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Abstract

With the photovoltaic (PV) market significantly growing thanks to the

support of environmental incentives, it is essential to address the influence of

climate change on PV performances. In the literature, several methodologies

have been suggested to measure the effect of climate change through module

temperature losses and natural degradation rates, but no work has been found

to combine both of them. This paper tackles this issue through a numerical

approach in order to quantify to which extent climate change impacts the

performance of a PV installation over its lifetime. The methodology has

been applied in different French cities where climate change is found to have

a moderate effect on the Performance Ratio.

Keywords: Photovoltaic performance, Climate change, Photovoltaic aging,

Photovoltaic modeling
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1. Introduction1

Recent decades have witnessed an accelerating growth of photovoltaic2

(PV) capacity[1] expected to reach 14 TW by 2050 according to the 1.53

◦C scenario[2] largely thanks to strong environmental incentives.[3] PV de-4

ployments rely on financial indicators such as the Levelized Cost Of Energy5

(LCOE) and investors need accurate predictions of PV energy production6

over the installation lifespan.[4] Key assumptions to this calculation are the7

rate of the natural PV aging and expected generation yields which are usu-8

ally assumed from past observations and are likely to change due to climate9

change. From a general perspective, identifying potential threats to perfor-10

mance in future years is also crucial to forecast the energy production of PV11

systems.12

13

Photovoltaic yields are intrinsically sensitive to varying environmental14

conditions. As described by Meng et al.,[5] the performance follows seasonal15

variations due to the inherent annual meteorological cycle: higher ambi-16

ent air temperatures in summer relative to winter result in elevated oper-17

ating temperatures and hence lower efficiencies for most PV technologies18

including crystalline silicon cells. Moreover, warmer sites undergo higher19

stresses and, logically, more pronounced degradation rates are expected than20

at colder sites.[6,7] Similarly, worse degradation rates have been observed on21

roof-mounted PV systems compared to ground-mounted[8][4] most likely be-22

cause of higher operating module temperature. Through all these factors,23

climate change may have a significant effect on the expected performance24

and lifetime of solar installations.25
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26

A considerable body of works in the literature reports on the real per-27

formance and degradation of PV systems. For instance, the IEA compiled28

performance variables in their hosted IEA PVPS Performance Database[9]29

and Jordan et al. made available open-source databases on measured degra-30

dation rates.[6,10] From two separate analyses, a typical reference performance31

ratio of around 76 % was reported[11,12] and an average performance loss rate32

in the order of magnitude of 0.5 % have been highlighted.[10,11] All these stud-33

ies suggest performance benchmarks based on historical PV systems, and yet34

none offer correction factors to adjust those expectations in the context of35

climate change.36

37

By means of climates scenarios, PV potential has been investigated around38

the world[13].[14] Historical trends have been identified in degradation mod-39

els with an increase in degradation rate following the increase of the world40

ambient temperature on the ERA5 dataset.[15] The impact of climate change41

on the performance ratio due to higher instantaneous temperature losses42

has been quantified to less than 3% in 2100 for different world locations43

by Ascencio-Vasquez et al..[16] However, the combined detrimental effects44

of climate change on degradation rates and the instantaneous-temperature45

performance dependency have never been investigated together. This paper46

addresses this issue by combining climate change scenarios and PV models47

which include natural aging to enable a more rigorous approach to project48

long-term PV performance.49

50
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The aim of this article is to project PV performance over a typical 30-51

year installation lifetime taking into account the EURO-CORDEX climate52

projections following the RCP 8.5 scenario and quantify the impact of climate53

change in different cities in France. In the presented study cases in France,54

a slight drop in performance is observed mainly because of more module55

temperature losses and enhanced aging mechanisms. The methodology is56

established through a model chain to propagate climate projections in order57

to derive PV performance on different climate periods in Section 2. Then,58

results are outlined in Section 3, first, with the study case of Bordeaux,59

France, and, then, on some other French cities.60

2. Methodology61

Figure 1 shows the general methodology presented in this paper in or-62

der to evaluate the Performance Ratio PR taking into account the climate63

changes. First, climate projections are built in order to get the weather time64

series from 1990 up to 2080 (see Section 2.1). Decomposition/transposition,65

IAM/SMM/soiling, humidity, UV, module temperature, power, degradation66

and inverter models (sections 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8, 2.9) mostly67

supported with pvlib[17] enable then to calculate the effect of these variables68

on the PV system operation. From there, the instantaneous performance as69

well as the degradation due to aging can be evaluated which in fine allows70

to evaluate the PR in Section 2.10.71

Three periods are investigated, a reference period ranging from 1990 to72

2020 as the close past, a near future corresponding to 2020-2050, and a far73

future, from 2050 to 2080.74
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Figure 1: Model chain methodology to assess climate change impact on PV performance

2.1. Climate data75

This Section describes the process to obtain climate projections at the76

hourly resolution for the following variables: global horizontal irradiance,77

ambient air temperature, specific humidity, atmospheric pressure and wind78

speed.79

2.1.1. Data sources80

Historical reference data and climate models are used to create hourly81

climate projections and Table 1 summarizes the characteristics of the two82
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used data sources.83

EURO-CORDEX 11 ERA5

Data type Climate models Historical reference data
Grid resolution 0.11◦ 0.25◦

Scenario RCP 8.5 -
Time step three-hourly hourly

Periods of interest 1950 - 2100 1981 - 2019

Table 1: Data source description: EURO-CORDEX and ERA5

In order to build up climate projections, 15 models from the EURO-84

CORDEX-11 ensemble[18,19] were retrieved and are further described in Ta-85

ble 6 in Appendix A.1. The RCP 8.5 scenario, which is one of the most86

pessimistic, corresponds to an additional radiative forcing of 8.5 W/m2 in87

2100 and has been chosen for the projections to study the worst-case degra-88

dation configuration.89

Nonetheless, the outputs of the EURO-CORDEX models are often far90

from real conditions[20] and need to be modified according to the location91

with bias-correction methods taking the ERA5 dataset[21] as a reference on92

1981-2019.93

2.1.2. Bias correction94

In order to correct the bias in climate model outputs, two bias correction95

methods of the quantile-quantile correction type were chosen: the CDF-t96

(Cumulative Density Function - transform)[22] and the Q-MAP method.[23–25]97

The general principle is to correct the distribution of a variable of the model98

output with support of the ERA5 distribution of the same variable on 1981-99

2019 quantile by quantile. In order not to lose the thrust of the article, these100
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essential aspects are presented in Appendix A.101

