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1. Introduction
Uncertainty prediction is a challenging topic, important in probabilistic forecasting as well as in data assimila-
tion (DA) for example, in variational DA to improve the specification of the background term (Buehner, 2005; 
Lorenc, 2003). One of the main theoretical backbone in DA is given by the Kalman filter equations that applies 
for linear dynamics, but that cannot be used for large systems because the numerical cost to predict the error 
covariance becomes prohibitive. Hence, approximations of the KF have been proposed, as the ensemble Kalman 
filter (EnKF) where the error covariance matrices are approximated from ensemble estimation (Evensen, 2009).

The EnKF is widely used and has shown to perform well for many applications in geosciences for example, 
for the weather prediction (Houtekamer & Mitchell, 2001), or for the radiation belts prediction (Bourdarie & 
Maget, 2012). Radiation belts dynamics modeling consist in estimating quantitatively the fluxes of high ener-
getic electrons and protons trapped in the Earth magnetic field using a typical advection-diffusion equation. 
This region spans from 1 Earth Radius up to 8, thus encompassing all typical satellites orbits, with which such 
particles can strongly interact and induce minor to critical onboard anomalies. Compared with global prediction, 
radiation belts predictions are performed on a limited and non-periodic domain where the boundary imposes 
conditions to the dynamics of the electrons and protons. Indeed, on one side, the outer boundary condition (BC) 
is considered as the prime access for fresh materials, coming from the so-called magneto-tail, and is typically 
modeled as an imposed Dirichlet condition at this altitude (8 Earth radii) that can evolve as a function of solar 
activity (e.g., energy spectrum reshaping from time to time) (Maget et al., 2015). On the other side, close to the 
Earth, the atmosphere implies a necessary fixed Dirichlet condition too, as all radiation belts particles coming 
down there are absorbed (e.g., distribution always equal to 0). Finally, for low energy boundary we expect to 
rely on a Neumann condition to limit naturally any escape of particles or artificial source. Nonetheless, when 
performed on limited area models, atmospheric prediction also present such kind of boundaries.

Abstract This paper is a contribution to the exploration of the parametric Kalman filter (PKF), which is 
an approximation of the Kalman filter, where the error covariances are approximated by a covariance model. 
Here we focus on the covariance model parameterized from the variance and the anisotropy of the local 
correlations, and whose parameters dynamics provides a proxy for the full error-covariance dynamics. For this 
covariance model, we aim to provide the boundary condition to specify in the prediction of PKF for bounded 
domains, focusing on Dirichlet and Neumann conditions when they are prescribed for the physical dynamics. 
An ensemble validation is proposed for the transport equation and for the heterogeneous diffusion equation over 
a bounded 1D domain. This ensemble validation requires to specify the auto-correlation time-scale needed to 
populate boundary perturbation that leads to prescribed uncertainty characteristics. The numerical simulations 
show that the PKF is able to reproduce the uncertainty diagnosed from the ensemble of forecast appropriately 
perturbed on the boundaries, which show the ability of the PKF to handle boundaries in the prediction of the 
uncertainties. It results that Dirichlet condition on the physical dynamics implies Dirichlet condition on the 
variance and on the anisotropy.

Plain Language Summary This work addresses the question of the uncertainty prediction 
in bounded domains. It contributes to explore a theoretical formulation of the uncertainty prediction, the 
parametric Kalman filter, that opens the way to data assimilation in real applications where the boundaries are 
important, such as in radiation belts predictions, air quality, or wild-land fire; or the exploration of the coupling 
of the uncertainty in the atmosphere-ocean coupled system.
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In weather forecasting over local-area domains, the importance of the boundary has been identified from sensi-
tivity studies showing that errors may be traced back to the boundaries Errico et al. (1993). Hence, inaccurate BC 
may result in large forecast errors (Vukicevic & Errico, 1990; Vukicevic & Paegle, 1989; Warner et al., 1989). 
However, in preliminary studies on the potential of EnKF applied to local-area models (LAM), no perturbations 
of the BC were considered (Dowell et al., 2004; Snyder & Zhang, 2003), leading to a loss of variance as lead time 
increases (Nutter, Stensrud, & Xue, 2004; Nutter, Xue, & Stensrud, 2004). Note that, this loss of variance also 
occurs for the Kalman filter prediction step for example, in a transport equation over 1D limited-area domain, 
when the boundary condition is not well formalized in the dynamics, the inflow of variance is null at the inlet of 
the domain (see Appendix A). This issue can be solved from the formalism of the Kalman filter as used in opti-
mal control, by considering that the boundary is an uncertain command as done in for example, heat conduction 
estimation (Scarpa & Milano, 1995). In the community of the EnKF for LAMs, the loss of variance is avoided by 
perturbing the BC (Nutter, Xue, & Stensrud, 2004), for example, by modeling the spatial and temporal covariance 
relationship of the boundary condition based on the use of multivariate covariance model or by using BC which 
derives from an ensemble on a larger domain (Torn et al., 2006), even if for the latter approach, the consistency 
across multiple domains is difficult to handle (Houtekamer & Zhang, 2016, Section 6.a). Note that in variational 
DA for LAMs, it is possible to include the uncertainty on the boundary 4DVar through the adjunction of a cost 
function term that constraints the increment or its tendency at the boundary (Gustafsson, 2012), which is a way 
to avoid the loss of variance above mentioned for the EnKF and for the KF.

In radiation belts where there is no larger model and thus no ensemble from which perturbation on the boundary 
can be introduced, we are interested by sampling boundary perturbations from a spatio-temporal covariance 
model. However, because the solar activity is non-stationary, we need to develop perturbations of the BC that 
are heterogeneous and non-stationary that is, with varying time auto-correlation, in place to the auto-regressive 
model often used but for which the time auto-correlation is constant (Torn et al., 2006). Moreover, we want to 
reduce the numerical cost of using an EnKF while keeping the uncertainty dynamics it provides. This motivation 
can also be encountered in the development of the assimilation scheme for operational model in air quality, that 
deals with hundreds of chemical species, and for which the numerical cost of an integration is large. For instance, 
in the operational air quality model MOCAGE developed at Météo-France, the assimilation relies on a 3D-FGAT 
approach (Amraoui et al., 2020; Massart et al., 2010), without ensemble, and it would be interesting to introduce 
flow-dependency of the background term while accounting for the transport of the boundary uncertainty during 
the assimilation at regional scale.

Recently another approximation for the KF, different from the EnKF, has been introduced, the parametric Kalman 
filter (PKF), where the error covariance matrices are approximated from a covariance model (Pannekoucke 
et al., 2016). In the PKF, the dynamics of the parameters provides a proxy for the dynamics of the full covariance 
matrix. For instance, covariance model parameterized from the variance and the anisotropy of the local correla-
tion functions are able to predict the dynamics of the covariance matrix for transport equations (Cohn, 1993), but 
at a numerical cost equivalent to three time the integration of the transport (Pannekoucke, 2021a; Pannekoucke 
et al., 2018). In addition, the PKF provides an understanding of the uncertainties dynamics, which is less obvious 
to determine from an ensemble estimation alone. For instance, when considering a transport, the PKF equations 
for the error statistics consist in: the advection of the error variance without source term, meaning that the magni-
tude of the error variance is conserved; and the advection of the anisotropy plus a source term that corresponds to 
the deformation of the anisotropy due to the local shear (Pannekoucke, 2021a). As another example, when consid-
ering now a conservative dynamics or a non-linear Burgers dynamics (in the tangent-linear approximation for the 
error statistics), a source term appears in the PKF equation for the error variance which is related to high gradient 
area that can be interpreted as a production term similar to the one encountered in turbulence (Pannekoucke 
et al., 2018). These examples of physical interpretations of the dynamics of the error statistics, as it is provided 
by the PKF equations, are less easy to deduce from the ensemble estimation while the effects of these processes 
can be observed. Note that data-driven modeling leveraged on deep-learning, especially physics-informed neural 
network (Raissi et al., 2019), can be considered to determine the dynamics of the error statistics (Pannekoucke & 
Fablet, 2020). On the other hand, it is not necessarily easy to interpret all terms in the PKF equations for example, 
when considering a diffusion equation, for which the PKF shows a coupling between the error variance and the 
anisotropy, it is hard to physically explain terms in square of the gradient of the anisotropy. In this way, the PKF 
can contribute to improve the understanding of other topics of interest in DA for example, in the characteriza-
tion of the dynamics of the model-error covariance due to the spatial and temporal discretization of a transport 
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equation (Ménard et al., 2021; Pannekoucke et al., 2021). The PKF is interesting to provide a flow dependency 
of the background error covariance matrix in variational DA for example, by providing a proxy for the diffusion 
tensor of the day in the covariance model based on the diffusion equation (Pannekoucke et  al., 2016); or by 
providing the variance of the day in presence of model error thanks to the PKF dynamics of the variance, as in the 
assimilation of GOSAT methane observations using the hemispherical community multiscale air quality model 
(Voshtani et al., 2022). While the PKF has been mainly developed in univariate statistics, an exploration has 
begun to develop a multivariate statistics formulation (Perrot et al., 2023). At a more theoretical level, the para-
metric formulation has been considered to describe the covariance dynamics of white noise error in a conserva-
tive equation (Gilpin et al., 2022). Hence, the PKF approach seems promising to tackle the issues encountered in 
the development of the DA for radiation belts and air quality.

Until now, the PKF has been explored mainly on periodic 1D or 2D domains, where it has been shown to 
reproduce interesting features of the uncertainty dynamics in linear problem for example, for the transport 
(Pannekoucke, 2021a), as well as for non-linear dynamics at the second order for example, for the non-linear 
advection-diffusion equation (Pannekoucke et al., 2018). Note that the non-linear extension of the PKF relies on 
a tangent-linear evolution of error, with a feedback of the uncertainty on the dynamics of the mean through the 
error-variance (i.e., a fluctuation-mean interaction), leading to a Gaussian second-order filter (Jazwinski, 1970, 
Section 9.3). However, to go ahead toward real applications, and especially applications in bounded domains, 
appropriate specification of BC of the error statistics is needed for the PKF dynamics. To do so, we propose to 
explore the specification of the BC for the PKF when Dirichlet and Neumann conditions are considered in the 
physical dynamics. This exploration focuses on two dynamics of interest for our applications: the transport equa-
tion for example, for air quality or weather prediction; and the diffusion equation for example, for radiation belts 
prediction or uncertainty dynamics in boundary layer for air quality. The paper focuses on the forecast step, and 
the assimilation step is not addressed here.

The paper is organized as follows. First, the background of the PKF is reminded in Section 2. Then, Section 3 
details how to specify the PKF conditions at the boundary for the forecast for the Dirichlet and the Neumann 
conditions. The ensemble validation of the BC for the PKF needs an ensemble of forecasts. To do so, an inter-
mediate Section 4 will detail how to specify BC in an EnKF experiment that produces desired error statistics. 
This is an important contribution of the paper in order to validate the specification of the BC of the PKF, where 
the numerical validation is presented in Section 5. Conclusions and perspectives are given in the last Section 6.

2. Background on the PKF Forecast Step
This section gives a self contained introduction to the PKF, applied for a particular covariance model. First, the 
prediction step of the Kalman filter applied on a linear dynamics is reminded. Then, the formalism of the PKF is 
presented, followed by the illustration on two dynamics: the transport equation, important in geosciences, and the 
diffusion equation important in radiation belt dynamics community.

2.1. Kalman Filter Forecast Step

Here we consider the prediction of a univariate physical field χ(t, x) defined on a domain Ω of dimension d and 
coordinate system 𝐴𝐴 𝐱𝐱 =

(

𝑥𝑥𝑖𝑖
)

𝑖𝑖∈[1,𝑑𝑑]
 , whose dynamics is given by

𝜕𝜕𝑡𝑡𝜒𝜒 = (𝜕𝜕𝜒𝜒), (1)

where 𝐴𝐴  stands for a function of the state χ and of its spatial derivatives, ∂χ, which is a shorthand for the partial 
derivative with respect to the spatial coordinates at any arbitrary orders, with the convention that order zero 
denotes the field χ itself. Thereafter, for the sake of simplicity, 𝐴𝐴  is assumed linear but the formalism extends to 
the non-linear framework (Pannekoucke & Arbogast, 2021; Pannekoucke et al., 2018). Note that χ can be either 
continuous or discrete (the discretized version of the continuous field): the discrete case leads to matrix algebra 
relations for example, 𝐴𝐴  is replaced by its matrix formulation M.

Hence, for a time integration over a time window [0, T], the dynamics Equation 1 is written as

𝜒𝜒(𝑇𝑇 ) = 𝐌𝐌𝑇𝑇←0𝜒𝜒(0), (2)
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where MT←0 denotes the propagator associated with the time integration of Equation 1 over [0, T]. Compared 
to the classical formulation of the Kalman filter equations, we do not consider here the model error because we 
won't try to characterize it here, while it can lead to spurious time evolution of ensemble error statistics compared 
to the true dynamics, as it has been shown using the PKF in previous contributions (Ménard et  al.,  2021; 
Pannekoucke, 2021a; Pannekoucke et al., 2021; Perrot et al., 2023).

