the existence of a Nash equilib-
rium in which the objectives of a given set of players are satisfied.

Problem 21 (Existence of a constrained Nash equilibrium).
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INPUT: A multiplayer game (A ,( fP)P∈P), payoff bounds (bP)P∈ P , and an initial
vertex v0

OUTPUT: Does there exist a Nash equilibrium σP such that for all P ∈P , we have
fP(Out(v0,σP))≥ bP?

The algorithm is based on a reduction to zero-sum two-players games, which allows
us to use algorithms presented in the previous chapters of this book. More precisely,
we present the deviator game, which is a transformation of a concurrent multiplayer
game into a turn-based zero-sum game, such that there are strong links between equi-
libria in the former and winning strategies in the latter. The proofs of this section are
independent of the type of objectives we consider.

13.1.3 Deviators
A central notion we use is that of deviators. These are the players who have played
different moves from those prescribed in a given profile, thus causing a deviation from
the expected outcome. Formally, a deviator from move aP to a′P is a player D ∈P
such that aD 6= a′D . We denote the set of deviators by

Dev(aP ,a′P) = {D ∈P | aD 6= a′D}.

We extend the definition to pairs of histories and strategies by taking the union of
deviator sets of each step along the history. Formally,

Dev(π,σP) =
⋃

0≤i<|h|
Dev(movei(π),σP(π≤i)).

For an infinite play ρ , we define Dev(ρ,σP) =
⋃

i∈NDev(movei(ρ),σP(ρ≤i)). Intu-
itively, having chosen a strategy profile σP and observed a play ρ , deviators represent
the players that must have changed their strategies from σP in order to generate ρ .

Lemma 145. Given a play ρ , strategy profile σP , a coalition C contains Dev(ρ), if
and only if, there exists a strategy σ ′C such that Out(ρ1,σ−C ,σ

′
C ) = ρ .

Proof. Assume that coalition C contains Dev(ρ,σP). We define the strategy σC to
be such that for all i ∈ N, σC (ρ≤i) = (movei(ρ))C . By hypothesis, we have, for
all indices i, Dev(movei(ρ),σP(ρ≤i)) ⊆ C , so for all players A 6∈ C , σA(ρ≤i) =
(movei(ρ))A. Then ∆(ρi,σ

′
C (ρ≤i),σ−C (ρ≤i)) = ρi+1. Hence ρ is the outcome of the

profile (σ−C ,σ
′
C ).

For the other direction, let σP be a strategy profile, σ ′C a strategy for coalition
C , and ρ ∈ OutG(ρ0,σ−C ,σ

′
C ). For all indices i, movei(ρ) = (σ−C (ρ≤i),σ

′
C (ρ≤i)).

Therefore for all players A 6∈ C , (movei(ρ))A = σA(ρ≤i). Consequently, this implies
that Dev(movei(ρ),σP(ρ≤i))⊆ C . Hence Dev(ρ,σP)⊆ C . �

Example 32. In the example of Figure 13.1, we consider again the strategies, such that
for all histories π , σP1(π) = a, σP2(v0) = a and if π 6= v0, σP2(π) = b, and σP3(π) = b.
Then Dev(v0 · (a,a,b) · v2 · (a,a,b) · v1 · (a,b,a) · v2,σP) is the union of:
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• Dev(σP(v0),(a,a,b)) = Dev((a,a,b),(a,a,b)) =∅

• Dev(σP(v0 · (a,a,b) · v2),(a,a,b)) = Dev((a,b,b),(a,a,b)) = {P2}

• Dev(σP(v0 ·(a,a,b) ·v2 ·(a,a,b) ·v1),(a,b,a)) =Dev((a,b,b),(a,b,a)) = {P3}.

We obtain Dev(v0 · (a,a,b) · v2 · (a,a,b) · v1 · (a,b,a) · v2,σP) = {P2,P3}. This means
that both P2 and P3 need to change their strategies from σP to obtain the given history.

Note that Nash equilibria are defined only with respect to deviations by single play-
ers, that is, we require all players to achieve worse or equal payoffs than the prescribed
profile when they single-handedly change strategies. Thus, only the outcomes with
singleton deviator sets will be of interest for us in the next section where we present
the algorithm.

13.1.4 Deviator Game
We now present an algorithm to reduce multiplayer games to two-player games using
the notion of deviators we just defined. Given a game G = (A ,( fA)A∈P), we define
the deviator game, denoted DevGame(G ). Intuitively, in this game, Eve needs to play
according to an equilibrium, while Adam tries to find a profitable deviation for any
player. The vertices are V ′ = V × 2P , where the second component, a subset of P ,
records the deviators of the current history.

At each step, Eve chooses an action profile, and Adam chooses the move that will
apply. Adam can either respect Eve’s choice, or pick a different action profile in which
case the deviators will be added to the second component of the vertex. The game
begins in (v0,∅) and then proceeds as follows: from a vertex (v,D), Eve chooses an
action profile aP , and Adam chooses a possibly different one a′P . The next vertex is
(∆(v,a′P),D∪Dev(aP ,a′P)).

Example 33. An example of a partial construction of the deviator game for the exam-
ple of Figure 13.1, is given in Figure 13.2. We cannot represent the full construction
here, as there are 40 vertices.