The CDF-t method[22] is especially applied to correct temperature, spe-102

cific humidity, pressure, radiation, and wind speed data with the reference103

period taken from 1981 to 2019. Each variable is adjusted independently of104

the others.105

2.1.3. Hourly interpolation106

Once the three-hourly data from the EURO-CORDEX models have been107

bias-corrected, they are post-processed to obtain hourly time series. In order108

to do so, a Hermite cubic interpolation[26,27] is used to temporally refine the109

data to get them ready to be injected in the next models.110

2.2. Decomposition and transposition models111

In this section, the process to obtain the irradiance in the plane of array112

from the global horizontal irradiance provided from the climate projections113

is described.114

2.2.1. Decomposition model115

Decomposing the Global Horizontal Irradiance (GHI) into Direct Nor-116

mal Irradiance (DNI) and Diffuse Horizontal Irradiance (DHI) is a crucial117

step to estimate the irradiance received by the photovoltaic installation. The118

DIRINT model[28] is adopted to decompose the irradiance and needs as inputs119

the absolute airmass AMabs, the angle of incidence AOI and the extraterres-120

trial Direct Normal Irradiance DNIextra to deduce the clearness index.121

The Spencer model[29] enables to calculate the DNIextra with the solar122

constant equal to 1370 W/m2. The relative airmass AMrel is calculated by123

the Kasten model[30] and the altitude of the installation is deducted from the124

7



EU-DEM database.[31] The absolute airmass AMabs is then deducted from125

the relative airmass AMrel and the pressure P with AMabs = AMrel
P

101325
.126

The sun elevation and azimuth are then estimated thanks to the NREL al-127

gorithm[32] with the altitude and taking the ERA5 temperature and pressure128

averages on 1981-2019 as the reference ambient temperature and pressure.129

Then, the angle of incidence AOI is derived according to the following equa-130

tion with z the sun elevation, β the installation tilt, ϕa the sun azimuth and131

ϕ the installation azimuth132

cos(AOI) = cos(z)cos(β) + sin(z)sin(β)cos(ϕa − ϕ). (1)

The DIRINT model from Perez et al.[28] can then applied to estimate133

the DNI component. Then, the DHI component is deducted thanks to134

the following formula with AOI the angle of incidence and GHI the global135

horizontal irradiance136

DHI = GHI −DNI · cos(AOI). (2)

2.2.2. Transposition model137

The obtained decomposed irradiance components enable the transposi-

tion models to calculate the received irradiance in the plane of array of the

installation. AMrel, DNIextra, solar zenith and azimuth can be processed

together to calculate the diffuse irradiance component thanks to the Perez

model[33] with the following equation

GPOA,d = DHI · [(1− F1) · 1 + cos(AOI)

2
+ F1 · a

b
+ F2 · sin(AOI)]. (3)

where:138

8



• F1,F2 are empirically fitted functions describing the circumsolar and139

horizon brightness respectively computed from the airmass and relative140

airmass [-]141

• DHI the diffuse horizontal irradiance [W/m2]142

• a = max(0, cos(AOI)) with AOI, the angle of incidence [-]143

• b = max(cos(85, cos(z)) with z the solar zenith angle [-]144

Then, the direct beam irradiance can be directly obtained from the Direct145

Normal Incidence DNI irradiance and the sun angle of incidence AOI from146

the following equation147

GPOA,b = DNI · cos(AOI). (4)

Assuming an isotropic reflection from the ground, the ground-reflected148

irradiance component follows the next equation with the module tilt angle β149

and ρ the albedo set to 0.18 in this study for an urban environment according150

to PVsyst assumptions.[34]151

GPOA,alb = GHI · ρ · 1− cos(β)

2
. (5)

Finally, the total POA irradiance is the sum of the direct, reflected and152

diffuse components.153

GPOA = GPOA,b +GPOA,alb +GPOA,d (6)
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2.3. Effective irradiance models154

The characteristics of the outdoor irradiance are different from STC con-155

ditions and the Soiling Ratio SR, the Indice Angle Modifiers (IAMb, IAMd,156

IAMalb) and the Spectral Mismatch Modifier SMM are indices which en-157

able to express those differences and calculate the effective irradiance Geff158

received by the module.159

2.3.1. Indice Angle modifier model160

The Indice Angle modifier (IAM) computes the reflection losses on the161

module and is calculated using the approach from Martin et Ruiz.[35]162

GPOA,iam = GPOA,b · IAMb(AOI)+GPOA,d · IAMd(β)+GPOA,alb · IAMalb(β)

(7)

GPOA,iam is the irradiance which includes the reflection losses and is ob-163

tained by applying the Indice Angle Modifiers (IAMb, IAMd, IAMalb) re-164

spectively to the direct, diffuse and ground-reflected irradiance in the plane165

of array. IAMb is function of the angle of Incidence (AOI) while IAMd,166

IAMalb depend on the PV tilt β. The m-Si parameters from Martin and167

Ruiz’s study[35] have been injected in the different IAMs modifier models.168

2.3.2. Soiling loss model169

The effect of the accumulation of soiling on the PV modules can be ex-170

pressed through the Soiling Ratio SR which corresponds to the transmission171

loss in this study. The soiling mechanisms are fairly complex to model[36]172

and the approach from Kimber et al.[37] enables to simplify its influence with173

the following formula :174
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SR = 1− d · srdaily. (8)

with:175

• srdaily the daily soiling rate which is equal to 0.15%/day, inspired from176

Kimber’s study[37] which is around the median of the estimated soiling177

rate for France according to Ilse et al..[36]178

• d, the number of days since the last rainfall episode which is assumed179

to fully clean the PV modules.180

Among all cleaning thresholds presented in the literature, 5mm was cho-181

sen since it is similar to some thresholds in the same climate Koppen zone,182

Cfb, as Bordeaux from the literature summary from Bessa et al.[38] No grace183

period has been assumed after a rainfall episode, the soiling rate starts to184

reduce the transmission right the day after it.185

2.3.3. Spectral Mismatch Modifier model186

The mismatch between the irradiation received by the module and the187

effective spectrum converted by the photovoltaic cell are calculated using the188

Spectral Mismatch Modifier (SMM) obtained with the approach from Lee et189

Panchula[39] relying on the SMARTS model.[40]190

SMM = c1 + c2 · AMabs + c3pw + c4AM
0.5
abs + c5p

0
w.5 + c6

AMabs

p0.5w

. (9)

where:191

11



• The absolute airmass AMabs is deducted from the AMrel as seen in the192

previous section 2.2193

• The precipitable water pw corresponds to the amount of water con-194

tained in a column of air available for potential rainfall. This variable195

is obtained from the ambient temperature and relative humidity fol-196

lowing the model from Gueymard et al..[41]197

• The empirical parameters c1, c2, c3, c4, c5, c6 are provided from First So-198

lar[39] for mono-crystalline modules in pvlib.[17]199

The SMM and SR can then be applied on top of the IAM operation to

obtain the effective irradiance as follows,

Geff = GPOA,iam · SR · SMM. (10)

200

2.4. Relative humidity model201

The infiltration of humidity in PV modules might decay module perfor-

mances through delamination or corrosion and it is then essential to quantify

it to later introduce it as input in degradation models in Section 2.8. The

relative humidity RH can be calculated using Bolton’s formulation[42] with

Q the specific humidity, T the temperature [◦C], and P the pressure [hPa].