In real applications, the spatio-temporal heterogeneity of the observation network, as well as the model error, 
imply that χ is not known exactly. The true state of the system is denoted by χ t. The analysis state, that is the 
estimation of the true state knowing the observations until a given time, is denoted by χ a. The deviation of the 
analysis state from the truth is the analysis error, e a = χ a − χ t, and is often modeled as a random Gaussian vector 
of zero mean and covariance matrix 𝐴𝐴 𝐏𝐏

𝑎𝑎 = 𝔼𝔼
[

𝑒𝑒𝑎𝑎(𝑒𝑒𝑎𝑎)
T
]

 , where 𝐴𝐴 𝔼𝔼[⋅] stands for the expectation operator and where the 
upper script (·) T stands for the transpose operator (later the adjoint operator for matrices). Hence, the distribution 
of the initial condition is a Gaussian of mean χ a and covariance matrix P a, denoted by 𝐴𝐴  (𝜒𝜒𝑎𝑎,𝐏𝐏𝑎𝑎) . The forecast 
state at a time T, χ f(T) = MT←0χ a provides an approximation of the true state at time T. For linear dynamics and 
Gaussian uncertainty, the forecast error e f(T) = χ f(T) − χ t(T) is a Gaussian vector of zero mean and covariance 
matrix 𝐴𝐴 𝐏𝐏

𝑓𝑓 (𝑇𝑇 ) = 𝔼𝔼

[

𝑒𝑒𝑓𝑓
(

𝑒𝑒𝑓𝑓
)T
]

(𝑇𝑇 ) , whose dynamics is written as

𝜕𝜕𝑡𝑡𝑒𝑒
𝑓𝑓 = 

(

𝜕𝜕𝑒𝑒
𝑓𝑓
)

. (3)

The forecast-error covariance matrix is related to the analysis-error covariance matrix by

𝐏𝐏
𝑓𝑓 (𝑇𝑇 ) = 𝐌𝐌𝑇𝑇←0𝐏𝐏

𝑎𝑎(𝐌𝐌𝑇𝑇←0)
T
. (4)

Equation 4 corresponds to the Kalman filter propagator of the error covariance matrix, whose particular dynam-
ics is given by

𝑑𝑑𝐏𝐏𝑓𝑓

𝑑𝑑𝑑𝑑
= 𝐌𝐌𝐏𝐏

𝑓𝑓 + 𝐏𝐏
𝑓𝑓
𝐌𝐌

T
, (5)

integrated over the period [0, T], starting from the initial condition P f(0) = P a. Hence, the distribution of the 
forecast at T is a Gaussian of mean χ f(T) and covariance matrix P f(T), that is 𝐴𝐴 

(

𝜒𝜒𝑓𝑓 ,𝐏𝐏𝑓𝑓 (𝑇𝑇 )
)

 .

When observations, y o, are available at T, so that y o = Hχ t(T) + e o where H denotes the linear observation opera-
tor that maps a state (here the true state χ t(T)) into the observation space, and e o denotes the observational error, 
modeled as a Gaussian random vector of zero mean and covariance matrix R and assumed uncorrelated from the 
forecast error e f(T); then the Kalman analysis equations at time T are written as

𝜒𝜒
𝑎𝑎(𝑇𝑇 ) = 𝜒𝜒

𝑓𝑓 (𝑇𝑇 ) +𝐊𝐊

(

𝑦𝑦
𝑜𝑜 −𝐇𝐇𝜒𝜒

𝑓𝑓 (𝑇𝑇 )
)

, (6a)

𝐏𝐏
𝑎𝑎(𝑇𝑇 ) = (𝐈𝐈 −𝐊𝐊𝐊𝐊)𝐏𝐏𝑓𝑓 (𝑇𝑇 ), (6b)

where 𝐴𝐴 𝐊𝐊 = 𝐏𝐏
𝑓𝑓 (𝑇𝑇 )𝐇𝐇𝑇𝑇

(

𝐇𝐇𝐏𝐏
𝑓𝑓 (𝑇𝑇 )𝐇𝐇𝑇𝑇 + 𝐑𝐑

)−1 is the Kalman gain matrix. Equations  6a and  6b  characterizes the 
Gaussian distribution of the analysis uncertainty, where Equation 6a is the equation of the mean, and Equation 6b 
is the equation of the analysis-error covariance matrix at time T. Equation 4 together with Equations 6a and 6b are 
the Kalman filter equations, that can be cycled providing the analysis and forecast assimilation cycles, where 
Equation 4 (Equations 6a and 6b) is the KF forecast (analysis) step.

Note that this contribution being focused on the uncertainties dynamics, with the corresponding Kalman filter 
forecast of the covariance matrix Equation 4, the uncertainty related to the observations (present when consid-
ering cycled assimilations) appears only through the statistics of the analysis error, and more precisely through 
the covariance matrix of the analysis error P a = P f(0). Moreover, since we consider the model as perfect, the 
uncertainty considered here only comes from the initial condition and the BC.

Note also that the derivation of the Kalman filter forecast step Equation 4 follows the usual one encountered in 
the weather community, and can lead to drawback when applied to LAMs without care for example, a loss of 
variance at the inlet of the domain. We detail this issue considering a transport in a 1D limited-area domain in 
Appendix A. However, it results that when BC are uncertain, it is necessary to reformulate the problem. That can 
be done in the KF framework, by considering that the BCs are an uncertain command following the terminology 
used in optimal control (see e.g., Scarpa & Milano, 1995).
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2.2. Ensemble Approximation of the Kalman Filter Forecast Step

While the KF forecast step Equation 4 is a simple algebraic formula, it fails to apply in large systems because of 
its numerical cost: if n denotes the dimension of the vector representation of χ, then the computational complexity 
of Equation 4 scales between n 2 and n 3 (Strassen, 1969). In terms of integration cost, the KF requires 2n integra-
tions of the model Equation 1.

Hence, approximations for the KF are needed. For instance, in the EnKF, the forecast error-covariance matrix is 
approximated by its ensemble estimation.

𝐏𝐏
𝑓𝑓 (𝑡𝑡) =

1

𝑁𝑁

∑

𝑘𝑘

𝑒𝑒𝑘𝑘𝑒𝑒
T

𝑘𝑘
, (7)

with 𝐴𝐴 𝐴𝐴𝑘𝑘 = 𝜒𝜒𝑘𝑘(𝑡𝑡) − 𝜒𝜒(𝑡𝑡) where 𝐴𝐴 𝐴𝐴𝐴(𝑡𝑡) =
1

𝑁𝑁

∑

𝑘𝑘
𝐴𝐴𝑘𝑘(𝑡𝑡) denotes the empirical mean and 𝐴𝐴 (𝜒𝜒𝑘𝑘(𝑡𝑡))𝑘𝑘∈[1,𝑁𝑁] is an ensemble of 

N forecasts (Evensen, 2009). This time, the numerical complexity scales with the number of ensemble members 
N and the size of the problem n: the numerical cost of an ensemble of forecast is the cost of N integrations of the 
model Equation 1.

Note that the normalization by N in Equation 7 leads to a bias that decreases as 1/N. In EnKF framework, the 
normalization by N − 1 is preferred, however since we latter consider estimation from very large ensemble size, 
the corrections of the estimators are not considered here, and we only consider empirical mean estimations 

𝐴𝐴
1

𝑁𝑁

∑

𝑘𝑘
(⋯ ) as in Equation 7.

In the EnKF forecast step applied for LAMs, the uncertainty on the boundary condition can be introduced by 
adding perturbations at the boundary for each member of the ensemble. This can be done by considering a 
modeling of the multivariate covariance at the boundary or by considering boundary condition derived from an 
ensemble on a larger domain (Torn et al., 2006).

While this contribution focuses on the forecast step, we can mention that if ensemble computation of the KF 
analysis step Equations 6a and 6b  can be implemented following different algorithm for example, the EnKF 
version based on perturbation of observation introduced by Burgers et al. (1998), the square root filter of Tippett 
et al. (2003) or the ensemble transform Kalman filter (ETKF) of Bishop et al. (2001) and its variational imple-
mentation (Bocquet, 2011; Harlim & Hunt, 2007); the KF forecast step is mainly the same whatever the variant 
of the EnKF considered. Hence, for this study dedicated to the exploration of the specification of the BC for the 
PKF forecast step, the particular implementation the EnKF has not impact and no assimilation experiment is 
conducted here.

The next section presents another approximation for the error-covariance matrices.

2.3. Parametric Formulation for the Kalman Filter Forecast Step Based On VLATcov Models

In the parametric approach, a covariance model is introduced, 𝐴𝐴 𝐏𝐏() where 𝐴𝐴  denotes the set of parameters of the 
covariance model, so to approximate the error covariance matrices. For instance, the forecast-error covariance 
matrix P f, is approximated as 𝐴𝐴 𝐏𝐏

(

𝑓𝑓
)

≈ 𝐏𝐏
𝑓𝑓 , where 𝐴𝐴 𝑓𝑓 is a particular set of values for the parameters. The PKF 

dynamics aims to mimic the dynamics of Equation 5 relying on the dynamics of the parameters 𝐴𝐴 𝑓𝑓 ,

𝑑𝑑𝑓𝑓

𝑑𝑑𝑑𝑑
= 

(


𝑓𝑓
)

, (8)

where 𝐴𝐴  has to be determined from the particular dynamics of Equation 1, so that at any time t, 𝐴𝐴 𝐏𝐏

(

𝑓𝑓 (𝑡𝑡)
)

 approx-
imates P f(t) that is, 𝐴𝐴 𝐏𝐏

(

𝑓𝑓 (𝑡𝑡)
)

≈ 𝐏𝐏
𝑓𝑓 (𝑡𝑡) . As for the EnKF, the numerical complexity of the PKF prediction Equa-

tion  8 scales as number of parameters and the dimension of the problem n: the numerical cost of the PKF 
represent the cost of few numerical integrations of the dynamics Equation 1, depending on the number of param-
eters needed for the covariance approximation.

Thereafter, since we deal with the forecast step of the PKF, the upper-script  f is dropped in the notation that 
concerns the forecast-error statistics.

This contribution will focus on the particular class of covariance model, so-called VLATcov models, parame-
terized from two fields, defined below: the variance field, V, and the local anisotropy tensor of the correlation 
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functions, g or s. Hence, the set of parameters is given by the couple 𝐴𝐴  = (𝑉𝑉 𝑉 𝐠𝐠) or 𝐴𝐴  = (𝑉𝑉 𝑉 𝐬𝐬) , so that a VLATcov 
model is written as P(V, g) or P(V, s). For an error field e, the variance field is defined as

𝑉𝑉 = 𝔼𝔼
[

𝑒𝑒
2
]

, (9)

and is used to introduce the normalized error 𝐴𝐴 𝐴𝐴 =
𝑒𝑒

√

𝑉𝑉
 . When the error field is a differential random field, that is 

assumed from now, the correlation function 𝐴𝐴 𝐴𝐴(𝐱𝐱, 𝐲𝐲) = 𝔼𝔼
[

𝜀𝜀(𝐱𝐱)𝜀𝜀(𝐲𝐲)
]

 is flat for y = x. Then, the local anisotropy at x 
is defined as the local metric tensor g(x) (also denoted by gx) which appears in the second-order Taylor's expansion

𝜌𝜌(𝐱𝐱, 𝐱𝐱 + 𝛿𝛿𝐱𝐱) ≈ 1 −
1

2
‖𝛿𝛿𝐱𝐱‖

2
𝐠𝐠
𝐱𝐱

, (10)

where 𝐴𝐴 ‖𝛿𝛿𝐱𝐱‖2
𝐠𝐠
𝐱𝐱

= 𝛿𝛿𝐱𝐱T𝐠𝐠𝐱𝐱𝛿𝛿𝐱𝐱 denotes the norm associated with the metric tensor gx that is the symmetric definite 
positive matrix 𝐴𝐴

[

𝐠𝐠𝐱𝐱

]

𝑖𝑖𝑖𝑖
= −𝜕𝜕2

𝑥𝑥𝑖𝑖𝑥𝑥𝑖𝑖
𝜌𝜌𝐱𝐱 where ρx(δx) stands for the local correlation function. In a 1D domain of coordi-

nate x, the metric tensor field is the scalar field g = [gxx].

In practice, the geometry of the local metric tensor is contravariant: the direction of largest correlation anisotropy 
corresponds to the principal axes of smallest eigenvalue for the metric tensor. Thus, it is useful to introduce the 
local aspect tensor (Derber et al., 2003)

𝐬𝐬(𝐱𝐱) = (𝐠𝐠(𝐱𝐱))
−1
, (11)

where the superscript (·) −1 denotes the matrix inverse, and whose the geometry goes as the correlation. In a 1D 
domain of coordinate x, the aspect tensor field is the scalar field s = [sxx]. Note that, in a 1D domain, the square 
root of sxx is homogeneous to a length, leading to the so-called length scale 𝐴𝐴 𝐴𝐴(𝑥𝑥) =

√

𝑠𝑠𝑥𝑥𝑥𝑥(𝑥𝑥) , which is often intro-
duced in diagnoses.