We define projections projV and projDev from V ′ to V and from V ′ to 2P respec-
tively, as well as projA from ActP ×ActP to ActP which maps to the second compo-
nent of the product, that is, Adam’s action.

For a history or play ρ , define πOut(ρ) as the play ρ ′ for which, ρ ′i = projV (ρi)
and movei(ρ

′) = projA(movei(ρ)) for all i. This is thus the play induced by Adam’s
actions. Let us also denote Dev(ρ) = projDev(last(ρ)).

We can associate a strategy of Eve to each strategy profile σP such that she chooses
the moves prescribed by σP at each history of DevGame(G ). Formally, we write
κ(σP) for the strategy defined by κ(σP)(π) = σP(projOut(π)) for all histories π .

The following lemma states the correctness of the construction of the deviator game
DevGame(G ), in the sense that it records the set of deviators in the strategy profile
suggested by Adam with respect to the strategy profile suggested by Eve.

Lemma 146. Let G be a multiplayer game, v a vertex, σP a strategy profile, and
σ∃ = κ(σP) the associated strategy in the deviator game.
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v0,∅

v1,∅

v1,{P1}

v1,{P2}

v1,{P3}

v1,{P1,P2}

v1,{P1,P3}

v1,{P2, p3}

v1,{P1,P2,P3}

v2,∅

. . .

(a,b,a),(a,b,a)

(b,a,a),(b,a,a)
(a,a,a),(b,a,a)

(a,b,a),(b,a,b)
(a,a,a),(a,b,a)

(b,b,a),(b,a,a)
(a,b,a),(a,b,b)

(b,a,a),(b,a,b)
(a,b,a),(b,a,a)

(b,a,a),(a,b,a)
(a,a,a),(b,a,b)

(b,b,a),(a,b,b)
(a,a,a),(a,b,b)

(b,b,a),(b,a,b)
(a,b,a),(b,a,b)

(b,a,a),(a,b,b)
(a,a,a),(a,a,a)

(b,b,b),(b,b,b)

Figure 13.2: Example a deviator game construction.
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1. If ρ ∈ OutDevGame(G )((v, /0),σ∃), then Dev(projOut(ρ),σP) = Dev(ρ).

2. If ρ ∈ OutG(v) and for all index i, ρ ′i = (ρi,Dev(ρ≤i,σP)) and movei(ρ
′) =

(σP(ρ≤i),movei(ρ)), then ρ ′ ∈ OutDevGame(G )((v, /0),σ∃).

Proof. We prove that for all i, Dev(projOut(ρ≤i,σP) = projDev(ρ≤i), which implies
the property. The property holds for i = 0, since initially both sets are empty. Assume
now that it holds for i≥ 0. Then:

Dev(projOut(ρ≤i+1),σP)

= Dev(projOut(ρ≤i),σP)∪Dev(σP(projOut(ρ≤i)),projA(movei+1(ρ)))

(by definition of deviators)
= Dev(ρ≤i)∪Dev(σP(projOut(ρ≤i),projA(movei+1(ρ)))

(by induction hypothesis)
= Dev(ρ≤i)∪Dev(σ∃(ρ≤i),projA(movei+1(ρ)))

(by definition of σ∃ )
= Dev(ρ≤i)∪Dev(movei+1(ρ))

(by assumption ρ ∈ OutDevGame(G )((v, /0),σ∃))

= Dev(ρ≤i+1)

(by construction of DevGame(G ))

Which concludes the induction.
We now prove the second part. The property is shown by induction. It holds for v0.

Assume it is true up to index i > 0, then

∆
′(ρ ′i ,σ∃(ρ

′
≤i),movei(ρ))

= ∆
′((ρi,Dev(ρ≤i,σP)),σ∃(ρ

′
≤i),movei(ρ))

(by definition of ρ
′)

= ∆(ρi,movei(ρ)),Dev(ρ≤i,σP)∪Dev(σ∃(ρ ′≤i),ρi+1))

(by construction of ∆
′ )

= (ρi+1,Dev(ρ≤i,σP)∪Dev(σ∃(ρ ′≤i),ρi+1))

(since ρ is an outcome of the game)
= (ρi+1,Dev(ρ≤i,σP)∪Dev(σP(ρ≤i),ρi+1))

(by construction of σ∃)
= (ρi+1,Dev(ρ≤i+1,σP))

(by definition of deviators)
= ρ

′
i+1.

�
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The objective of Eve in the deviator game is defined so that winning strategies
correspond to equilibria of the original game. First, as an intermediary step, given
coalition C , player P and bound b, we will construct an objective stating that we can
ensure that the payoff of P will not exceed b even if players in C change their strategies.
Consider the following objective in DevGame(G ):

Ω(C ,P,b) = {ρ ∈ OutDevGame(G ) | Dev(ρ)⊆ C ⇒ fP(projOut(ρ))≤ b}.

Intuitively, this says that if only players in C deviated from the strategy suggested by
Eve, then the payoff of P is smaller than b. We now show that a strategy ensuring
bound b for the payoff of P against coalition C corresponds to a winning strategy for
Ω(C ,P,b) in the deviator game.

Lemma 147. Let C ⊆P be a coalition, σP be a strategy profile, b ∈ R a bound,
and P a player. For all strategies σ ′C , vertex v0, and coalition C , the following equiva-
lence holds: fP(OutDevGame(G )(v0,σ−C ,σ

′
C ))≤ b if, and only if, κ(σP) is winning in

DevGame(G ) for objective Ω(C ,P,b).