First, the saturation vapor pressure es [hPa] is defined

es = 6.112 · exp( 17.67 · T
T + 243.5

). (11)

The water vapor pressure e [hPa] is calculated with the following formula

e =
Q · P

0.378Q+ 0.622
. (12)
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Finally, the relative humidity [%] is obtained as follows

RH =
e

es
. (13)

2.5. UV model202

Quantifying the quantity of UV absorbed by the PV modules is essential203

to later assess the degradation due to photon absorption. As for modeling204

perspectives, the same approach as Kaaya et al[43] and Ascencio et al.[15]205

is adopted with the model from Crommelynck and Joukoff.[44] The Linke206

Turbidity factor is inferred from a world map[45] from SODA and daily inter-207

polated.[17] Then, the clear sky components are obtained with the Ineichen208

model.[46] The clearness indicator is then deducted from the GHI and its209

corresponding clear sky GHIclearsky as follows.210

kt = max(0.1,min(0.7,
GHI

GHIclearsky
)) (14)

The UV is further computed from the UV-A and UV-B components211

UV = UVA + UVB, (15)

UVB = (1.897− 0.860 · kt)1e−3 ·GPOA (16)

UVA = (7.210− 2.365 · kt)1e−2 ·GPOA. (17)

2.6. Temperature model212

The module temperature is subject to material properties and weather213

conditions. The Faiman model[47] enables to integrate those interactions and214
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estimates Tm the module temperature [◦C] with the following equation215

Tm = Ta +
GPOA

U0 + U1 ·WS
, (18)

with Ta the ambient temperature [◦C], GPOA the irradiance in the plane216

of array [W/m2], WS[m/s] the wind speed, U0 [ W
m2K

] and U1 [ W
m2K(m/s)

] em-217

pirical constants translating the constant and convective heat transfer com-218

ponents.219

Following the same approach as Kaaya et al.,[48] the thermal coefficients220

U0 = 26.9 W
m2K

, U1 = 6.2 W
m2K(m/s)

have been adopted from the outdoor221

calibration conducted by Koehl et al.[49] on an open-rack mono-crystalline222

module with a polymer backsheet.223

2.7. Power model224

Power models estimate the DC electric output according to site character-225

istics and weather variables. The PVWatts model[50] is chosen in this study226

and estimates the instantaneous DC power Pdc at time t as227

Pdc(t) = Geff (t) ·
P0

Gref

· (1− γ · (Tc(t)− Tref )), (19)

where, Tc(t) is the cell temperature [◦C] here approximated as the module228

temperature Tm(t), Geff (t) is the effective irradiance in the plane of array229

[W/m2], Tref and Gref are the Standard Test Conditions respectively equal to230

25◦C and 1000W/m2, P0 is the DC rated power [Wp], γ is the efficiency loss231

coefficient arbitrary set, in this study, to a pessimistic 0.45 %/K−1. This high232

coefficient value has particularly been chosen in order to keep a worst-case233

dimensioning perspective to the study.234
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2.8. Degradation model235

Commonly approximated as linear, outdoor monitoring have shown that236

some degradation rates are actually non-linear.[10] To that aim, Kaaya et237

al.[43][51] suggested an exponential degradation model accounting for the dom-238

inating stressors: temperature, UV irradiation, relative humidity, and tem-239

perature cycling.[52] The cumulative degradation ηkaaya is computed for a240

calendar year y as241

ηkaaya(y) = 1− exp(−(
Γ

k · (y − y0)
)µ) (20)

where k is the total degradation rate, y0 is the installation year and (Γ,

µ) are empirical constants. In this approach[43],[51] the total degradation rate

k depends on yearly environmental conditions and is broken down into three

degradation processes kH , kP , kTm as follows with

k(y) = AN · (1 + kH(y)) · (1 + kP (y)) · (1 + kTm(y))− 1. (21)

1. kH the hydrolysis-driven degradation:

kH = AH ·RHn · exp(− Eah

kB · Tmod

) (22)

2. kP the photo-degradation:

kP = Ap · UV X · (1 +RHn) · exp(− Eap

kB · Tmod

) (23)

3. kTm the thermo-mechanical degradation:

kTm = At · CN · (273 + ∆T )θ · exp(− Eat

kB · Tmax

) (24)

where:242
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AN the normalization constant [year−2], set to 1 by default243

EahEapEat the activation energies of power degradation due to hydrolysis,244

photo-degradation and thermo-mechanical mechanism respectively, in245

[eV ]246

AhApAt the pre-exponential constants, respectively in [year−1], [m2/kWh],247

[◦C−1cycle−1]248

kB the Boltzmann constant (8.62 · 10−5eV/K)249

n,X,θ empirical constants that indicate the impact of relative humidity, UV250

and temperature cycle on power degradation251

RH the relative humidity [%]252

Tmod average module temperature [K]253

∆T = Tmax − Tmin the temperature difference [K]254

TmaxTmin the module maximum and minimum temperatures taken as 5th255

and 95th quantiles of the hourly distribution over the year y. [K]256

CN cycling rate [cycles/year], the yearly temperature cycling frequency257

The parameters have been deducted from Kaaya’s study[43] from aging258

tests for a classic mono-crystalline module with glass/polymer sandwich with259

aluminum frame and are gathered in the following table.260

Degradation
Sub-process

Pre-exponential
constants

Model
parameters

Activation
energies

Hydrolysis Ah = 4.91e7 year−1 n = 1.90 Eah = 0.74 eV
Photo-degradation Ap = 71.83 m2/kWh X = 0.63 Eap = 0.45 eV
Thermo-mechanical At = 2.04 ◦C−1cycle−1 θ = 2.24 Eat = 0.43 eV

Table 2: Parameters from Kaaya et al.[43]
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In past studies,[15,16,43,51] the degradation was evaluated based on con-261

stant weather conditions, and kept constant for the entire lifespan of the PV262

system. Following this approach, the sub-degradation rates are calculated263

for each year and the averages over the 30-year period are taken to calcu-264

late the total degradation rate k in Equation 21 to inject into Kaaya’s model.265