What makes the local metric tensor attractive is that this tensor is related to the normalized error by (see e.g., 
Pannekoucke, 2021a)

[

𝐠𝐠𝐱𝐱

]

𝑖𝑖𝑖𝑖
= 𝔼𝔼[𝜕𝜕𝑥𝑥𝑖𝑖𝜀𝜀𝜕𝜕𝑥𝑥𝑖𝑖 𝜀𝜀]. (12)

Hence, the variance Equation 9 and the anisotropy Equation 12 can be computed from an ensemble estimation: 
the variance field is estimated by

𝑉𝑉 =
1

𝑁𝑁

∑

𝑘𝑘

(𝑒𝑒𝑘𝑘(𝑡𝑡))
2
, (13)

with 𝐴𝐴 𝐴𝐴𝑘𝑘(𝑡𝑡) = 𝜒𝜒𝑘𝑘(𝑡𝑡) − 𝜒𝜒(𝑡𝑡) , from which derivatives of the normalized error 𝐴𝐴 𝐴𝐴𝑘𝑘 =
1

√

𝑉𝑉

(

𝜒𝜒𝑘𝑘(𝑡𝑡) − 𝜒𝜒(𝑡𝑡)
)

 leads to the 
estimation of the upper triangular components of the metric

𝑔𝑔𝑖𝑖𝑖𝑖 =
1

𝑁𝑁

∑

𝑘𝑘

𝜕𝜕𝑥𝑥𝑖𝑖𝜀𝜀𝑘𝑘𝜕𝜕𝑥𝑥𝑖𝑖 𝜀𝜀𝑘𝑘, (14)

for i ≤ j (since gji = gij). Note that in a 1D domain, the ensemble estimation of the length-scale field is computed 
as 𝐴𝐴 �̂�𝑙 =

1
√

𝑔𝑔𝑥𝑥𝑥𝑥

 . While the PKF approach does not relies on any ensembles, the ensemble estimations Equations 13 
and 14 can be used to set the initial conditions for the parameters to initiate the assimilation cycles, or to validate 
the PKF from the diagnosis of an EnKF.

An example VLATcov model is given by the heterogeneous Gaussian-like covariance model (Paciorek & 
Schervish, 2006)

𝐏𝐏(𝑉𝑉 𝑉 𝐬𝐬)(𝐱𝐱𝑉 𝐲𝐲) =
√

𝑉𝑉𝐱𝐱𝑉𝑉𝐲𝐲

|𝐬𝐬𝐱𝐱|
1∕4

|𝐬𝐬𝐲𝐲|
1∕4

|

1

2

(

𝐬𝐬𝐱𝐱 + 𝐬𝐬𝐲𝐲

)

|

1∕2
exp

(

−
1

2
‖𝐱𝐱 − 𝐲𝐲‖

2
[

1

2 (𝐬𝐬𝐱𝐱+𝐬𝐬𝐲𝐲)
]−1

)

 (15)

where |·| denotes the matrix determinant.

When VLATcov models are used for the parametric approach, the dynamics of the parameters Equation 8 is 
deduced from the time derivative of Equations 9 and 12, and the dynamics of the error Equation 3. Hence, in 
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univariate statistics, the PKF equations for VLATcov models consists in three equations. The first equation corre-
sponds to the prediction of the mean, that is Equation 1 in the linear case. The second equation is the dynamics 
of the variance, V, which is deduced from

𝜕𝜕𝑡𝑡𝑉𝑉 = 2𝔼𝔼[𝑒𝑒𝜕𝜕𝑡𝑡𝑒𝑒], (16a)

where replacing the trend of the error Equation 3, will leads to the dynamics of V

𝜕𝜕𝑡𝑡𝑉𝑉 = 2𝔼𝔼[𝑒𝑒(𝜕𝜕𝑒𝑒)]. (16b)

The third equation is the dynamics of the anisotropy, g, whose components evolve as

𝜕𝜕𝑡𝑡𝑔𝑔𝑖𝑖𝑖𝑖 = 𝔼𝔼[𝜕𝜕𝑡𝑡(𝜕𝜕𝑥𝑥𝑖𝑖𝜀𝜀𝜕𝜕𝑥𝑥𝑖𝑖 𝜀𝜀)], (17)

and from which we can deduce the dynamics of the aspect tensor s = g −1 with ∂ts = −s(∂tg)s. The dynamics of 
the variance Equation 16b and of the anisotropy Equation 17 can be simplified for example, by considering the 
commutation between the expectation and partial derivatives (Pannekoucke & Arbogast, 2021).

Note that for non-linear dynamics, the PKF forecast step for VLATcov models stands as (see Pannekoucke & 
Arbogast, 2021 for details)

𝜕𝜕𝑡𝑡𝔼𝔼
[

𝜒𝜒
]

= (𝜕𝜕𝔼𝔼
[

𝜒𝜒
]

) +
′′(𝜕𝜕𝔼𝔼

[

𝜒𝜒
]

)(𝔼𝔼[𝜕𝜕𝜕𝜕 𝜕 𝜕𝜕𝜕𝜕]), (18a)

𝜕𝜕𝑡𝑡𝑉𝑉 = 2𝔼𝔼[𝑒𝑒𝜕𝜕𝑡𝑡𝑒𝑒], (18b)

𝜕𝜕𝑡𝑡𝑔𝑔𝑖𝑖𝑖𝑖 = 𝔼𝔼[𝜕𝜕𝑡𝑡(𝜕𝜕𝑥𝑥𝑖𝑖𝜀𝜀𝜕𝜕𝑥𝑥𝑖𝑖 𝜀𝜀)], (18c)

where 𝐴𝐴 ′′ is a linear operator that refers to the Hessian that is computed with respect to the mean state 𝐴𝐴 𝔼𝔼
[

𝜒𝜒
]

 ; ∂e ⊗ ∂e 
denotes the tensor product of the partial derivatives with respect to the spatial coordinates, that is, terms such as 
∂ ke∂ me for any positive integers (k, m); and where the trends that appear in the right-hand side of Equations 18b 
and 18c should be formulated from the dynamics for example, using 𝐴𝐴 𝐴𝐴𝑡𝑡𝑒𝑒 = ′(𝐴𝐴𝔼𝔼

[

𝜒𝜒
]

)(𝐴𝐴𝑒𝑒) for the trend of e where 
𝐴𝐴 ′ is a linear operator that refers to the tangent-linear model that is computed with respect to the mean state 𝐴𝐴 𝔼𝔼

[

𝜒𝜒
]

 .

The computation of dynamical equations (Equations 18a–18c) for the mean, the variance V and the anisotropy g 
(or s) can be performed using a computed algebra system. To do so, the open source Python toolbox SymPKF has 
been introduced (Pannekoucke, 2021b; Pannekoucke & Arbogast, 2021), which computes the dynamics of the 
parameters and renders a numerical code to facilitate the numerical exploration of the PKF approach. Another way 
to simplify the computation of the parameters dynamics is to identify the contribution of each physical process 
present in Equation 1 following a splitting strategy (Pannekoucke & Arbogast, 2021; Pannekoucke et al., 2018). 
Thereafter, the dynamics of the VLATcov parameters is computed by using SymPKF and the interested reader 
is referred to the Jupyter notebooks that are provided as a supplementary material to this contribution (Sabathier 
et al., 2022).

Compared to the ensemble implementation of the KF (e.g., the EnKF or the ETKF), the contribution of the PKF 
is that it replaces the computational cost for the ensemble prediction step by the numerical cost of the time inte-
gration of the system Equations 18a–18c. More precisely, in univariate statistics, the PKF based on the VLATcov 
model scales as the number of independent components in g (the number of coefficients in the upper triangle) 
plus one for the variance field: in a univariate over a 1D (3D) domain, this represents 2 (7) times the cost of one 
model forecast (which scales itself with the dimension n). This numerical cost of the PKF is then competitive to 
the ensemble method where it often needs dozen of members. However in multivariate statistics, the numerical 
cost of the PKF scales as the square of the number of prognostic fields, which is a strong limitation. For example, 
a multivariate assimilation in air quality should consider hundreds of chemical species (Perrot et al., 2023), but 
in practice, only a few species are assimilated, without correction for other unobserved chemical species (the 
forecast error of the observed and the unobserved chemical species are then assumed as decorrelated), which 
makes the PKF interesting for these applications (in CAMS regional air quality production 2.40 (CAMS, 2022), 
the univariate 3DVar system of MOCAGE is used for the separated assimilation of ozone, nitrogen dioxide, sulfur 
dioxide, and fine particulate matter PM2.5 and PM10, following a configuration similar to the one used for the 
monitoring atmospheric composition and climate: interim implementation forecast system detailed by Marécal 
et al. (2015)).
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While it is not the purpose of the present work, we can mention that the analysis step in the PKF consist in a 
sequential update of the parameters during the assimilation of observations that is, the update of the variance and 
of the anisotropy for the VLATcov model after the assimilation of each observation. For instance, at the leading 
order, the update of the aspect tensor field due to the assimilation of an in situ observation is written as

𝐬𝐬
𝑎𝑎 =

𝑉𝑉 𝑎𝑎

𝑉𝑉 𝑓𝑓
𝐬𝐬
𝑓𝑓
, (19)

where V a is the analysis-error variance field that results from the assimilation of the observation (see update 
Equation 3 for the variance and Equation 12 for the aspect tensor in Pannekoucke (2021a) for details). In the PKF, 
a sequential processing of batches of observation can be consider to parallelize the assimilation, similarly to the 
procedure employed in the EnKF analysis step (Houtekamer & Mitchell, 2001).

The PKF based on the VLATcov model is illustrated in the next sections for two dynamics which give an explicit 
form for 𝐴𝐴  in Equation 1.

2.4. Illustration of the PKF Forecast Step for Simple Dynamics

The transport and the diffusion equations are considered so to detail the dynamics of the variance and the aniso-
tropy for the PKF applied for VLATcov models. Both dynamics play over a 1D periodical domain of coordinate 
x, so that the dynamics is an evolution equation without BC. The PKF for the transport has been already detailed 
in previous contributions (see e.g., Pannekoucke & Arbogast, 2021), and is recapped here for self consistency. 
The PKF for the heterogeneous diffusion equation is original, and extends the derivation of the PKF applied to 
the homogeneous diffusion equation (Pannekoucke et al., 2018).

2.4.1. PKF Prediction Applied on a Transport Equation

The transport equation of a scalar field c(t, x) by a stationary velocity field u(x) is written as

𝜕𝜕𝑡𝑡𝑐𝑐 + 𝑢𝑢𝜕𝜕𝑥𝑥𝑐𝑐 = 0. (20)

In this example, and by identification with Equation 1, c stands for χ while 𝐴𝐴 (𝑐𝑐𝑐 𝑐𝑐𝑐𝑐) = −𝑢𝑢𝑐𝑐𝑥𝑥𝑐𝑐 . This kind of 
equation appears for instance in the prediction of the concentration of a chemical specie as in chemical transport 
models.

The computation of the PKF dynamics for Equation 20 using SymPKF leads to the system

𝜕𝜕𝑡𝑡𝑐𝑐 = −𝑢𝑢𝜕𝜕𝑥𝑥𝑐𝑐𝑐 (21a)

𝜕𝜕𝑡𝑡𝑉𝑉𝑐𝑐 = −𝑢𝑢𝜕𝜕𝑥𝑥𝑉𝑉𝑐𝑐, (21b)

𝜕𝜕𝑡𝑡𝑠𝑠𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = −𝑢𝑢𝜕𝜕𝑐𝑐𝑠𝑠𝑐𝑐𝑐𝑐𝑐𝑐𝑐 + 2𝑠𝑠𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝜕𝜕𝑐𝑐𝑢𝑢𝑐 (21c)

where the anisotropy is represented by the aspect tensor s  =  sc,xx in 1D domain. The PKF dynamics Equa-
tions  21a–21c is a system of three uncoupled partial derivative equation similar to the one first found by 
Cohn (1993). This system represents the dynamics of the mean state 𝐴𝐴 𝔼𝔼[𝑐𝑐] , Equation 21a, where the expectation 
operator has been removed for the sake of simplicity; the transport of the variance, Equation 21b; and the trans-
port of the anisotropy Equation 21c, where an additional source term of anisotropy appears, that is due to the 
shear by the flow. Compared with an ensemble approach, the PKF approach allows for an understanding of the 
dynamics and the physics of the uncertainty.

This example shows that the PKF does not need solving the full state dimension covariance matrix, but only the 
dynamics of the parameters used in the modeling of the covariance matrix: the variance and the anisotropy in the 
VLATcov model considered here which evolves from Equations 21b and 21c respectively. However, the paralleli-
zation of the PKF is less obvious than for the parallel computation of an ensemble of forecast, since it requires to 
parallelize the coupled system Equations 21a–21c.