Proof. Let ρ be an outcome of σ∃ = κ(σP) ∈ DevGame(G ). By Lemma 146, we
have that Dev(ρ) = Dev(projV (ρ),σP). By Lemma 145, projV (ρ) is the outcome of
(σ−Dev(ρ),σ

′
Dev(ρ)) for some σ ′Dev(ρ). If Dev(ρ)⊆ C , then

fP(projV (ρ)) = fP(σ−C ,σC \Dev(ρ),σ
′
Dev(ρ)) = fP(σ−C ,σ

′′
C )

where σ ′′P = σ ′P if P ∈ Dev(ρ) and σP otherwise. By hypothesis, this payoff is smaller
than or equal to b. This holds for all outcomes ρ of σ∃, thus σ∃ is a winning strategy
for Ω(C ,P,b).

For the other direction, assume σ∃ = κ(σP) is a winning strategy in DevGame(G )
for Ω(C ,P,b). Let σ ′C be a strategy for C and ρ the outcome of (σ ′C ,σ−C ). By Lemma 145,
Dev(ρ,σP) ⊆ C . By Lemma 146, ρ ′ = (ρ j,Dev(ρ≤ j,σP)) j∈N is an outcome of
σ∃. We have that Dev(ρ ′) = Dev(ρ,σP) ⊆ C . Since σ∃ is winning, ρ is such that
fP(projV (ρ)) ≤ b. Since fP(projV (ρ ′)) = fP(ρ), this shows that for all strategies σ ′C ,
fP(σ−C ,σ

′
C )≤ b. �

Now, Eve can show that there is a Nash equilibrium in a given game by proving
that whenever there is a single deviator, the deviating player does not gain more than
without the deviation, while she does not have to prove anything on plays involving
several deviators.

Theorem 139. Let G = (A ,( fP)P∈P) be a game, σP a strategy profile in G , vertex v0,
and F =( fP(OutA (v0,σP)))P∈P the payoff profile of σP from v0. The strategy profile
σP is a Nash equilibrium if, and only if, strategy κ(σP) is winning in DevGame(A )
for the objective N(F) defined by:

N(F) = {ρ | |Dev(ρ)| 6= 1}∪
⋃

P∈P
{ρ | Dev(ρ) = {P}∧ fP(projOut(ρ))≤ FP}.

Proof. By Lemma 147, σP is a Nash equilibrium if, and only if, for each player P,
κ(σP) is winning for Ω({P},P,FP). So it is enough to show that for each player P,
κ(σP) is winning for Ω({P},P,FP) if, and only if, κ(σP) is winning for N(F).

Implication Let ρ be an outcome of κ(σP).
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• If |Dev(ρ)| 6= 1, then ρ is in N(F) by definition.

• If |Dev(ρ)|= 1, then for {P}=Dev(ρ), fP(projOut(ρ))≤ FP because κ(σP) is
winning for Ω(Dev(ρ),P,FP). Therefore ρ is in N(F).

This holds for all outcomes ρ of κ(σP) and shows that κ(σP) is winning for
N(F).

Reverse implication Assume that κ(σP) is winning for N(F). We now show that
κ(σP) is winning for Ω({P},P,FP) for each player P. Let ρ be an outcome of κ(σP),
we have ρ ∈ N(F). We show that ρ belongs to Ω({P},P,FP):

• If Dev(ρ) =∅ then ρ = Out(v0,σP) and fP(ρ) = FP, so ρ is in Ω({P},P,FP)

• If Dev(ρ) 6⊆ {P}, then ρ ∈Ω(C ,P,FP) by definition.

• Otherwise Dev(ρ) = {P}. Since ρ ∈N(F), fP(ρ)≤ FP. Hence ρ ∈Ω(C ,P,FP).

This holds for all outcomes ρ of κ(σP) and shows it is winning for Ω({P},P,FP)
for each player P ∈P , which shows that σP is a Nash equilibrium. �

Algorithm for Parity Objectives

We now focus on the case of Parity objectives. Recall that Each player P has a colouring
function cP : V → N, inducing the parity objective ΩA. Thus the payoff fP assigns 1 to
paths belonging to ΩA and 0 to the others.

We now give an algorithm for the Nash equilibrium problem with parity objectives.
Given a payoff for each player (FP)P∈P , we can deduce from the previous theorem
an algorithm that constructs a Nash equilibrium if there exists one. We construct the
deviator game and note that we can reduce the number of vertices as follows: since
Dev(ρ≤k) is nondecreasing, we know that Eve wins whenever this set has at least two
elements. In the construction, states with at least two deviators can be replaced by a
sink vertex that is winning for Eve. This means that the constructed game has at most
n× (|P|+1)+1 states.

The objective can be expressed as a Parity condition in the following way:

• for each vertex v′ = (v,{P}), c′(v′) = cP(v) + 1 if FP = 0 and 2 ·maxv cP(v)
otherwise;

• for each vertex v′ = (v,D) with |D| 6= 1, c′(v′) = 2 ·maxv cP(v) i.e. it is winning
for Eve.

Notice that the colouring function c′ inverts the parity in the case where there is
a single deviator who is losing in the prescribed strategy profile (that is, FP = 0). In
fact, when FP = 1, the player cannot obtain more since they are already winning so the
colour is set to 2 ·maxv cP(v) which is winning for Eve.