266

Then, this degradation factor is applied to calculate the aged DC power267

at all times t which belongs to year y as follows,268

Pdc,aged(t) = Pdc(t) · ηageing(y) (25)

2.9. Inverter model269

The inverter model calculates the efficiency to convert DC power to AC270

and has been implemented with the PVwatts model[50] with the typical ref-271

erence value ηref = 0.9637 and ηnom = 0.96 as in the equation below272

ηinv =
ηnom
ηref

(−0.0162 · ζ − 0.0059

ζ
+ 0.9858). (26)

where:273

• Pac0, the AC rating power is determined from the DC-to-AC ratio of274

the system, assumed to a generic 1.2 in this study (ie. Pac0 = 0.83 kWp275

if the DC rating power is 1 kWp)276

• ζ = Pdc

Pdc0
with Pdc0 =

Pac0

ηnom
277

Then the AC power output is computed such as278

17



Pac = min(ηPdc, Pac0). (27)

2.10. Definition of the Performance Ratio279

To compare the installation on different climate periods, the PV perfor-280

mance is evaluated over a period of time T , typically a year y or a period281

of 30 years in this study, through the Performance Ratio (PR) defined as in282

the IEC 61724-1[53]283

PR(T ) =
E(T )

EPOA(T )
/

P0

Gref

, (28)

where E(T ) =
∫
T
·Pac(t) dt is the energy output [Wh] from the PV system284

over time T , EPOA(T ) is the total irradiation received from the sun in the285

plane-of-array [Wh/m2] over time T , P0 is the installation DC rated power286

in Wp and Gref = 1000 W/m2 the reference irradiance.287

288

In the next section, the PR is going to be evaluated and broken down into289

two parts: ηageing and the instantaneous part only, PRinstant which will be290

calculated as if aging had no effect with ηageing(y) = 1 over the whole period.291

3. Results292

To assess the impact of climate change on PV systems, climate projections293

are injected into the model chain previously presented and PV performances294

are analyzed on 1990-2080.295
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3.1. Bordeaux study-case296

The location of Bordeaux, France (44.837789, -0.57918) has been selected297

to model an installation of a 1 kWp system, facing south with a 30◦ tilt. The298

15 hourly climate projections generated with respect to the RCP 8.5 scenario299

according to the methodology in Section 2.1 for Bordeaux are first described300

and the installation performances are then investigated.301

3.1.1. Description of the climate projections302

The evolution of the main variables affecting the PV performances of the303

15 climate projections are studied in this section. In order to distinguish304

the main trends over the different periods, the variables are first yearly ag-305

gregated (taking the average for temperature and humidity and the sum for306

irradiations), and, then, the 30-year average on each future period is com-307

pared to the 1990-2020 average for all projections on Table 3.308

309

Different trends can be identified for the different stressors. The ambient310

temperature increases significantly over each period for all climate projec-311

tions. Regarding the evolution of irradiation and UV exposure over time,312

there is no strict consensus among all projections but the median tends to313

slightly increase. As for the relative humidity, the whole distribution tends to314

slightly decrease overall except for one projection per period which increases.315
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2020-2050 2050-2080

Ambient temperature [◦C]
minimum +0.4 +1.6
median +0.9 +2

maximum +1.3 +2.7

In-Plane irradiation [kWh/m2/year]
minimum -12 -31
median +15 +28

maximum +61 +76

In-plane UV exposure [kWh/m2/year]
minimum -0.6 -1.7
median +0.7 +1.4

maximum +3.2 +4.0

Relative humidity [%]
minimum -1.4 -2.2
median -0.4 -1.1

maximum +0.1 +0.1

Table 3: Evolution of the distribution of the main climate variables for all 15 climate
projections for each period compared to the 1990-2020 period

In regards to the main PV stressor, the temperature variations of all cli-316

mate projections are shown in Figure 2. The hourly module temperature317

is filtered when the irradiance is non-null and the yearly average (orange),318

5th quantile (yellow), and 95th quantile (red) are computed for all projec-319

tions. Those variables are then compared to the variations of the yearly320

averaged ambient temperature (blue) similarly filtered over daytime. Over-321

all, the yearly averaged module temperature shares the same trends as for322

the yearly averaged ambient temperature with a rough 2◦C increase for the323

projection median over 2050-2080 compared to 1990-2020. However, the 5th324

and 95th module temperature quantiles increase by around 1.5◦C and 3.5◦C325

respectively on average on 2050-2080 compared to 1990-2020 and accelerate326

the thermo-mechanical processes due to greater temperature cycles.327
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Figure 2: Yearly daytime module and ambient temperatures for all projections on 1990-
2080

3.1.2. Evolution of the performance over time328

After having analyzed the evolution of the climate projections over 1990-329

2080 in the previous section, the performance of the installation being in-330

stalled in 1990, 2020, and 2050 is projected over 30 years and investigated in331

this section.332

333

The installation performance which includes IAM, SMM, soiling, tem-334

perature and inverter losses is first studied through PRinstant while setting335

etaageing(y) = 1 as defined in Section 2.10. For each projection p, PRp
instant(y)336
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is calculated for every year y and is plotted in Figure 3 over the 2020-337

2050 (red) and 2050-2080 (orange) periods. On another note, the historical338

PRinstant,hist = 88.1 % (in black) corresponds to the yearly averaged PRinstant339

over the 1981-2019 period obtained from the ERA5 dataset. Due to the nat-340

ural climate variability, some of the future years are still colder than the341

historical average and would lead to a higher PRp
instant(y) than PRinstant,hist.342

On the other hand, in average, other years have hotter temperature and re-343

sult in the opposite effect with a lower value than the historical one.344

345

In contrast to the expected rise of temperature, the distance of PRp
instant(y)346

to PRinstant,hist stays small when comparing projections to historical values347

at Bordeaux. The averaged PRp
instant(y) projection (red dots) on 2020-2050348

decreases by 1.0 % after 30 years compared to the historical PRinstant,hist and349

drops by 2.2 % in 2080 for the period 2050-2080 (orange dots).350
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Figure 3: PRinstant over time of 15 climate projections on 2020-2050 and 2050-2080 at
Bordeaux

The worst yearly performances are reached with the projection p =ICHEC-351

EC-EARTH-SMHI-RCA4-r1i1p1-rcp85 for the 2020-2050 period and with352

the projection p =IPSL-IPSL-CM5A-MR-SMHI-RCA4-r1i1p1-rcp85 for the353

2050-2080 period. As shown in Table 4, those bad performances are particu-354

larly reached during hot years with long drought periods over summer where355

the production is at its highest peak and is reduced because of high soiling356

losses.357
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Year Climate
projection