Note that the lower script notation c for Vc and c,xx for sc,xx corresponds to the notation automatically rendered by 
SymPKF when processing the dynamics Equation 20 at a symbolic level. This labeling for the parameters has been 
introduced when multiple fields are present for example, in multivariate dynamics. While this contribution only 
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address univariate dynamics, the notation is kept here so to facilitate the comparison with the output of SymPKF 
and also because another important dynamics is discussed: the diffusion equation, which is now presented.

2.4.2. PKF Prediction Applied on a Diffusion Equation

The diffusion equation of a scalar field f(t, x) and of diffusion coefficient D(x),

𝜕𝜕𝑡𝑡𝑓𝑓 = 𝜕𝜕𝑥𝑥(𝐷𝐷𝜕𝜕𝑥𝑥𝑓𝑓 ), (22)

is now considered. This kind of equation appears for instance in the prediction of electron density f of the Earth 
radiation belts and results from a Hamiltonian formalism applied on a typical Boltzmann equation, where a 
Fokker-Planck operator is introduced to evaluate physical interactions responsible for changing particles trap-
ping state (Dahmen et al., 2020). In the radiation belts, the typical spatial coordinates system x in Equation 22 
stands in this case for a combined spatial and physical quantities for example, the energy of the electrons. The 
diffusion equation is also important in the modeling of atmospheric boundary layer where it represents the effect 
of the turbulence (Stull,  1988). In this example, and by identification with Equation  1, f stands for χ while            

𝐴𝐴 (𝑓𝑓𝑓 𝑓𝑓𝑓𝑓 ) = 𝑓𝑓𝑥𝑥(𝐷𝐷𝑓𝑓𝑥𝑥𝑓𝑓 ) .

The computation of the PKF dynamics for Equation 22 can be performed using SymPKF. However, because of 
the second order derivative, the dynamical system makes appear an unknown term 𝐴𝐴 𝔼𝔼

[

𝜀𝜀𝑓𝑓𝜕𝜕
4
𝑥𝑥𝜀𝜀𝑓𝑓

]

 , not determined 
from f, Vf and sf,xx (see Appendix B). An analytical closure has been proposed for 1D domains which states as 
(Pannekoucke et al., 2018)

𝔼𝔼
[

𝜀𝜀𝑓𝑓𝜕𝜕
4
𝑥𝑥𝜀𝜀𝑓𝑓

]

= 3𝑔𝑔2

𝑓𝑓𝑓𝑥𝑥𝑥𝑥
− 2𝜕𝜕2𝑥𝑥𝑔𝑔𝑓𝑓𝑓𝑥𝑥𝑥𝑥 (23a)

when written in metric tensor or

𝔼𝔼
[

𝜀𝜀𝑓𝑓𝜕𝜕
4
𝑥𝑥𝜀𝜀𝑓𝑓

]

=
2𝜕𝜕2𝑥𝑥𝑠𝑠𝑓𝑓𝑓𝑥𝑥𝑥𝑥

𝑠𝑠2
𝑓𝑓𝑓𝑥𝑥𝑥𝑥

+
3

𝑠𝑠2
𝑓𝑓𝑓𝑥𝑥𝑥𝑥

−
4(𝜕𝜕𝑥𝑥𝑠𝑠𝑓𝑓𝑓𝑥𝑥𝑥𝑥)

2

𝑠𝑠3
𝑓𝑓𝑓𝑥𝑥𝑥𝑥

 (23b)

in aspect tensor, which leads to the PKF dynamics

𝜕𝜕𝑡𝑡𝑓𝑓 = 𝐷𝐷𝜕𝜕
2
𝑥𝑥𝑓𝑓 + 𝜕𝜕𝑥𝑥𝐷𝐷𝜕𝜕𝑥𝑥𝑓𝑓 𝑓 (24a)

𝜕𝜕𝑡𝑡𝑉𝑉𝑓𝑓 = −
2𝐷𝐷𝑉𝑉𝑓𝑓

𝑠𝑠𝑓𝑓𝑓𝑓𝑓𝑓𝑓
+𝐷𝐷𝜕𝜕

2
𝑓𝑓𝑉𝑉𝑓𝑓 −

𝐷𝐷(𝜕𝜕𝑓𝑓𝑉𝑉𝑓𝑓 )
2

2𝑉𝑉𝑓𝑓

+ 𝜕𝜕𝑓𝑓𝐷𝐷𝜕𝜕𝑓𝑓𝑉𝑉𝑓𝑓 𝑓 (24b)

𝜕𝜕𝑡𝑡𝑠𝑠𝑓𝑓𝑓𝑓𝑓𝑓𝑓 = 𝐷𝐷𝜕𝜕
2
𝑓𝑓𝑠𝑠𝑓𝑓𝑓𝑓𝑓𝑓𝑓 + 4𝐷𝐷

−
2𝐷𝐷(𝜕𝜕𝑓𝑓𝑠𝑠𝑓𝑓𝑓𝑓𝑓𝑓𝑓)

2

𝑠𝑠𝑓𝑓𝑓𝑓𝑓𝑓𝑓
−

2𝐷𝐷𝑠𝑠𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝜕𝜕
2
𝑓𝑓𝑉𝑉𝑓𝑓

𝑉𝑉𝑓𝑓

+
𝐷𝐷𝜕𝜕𝑓𝑓𝑉𝑉𝑓𝑓𝜕𝜕𝑓𝑓𝑠𝑠𝑓𝑓𝑓𝑓𝑓𝑓𝑓

𝑉𝑉𝑓𝑓

+
2𝐷𝐷𝑠𝑠𝑓𝑓𝑓𝑓𝑓𝑓𝑓(𝜕𝜕𝑓𝑓𝑉𝑉𝑓𝑓 )

2

𝑉𝑉 2

𝑓𝑓

− 2𝑠𝑠𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝜕𝜕
2
𝑓𝑓𝐷𝐷

+ 2𝜕𝜕𝑓𝑓𝐷𝐷𝜕𝜕𝑓𝑓𝑠𝑠𝑓𝑓𝑓𝑓𝑓𝑓𝑓 −
2𝑠𝑠𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝜕𝜕𝑓𝑓𝐷𝐷𝜕𝜕𝑓𝑓𝑉𝑉𝑓𝑓

𝑉𝑉𝑓𝑓

𝑓

 (24c)

where in this dynamical system, the expected value 𝐴𝐴 𝔼𝔼[𝑓𝑓 ] in Equation 24a is replaced by f for the sake of simplic-
ity. The dynamics Equations 24a–24c show the effect of the transport due the heterogeneity of the diffusion coef-
ficient which implies a flow of velocity −∂xD, and leads to the same PKF transport dynamics Equations 21a–21c 
as discussed for Equation 20 in the particular case where u = −∂xD. The other terms in Equations 24a–24c 
are related to the second-order derivative term 𝐴𝐴 𝐴𝐴𝐴𝐴2𝑥𝑥𝑓𝑓 , which couples the dynamics of the variance and of 
the  anisotropy.

In term of metric, the closed Equations 24a–24c read as

𝜕𝜕𝑡𝑡𝑓𝑓 = 𝐷𝐷𝜕𝜕
2
𝑥𝑥𝑓𝑓 + 𝜕𝜕𝑥𝑥𝐷𝐷𝜕𝜕𝑥𝑥𝑓𝑓 𝑓 (25a)

𝜕𝜕𝑡𝑡𝑉𝑉𝑓𝑓 = −2𝐷𝐷𝑉𝑉𝑓𝑓𝑔𝑔𝑓𝑓𝑓𝑓𝑓𝑓𝑓 +𝐷𝐷𝜕𝜕
2
𝑓𝑓𝑉𝑉𝑓𝑓 −

𝐷𝐷(𝜕𝜕𝑓𝑓𝑉𝑉𝑓𝑓 )
2

2𝑉𝑉𝑓𝑓

+ 𝜕𝜕𝑓𝑓𝐷𝐷𝜕𝜕𝑓𝑓𝑉𝑉𝑓𝑓 𝑓 (25b)
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𝜕𝜕𝑡𝑡𝑔𝑔𝑓𝑓𝑓𝑓𝑓𝑓𝑓 = −4𝐷𝐷𝑔𝑔
2

𝑓𝑓𝑓𝑓𝑓𝑓𝑓
+𝐷𝐷𝜕𝜕

2
𝑓𝑓𝑔𝑔𝑓𝑓𝑓𝑓𝑓𝑓𝑓

+
2𝐷𝐷𝑔𝑔𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝜕𝜕

2
𝑓𝑓𝑉𝑉𝑓𝑓

𝑉𝑉𝑓𝑓

+
𝐷𝐷𝜕𝜕𝑓𝑓𝑉𝑉𝑓𝑓𝜕𝜕𝑓𝑓𝑔𝑔𝑓𝑓𝑓𝑓𝑓𝑓𝑓

𝑉𝑉𝑓𝑓

−
2𝐷𝐷𝑔𝑔𝑓𝑓𝑓𝑓𝑓𝑓𝑓(𝜕𝜕𝑓𝑓𝑉𝑉𝑓𝑓 )

2

𝑉𝑉 2

𝑓𝑓

+ 2𝑔𝑔𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝜕𝜕
2
𝑓𝑓𝐷𝐷 + 2𝜕𝜕𝑓𝑓𝐷𝐷𝜕𝜕𝑓𝑓𝑔𝑔𝑓𝑓𝑓𝑓𝑓𝑓𝑓 +

2𝑔𝑔𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝜕𝜕𝑓𝑓𝐷𝐷𝜕𝜕𝑓𝑓𝑉𝑉𝑓𝑓

𝑉𝑉𝑓𝑓

.

 (25c)

Compared with the use of an ensemble estimation for the error statistics, the dynamics Equations 25a–25c 
appear rather complicated, especially the dynamics of the metric Equation 25c. However, this coupled system 
is simple to solve numerically for example, considering a finite difference scheme and automatic code gener-
ation. Moreover, the numerical cost of Equations 25a–25c is of the order of three times the cost the origi-
nal heterogeneous diffusion Equation 22 while it provides an accurate estimation of the error statistics (see 
numerical experiment in Section 5.3), where a large ensemble is needed to reach this accuracy and avoid the 
sampling noise whose magnitude, for an ensemble of Ne members, scales in 𝐴𝐴 1∕

√

𝑁𝑁𝑒𝑒 from the central limit 
theorem (CLT).

Until now, PKF dynamics for the heterogeneous diffusion equation has been evaluated on periodic domain only, 
while bounded domains are often needed, for example, in radiation belts predictions where the energy of elec-
trons are limited, or in atmospheric boundary layer where the ground is a limit of the domain. The next section 
addresses how to specify the BC for the PKF dynamics.

3. Specification of the Boundary Conditions for the PKF Forecast Step
This section tackles the specification of the BC for the PKF by considering two usual kind of conditions: the 
Dirichlet and the Neumann conditions. We consider the particular case of the semi-bounded 1D domain [0, ∞), 
and focus on the boundary x = 0. Then we extend to BC of an arbitrary domain Ω of frontier ∂Ω.

3.1. Dirichlet BCs

A Dirichlet condition at the boundary consists in specifying the value of the fields at x = 0, that is χ(t, x = 0) = χ0(t).

This conditions is used for the dynamics of the mean in the PKF, but it remains to specify the BC for the variance 
and the anisotropy.

Therefore the Dirichlet condition implies that the error field must also verifies a Dirichlet condition that is, e(t, 
x = 0) = e0(t). The expectation of the error field at x = 0 is zero by definition, and of variance 𝐴𝐴 𝐴𝐴0(𝑡𝑡) = 𝔼𝔼

[

𝑒𝑒0(𝑡𝑡)
2
]

 . 
Hence, the variance field must also verify a Dirichlet condition that is, V(t, x = 0) = V0(t).

So for a 1D bounded domain, the Dirichlet condition on the dynamics implies to specify a Dirichlet condition on 
the variance and on the anisotropy. This result extends for an arbitrary domain Ω where this time, the BC for the 
variance and the anisotropy are Dirichlet conditions on the frontier ∂Ω.

In case where the bounded domain is nested within a larger domain where uncertainty is known from a PKF 
dynamics, then the variance and the anisotropy at the boundary can be set from the variance and the anisotropy 
known in the larger domain. When the uncertainty at large scale is featured from an ensemble of forecasts, the 
statistics at the boundary should be set as the statistics estimated from the ensemble of large scale forecasts at 
the boundary points for example, for VLATcov models, the variance and the anisotropy can be estimated from 
the  ensemble of large scale forecasts from Equations 13 and 14 respectively.

Hence, Dirichlet condition in case of nested models easily extends in 2D and 3D domains where it remains 
to specify the variance and the anisotropy of the local area model from the variance and the anisotropy of the 
coupling model.