Lemma 148. We have maxinf(c′(ρi)) ∈ 2N if, and only if, ρ ∈ N(F), where N(F) is
as defined in Theorem 139.
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Proof. For the implication, we will prove the contrapositive. Let ρ be a play not in
N(F), then since the deviators can only increase along a play, we have that Dev(ρ) =
{P} for some player P and fP(ρ) > FP. This means FP = 0 and maxinf(cP(ρi)) ∈
2N. By definition of c′ this implies that maxinf(c′(ρi)) ∈ 2N+ 1 which proves the
implication.

For the other implication, let ρ be such that maxinf(c′(ρi)) ∈ 2N+1. By definition
of c′ this means ρ contains infinitely many states of the form (v,{P}) with FP = 0.
Since the deviators only increase along the run, there is a player P such that ρ stays in
the component V ×{P} after some index k. Then for i≥ k, c′(ρi) = cP(ρi)+1, hence
maxinf(c′(ρi)) = maxinf(cP(ρi))+ 1. Therefore maxinf(cP(ρi)) ∈ 2N, which means
fP(ρ) = 1 > FP. By definition of N(F), ρ 6∈ N(F). �

Given that the size of the game is polynomial and that parity games can be decided
in quasi-polynomial time (see Chapter 3), the above lemma implies the following the-
orem.

Theorem 140. For parity games, there is a quasi-polynomial algorithm to decide
whether there is a Nash equilibrium with a given payoff.

13.1.5 Extensions of Nash Equilibria

Subgame Perfect Equilibria

Nash equilibria present the disadvantage that once a player has deviated, the others
will try to punish him, forgetting everything about their own objectives. If we were to
observe the game after this point of deviation, it would not look like the players are
playing rationally and in fact it would not correspond to a Nash equilibrium. The con-
cept of subgame perfect equilibria refines the concept of Nash equilibrium by imposing
that at each step of the history, the strategy behaves like Nash equilibrium if we were to
start the game now. Formally, let us write σP ◦h the strategy which maps all histories h′

to σP(h ·h′), that is the strategy that behave like σP after h. Then (σP)P∈P is a subgame
perfect equilibrium if for all histories h, (σP ◦h)P∈P is a Nash equilibrium.

Imposing such a strong restriction is justified by the fact that subgame perfect Nash
equilibria exist for a large class of games. In particular subgame perfect equilibria
always exist in turn-based games with reachability objectives.

Example 34. Consider the example of Figure 13.3. There is a Nash equilibria whose
outcome goes through states v0→ v1→ Ω1. In this equilibrium, Player 1 should play
b in v2, so that the best response of Player 2 is to play a at v0. Intuitively, player 1
is threatening player 2, to make them both lose from v2, but this threat is not credible,
and the profile is not a subgame perfect equilibrium. In fact, once v2 is reached it is
better for Player 1 to play a so it is unlikely that the player will execute the said threat.
The only subgame perfect equilibrium of this game ends in the vertex satisfying both
Ω1 and Ω2.
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v0

v1

v2

Ω1

Ω2

Ω1,Ω2

∅

(∗,a)

(∗,b)

(a,∗)

(b,∗)

(a,∗)

(b,∗)

Figure 13.3: Two-player game with reachability objectives. The goal of player 1 is to
reach a state labeled with Ω1 and that of player 2 is to reach a state labeled with Ω2.

Robust equilibria

The notion of robust equilibria refines Nash equilibria in two ways:

• a robust equilibrium is resilient, i.e. when a small coalition change its strategy,
none of the players of the coalition improves their payoff;

• it is immune, i.e. when a small coalition changes its strategy, it does not decrease
the payoffs of the non-deviating players.

The size of small coalitions is determined by parameter k for resilience and t for
immunity. When a strategy is both k-resilient and t-immune, it is called a (k, t)-robust
equilibrium.

The motivation behind this concept is to address these two weaknesses of Nash
equilibria:

• There is no guarantee on payoffs when two (or more) players deviate together.
Such a situation can occur in networks if the same person controls several devices
(a laptop and a phone for instance) and can then coordinate their behaviours. In
this case, the devices would be considered as different players and Nash equilib-
ria can offer no guarantee.

• When a deviation occurs, the strategies of the equilibrium can punish the de-
viating user without any regard for the payoffs of the others. This can result
in a situation where, because of a faulty device, nobody can use the protocol
anymore.

By comparison, finding resilient equilibria with k > 1, ensures that clients have
no interest in forming coalitions (up to size k), and finding immune equilibria with
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t > 0 ensures that other clients will not suffer from some players (up to t) behaving
differently from what was expected.

The deviator construction can be reused for finding such equilibria. We only need
to adapt the objectives. Given a game G = (A ,( fP)P∈P), a strategy profile σP , and
parameters k, t, we have

• The strategy profile σP is k-resilient if, and only if, strategy κ(σP) is winning in
DevGame(A ) for the resilience objective R(k,F) where F =( fP(OutA (v0,σP)))P∈P
is the payoff profile of σP and R(k,F) is defined by:

R(k,F) = {ρ ∈ OutDevGame(A ) | |Dev(ρ)|> k}
∪ {ρ ∈ OutDevGame(A ) | |Dev(ρ)|= k∧∀P ∈ Dev(ρ). fP(projOut(ρ))≤ FP}
∪ {ρ ∈ OutDevGame(A ) | |Dev(ρ)|< k∧∀P ∈P. fP(projOut(ρ))≤ FP}.