PRinstant Average
ambient

temperature

Longest period
without rainfall

over 5mm between
March-November

1991-2019 ERA5 dataset 88.2% ◦C
(average over
1991-2019)

13.7 ◦C
(average over
1991-2019)

62 days (longest
period over
1991-2019)

2044 ICHEC-EC-EARTH-
SMHI-RCA4

81.8% 15.6 ◦C 82 days

2068 IPSL-IPSL-CM5A-
MR-SMHI-RCA4

85.8% 17.33◦C 161 days

Table 4: Worst performances over 2020-2050 and 2050-2080 compared to ERA5 dataset

The PRinstant variations from year to year of the climate projections also358

seem to increase compared to the historical PRinstant,hist variations. Espe-359

cially, the ERA5 historical standard deviation is 0.52%, and the median over360

all 15 climate projection standard deviations increases to 0.65% over 2020-361

2050 and to 0.83% on 2050-2080. Then, the performance decreases but also362

varies more from year to year because of climate change.363

364

In regards to aging, the distribution of the 30-year averaged degradation365

rate kp
30year for all projections is shown in Figure 4 for each climate period.366

The degradation coefficient k30year increases slightly over each period and this367

trend is the result of the increase of all individual degradation sub-processes368

kH,30year, kP,30year, kTm,30year.369
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Figure 4: Degradation rate k30year distribution on different climate periods

In Figure 4, the aging component ηpaging(y) is calculated for every sin-370

gle projection p on 2020-2050 (red) and 2050-2080 (orange). The historical371

trend (black) ηaging,hist has been calculated by injecting the ERA5 1981-2019372

historical averaged degradation rate k = 0.37 year−1 in Kaaya’s model pre-373

sented in Section 2.8. Overall, the difference between the climate projections374

and the historical trend is rather small. The averaged ηpaging(y) over the pro-375

jections accounts for a decrease of only 0.2% after 30 years on 2020-2050 and376

0.9% after 30 years on 2050-2080.377
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Figure 5: ηaging over time of 15 climate projections on 2020-2050 and 2050-2080 at Bor-
deaux

When correctly applying aging to calculate the PR for each year as in378

Equation 28 for each projection p, PRp(y) decreases over the future periods379

as shown in Figure 6. Compared to the historical PRhist(y) defined as the380

product of ηpower,hist and ηaging,hist(y), the PRp(y) average is decreased by381

1.1 % and 2.5 % after 30 years for the time period 2020-2050 and 2050-2080382

respectively.383
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Figure 6: Evolution of the PR in Bordeaux, for all 15 climate projections on the time
period 2020-2050 and 2050-2080

3.1.3. Lifetime performance384

From a lifetime perspective, the performance of the installation can also385

be calculated by integrating the PV energy output and received irradiation386

over the whole 30-year period as defined in Equation 28 for each projection387

p and period (1990-2020, 2020-2050 or 2050-2080) to get PRp
30year(period).388

Figure 7 offers then an alternative representation, as a violin distribution plot389

(similar to a y-centered density curve, the width representing the frequency390

of data points in each region), of the PR30year for all climate projections on391

the three periods under study.392

393

Due to climate change, the median of the PRp
30year(period) distribution394
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over the projections tends to decrease from 77.1 % for the 1990-2020 period395

through 76.4 % on 2020-2050 to 75.1 % on 2050-2080. On the other hand, the396

spread between the minimal and maximal PRp
30year(period) over the 15 pro-397

jections slightly increases starting with a range spread of 0.7 % on 1990-2020,398

1.2 %on 2020-2050 and 1.9 % on 2050-2080. This particularly emphasizes399

more uncertainty associated to more future periods.400

Figure 7: Violin density plots of the PR
for the 15 climate projections on the three
periods under study at Bordeaux

Figure 8: Violin density plots of the ∆PR

for the 15 climate projections on the three
periods under study at Bordeaux

To show how the projection performances vary over each period rela-401

tively to the recent past period 1990-2020, Figure 8 displays the relative402

∆p
PR(period) for every trajectory p defined as ∆p

PR(period) = PRp
30year(period)−403

PRp
30year(1990-2020). The variations are still limited compared to the abso-404

lute PR30year with a median decreasing by 0.9 % on 2020-2050 and 2.0 % on405

2050-2080 compared to 1990-2020.406

407
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3.1.4. Loss breakdown evolution over time408

In order to better understand the evolution of the performance over time,409

each individual loss is analyzed. To that aim, the IAM, soiling, inverter,410

temperature, aging losses and spectral correction (SMM) are calculated over411

the installation lifetime for each climate period as follows.412

• IAM losses are a function of the irradiation GPOA,iam including the

indice angle modifications and the global irradiance in the plane of

array GPOA:

IAMloss = 1−
∫

GPOA,iam(t) dt/

∫
GPOA(t) dt (29)

• SMM losses are calculated as a function of the Spectral Mismatch Mod-

ifier SMM , GPOA,iam and GPOA:

SMMloss = 1−
∫

GPOA,iam(t) · SMM(t) dt/

∫
GPOA(t) dt (30)

• Soiling losses are calculated as a function of the Soiling Rate SR,

GPOA,iam and GPOA:

Soilingloss = 1−
∫

GPOA,iam(t) · SR(t) dt/

∫
GPOA(t) dt (31)

• Temperature losses are calculated as a function of the effective irradi-

ation GPOA,eff , the temperature coefficient γ and the module temper-

ature Tmod:

Temploss =

∫
GPOA,eff (t)·γ·(Tmod(t)−25◦) dt/

∫
GPOA,eff (t) dt (32)
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• Ageing losses are calculated as a function of the non-aged and aged DC

power, respectively Pdc and Pdc,aged:

Ageingloss = 1−
∫

Pdc,aged(t) dt/

∫
Pdc(t) dt. (33)

• Inverter losses are calculated as a function of the AC power Pac and

the aged DC power Pdc,aged:

Inverterloss = 1−
∫

Pac(t)dt/

∫
Pdc,aged(t) dt. (34)
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Figure 9: Losses for all 15 climate projections on the three periods under study at Bordeaux

The different losses have been calculated for each climate period as shown413
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in Figure 9 and have different trends over time.414