3.2. Neumann BCs

Neumann conditions at the boundaries are written as null fluxes that is, ∂xχ(t, x = 0) = 0. This implies that the 
error field must also verifies a Neumann condition that is, ∂xe(t, x = 0) = 0. Again, we are looking for the BC for 
the variance and the anisotropy.
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The condition on the variance is deduced from the Taylor expansion of the error at the vicinity of x = 0 as follows. 
The expectation of the square of the second order expansion of the error

𝑒𝑒(𝑡𝑡𝑡 𝑡𝑡𝑡𝑡) = 𝑒𝑒(𝑡𝑡𝑡 0) +
1

2
𝜕𝜕
2
𝑡𝑡𝑒𝑒(𝑡𝑡𝑡 0)𝑡𝑡𝑡𝑡

2 + 
(

𝑡𝑡𝑡𝑡
3
)

𝑡 

leads to the local expansion of the variance 𝐴𝐴 𝐴𝐴 (𝑡𝑡𝑡 𝑡𝑡) = 𝔼𝔼
[

𝑒𝑒2
]

(𝑡𝑡𝑡 𝑡𝑡) ,

𝑉𝑉 (𝑡𝑡𝑡 𝑡𝑡𝑡𝑡) = 𝑉𝑉 (𝑡𝑡𝑡 0) + 𝔼𝔼
[

𝑒𝑒𝑒𝑒
2
𝑡𝑡𝑒𝑒
]

(𝑡𝑡𝑡 0)𝑡𝑡𝑡𝑡2 + 
(

𝑡𝑡𝑡𝑡
4
)

. 

As the local Taylor expansion of the variance field at x = 0 has no first-order term in δx, this implies that the first 
order derivative is null, that is,

𝜕𝜕𝑥𝑥𝑉𝑉 (𝑡𝑡𝑡 0) = 0𝑡 (26a)

which means that the condition in variance at the boundary x = 0 follows a Neumann condition.

For the anisotropy, the Neumann condition on the variance, Equation  26a, implies that the metric tensor 
𝐴𝐴 𝐴𝐴(𝑡𝑡𝑡 𝑡𝑡) = 𝔼𝔼

[

(𝜕𝜕𝑡𝑡𝜀𝜀)
2
]

(𝑡𝑡𝑡 𝑡𝑡) simplifies as 𝐴𝐴 𝐴𝐴(𝑡𝑡𝑡 0) =
1

𝑉𝑉 (𝑡𝑡𝑡0)
𝔼𝔼
[

(𝜕𝜕𝑥𝑥𝑒𝑒(𝑡𝑡𝑡 0))
2
]

 . Then the Neumann condition on e, ∂xe(t, 
0) = 0 that is, implies that the condition for the metric is a Dirichlet condition,

𝑔𝑔(𝑡𝑡𝑡 𝑡𝑡 = 0) = 0. (26b)

Note that the Dirichlet condition for the metric Equation 26b is equivalent to an infinite in aspect tensor at the 
boundary that is, s(t, 0) = +∞. Therefore, the PKF formulated in aspect tensor is singular near the boundaries 
where the error field verifies a Neumann condition. Hence, for a Neumann condition on the error, it is preferable 
to consider the PKF formulation in variance/metric tensor rather than in variance/aspect tensor (while there is no 
preference on unbounded domains e.g., in periodic domains or flat spaces).

Hence, the Neumann condition on the error for a 1D domain leads, for the PKF dynamics, to a Neumann condi-
tion in variance and a Dirichlet condition in metric. This extends to a 2D or 3D domain Ω where this time the 
Neumann condition for the variance states as a null flux along the normal direction of the frontier ∂Ω of the 
domain. The Dirichlet condition for the metric reads equivalently g(t, x) = 0 for x ∈ ∂Ω, but a weaker condition 
could be introduced where the tangential components of the metric at the boundary are not zero (not addressed 
here).

Now that the BC for the PKF have been theoretically specified for the Dirichlet and the Neumann conditions, 
a numerical validation as well as a comparison with the usual EnKF approach is introduced. But to do so, it is 
necessary to specify an appropriate setting for the boundary of the EnKF, as discussed in the next section.

4. Methodology for Validating the PKF From an EnKF Simulations, and 
Specification of the BCs for EnKF
4.1. Methodology for the Validation of the PKF From an Ensemble Method

In the previous sections we specified the PKF equations as well as the BC it needs depending on the boundary 
condition for the error at the boundary. Note that for linear dynamics as for the transport and the diffusion that are 
considered here, the dynamics of the error statistics is independent from the dynamics of the mean, so hereafter 
we will not be considering the dynamics of the mean but rather focusing on the error statistics. For instance, the 
PKF dynamics for the error statistics for the transport with a positive wind on a bounded 1D domain and Dirichlet 
condition in x = 0, Equations 21b and 21c are written as

𝜕𝜕𝑡𝑡𝑉𝑉𝑐𝑐 = −𝑢𝑢𝜕𝜕𝑥𝑥𝑉𝑉𝑐𝑐, (27a)

𝑉𝑉𝑐𝑐(0, 𝑥𝑥) = 𝑉𝑉
0
𝑐𝑐 (𝑥𝑥), (27b)

𝑉𝑉𝑐𝑐(𝑡𝑡𝑡 0) = 𝑏𝑏𝑉𝑉𝑐𝑐 (𝑡𝑡)𝑡 (27c)

𝜕𝜕𝑡𝑡𝑠𝑠𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = −𝑢𝑢𝜕𝜕𝑐𝑐𝑠𝑠𝑐𝑐𝑐𝑐𝑐𝑐𝑐 + 2𝑠𝑠𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝜕𝜕𝑐𝑐𝑢𝑢𝑐 (27d)
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𝑠𝑠𝑐𝑐𝑐𝑐𝑐𝑐𝑐(0𝑐 𝑐𝑐) = 𝑠𝑠
0
𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝑐𝑐)𝑐 (27e)

𝑠𝑠𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝑡𝑡𝑐 0) = 𝑏𝑏𝑠𝑠𝑐𝑐𝑐𝑐𝑐𝑐𝑐 (𝑡𝑡)𝑐 (27f)

where 𝐴𝐴 𝐴𝐴𝑉𝑉𝑐𝑐 and 𝐴𝐴 𝐴𝐴𝑠𝑠𝑐𝑐𝑐𝑐𝑐𝑐𝑐 stands respectively for the error variance and anisotropy time functions prescribed at the inlet 
of the domain in x = 0, and where 𝐴𝐴 𝐴𝐴 0

𝑐𝑐  and 𝐴𝐴 𝐴𝐴0𝑐𝑐𝑐𝑐𝑐𝑐𝑐 are the initial condition fields.

Now we are interested to verify that the resulting PKF dynamics, such as Equations 27a–27f, is really able to 
reproduce the dynamics of the error statistics as an ensemble method would provide. But then, it is necessary to 
create an ensemble of forecast with an appropriate specification of the boundary error. Again, for the transport 
with Dirichlet condition, it remains to perform an ensemble of integration of the dynamics

𝜕𝜕𝑡𝑡𝑒𝑒𝑐𝑐 = −𝑢𝑢𝜕𝜕𝑥𝑥𝑒𝑒𝑐𝑐, (28a)

𝑒𝑒𝑐𝑐(0, 𝑥𝑥) = 𝑒𝑒
0
𝑐𝑐 (𝑥𝑥), (28b)

𝑒𝑒𝑐𝑐(𝑡𝑡𝑡 0) = 𝑏𝑏𝑒𝑒𝑐𝑐 (𝑡𝑡)𝑡 (28c)

where 𝐴𝐴 𝐴𝐴𝑒𝑒𝑐𝑐 and 𝐴𝐴 𝐴𝐴0𝑐𝑐 stands respectively for the error time function prescribed at the inlet of the domain in x = 0, and 
the initial error field.

In real application where the inflow at the inlet is related to physical structures for example, a mid-latitude vortex 
entering in a LAM, the error is continuous and differentiable in time and space meaning this imposes a constraint 
of coherence between the error field inside the domain and its boundary condition at the inlet. Then, the result-
ing error statistics should also be continuous and differentiable in time and space: this imposes a constraint of 
coherence between the variance (or the anisotropy) field inside the domain and its boundary condition at the inlet.

Note that when a covariance model is used in EnKF to perturb BC, an assumption of stationarity of the error 
statistics is often encountered, for example, by considering a constant time correlation in an auto-regressive time 
process (Torn et al., 2006) (similar to the one introduced in Appendix A). However for physical phenomenons 
entering in a LAM, the correlation time scale is expected to evolve accordingly to the spatial anisotropy, because 
the spatial anisotropy is governed by the dynamics and the observational network (Bouttier, 1994; Cohn, 1993; 
Pannekoucke, 2021a). It would therefore be interesting to illustrate how the PKF performs for heterogeneous and 
non-stationary error statistics at the frontier.

Thus, we consider the following validation framework where the error statistics are given by a prescribed initial 
condition together with its BC which leads to smooth evolution of the error statistics, without any constraint 
of homogeneity and stationarity of the statistics. For instance, when considering the transport, this means that 
we consider the situation where the error statistics are given by a prescribed initial condition 𝐴𝐴

(

𝑉𝑉 0
𝑐𝑐 (𝑥𝑥), 𝑠𝑠

0
𝑐𝑐,𝑥𝑥𝑥𝑥(𝑥𝑥)

)

 
together with its BC 𝐴𝐴

(

𝑏𝑏𝑉𝑉𝑐𝑐 (𝑡𝑡), 𝑏𝑏𝑠𝑠𝑐𝑐,𝑐𝑐𝑐𝑐 (𝑡𝑡)
)

 which leads to smooth fields 𝐴𝐴 (𝑉𝑉𝑐𝑐(𝑡𝑡𝑡 𝑡𝑡)𝑡 𝑠𝑠𝑐𝑐𝑡𝑡𝑡𝑡𝑡(𝑡𝑡𝑡 𝑡𝑡)) . But, for the ensemble use 
for the validation, this implies to populate an ensemble of Ne initial conditions 𝐴𝐴 (𝑒𝑒𝑐𝑐𝑘𝑘(0, 𝑥𝑥))𝑘𝑘∈[1,𝑁𝑁𝑒𝑒] together with their 
BC 𝐴𝐴

(

𝑏𝑏𝑒𝑒𝑐𝑐 𝑘𝑘(𝑡𝑡)
)

𝑘𝑘∈[1,𝑁𝑁𝑒𝑒]
 such that at a given time t and position x, the resulting error variance (anisotropy) is Vc(t, x) 

(sc,xx(t, x)). The problem that arises is how to specify the auto-correlation time scale of the boundary perturbation 
in order to obtain the desired error statistics 𝐴𝐴 (𝑉𝑉𝑐𝑐(𝑡𝑡𝑡 𝑡𝑡)𝑡 𝑠𝑠𝑐𝑐𝑡𝑡𝑡𝑡𝑡(𝑡𝑡𝑡 𝑡𝑡)) .

Note that ensemble forecasting for the diffusion equation with Neumann BC corresponds to integrating an ensem-
ble of initial conditions that verifies the Neumann conditions at the boundaries, and without additional perturba-
tion of the error field at the boundaries along the time integration (the metric at the boundary is constant equal 
to zero). It results that the specification of the auto-correlation time scale to build perturbations of the error 
field at the boundaries only concerns the Dirichlet conditions. In what follows, the specification of the time 
auto-correlation is first presented for an arbitrary evolution equation, then it is applied for the transport and for 
the diffusion equation.

4.2. Specification of the Auto-Correlation Time-Scale of the BC Perturbations for Ensemble of Forecast

The problem faced here is that, with BC being time-series, it has an associated time-scale. However, the metric 
tensor gxx is related to the spatial length-scale of the perturbation as denoted by the index xx. In order to specify the 
boundary condition of the metric tensor field, we need to find an equation linking, on the boundaries, the spatial 
metric tensor gxx with the time-scale used to generate the perturbation.
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Similarly to the spatial metric tensor Equation  12, the temporal metric tensor gtt that characterize the 
auto-correlation of a smooth centered random field, η(t), depending on the time, and of variance 𝐴𝐴 𝐴𝐴𝜂𝜂(𝑡𝑡) = 𝔼𝔼

[

𝜂𝜂(𝑡𝑡)
2
]

 , 
is defined by

𝐠𝐠𝑡𝑡𝑡𝑡(𝑡𝑡) = 𝔼𝔼

[

𝜕𝜕𝑡𝑡

(

𝜂𝜂(𝑡𝑡)

𝑉𝑉𝜂𝜂(𝑡𝑡)

)

𝜕𝜕𝑡𝑡

(

𝜂𝜂(𝑡𝑡)

𝑉𝑉𝜂𝜂(𝑡𝑡)

)]

. (29)

This temporal metric tensor is directly related with the time-scale of the perturbation. In 1D 𝐴𝐴 𝐴𝐴𝑡𝑡𝑡𝑡 =
1

𝐿𝐿2
𝑡𝑡

 with Lt the 

auto-correlation time-scale.