• The strategy profile σP is t-immune if, and only if, strategy κ(σP) is winning
for the immunity objective I (t,F) where F = ( f (OutA (v0,σP)))P∈P is the
payoff profile of σP and I (t,F) is defined by:

I (t,F) = {ρ ∈ OutDevGame(A ) | |Dev(ρ)|> t}
∪ {ρ ∈ OutDevGame(A ) | ∀P ∈P \Dev(ρ). FP ≤ fP(projOut(ρ))}.

• The strategy profile σP is a (k, t)-robust profile in G if, and only if, κ(σP) is
winning for the robustness objective

R(k, t,F) = R(k,F)∩I (t,F),

where F = ( fP(OutA (v0,σP)))P∈P is the payoff profile of σP .

We omit the proof and encourage the reader to do it by themselves.

Extension to games with hidden actions

In most practical cases, players only have a partial view of the state of the system; so
they may not be able, for instance, to detect a deviating player immediately. Study-
ing equilibria in general imperfect information as in Chapter 8 would be well adapted
in such situations. Unfortunately, these games are too powerful in general since the
existence of Nash equilibria is undecidable in this case.

Nevertheless, the problem is decidable for a restricted form of imperfect informa-
tion where the players observe the visited states but do not see the played actions; thus
the actions are hidden.

We will thus consider strategies defined as functions from V ∗ to Act, which repre-
sents the fact that players’ decision can only depend on observed sequence of states but
not on other players’ actions.

In this case, deviators cannot be defined as obviously as before, as it may not always
be possible to identify one unique deviator responsible for a deviation. The construc-
tion will thus maintain a set of suspects, those players that might have been responsible
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v0

v1

v2

Ω1

Ω2

Ω3

∅

(a,a,∗)
(b,b,∗)

(a,b,∗)
(b,a,∗)

(∗,∗,a)

(∗,∗,b)

(∗,∗,a)

(∗,∗,b)

Figure 13.4: Three-player game with hidden actions. The goal of player i is to reach a
state labeled with Ωi.

for the observed deviation. Formally, suspects for an edge (v,v′) with respect to a move
(aP)P∈P are players P such that there is a′P and ∆(a′P,a−P) = (v,v′). Rather than com-
puting the union of deviators along a history, we now consider the intersection of sus-
pects. That is, if at vertex v, the suspect set is S, and the strategy profile is σP , and if the
next vertex is v′, then the suspect set becomes S∩{P ∈P | ∃a′P,∆(a′P,a−P) = (v,v′)}.

The suspect game can be defined just like the deviator game by replacing the devi-
ators component by the suspects component. The objective for Eve is that no suspect
player improves their payoff. In fact, in case of deviation, we know that the deviator
belongs to the set of suspects although we cannot know which one has deviated for
sure so Eve must ensure this for all suspects.

Example 35. Consider the example of Figure 13.4. If actions were visible there would
be an equilibrium ending in the state labeled with Ω3: player 3 simply has to punish
the player who would deviate from this path. But if we now consider hidden actions,
in case of a deviation, player 3 would observe that the play went arrives in v1 instead
of v2 and both Player 1 and Player 2 are suspects. Since Player 3 cannot punish both
players at the same time, there is no Nash equilibrium ending satisfying Ω3.

13.2 Admissible strategies
Nash equilibria and their variants seen so far describe stable situations from which
players have no incentive to deviate. This however is of limited use in some situations.
First, the stability relies on the fact that all players are informed of the strategy profile
to be played; that is, some central authority needs to publicly announce the strategies
for all players. Second, each equilibrium describes a single possible situation. If there
are several equilibria, it is not clear which one is to be chosen.
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Table 13.3: A normal form game solvable by iterated elimination.

A B
C 3, 3 4, 1
D 0 , 4 0, 0

Rather than concentrating on particular equilibria, game theorists have studied rea-
sonings players may follow in order to exclude some strategies that are necessarily
worse than others. These worse strategies are called dominated. By formalizing dom-
inated and non-dominated strategies for a given player, one can then predict the be-
haviour of rational players since such a player would never use a dominated strategy
but rather always pick the best one available.

In this section, we will formalize dominated strategies and show how these can be
computed in games. We then briefly show that this reasoning can be repeated, and
present the iterated elimination of dominated strategies.

13.2.1 Definition
The notion of dominance is used to compare strategies with respect to payoffs they
yield against the rest of the players’ strategies. Consider the example of Table 13.3.
Given a strategy of the second player, playing B is always at least as good as playing
A for the first player. In fact, again C, B yields a payoff of 4 which is better than
3, the payoff of A; and against D, both yield 0. The strategy B is said to dominate A.
Intuitively, B is either better or as good as A in all situations, so playing B is the rational
choice for Player 1.

Furthermore, by this analysis, Player 2 knows that Player 1 will player B. Given
this information, the best response of Player 1 is to play C. By iterated elimination,
we established that (B,C) should be the only strategy profile to be played by players
following this reasoning.

Let us formalize this notion.