• The IAM losses tend to very slightly decrease over time. Among all415

projections, there is a slight tendency for the share of the direct irra-416

diation over the global irradiation to increase. Following Martin and417

Ruiz’s approach[35] to calculate the IAM loss factors as described in418

Section 2.3.1, the loss coefficient for the direct irradiance component419

is lower than the diffuse and the ground factors in average. Then, the420

overall reflection losses tend to very slightly decrease since the share of421

the irradiation being transferred to the direct component benefit from422

a lower IAM loss coefficient.423

• The spectral mismatch modifier translates for the gain/loss in irradi-424

ance because of the deviation in solar spectrum compared to the refer-425

ence AM 1.5 standard spectrum and this is actually a gain in average426

for the study case. This correction is then displayed with negative val-427

ues in the figure above. With regards to time, this modifier decreases,428

almost imperceptibly, according to the model presented in Section 2.3.3429

since there is more precipitable water on average in the future projec-430

tions because of of higher ambient temperatures.431

• Soiling losses increase slightly with the median going up by 0.3% be-432

cause of longer drought periods with too few rainfalls in future periods.433

More specifically, the median over all climate projections of the longest434

period between two 5mm/day rainfall episodes goes from 76 days on435

1990-2020 to 93 days for 2050-2080.436

• Temperature and aging losses increase because of a higher ambient437
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temperature average as expected but it is also the result of higher438

temperature peaks in the module during sunny hours.439

• Inverter losses stay constant at 4.4 % over time since the overall DC440

production level does not significantly change.441

Among all losses, temperature and aging losses have the highest varia-442

tions and set the overall trend on the PR variations over time.443

444

3.2. Impact of the PV temperature characteristics, orientation and location445

PV systems can have a wide variety of design parameters that can in-446

fluence their performances. In order to better evaluate their effect, different447

configurations are compared to the initial base case with regard to the tem-448

perature parameters, orientation, and location in France.449

3.2.1. Impact of the temperature characteristics450

The module losses can change due to different module technology sensi-451

tivity and building integration. In this section, two simulations are run to452

quantify those changes.453

1. The first sets back γ, the efficiency loss coefficient to a more conserva-454

tive -0.3%/◦C.455

2. The second simulation (BIPV) consists of modeling the building inte-456

gration by changing the coefficients for the temperature model in Sec-457

tion 2.6 to U0 = 20 W
m2K

, U1 = 3.2 W
m2K(m/s)

as suggested by PVGIS.[54]458

The two simulations are compared in Figure 12 to the base case (orange)459

with the assumptions applied in the rest of the study with γ = −0.45◦C and460
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U0 = 26.9 W
m2K

, U1 = 6.2 W
m2K(m/s)

461

Figure 10: Performance Ratio over 30 years ∆PR(period) on the 15 climate projections
with different temperature parameters for different climate periods

Temperature losses are reduced when using a more conservative temper-462

ature coefficient, γ = 0.30%, and the PR distribution is slightly higher than463

the base case. In regards to the evolution over time, the temperature loss464

variation between 1990-2020 and 2050-2080 is also reduced. However, the465

other losses such as aging, IAM/SMM, soiling etc. stay the same and the466

order of magnitude of the PR loss over time is nearly similar to the base467

case. In comparison to 1990-2020, the PR median decreases by 1.6 % when468

γ = 0.30 %/ ◦C and 2.0 % for the base case.469

470
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For the BIPV simulation, the temperature and aging losses are signifi-471

cantly higher and decrease the PR distribution median on 1990-2020 from472

77.1 % (base case) to 72.7 %. A slightly more important decrease in per-473

formance between 2050-2080 and 1990-2020 is observed with the PR median474

decreasing by 2.1 % due to higher module temperatures. This decrease is475

similar to the base case in absolute numbers but is higher, relatively to the476

initial PR value and accentuates the effect of climate change .477

3.2.2. Impact of the tilt and azimuth478

In this section, the sensitivity of the installation orientation is studied.479

The performance losses between 2050-2080 and 1990-2020 have been com-480

puted for the 15 climate projections for different orientations as shown in481

Figure 11. More precisely, those are computed for realistic orientations with482

tilts and azimuths going from 0◦ to 90◦ and 60◦ to 300◦ respectively with a483

step of 5◦.484

35



Figure 11: Performance Ratio loss on 2050-2080 compared to 1990-2020 (Distribution
median) as function of the tilt and azimuth

Overall, the performance reduction ranges from 1.7 to 2 %. Some of the485

losses such IAM, SMM, soiling and inverter losses have globally a symmetric486

effect with regards to the orientation east/west. More specifically, IAM and487

SMM lead to slight differences compared to the base case when the angle488

of incidence becomes significant and small differences in the IAM and SMM489

factors induce higher changes on the performance. Next, soiling is usually490

larger in summer because of slightly longer drought periods than the rest491

of the year. Then, those losses become less variable over time with the492

orientations which make the irradiation more evenly distributed over the493

whole year. The variations in inverter losses over time as a function of the494
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orientation are negligible compared to the rest of the losses.495

With regard to temperature and aging losses, those effects are a bit more496

asymmetric. This can be explained by the ambient temperature rise which497

becomes higher in the afternoon than in the morning on average over the498

fifteen climate projections. Then, the orientations which concentrate most of499

the received irradiation in the afternoon demonstrate higher temperature and500

aging losses than the base case. For instance, this particularly disadvantages501

installations that are orientated west which receive most of the irradiance at502

higher temperatures.503

504

In the end, the orientation impacts the performance loss through different505

mechanisms but the overall order of magnitude is conserved around 1.9 - 2%506

for the most typical orientations facing somewhat south with low/moderate507

tilt.508

3.2.3. Impact of the location in metropolitan France509

The same methodology has been applied on four other cities in the French510

metropolitan territory to investigate potential different trends. In Table 5,511

the latitude, the longitude are collected, and the average module tempera-512

ture when the irradiance is non-null and the PRp
30year(1990-2020) distribution513

over all projections are computed over the whole lifetime on 1990-2020 for514

each city. The PRp
30year(1990-2020) distributions on the recent past period515

differ softly from one city to the other according to their local environmental516

conditions. For instance, the most southern cities such as Nı̂mes and Bor-517

deaux have lower PRs due to higher ambient temperatures while Paris and518
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Nantes have better PRs.519

Latitude /
Longitude

ERA5 dataset

average daytime

module temperature

PR30year on 1990-2020 [%]

min median max
Paris 48.782 / 2.191 20.2◦C 79.2 80.0 80.4
Nantes 47.183 / -1.617 21.4 ◦C 78.7 79.4 79.4
Grenoble 45.216 / 5.847 21.6 ◦C 77.5 78.2 78.5
Bordeaux 44.837 / -0.579 24.6 ◦C 76.8 77.1 77.3
Nı̂mes 43.762 / 4.416 26.6◦C 76.2 76.8 77.3