Without loss of generality, the boundary x = 0 is considered, and the goal is to characterize the temporal metric 
tensor gtt(t, x = 0). If η(t) denotes the random error at x = 0, then by continuity, the error and the random forcing 
verify e(t, x = 0) = η(t). Then, it results that the variances verify Vη(t) = V(t, x = 0), and the temporal metric 
tensor reads as

𝐠𝐠𝑡𝑡𝑡𝑡𝑡𝑡𝑡=0(𝑡𝑡) = 𝔼𝔼[𝜕𝜕𝑡𝑡𝜀𝜀(𝑡𝑡𝑡 𝐱𝐱 = 0)𝜕𝜕𝑡𝑡𝜀𝜀(𝑡𝑡𝑡 𝐱𝐱 = 0)]𝑡 (30a)

where 𝐴𝐴 𝐴𝐴 = 𝑒𝑒∕
√

𝑉𝑉  is the normalized error associated with the spatial error e. While Equation 30a only holds at the 
boundary x = 0, the spatio-temporal smoothness of e implies a link between the temporal metric at the bound-
ary and the spatial metric within the domain, which results from the dynamics of the error Equation 3 at x = 0: 

𝐴𝐴 𝐴𝐴𝑡𝑡𝑒𝑒(𝑡𝑡𝑡 𝑡𝑡 = 0) = (𝑒𝑒𝑡 𝐴𝐴𝑒𝑒)(𝑡𝑡𝑡 𝑡𝑡 = 0) . In particular, the temporal metric reads as (see Appendix C)

𝑔𝑔𝑡𝑡𝑡𝑡 =
𝑥𝑥=0

1

𝑉𝑉
𝔼𝔼

[

(

(𝜀𝜀
√

𝑉𝑉 𝑉 𝑉𝑉(𝜀𝜀
√

𝑉𝑉 ))

)2
]

−
1

4𝑉𝑉 2
(𝑉𝑉𝑡𝑡𝑉𝑉 )

2
𝑉 (30b)

where the terms 𝐴𝐴 𝔼𝔼

[

(

(𝜀𝜀
√

𝑉𝑉 𝑉 𝑉𝑉(𝜀𝜀
√

𝑉𝑉 ))

)2
]

 and ∂tV can make appear the spatial metric field gxx at x = 0.

One pitfall is that Equation 30b may be complicated, and can contain unknown terms such as 𝐴𝐴 𝔼𝔼
[

𝜀𝜀𝑓𝑓𝜕𝜕
4
𝑥𝑥𝜀𝜀𝑓𝑓

]

 encoun-
tered for the heterogeneous diffusion dynamics in Section 2.4.2. The next two sub-sections will detail the link 
between the temporal and the spatial metrics for the transport and for the diffusion.

4.3. Dirichlet BC for Ensemble Forecasting of the Positive Velocity Transport Equation

To illustrate the relation between the temporal and the spatial metric tensor, the transport Equation 20 is now 
considered.

Following the theoretical derivation of the temporal metric Equation 30b, SymPKF is used to derive the relation 
between the temporal anisotropy tensor of the error and the spatial anisotropy tensor of the error which yields

𝑔𝑔𝑐𝑐𝑐𝑐𝑐𝑐𝑐 =
𝑥𝑥=0

𝑢𝑢
2
𝑔𝑔𝑐𝑐𝑐𝑥𝑥𝑥𝑥 +

𝑢𝑢2(𝜕𝜕𝑥𝑥𝑉𝑉𝑐𝑐)
2

4𝑉𝑉 2
𝑐𝑐

+
𝑢𝑢𝜕𝜕𝑐𝑐𝑉𝑉𝑐𝑐𝜕𝜕𝑥𝑥𝑉𝑉𝑐𝑐

2𝑉𝑉 2
𝑐𝑐

+
(𝜕𝜕𝑐𝑐𝑉𝑉𝑐𝑐)

2

4𝑉𝑉 2
𝑐𝑐

. (31)

This spatio-temporal consistency for the temporal and spatial statistics is difficult to interpret physically without 
approximations. However, under the assumptions of local homogeneity (∂xVc = 0) and of stationarity for the 
variance (∂tVc = 0), Equation 31 reads as

𝑔𝑔𝑐𝑐𝑐𝑐𝑐𝑐𝑐 =
𝑥𝑥=0

𝑢𝑢
2
𝑔𝑔𝑐𝑐𝑐𝑥𝑥𝑥𝑥𝑐 (32)

which is physically interpretable since Equation 32, written in time-scale and length-scale, reads as 𝐴𝐴 𝐴𝐴𝑡𝑡 =
𝐴𝐴𝑥𝑥

𝑢𝑢
 : the 

usual rule relating time and space in a transport. Later, the numerical investigation will consider Equation 32 as 
an approximation of the true time-scale even when assumptions leading to Equation 32 are not verified.

Note that Equation 32 can be obtained when considering that the dynamics of the variance Equation 21b applies 
at the boundary, leading to replace the trend of the variance by ∂tVc  =  −u∂xVc in Equation  31 so to obtain 
Equation 32.

To conclude this paragraph, the ensemble forecasting under Dirichlet BC and applied to the transport equa-
tion, remains to populate an ensemble of boundary perturbations with a prescribed temporal variance and an 
auto-correlation time scale given by Equation 32.
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We proceed in the same way for the diffusion equation.

4.4. Dirichlet BCs for Ensemble Forecasting of the Diffusion Equation

To continue going toward more and more realistic modeling, the heterogeneous diffusion Equation 22 is now 
considered to compute the spatio-temporal link Equation 30b in the diffusion case.

From a derivation detailed in Appendix D, the auto-correlation time scale of boundary perturbation can be related 
to the spatial error correlation length-scale by the proxy

𝑔𝑔𝑓𝑓𝑓𝑓𝑓𝑓𝑓(𝑓𝑓𝑓 𝑡𝑡) ≈ 3𝐷𝐷(𝑡𝑡)
2
𝑔𝑔𝑓𝑓𝑓𝑡𝑡𝑡𝑡(𝑓𝑓𝑓 𝑡𝑡). (33)

Note that Equation 33 is an equality when the variance and the diffusion fields are homogeneous, and when the 
variance is stationary at the boundary.

Hence, as for the transport, the ensemble forecasting under Dirichlet BC, and applied to the diffusion equa-
tion, remains to populate an ensemble of boundary perturbations with a prescribed temporal variance and an 
auto-correlation time scale given by Equation 33.

We are now ready to validate the PKF approach from an ensemble validation designed to produce desired error 
statistics.

5. Numerical Investigation
The goal of the numerical investigation is to validate the PKF on a bounded domain as well as the equations 
developed in Section 4, by comparing the PKF dynamics with an ensemble simulation.

5.1. Setting for the Numerical Experiments

For this investigation three different settings are considered. All experiments take place on a 1D bounded domain 
x ∈ [0, Λ]. For the first one, the transport Equation 20 is considered with Dirichlet boundary condition at x = 0 
and free boundary at x = Λ. For the second setting, the heterogeneous diffusion Equation 22 is considered with 
Dirichlet BC at both boundaries x = 0 and x = Λ. For the third setting, the same diffusion equation is considered 
but this time with Neumann BC at x = 0 and x = Λ.

The transport and the diffusion being linear, the dynamics of the mean is the same for the PKF and for the EnKF. 
Hence, without loss of generality, to focus on the validation of the error statistics, the mean state is not considered 
in the following (the reader can consider the mean state as constant). Then, the ensemble of forecast is equivalent 
to the forecasts of an ensemble of perturbations 𝐴𝐴 (𝑒𝑒𝑘𝑘)𝑘𝑘∈[1,𝑁𝑁𝑒𝑒] , with appropriate BC.

Each time the variance, Equations 21b and 24b, and anisotropy tensor, Equations 21c and 24c, produced by the 
PKF dynamics are compared with the variance and anisotropy tensor diagnosed from an ensemble of Ne = 6,400 
forecasts. The size of the ensemble considered here, 6,400, is quite unusual compared with operational ensembles 
that often count dozens of members; but the reason is that we want to avoid sampling noise to be able to verify 
that the PKF dynamics of the error statistics reproduces the EnKF, the latter being considered as the reference 
here. Hence, if a difference appears between the EnKF and the PKF, then it is less likely to be related to sampling 
noise except when the magnitude of the difference falls under the confident interval deduced from the CLT.

The domain is discretized in n  =  241 grid points and the spatial derivative operator ∂x is discretized with a 
centered finite difference scheme leading to a second order of consistency. The temporal discretization scheme 
varies with each experiment and is detailed in each sections.

5.2. Application to the Transport Equation

In this experiment setting, the transport Equation 20 is considered. The velocity wind for the simulation is set as 
the heterogeneous stationary field 𝐴𝐴 𝐴𝐴(𝑥𝑥) = 1 +

1

4
sin

(

2𝜋𝜋

Λ
𝑥𝑥

)

 shown in Figure 1. This specific wind was considered 
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because it reproduces an average current oriented along increasing x, with an 
acceleration (deceleration) that mimics that encountered in a real flow.

The temporal discretization scheme used for the ensemble simulation as well 
as the PKF dynamics is a Runge–Kutta scheme of order 4 with a fixed time-
step dt ≈ 4.10 −3. The simulation is conducted from time t = 0 until tend = 2Tadv 
with the advection time scale 𝐴𝐴 𝐴𝐴𝑎𝑎𝑎𝑎𝑎𝑎 =

Λ

𝑢𝑢max

 .

In order to generate a coherent set of perturbations for the ensemble simula-
tion that is, an initial condition and a boundary condition that are smoothly 
connected, an extended domain [−u(0)tend, Λ] is created from the union of the 
physical domain [0, Λ] and the time window [0, tend] brought back to a virtual 
physical extension of the domain by multiplying with −u(0).

Then on this extended domain a variance field, V0 and a length-scale field L0 
are defined which will be used to generate the perturbations. For this exper-
iment the fields V0 and L0, that constitute the PKF initial and BC, are set as 
follows. The initial variance is set homogeneous and equal to 1 over the phys-
ical domain V0(t = 0, x) = 1 and the boundary variance is set to the periodi-
cal function 𝐴𝐴 𝐴𝐴0(𝑡𝑡𝑡 𝑡𝑡 = 0) =

5

4
−

1

4
cos

(

2𝜋𝜋

𝑇𝑇𝑎𝑎𝑎𝑎𝑎𝑎

𝑡𝑡

)

 . Like for the variance, the initial 
length-scale is set homogeneous and equal to 10% of the domain length L0(t = 0, x) = Lh = 0.1Λ and the boundary 
length-scale is set to the periodical function 𝐴𝐴 𝐴𝐴0(𝑡𝑡𝑡 𝑡𝑡 = 0) = 0.1Λ

(

3

4
+

1

4
cos

(

2𝜋𝜋

𝑇𝑇𝑎𝑎𝑎𝑎𝑎𝑎

𝑡𝑡

))

 .

This setting for the variance and the length-scale is chosen so to represent a typical behavior encountered in 
numerical weather forecasting, where large scale are more predictable than small scales, which is also the case in 
radiation belts dynamics forecasting.

Using Equation 15 and the relation between the length-scale and the anisotropy tensor in 1D, 𝐴𝐴 𝐴𝐴0 = 𝐿𝐿2

0
 , the covar-

iance matrix, P0 = P(V0, s0), is defined from which the spatio-temporal perturbations are sampled for each k as 
𝐴𝐴 𝐴𝐴𝑘𝑘 = 𝐏𝐏

1∕2

0
𝜁𝜁𝑘𝑘 , where ζk is a sample of a centered and normalized Gaussian random vector, and where 𝐴𝐴 𝐏𝐏

1∕2

0
 stands for 

the square root matrix of P0, that is, 𝐴𝐴 𝐏𝐏0 = 𝐏𝐏
1∕2

0

(

𝐏𝐏
1∕2

0

)T

 . The square root 𝐴𝐴 𝐏𝐏
1∕2

0
 has been computed from the singular 

value decomposition of the matrix P0.

An example of a perturbation sample is presented in Figure 2 where the temporal evolution e(t, x = 0) is shown 
in panel (a) while the initial condition within the domain, e(t = 0, x) is given in panel (b). Note that the time axis 
in panel (a) has been inverted so to facilitate the understanding. The blue dots corresponds to the value of the 
sampled error field e at t = 0 and x = 0.

Figure 3 shows both variance and length-scale fields that are computed from the PKF and the ensemble simula-
tions and compared at three different timestamps. The first panels (a) and (b) respectively show the variance and 
the length-scale normalized by Lh at initial time. As prescribed, the initial variance is homogeneous and equal  to 

Figure 1. Heterogeneous velocity field considered for the numerical 
simulation of the transport dynamics.

Figure 2. Sample of a generated perturbation split into an initial condition and a boundary condition that are smoothly connected. Note that the time axis in panel (a) 
has been inverted so that the global image, formed by merging panels (a) and (b), reveals the extended domain [−u(0)tend, Λ] that we considered for the simultaneous 
construction of the boundary and initial condition (see text for details).
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1. The initial length-scale is also homogeneous and equal to Lh. The panels (c) and (d) present the evolution at 
time t = 0.25Tadv. As expected the variance (the length-scale) increases (decreases) according to the specified 
boundary condition close to x = 0 (red dot). The length-scale is also modified over the whole domain, this is the 
effect of the velocity gradient of the term 2sc,xx∂xu in Equation 21c. Since the velocity field is positive, the variance 
and the length-scale are transported to the right of the domain. Finally, panels (e) and (f) show the fields at time 
t = 1.5tadv. The information injected by the boundary condition at x = 0 has reached the other side of the domain.