Definition 36 (Dominance). Let S ⊆S P be a set of the form S = S1× S2×·· ·× Sn
which we will call a rectangular set. Let σ ,σ ′ ∈ Si. Strategy σ very weakly dominates
strategy σ ′ with respect to S, written σi ≥S σ ′i , if from all vertices v0:

∀σ−i ∈ S−i, fi(Out(v0,σ
′
i ,σ−i))≥ fi(Out(v0,σi,σ−i)).

Strategy σi weakly dominates strategy σ ′i in S, written σ >S σ ′, if σ ≥S σ ′ and
¬(σ ′ ≤S σ). A strategy that is not weakly dominated in S is admissible in S. The
subscripts on ≥S and >S are omitted when the sets of strategies are clear from the
context.

Algorithms rely on the notion of optimistic and pessimistic value of a history. The
pessimistic value is the maximum payoff that a player can ensure in the worst case
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v0

v1

v2

v3

−1,−1,0

v4

−1,0,−1

(∗,a,∗)

(∗,b,∗)

(a,∗,∗)

(b,∗,∗)

(∗,∗,a)

(∗,∗,b)

Figure 13.5: Example of a three-player turn-based simple safety game. Numbers below
states describe the safety objective, for instance −1,−1,0 is losing for player 1 and 2.

within the strategy set S. The optimistic value is the best the player can achieve with
the help of other players, given the strategy set S.

Definition 37 (Values). The pessimistic value of a strategy σi for a history h with
respect to a rectangular set of strategies S, is

• pesi(S,h,σi) = infσ−i∈S−i fi(h ·Out(last(h),σi,σ−i)).

The pessimistic value of a history h for Ai with respect to a rectangular set of
strategies S is given by:

• pesi(S,h) = supσi∈Si
pesi(S,s,σi).

The optimistic value of a strategy σi for a history h with respect to a rectangular
set of strategies S is given by:

• opti(S,h,σi) = supσ−i∈S−i
fi(h≤|h|−2 ·Out(last(h),σi,σ−i)).

The optimistic value of a history h for Ai with respect to a rectangular set of strate-
gies S is given by:

• opti(S,h) = supσi∈Si
fi(opti(S,h,σi))

We will first consider the case where S is the set of all strategies, and omit S in the
above notations.

13.2.2 Simple Safety games
Simple safety games, are safety games in which there are no transitions from losing
vertices to non-losing ones. Restricting to this particular class of game makes the
problem simpler because the objective becomes prefix independent. Any safety game
can be converted to an equivalent simple safety game by encoding in the states which
players have visited so far a losing state. Note that this translation can be exponential
in the number of players.
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For simple safety games, the pessimistic and optimistic values do not depend on
the full history but only on the last state: for all histories pesi(h) = pesi(last(h)) and
opti(h) = opti(last(h)).

Note that in safety games (and any qualitative games) values can be only 1 (for
winning) and 0 (for losing) and since the pessimistic value is always less than the
optimistic one, the pair (pesi,opti) can only take three values: (0,0), (0,1) and (1,1).

Intuitively, players should avoid decreasing this pair of values if they can. In fact,
the characterization of admissible strategies we give below will be based on this simple
observation.

Example 36. An example of a simple safety game is given in Figure 13.5. In this game,
player 1 controls v1 where its optimistic value is 0, as it is possible that the outcome
will never reach v3 or v4. However v3 has optimistic value −1 for player 1, as it is
a losing state for player 1. Going from v1 to v3 is a bad choice for player 1, and it
is indeed dominated by the strategy that would always choose to go to v2. In state v3,
player 3 has pessimistic value 0 since it can ensure not visiting v4. The winning strategy
for player 3 which is to always go to v1 is also the only non-dominated strategy. For
player 2, from state v0, both choices lead to a state with values (−1,0) so no choice is
particularly better and both strategies are non-dominated.

Definition 38. Let Di be the set of edges (v,v′) ∈ E such that v ∈Vi pesi(v)> pesi(v′)
or opti(v)> opti(v′). These are called dominated edges.

Theorem 141 (Characterisation of admissible strategies). Admissible strategies for
player Ai are the strategies that never take actions in Di.

Proof. We show that if Ai plays an admissible strategy σi then the value cannot de-
crease on a transition controlled by Ai. Let ρ ∈ Out(σi,σ−i), and k an index such that
ρk ∈Vi. Let (v,v′) = σi(ρ≤k):

• If pesi(ρk) = 1, then σi has to be winning against all strategies σ−i of A−i, oth-
erwise it would be weakly dominated by such a strategy. Since there is no such
strategy from a state with value pesi ≤ 0, we must have pesi(v′) = 1.

• If opti(ρk) = 1, then there is a profile σ ′ such that ρ = f (Out(v,σ ′)), which is
equal to 1. Assume that opti(v′) = 0. Then σi is dominated by the strategy σ ′′i
obtained from σi by making it switch to σ ′ at v. In fact, σi is losing against all
strategies of −i, while σ ′′i is winning at least against σ ′−i.

• If pesi(v) = 0 or opti(s) = 0, then the value cannot decrease further.

In the other direction, let σi,σ
′
i be two strategies of player Ai and assume σ ′i >S σi.