Table 5: Coordinates and 30-year Performance Ratio PR30year distribution of all climate
projections on 1990-2020 of several metropolitan French cities

The relative performance ratios compared to 1990-2020 ∆p
PR(period) for520

all climate projections are shown in Figure 12. Very similar trends are ob-521

served for all cities with a median decreasing by around 0.5-1% on 2020-2050522

compared to 1990-2020 and 1.5-2% on 2050-2080.523

524
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Figure 12: Relative Performance Ratio over 30 years ∆PR(period) on the 15 climate
projections for different climate periods compared 1990-2020

Some very slight differences still exist among the different cities which525

can be mostly explained by aging and soiling effects. For instance, Paris has526

a slightly smaller performance reduction than Nantes because Paris observes527

a smaller increase in module temperatures both in average and peaks. This528

particularly leads to a lower increase in aging losses for Paris through the529

degradation models exposed in Section 2.8. Also, one must note that the530

temperature losses increase less for Paris than Nantes for the same reasons531

but those loss variations between the two cities are negligible compared to532

the changes in aging losses.533

Then soiling also participates to slightly differentiate the city performances.534

For example, Paris sees its drought periods slightly increasing in the future535
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but Bordeaux has much longer periods compared to the past and its impact536

on the performance over time is much more significant. The difference re-537

garding the increase in soiling losses is in the order 0.1 % when comparing538

both cities.539

However, from a general perspective, the order of magnitude of the perfor-540

mance losses over the different cities is very similar.541

4. Discussion542

The study has been focused on the effect of climate change in France543

for a mono-crystalline silicium open rack installation with a glass/polymer544

sandwich and aluminum frame, which is currently one of the most common545

technology. Quantifiable through the PhotoVoltaic Climate Zones (PVCZ)546

from Karin et al.,[55] the results could be extrapolated to other places with the547

same climate zone. France is mostly situated in the moderate climate within548

’T3:H4’ to ’T5:H4’ zones (Cfb, Csa, Csb for Koppen Geiger climates) for549

the studied cities when inferring from coordinates for an open-rack mounted550

systems with Karin’s tool.[56] Then, those results might also be applicable551

to other areas with the same climate zone which would witness the same552

increase in temperature such as most of the southern part of Europe, the top553

north of Africa and a portion of USA.554

555

As exposed in Section 3.2.1, different module temperature configurations556

can slightly alter the end results and the heat island effect would potentially557

impact their amplitude. Unfortunately, the grid spacing of 8km from the558

ERA5 reanalysis is too large to take this local effect into account. Then, an559
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additional study with tools such as the urban weather generator to evaluate560

the effects of the heat island effect on the performance would potentially561

show more severe results because of higher temperature swings.562

563

The model chain in Section 2 would also benefit from some uncertainty564

analysis. For instance, the NREL algorithm estimates the sun elevation and565

azimuth with a great accuracy of +/-0.0003◦ while the root mean square566

error from the transposition model could amount up to 100 W/m2.[28] Also,567

the presented PVWatts model[50] is known to have some inaccuracy at low568

light levels. Then, some analysis would help to quantify which link has the569

highest degree of uncertainty in regards to the final results.570

571

The chosen aging model from Kaaya et al.[43][51] was not built to study cli-572

mate change on the PV system and ineluctably has some drawbacks. Model573

parameters are calibrated according to only one technology and might not be574

adapted to some others. Also, a yearly dynamic degradation rate taking into575

account the environmental conditions associated with a degradation-memory576

term would be more realistic to reflect the year-to-year variations due to ag-577

ing.578

The chosen degradation model from Kaaya et al.[43][51] also takes into account579

for module degradation only and considering system-level degradation would580

enable to have more representative insights. Those extra degradations could581

stem from inverter, curtailments, or protection devices (fuse, breakers) as582

mentioned by Bollinger et al..[7] Their effects are sometimes non-linear and583

their interactions with environmental conditions/time are complex to model.584
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Thus, the module accounts for an important share of the system degrada-585

tion but an extra degradation layer reflecting the system degradation would586

potentially worsen the presented results.587

588

Beyond the limitations listed above, failures and other losses are not in-589

cluded in this paper and these could play a significant role in performance.590

Usually assumed constant, mismatch and wiring losses have not been in-591

cluded in the study since it is assumed that they do not originate from mete-592

orological features and would not vary from different environment conditions593

because of climate change.594

However, on the AC side, more hot hours would make the inverter operate595

under temperature derating and reduce temporarily the total performance of596

the photovoltaic installation. Higher ambient temperatures would also speed597

up the inverter’s end of life from a reliability perspective[57].[58]598

On the DC side, more frequent and severe failures might also appear in599

warmer conditions and decrease the performance. According to Aghaei et600

al.,[59] some of the primary stress factors affecting PV reliability include irra-601

diance, temperature, moisture and chemicals. Several failures models such as602

PID,[60] LID or LeTID[61] incorporate the module temperatures and humidity603

as inputs and would increase the power loss under warmer conditions. Also,604

constant high temperatures are detrimental to bypass diode and junction box605

function and can increase failure rates.[62]606

Then, investigating the climate change effects on failures would complete this607

study to more accurately assess PV performance in warmer weather condi-608

tions.609
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610

While climate change affects module performance, future technologies611

might also be more and more resilient to climate change. Motivated by612

market competition, PV suppliers aim at producing PV panels with longer613

lifetimes and lower sensitivity to module temperature. Then, the effect of614

climate change on the performance might even more be reduced due to those615

improvements.616

5. Conclusion617

In this article, a model chain was established in order to propagate cli-618

mate projections and quantify the effect of climate change on photovoltaic619

performance for any installation. To this end, the hourly AC power produc-620

tion taking into account natural aging was obtained through a collection of621

models that were used to estimate the Performance Ratio, the standard mea-622

sure, to compare PV performance over different periods of time. Long-term623

increases in ambient temperatures due to climate change were shown to re-624

duce energy generation mainly through two factors: instantaneous decreases625

in yield due to a negative temperature coefficient and accelerating natural626

aging mechanisms that are temperature dependent. In the presented case627

studies, longer drought periods in the future also seem to enhance soiling628

losses due to a lower natural cleaning frequency from the precipitations.629

630

The performance of a mono-crystalline open-rack photovoltaic installa-631

tion was simulated in different cities in France in the close past period 1990-632