In order to strengthen these results, we show in Figure 4 the evolution through time of the fields for the middle 
point of the domain x = 0.5Λ. As expected, the variance in panel (a) remains constant until the information 
from the boundary condition arrives, where oscillations start, following the prescribed sine shape of the bound-
ary condition shifted in time. In panel (b), the length-scale follows the same kind of dynamic except that the 
length-scale varies from t = 0 to t = 0.5Tadv, a variation that is not due to the boundary condition but to the heter-
ogeneity of the wind field. Note that ensemble estimation of the variance and of the length-scale are subject to 
some sampling noise even with the large ensemble size Ne = 6,400.

Overall, this simulation shows no numerical artifact and the PKF and EnKF forecasts overlap perfectly. Moreover, 
the continuous and differentiable error statistics of the EnKF statistics shows that the generated duets of errors for 
the initial condition and boundary condition have been appropriately specified.

These results validate that the specification of the PKF boundaries proposed in Section 3.1 is correct when apply-
ing Dirichlet condition in a transport dynamics. Moreover it also validates the specification of the perturbations 
Equation 32, introduced in Section 4, for the ensemble validation to build prescribed error statistics.

Note that, this example has also shown the ability of the PKF to apply for open boundary condition.

Now, we validate the PKF BC applied for a diffusion equation.

Figure 3. Comparison of the forecast-error variance (left column) and normalized length-scale (right column) fields dynamics for the heterogeneous advection 
equation on a 1D bounded domain with Dirichlet boundary conditions at x = 0 and open boundary condition at x = Λ. The results are shown for times t = 0, t = 0.25Tadv 
and t = 1.5Tadv.
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5.3. Application to the Diffusion Equation

In this experiment setting, the heterogeneous diffusion Equation 22 is considered. The temporal discretization 
scheme used for the ensemble simulation is a backward Euler scheme (implicit Euler method) with a fixed 
time-step dtBE ≈ 2.10 −4. For the PKF dynamics we used a Runge–Kutta scheme of order 4 with a fixed time-step 
dtRK4 ≈ 5.10 −6. The simulation is performed from time t = 0 to tend = 1.2Tdiff with 𝐴𝐴 𝐴𝐴diff =

Λ2

4𝐷𝐷max

 the time scale of 
the diffusion of a half-domain.

The diffusion coefficient for the simulation is set as the heterogeneous stationary field 𝐴𝐴 𝐴𝐴(𝑥𝑥) = 1 +
𝐴𝐴

𝐴𝐴max

 with 
A(x) = sin(πx) (1 + x) 8 where Amax = MaxxA(x), and is shown in Figure 5. This diffusion field reproduces the 
kind of diffusion encountered in the dynamics of radiation belts in order to evaluate the ability of PKF to solve 
this problem.

5.3.1. Dirichlet Boundary Conditions

To generate a coherent set of perturbations for the ensemble simulation, the same technique described in 
Section 5.2 is considered except that both boundaries at x = 0 and x = Λ are subject to Dirichlet conditions. The 
extended domain considered is 𝐴𝐴

[

−
√

𝐷𝐷(0)𝑡𝑡𝑒𝑒𝑒𝑒𝑒𝑒 , 0

]

∪ [0,Λ] ∪

[

Λ,Λ +
√

𝐷𝐷(Λ)𝑡𝑡𝑒𝑒𝑒𝑒𝑒𝑒

]

 .

This time, the parameters considered for the simulation and ensemble 
generation are as follows, the initial variance is set to the linear function 

𝐴𝐴 𝐴𝐴0(𝑡𝑡 = 0, 𝑥𝑥) = 1 +
3

Λ
𝑥𝑥 and the initial length-scale is set homogeneous and 

equal to 10% of the domain length L0(t = 0, x) = Lh = 0.1Λ. For the left 
boundary condition at x = 0, the variance and the length-scale are station-
ary and set equal to 1 and Lh respectively that is, V0(t, x = 0) = 1 and L0(t, 
x = Λ) = Lh. For the right boundary condition at x = Λ, the variance and the 
length-scale are stationary and set equal to 4 and Lh respectively that is, V0(t, 
x = Λ) = 4 and L0(t, x = Λ) = Lh. From this specification, an ensemble of 
perturbations has been populated following the same procedure, 𝐴𝐴 𝐴𝐴𝑘𝑘 = 𝐏𝐏

1∕2

0
𝜁𝜁𝑘𝑘 , 

as detailed in Section 5.2. The resulting perturbations are similar to the ones 
shown in Figure 2 for the advection, except that there is a right extension of 
the domain in addition of the left extension for the advection (not shown).

The comparison between the PKF and EnKF predictions at different time 
steps are shown in Figure 6. The first panels (a) and (b) are coherent with the 
specification of the initial condition for both the EnKF and the PKF. Panels 
(c) and (d) show the evolution of the variance and length-scale at t = 0.2Tdiff.

Figure 4. Time evolution of the forecast-error variance (a) and normalized length-scale (b) at x = 0.5Λ, for the advection equation with Dirichlet boundary conditions.

Figure 5. Heterogeneous diffusion coefficient generated for the experiment.
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Due to physical diffusion, far from the boundaries for example, at the center of the domain, the magnitude of the 
error is expected to decrease over time with an attenuation of the variance in 𝐴𝐴

1
√

𝑡𝑡
 (see Pannekoucke et al., 2016, 

Equation 25 or Pannekoucke et  al.,  2021, Equation 48a), while the length-scale should increase in 𝐴𝐴
1
√

𝑡𝑡
 (see 

Pannekoucke et al., 2016, Equation 24 or Pannekoucke et al., 2021, Equation 48b); and at the boundaries the 
uncertainty should remained as specified by the Dirichlet conditions. This is precisely the behavior observed 
for both the EnKF and the PKF, at the center of the domain and at the boundaries where the Dirichlet condition 
imposes fixed values for the variance and the length-scale on both sides of the domain.

However, panel (d) shows a noticeable gap of around 20% between the length-scale computed by the PKF and the 
one estimated from the ensemble. This gap can be due to the closure Equations 23a and 23b but it has a limited 
impact on the variance field (panel c) which suggests that the PKF prediction of the variance is an accurate proxy 
for the EnKF estimation.

On the last panels (e) and (f), the variance and the length-scale settle down and the values predicted by the PKF 
are close to the values computed from the ensemble except for the error observed between the length-scale fields 
in the middle of the domain. As seen in Figure 7, the variance and length-scale are close to the permanent regime 
at t = 1.2Tdiff showing that the PKF performed well even over a significant time period.

Note that we consider that the PKF performs well here, even with a difference of 20% on the length-scale near 
the middle of the domain (see Figures 6f, 6d, and 7b), because the length-scale predicted by the PKF has the 
appropriate order of magnitude, and that the variance is really well reproduced (see Figures 6c, 6d, and 7a). From 
our experience, an error in variance is more damaging than an error in span length during assimilation cycle (see 
Pannekoucke, 2021a, Figure 9 or Perrot et al., 2023, Figure 7). However, the question to know if whether or not 
the PKF performs well should be addressed by comparing the results of the two schemes in the context of DA 

Figure 6. Comparison of the forecast-error variance (left column) and normalized length-scale (right column) fields dynamics for the heterogeneous diffusion equation 
on a 1D bounded domain with Dirichlet boundary conditions, and shown at times t = 0, t = 0.2Tdiff, and t = 1.5Tdiff.
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with synthetic observations, in order to see how the difference of length-scale impacts the root mean squared 
error of the analyzed state, and see if this difference is admissible or not, which is beyond the scope of the present 
contribution.

To conclude, this experiment has confirmed the specification of the Dirichlet BC of Section 3.1 for the PKF 
applied to a heterogeneous diffusion equation. It has shown the ability of the PKF to accurately approximate the 
uncertainty dynamics as diagnosed from the EnKF but at a lower cost corresponding the price of two time inte-
grations compared to the 6,400 integrations needed for the ensemble. Another result is that the simulations also 
validate the theoretical derivation of the time-scale setting Equation 33 needed to obtain a specific length-scale 
at the boundaries.

We end the numerical validation by considering the Neumann conditions applied to the heterogeneous diffusion 
equation.

5.3.2. Neumann Boundary Conditions

As above mentioned in Section 4, compared with the Dirichlet, the Neumann conditions are simulated in an 
ensemble of forecasts, as an initial condition problem without perturbation at the boundaries. The problem is then 
to produce an ensemble of initial conditions that verify the Neumann conditions.

To do so, a covariance model based on a homogeneous pseudo-diffusion equation has been considered (Weaver & 
Courtier, 2001). The terminology pseudo means that the diffusion is not physical but only a tricky way to create 
large covariance model as used in variational DA. In particular the square-root covariance 𝐴𝐴 𝐏𝐏

1∕2

0
 resulting from the 

integration of the pseudo-diffusion equation reads as the linear operator

𝐏𝐏
1∕2

0
= 𝚺𝚺𝚺𝚺𝚺𝚺, (34)

where 𝐴𝐴 𝐋𝐋 = 𝑒𝑒

1

2
𝜅𝜅𝜅𝜅2

𝑥𝑥 is the propagator associated with the diffusion equation

𝜕𝜕𝜏𝜏𝑢𝑢 = 𝜅𝜅𝜕𝜕
2
𝑥𝑥𝑢𝑢 (35)

of pseudo-time τ, integrated from τ = 0 to 𝐴𝐴 𝐴𝐴 =
1

2
 , and using Neumann conditions at the boundaries (Mirouze & 

Weaver, 2010); W is a diagonal normalization so that WL(WL) T is a correlation operator; and Σ is a diagonal 
matrix of standard deviations, so that the spatial variance field is the linear profile with V0(t = 0, x = 0) = 1 and 
V0(t = 0, x = Λ) = 4. Note that the pseudo-diffusion coefficient κ is related to the length-scale l of the correlation 
functions as to κ = l 2/2 (Pannekoucke & Massart, 2008). For the numerical application, lh = 0.1Λ.

Again, an ensemble of initial conditions are populated from the square-root Equation 34, 𝐴𝐴 𝐴𝐴𝑘𝑘 = 𝐏𝐏
1∕2

0
𝜁𝜁𝑘𝑘 , where ζk is a 

sample of centered Gaussian random vector. Figure 8 shows some samples of the normalized error resulting from 

Figure 7. Time evolution of the forecast-error variance (a) and normalized length-scale (b) at x = 0.5Λ, for the diffusion equation with Dirichlet boundary conditions.
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Equation 34 that is, ɛk = WLζk. As it is expected, the normalized error are flat 
at the boundaries (red arrows pointing toward the interior of the domain). The 
resulting anisotropy diagnosed from the ensemble of initial condition t = 0 
leads to the metric field shown in Figure 9 (in blue but super-imposed by the 
orange line). As expected, far from the boundary, the metric is homogene-
ous equal to 𝐴𝐴 𝐴𝐴 = 1∕𝑙𝑙2

ℎ
 that is, near x = 0.5Λ, but oscillates near the bounda-

ries to reach a value of zero at the boundaries. The oscillations is due to the 
constraint of symmetry of the covariance matrix (Pannekoucke et al., 2018).

As discussed in Section 3.2, for Neumann conditions the PKF dynamics is 
solved following its metric formulation, which is given by Equations 25a–25c 
for the physical diffusion Equation 22. For the numerical validation of the 

Neumann BCs, the initial condition for the PKF is the variance field of linear profile shown in Figure 10a and 
the experiment metric field diagnosed from the ensemble of initial conditions shown in Figure 9 for t = 0 (orange 
line, superimposed to the blue line of the EnKF diagnosis).

The PKF dynamics is computed and the results are compared with the ensemble of forecasts of the heterogeneous 
diffusion Equation 22 and Neumann conditions on both sides. The results are shown in Figure 9 for the metric, 
and in Figure 10 for the variance and the length-scale (computed from the inverse of the metric). The results are 
shown for times of interest selected from the time evolution reproduced in Figure 11 where a relaxation toward a 
stationary state of uncertainty appears.

As expected for a diffusion, the variance decreases with respect to time, while the length-scale increases. Note that 
for Neumann condition, the variance at the boundary also decreases while it was constant in the Dirichlet condi-
tion. For the ensemble estimation, the length-scales at the boundaries (blue lines in panel (b)–(d)–(f)) are large but 
finite where it is expected to be infinite: this is due to the numerical estimation of the length-scale deduced from 
Equation 14, while the metric remains null at the boundaries during the simulation (see Figure 9 the red dots).