We will prove σi takes a transition in Di at some point.
Let us fix some objects before developing the proof. There is a vertex v and strategy

profile σ−i ∈ S−i such that f (Out(v,σ ′i ,σ−i)) = 1∧ f (Out(v,σi,σ−i) = 0. Let ρ =
Out(v,σi,σ−i) and ρ ′ = Out(v,σ ′i ,σ−i). Consider the first position where these runs
differ: write ρ = w · s′ · s2 ·w′ and ρ ′ = w · s′ · s1 ·w′′.

The following are simple facts that can be seen easily:
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• s′ ∈Vi, because the strategy of the other players are identical in the two runs.

• opti(s1) = 1 because f (Out(v,σ ′i ,σ−i)) = 1

• pesi(s2) = 0 because f (Out(v,σi,σ−i)) = 0

If opti(s2) = 0 or pesi(s1) = 1 then s′→ s2 ∈ Di so σi takes a transition of Di. The
remaining case to complete the proof is opti(s2) = 1 and pesi(s1) = 0. Let us assume
that σi does not take any edges from Di. We will show that there is a strategy for −i
against which σi wins and σ ′i loses, which contradicts the hypothesis that σ ′i weakly
dominates σi.

We first construct a profile σ2
−i ∈ S−i such that f (Out(s2,σi,σ

2
−i)) = 1. Strategy

σ2
−i ∈ S−i never decreases the optimistic value from 1 to 0 since the optimistic value

is non-increasing. By assumption, σi itself does not decrease the value of Ai because
it does not take transitions of Di. So the outcome of (σi,σ

2
−i) never reaches a state of

optimistic value 0. Hence it never reaches a state in Badi and therefore it is winning for
Ai.

Let us now consider a profile σ1
−i ∈ S−i such that f (σ ′i ,σ

1
−i) = 0 from s1. Such a

strategy exists because pesi(s1) = 0, so σ ′i is not a winning strategy. Then there exists
a strategy profile σ1

−i such that σ ′i loses from s1.
Now consider strategy profile σ ′−i that plays like σ−i if the play does not start with

w; and otherwise switches to σ1
−i at history ws1 and to σ2

−i at history ws2. Formally,
given a history h, σ ′−i(h) =

• σ1
−i(h

′) if w · s1 is a prefix of h and w · s1 ·h′ = h

• σ2
−i(h

′) if w · s2 is a prefix of h and w · s2 ·h′ = h

• σ−i(h) otherwise

Clearly we have fi(Outs(σi,σ
′
−i)) = 1∧ fi(Outs(σ

′
i ,σ
′
−i)) = 0, which contradicts

σ ′i ≥S σi. �

13.2.3 Parity games
The characterization given for simple safety game is not enough for parity objectives,
as we will see in the following example.

Example 37. Consider the example in Figure 13.6. In this example, although the
strategy that always stays in v0 does not decrease the value of player 1, it is dominated
because it has no chance of winning. By contrast the strategy that always go to v1 has
a chance of being helped by player 2 and actually reaching Ω1 it therefore dominates
the first strategy.

However the fact that an admissible strategy should not decrease its own value
still holds. Assuming strategy σi of player Pi does not decrease its own value, we can
classify its outcome in three categories according to their ultimate values.

• either ultimately opti = 0, in which case all strategies are losing, and thus any
strategy is admissible
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v0 v1 Ω1

1 1 2

(a,∗)

(b,∗)

(∗,a)

(∗,b)

(a,∗)

Figure 13.6: Parity game where the objective for player 1 is to visit Ω1 infinitely often.
Player 1 controls square vertices and player 2 round vertices.

• or ultimately pesi = 1, in which case admissible strategies are exactly the win-
ning ones

• or ultimately pesi = 0 and opti = 1. We will focus on this case which is more
involved.

From a state of value 0, an admissible strategy of Pi should allow a winning play
for Pi with the help of other players.

We write Hi for set of vertices v controlled by a player Pj 6= Pi that have at least two
successors of optimistic value 1. Formally, the help-states Hi of player Pi are defined
as: ⋃

Pj∈P\{i}

{
s ∈Vj | ∃s′,s′′, s′ 6= s′′∧ s→ s′∧ s→ s′′∧ opti(s

′) = 1∧ opti(s
′′) = 1

}
.

Intuitively, admissible strategies in the case satisfying pesi = 0 and opti = 1 are
those that visit infinitely often help states. In fact, letting other players make choices
means that the player is allowing the possibility of them helping to achieve the objec-
tive. More precisely, we have the following property whose proof is omitted.

Lemma 149. Let v ∈ V , Pi ∈P and ρ a play be such that ∃∞k.opti(ρk) = 1. There
exists σi admissible such that ρ ∈ Out(v,σi) if, and only if, fi(ρ) = 1 or ∃∞k.ρk ∈ Hi.

13.2.4 Iterated elimination
Once each player is restricted to use admissible strategies, they can further refine their
choices knowing that other players will not be using dominated strategies. We already
saw this in the example of Table 13.3. In fact, once player 1 has eliminated strategy A
(which is dominated by B), player 2 can use this information since its best response
against the remaining strategies is C. In more complex games, this reasoning can be
repeated and take several steps before converging. This repeated process is called iter-
ated elimination of dominated strategies.

We now define this process formally.
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Definition 39 (Iterated elimination). The sequence of iterative elimination is a se-
quence of rectangular strategy sets defined as follows. S0 = (S0

i )Pi∈P is the set of
all strategies. For k ≥ 0, if we write Sk = (Si)Pi∈P , then Sk+1

i is the set of strategies
in Sk

i that are not dominated in Sk.