2020, the near future 2020-2050, and ahead to 2050-2080 following the most633
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pessimistic climate scenario RCP 8.5. It was found that the aging compo-634

nent varies at most by 0.9 % in the furthest projection period compared to635

the recent past period and that the instantaneous temperature-dependent636

component has a negative impact on the performance with a 1% and 2.2%637

decrease after 30 years of operation on 2020-2050 and 2050-2080 respectively638

at Bordeaux. On top of that, the year-to-year variation of the instantaneous639

performance component has a tendency to increase over time. When look-640

ing at some other cities in France, a decrease of less than 3% was observed641

in the performance ratio for almost all projections. Overall, it can be con-642

cluded that the effect of climate change in the regions studied and through643

the mechanisms explored in this study are limited in magnitude.644
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A. Appendix: climate data processing652

Fifteen climate models are extracted from EURO-CORDEX-11 and are653

bias-corrected to fit the variable distributions on the reference period 1981-654
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2019 on the ERA5 dataset of the chosen location. Then, the three-hourly655

time series are converted into hourly in order to be ready to be injected in656

the models Section 2.657

A.1. Used climate projections658

Table 6 describes the global and regional models used for the 15 models659

in this study.660

A.2. Bias correction661

In order to correct the bias in climate model outputs because of the662

location constraints, two bias correction methods of the quantile-quantile663

correction type are adopted: the Q-MAP and the CDF-t methods. The664

general principle is to correct the distribution of a variable of the climate665

model output using the distribution of the same variable from the reference666

dataset on the reference period 1981-2019.667

To avoid introducing a bias during the correction, the correction methods668

are applied over the periods by month and by hour for each variable in order669

to eliminate the seasonal and diurnal cycles.670

A.2.1. The Q-MAP method671

For any selected period, reference or other, the Q-MAP[23–25] method cor-672

rects a distribution quantile by quantile so that the quantiles match those673

of the reference distribution. If it is assumed that the distribution on future674

periods is the same as the reference, this method is particularly suited.675

676

As for the method, let Fref be the cumulative density function (CDF) of677

the reference dataset ERA5 of a climate variable, such as temperature, over678
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Driving Global
Climate Model
(realization)

Regional
Climate Model

Institute

ICHEC-EC-EARTH
(r1i1p1)

COSMO-crCLIM-v1-1 Zurich Federal Institute of Technology (ETH
Zurich)

ICHEC-EC-EARTH
(r1i1p1)

RegCM4-6 Abdus Salam International Centre for Theo-
retical Physics (ICTP)

ICHEC-EC-EARTH
(r1i1p1)

RACMO22E Royal Netherlands Meteorological Institut
(KNMI)

ICHEC-EC-EARTH
(r1i1p1)

RCA4 Swedish Meteorological and Hydrological In-
stitute (SMHI)

IPSL-IPSL-CM5A-MR
(r1i1p1)

RACMO22E Royal Netherlands Meteorological Institut
(KNMI)

IPSL-IPSL-CM5A-MR
(r1i1p1)

RCA4 Swedish Meteorological and Hydrological In-
stitute (SMHI)

MOHC-HadGEM2-ES
(r1i1p1)

ALADIN63 Centre National de Recherches
Météorologiques (CNRM)

MOHC-HadGEM2-ES
(r1i1p1)

RACMO22E Royal Netherlands Meteorological Institut
(KNMI)

MOHC-HadGEM2-ES
(r1i1p1)

RCA4 Swedish Meteorological and Hydrological In-
stitute (SMHI)

MPI-M-MPI-ESM-LR
(r1i1p1)

ALADIN63 Centre National de Recherches
Météorologiques (CNRM)

MPI-M-MPI-ESM-LR
(r1i1p1)

RegCM4-6 Abdus Salam International Centre for Theo-
retical Physics (ICTP)

MPI-M-MPI-ESM-LR
(r1i1p1)

RACMO22E Royal Netherlands Meteorological Institut
(KNMI)

NCC-NorESM1-M
(r1i1p1)

COSMO-crCLIM-v1-1 Zurich Federal Institute of Technology (ETH
Zurich)

NCC-NorESM1-M
(r1i1p1)

ALADIN63 Centre National de Recherches
Météorologiques (CNRM)

NCC-NorESM1-M
(r1i1p1)

RegCM4-6 Abdus Salam International Centre for Theo-
retical Physics (ICTP)

NCC-NorESM1-M
(r1i1p1)

RCA4 Swedish Meteorological and Hydrological In-
stitute (SMHI)

Table 6: EURO-CORDEX models
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the reference period 1981-2019. More specifically, the function Fref indicates679

the probability that a value X is less than or equal to a value x, where680

Fref (x) = PX(X ≤ x). In the same way, Fmod is the CDF of one of the681

climate models on the same variable and period. Then for all model values682

xmod, it exists a reference value xref so that683

Fref (xref ) = Fmod(xmod) (35)

From this relation, the transfer function T can be deducted based on684

CDFs on the common reference time period 1981-2019 and the T function685

can then be applied to the same variable on future periods of the climate686

model.687

T = (F−1
ref ◦ Fmod) (36)

A.2.2. The CDF-t method688

The CDF-t (Cumulative Density Function - transform)[22] can be seen689

as a variant of the Q-MAP method but it differs by allowing distribution690

changes over time. The CDF-t method conserves the relative variations over691

time of the cumulative density function of the climate model variable before692

correction and after correction.693

From a modeling perspective, let FH
ref be the reference cumulative dis-694

tribution function of an ERA5 variable over the reference period 1981-2019.695

Similarly, let FH
mod and F F

mod be the CDFs of the same variable from a cli-696

mate model over the reference period 1981-2019 and over a future period697

respectively.698
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It is possible to obtain the reference CDF F F
ref on the future period since699

the evolution of the CDFs over time must be respected with the following700

equation701

(F F
mod)

−1 ◦ FH
mod = (F F

ref )
−1 ◦ FH

ref (37)

By recombining the Equation 37, it is possible to find the bias-corrected702

CDF F F
ref and later find the transfer function as for the Q-MAP method.703

F F
ref = FH

ref ◦
(
FH
mod

)−1 ◦ F F
mod (38)

The CDF-t method is a non-stationary bias correction method that takes704

into account a change in the distribution of the variable over time, which is705

not possible with the Q-MAP method.706

Hourly interpolation707

Since hourly values are needed for the model chain Section 2, the bias-708

corrected climate projections are post-processed with a Hermite cubic inter-709

polation[26,27] into hourly values.710

711

It is important to note that this interpolation from three-hourly to hourly712

data can introduce a bias in the auto-correlation of wind speeds, with poten-713

tially higher final auto-correlations than in the hourly reference data. Also,714

one must note that ERA5 wind data have a defect in the diurnal cycle (as715

mentioned in ERA5 documentation[21]), which may induce a bias in the di-716

urnal cycle of the final wind speeds obtained.717
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