Thus, the step 1 of the sequence of iterative elimination corresponds to admissible
strategies defined above. Let us call them 1-admissible. In step 2, we again compute
strategies that are dominated by only considering 1-admissible strategies for all players,
and repeat. Strategies that survive all step of elimination are said iteratively admissible.

Theorem 142. In parity games, the sequence of iterative elimination converges, and it
reaches a non-empty fixed point.

We prove this result only for simple safety games since the case of parity conditions
is too complex for the scope of this book.

Intuitively, given a game G, Theorem 141 tells us that any strategy for player Pi
that avoids using edges Di is admissible. So if we remove all edges ∪Pi∈PDi from
the game to obtain a new game called G1, then all strategies of G1 (for all players) are
admissible in G, and conversely. We can then repeat this process to G1: we construct G2
by eliminating all dominated edges in G1, and get that admissible strategies in G1 are
exactly all strategies of G2, which correspond to 2-admissible strategies, and so on.

Since the size of the games decrease at each step, this process necessarily stops.
It remains to show that the limit game G∞ contains strategies. We will show that all
vertices have at least one outgoing edge in G∞. It suffices to show that the sets Di never
contains all edges leaving a vertex. Let us consider any game G j. For a vertex v ∈ Vi
with pesi(v) = 0 and opti(v) = 0, none of the edges are dominated. For a vertex v ∈Vi
with pesi(v) = 1 (and necessarily opti(v) = 1), there exists a winning strategy in G j
so there must be a successor v′ with pesi(v′) = 1 which is not dominated. Last, for a
vertex v∈Vi with pesi(v) = 0 and opti(v) = 1, there exists a winning play from v so for
some successor v′ we must have opti(v′) = 1 which is an edge that is not dominated.

Bibliographic references
Most results about equilibria fall into two-categories: they either prove that equilibria
always exist for some class of games, or they characterize the complexity of finding a
particular one.

Existence results
Several authors have noticed that Nash equilibria always exist in turn-based game for
some classes of objectives, in particular this is true of ω-regular objectives. The most
general result of that kind shows that this is true for all objectives for which there exist
finite memory optimal strategies [RP18].

The notion of equilibrium we now call Nash equilibrium was defined in the article
of Nash [Nas50] in which he proves the existence for a class of normal form game.
The Hawk-dove game we presented as an example in the first part of this chapter is
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also called game of chicken. The first reference to this game was by Smith and Price
[SP73]. The example of medium of access control we presented as a motivation was
studied from a game theoric point of view in [MW03].

The notion of subgame perfect equilibria is interesting because in games on trees
(or extensive games), for which they were originally introduced, they always exist.
This results can be extended to games played on graphs. In particular subgame perfect
equilibria always exist in reachability games [BBdPG12].

Algorithms and complexity results
The deviator construction and the algorithm presented in this chapter are based on
[BBMU11, Bre12]. Algorithms on admissible strategies on infinite games and the
complexity of the related problems were studied in [Ber07b, BRS14].

Imperfect information games in the context of multiplayer games are difficult. As
soon as there are ‘information forks’ interesting problems are undecidable. Deciding
whether two players can ensure an objective against a third player is undecidable. As
a corollary the Nash equilibrium problem is also undecidable [PR90]. The problem of
Nash equilibrium is also undecidable in stochastic games even with only three play-
ers [BMS14].

In the first section we presented a polynomial algorithm for finding pure Nash equi-
libria in normal form games. It is actually also possible to find a mixed Nash equilibria
in polynomial time using linear programming. The same extends to finding memory-
less mixed Nash equilibria in concurrent games, and even resilient equilibria [Bre16].

Action-graphs are succinct representation of matrix games. Indeed, representing
games with matrices can be costly when the number of players increases. The size
of the matrix is in fact exponential in the number of players: when each player has
two strategies there are 2P cells in the table. The action-graph representation is more
compact, and the representation can be exponentially smaller. Because of that, the al-
gorithm is no longer polynomial. If there are no constraints on the Nash equilibrium
we are looking for, the complexity of the problem cannot be characterized using clas-
sical classes like NP-completeness because equilibria always exist and thus the answer
to the decision problem would always be true. The characterization of the complexity
was done using the PPAD class [DGP09].

Nash equilibria with LTL objectives is expressible in logics such as strategy logic
[CHP10] or ATL∗ [AHK02], as well as other extensions of this equilibria. However,
satisfiability in these logic is difficult: it is 2EXP-complete for ATL∗ and undecidable
for strategy logic in general. A decidable fragment of strategy logic has been identified
[MMPV12], but remains difficult; it is 2EXP-complete.



Conclusions

The goal of this book was to give a technical account of the state of affairs on games on
graphs. It emerged as a research topic already decades ago, and is now an active field
with interactions with many other disciplines. In this conclusion, let us note that it has
two appealing features:

• A well defined and small set of fundamental open problems. The most prominent
ones are the complexity of solving parity games, mean payoff games, discounted
games, and stochastic reachability games. Many others have been discussed in
this book.

• A wealth of new models and directions. Let us cite as examples progress to-
wards understanding the memory requirements [Ohl23, BRV23], bidding mech-
anisms [AHZ21], or distributed games [GMMW22].
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