Compared with the EnKF diagnosis, the PKF performs well by reproducing the same behavior of the uncertainty 
dynamics as for the EnKF, except that the length-scale predicted from the PKF underestimates the length-scale 
diagnosed from the ensemble. However, the very large length-scale values, larger than the domain size Λ, as  diag-
nosed from the ensemble is subject to the limitation of the numerical computation of Equation  14 for large 
correlations that can present a positive bias (Pannekoucke et al., 2008), but the magnitude of this positive bias 
should be low in the present experiment where a large ensemble of 6,400 members is used. Moreover, the large 
length-scale of the EnKF can also be influenced by model error (Pannekoucke et al., 2021), while the PKF can 
be less sensitive  to numerical error (Perrot et  al.,  2023, Appendix A). Because of these limitations, it is not 

certain that the EnKF reproduces the true dynamics of the uncertainty for 
these extreme values of the length-scales, while it is considered as the refer-
ence. Hence, the discrepancy between the PKF and the EnKF reference, may 
not be due to a defect of the PKF that could be better than the ensemble esti-
mation here. Note that these comments rely on the length-scale but this diag-
nosis is computed from the inverse of the metric tensor and that therefore, the 
discrepancies between the EnKF and the PKF (in terms of length-scales) will 
be exacerbated as the metric tensor is getting closer to 0. In terms of metric 
tensor, Figure 9, the agreement between EnKF and PKF seems to be much 
better. In addition, the very large value of the length-scale encountered here, 
whose amplitude can be more than five times the domain extension, should 
be viewed with caution: the length-scale is only a diagnosis of the local 
spatial extension of the correlation functions based on the curvature diagnosis 
(small separation distance δx in Equation 10) and may not be representative 
of the global extension (Ménétrier et al., 2015). This limitation can be seen in 
Figure 12 which compares some of the correlation functions diagnosed from 
the ensemble with the Gaussian correlation of same length-scale at the end 
of the time integration t = 1.2Tdiff. It appears that the Gaussian approxima-
tion can over-estimate the correlation when the length-scale is very large for 
example, in Figure 12a where the length-scale is larger than 5Λ. But at the 
same time, the Gaussian correlation can under-estimate the true correlation 

Figure 9. Forecast-error metric field for the heterogeneous diffusion equation 
on a 1D bounded domain with Neumann boundary conditions, shown at times 
t = 0, t = 0.02Tdiff, t = 0.2Tdiff, and t = 1.2Tdiff.

Figure 8. Samples of random error generated as initial condition that verify 
the Neumann condition at the boundaries x = 0 and x = Λ.
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at large distance as shown in Figure 12b for a length-scale around Λ. Hence, for correlation modeling, it may be 
useful to attenuate excessively large length-scale values when using the PKF.

To conclude, this experiment has confirmed the specification of the Neumann BC of Section 3.2 for the PKF 
applied to a heterogeneous diffusion equation. It has shown the ability of the PKF to accurately approximate the 

Figure 10. Comparison of the forecast-error variance (left column) and length-scale (right column) fields dynamics for the heterogeneous diffusion equation on a 1D 
bounded domain with Neumann boundary conditions, and shown at times t = 0, t = 0.2Tdiff, and t = 1.2Tdiff.

Figure 11. Time evolution of the forecast-error variance (a) and length-scale (b) at x = 0.5Λ, for the diffusion equation with Neumann boundary conditions.
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uncertainty dynamics as diagnosed from the EnKF but at a lower cost corresponding the price of two time inte-
grations compared to the 6,400 integrations needed for the ensemble.

This ends the validation of the specification of the BC for the PKF. The summary of the results obtained in the 
paper as well as the perspective of the work are given in the following section of conclusion.

6. Conclusion
This work contributed to explore the PKF, that is a recent approximation of the Kalman filter proposed for appli-
cation in large systems. The parametric approach investigated here consists to approximate the forecast-error 
covariance matrix by a covariance model parameterized from the variance and the anisotropy. The anisotropy can 
be specified in term of metric tensor or its inverse, the aspect tensor, that is the square of the length-scale in 1D 
domains. The PKF dynamics describes how the mean, the variance and the anisotropy evolve in time, leading to 
the prediction of the error statistics at a lower numerical cost than the one needed for the full covariance propa-
gation described in the Kalman filter forecast step.

In this contribution, we proposed how to specify the error statistics at the boundary of a domain when considering 
a PKF forecast of the uncertainty. We detail here pragmatic solutions for large systems with strong variability at 
their domain's edge, such as in air quality at regional scale or in radiation belts “weather.”

Two kind of boundaries have been considered, the Dirichlet and the Neumann conditions depending on the 
dynamics. We obtained that a Dirichlet boundary condition for the dynamics implies to specify a Dirichlet condi-
tions for the variance and the anisotropy in the PKF dynamics, no mater how the PKF dynamics is specified 
in metric or in aspect tensor. Similarly, a Neumann condition implies to specify a Neumann condition for the 
variance but a Dirichlet condition for the metric. However, for Neuman conditions, the formulation of the PKF in 
metric is more adapted than the one in aspect tensor, which would require infinite value at the boundary.

Two dynamics of interest for weather forecasting, air quality or radiation belt dynamics have been considered: the 
transport and the diffusion equation. For these dynamics, the PKF predictions have been validated numerically 
in a 1D limited area domain, from the comparison to an ensemble estimation for example, by considering heter-
ogeneous and non-stationary uncertainty at the boundary for Dirichlet conditions. For Dirichlet conditions, the 
ensemble of forecast has been designed by adding, to each member, a perturbation of the boundary with a vary-
ing correlation time-scale, for which we derived analytical formula that depend on the dynamics and introduced 
to obtain a prescribed spatial anisotropy near the boundary. For both the advection and the diffusion, the PKF 
has been shown able to reproduce the uncertainty dynamics diagnosed from the ensemble of forecast. Note that 
this result is not obvious, even when considering a linear-Gaussian setting: the PKF based on VLATcov model 

Figure 12. Correlation function diagnosed from the ensemble (solid line) and compared with the Gaussian correlation of same length-scale (dashed line), for the points 
x = 0, x = 0.5Λ, and x = Λ, and at t = 1.2Tdiff.
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only approximate the full covariance dynamics from the dynamics of the variance and the anisotropy, that is a 
crude approximation of the full covariance dynamics. Hence, it is an encouraging result for the application in air 
quality (for the transport equation) and in radiation belts monitoring (for the diffusion). For other applications, 
these results will have to be confirmed by considering non-linear dynamics of interest, and multivariate statistics 
extension of the PKF, as it is required for numerical weather prediction; which needs complementary exploration 
of the PKF beyond the scope of the present contribution and are challenging topics. Note also that the numerical 
testbed indirectly validates the auto-correlation time scale formula, and constitutes a contribution to the ensemble 
methods (while these formula are not needed for the PKF).

The next step will be to study the BC conditions for domains of larger dimensions, where we expect some changes 
for example, non-zero components of the metric tensor along the tangential direction to the boundary in Neumann 
conditions.

We can mention that the dynamics of the uncertainty for bounded domains can be of importance in variational 
DA or observation targeting applied for LAM, that could be another topic to investigate with the PKF.

Beyond these challenging topics, we can mention that the results in 1D should already find important applications 
for example, in the dynamics of uncertainty in the boundary layer for air quality, or wild-land fire predictions; or 
in the exploration of the coupling of uncertainty in the coupled atmosphere-ocean system during the alternating 
integration of the two fluids.

Appendix A: Accounting for the Uncertainty at the Boundary Condition in a KF
This section illustrates the KF equation in presence of a boundary, applied to a transport. The KF forecast step 
is first introduced where the boundary condition appears as a command. Then it is applied when the boundary 
is perfectly known or uncertain. An illustration of uncertain boundary is proposed when the error is a stationary 
auto-regressive noise of order 1 (AR(1)), for which the formalism can be reworded without command but consid-
ering an extended domain with an equivalent model error.

A1. KF Forecast Step for a Transport in a Limited-Area 1D Domain

The transport ∂tc  +  U∂xc  =  0, of a concentration field c(t, x) at a constant positive velocity U, along a 1D 
limited-area domain [0, Λ] of coordinate x, with a Dirichlet condition c(t, x = 0) = b(t) at the inlet and open 
condition at the outlet x = 1, discretized on a regular grid in time 𝐴𝐴 (𝑡𝑡𝑞𝑞)𝑞𝑞∈ℕ and space 𝐴𝐴 (𝑥𝑥𝑘𝑘)𝑘𝑘∈[0,𝑛𝑛−1] (i.e., x0 = 0) with 
a time step δt and a grid space δx defined by 𝐴𝐴 𝐴𝐴𝐴𝐴 =

𝐴𝐴𝛿𝛿

𝑈𝑈
 , and when the boundary condition is constant over a time 

step, the dynamics reads as

𝑐𝑐𝑞𝑞+1 = 𝐌𝐌𝑐𝑐𝑞𝑞 + 𝐅𝐅𝑏𝑏𝑞𝑞, (A1)

where here, cq+1 denote the vector resulting from the discretization of c(tq, x), F = [1,0,…,0] T and

𝐌𝐌 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0 0 0 ⋯ 0

1 0 0 ⋯ 0

0 1 0 ⋯ 0

⋮ ⋱ ⋱ ⋱ ⋮

⋯ 0 1 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, (A2)

so that the value of the concentration c(tq+1, xk) at a grid point xk and at a time tq+1 is equals to c(tq, xk−1) providing 
that 0 < k < n − 1; at the boundaries the first component of cq+1 is bq (i.e., c(tq+1, 0) = bq) while the value of c(tq, 
xn−1). After a long period of time integration, when tq > Λ/U, c(tq+1, xk) = bq−k for any k ∈ [0, n − 1]. Note that, 
in optimal control, bq in Equation A1 plays the role of a command.

From Equation A1, it follows that the dynamics of the forecast error is written as

𝑒𝑒
𝑓𝑓

𝑐𝑐 𝑞𝑞+1 = 𝐌𝐌𝑒𝑒
𝑓𝑓

𝑐𝑐 𝑞𝑞 + 𝐅𝐅𝑒𝑒𝑏𝑏𝑞𝑞, (A3)

 19422466, 2023, 10, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2022M

S003462 by C
ochrane France, W

iley O
nline L

ibrary on [08/11/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



Journal of Advances in Modeling Earth Systems

SABATHIER ET AL.

10.1029/2022MS003462

24 of 29

where 𝐴𝐴 𝐴𝐴
𝑓𝑓

𝑐𝑐  (eb) denotes the forecast error on c (the error on b). As it is common in KF theory, the errors are assumed 
centered (i.e., 𝐴𝐴 𝔼𝔼

[

𝑒𝑒
𝑓𝑓

𝑐𝑐

]

= 𝔼𝔼[𝑒𝑒𝑏𝑏] = 0 for any time).

A2. Perfectly Known Boundary Condition

In the case where the boundary condition at the inlet is perfectly known (i.e., 𝐴𝐴 𝐴𝐴𝑏𝑏𝑞𝑞 = 0 for any q), but the initial 
condition is uncertain, characterized by Gaussian error distribution of covariance P a; then the Gaussian uncer-
tainty, characterized by the covariance 𝐴𝐴 𝐏𝐏

𝑓𝑓

𝑞𝑞  at tq, evolves following the Kalman filter forecast step Equation 4 that is

𝐏𝐏
𝑓𝑓

𝑞𝑞+1
= 𝐌𝐌𝐏𝐏

𝑓𝑓

𝑞𝑞𝐌𝐌
𝑇𝑇
. (A4)

Hence, after one time step (q = 1), the forecast-error covariance matrix reads as 𝐴𝐴 𝐏𝐏
𝑓𝑓

1
= 𝐌𝐌𝐏𝐏

𝑎𝑎
𝐌𝐌

𝑇𝑇  𝐴𝐴
(

𝐏𝐏
𝑓𝑓

0
= 𝐏𝐏

𝑎𝑎
)

 , that is 
a matrix that looks like

𝐏𝐏
𝑓𝑓

1
=

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0 0 0 ⋯ 0

0

⋮

(

𝐏𝐏
𝑓𝑓

0

)−

0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

 (A5)

where 𝐴𝐴
(

𝐏𝐏
𝑓𝑓

0

)−
 denotes square matrix of dimension n − 1 whose coefficients are those of the submatrix 𝐴𝐴 𝐏𝐏

𝑎𝑎

[0∶𝑛𝑛−2,0∶𝑛𝑛−2]
 

of P a since 𝐴𝐴 𝐏𝐏
𝑓𝑓

0
= 𝐏𝐏

𝑎𝑎 . It appears that the variance at the boundary is null, which is coherent when the bound-
ary condition (not necessary constant in time) is perfectly known. After, q  >  0 iterations of Equation  A4, 

𝐴𝐴 𝐏𝐏
𝑓𝑓

𝑞𝑞+1
= (𝐌𝐌)

𝑞𝑞
𝐏𝐏
𝑓𝑓

0

(

𝐌𝐌
𝑇𝑇
)𝑞𝑞 , the qth first rows and lines of 𝐴𝐴 𝐏𝐏

𝑓𝑓

𝑞𝑞  are null. Since M is nilpotent of order n (i.e., M n−1 ≠ 0 
and M n = 0), after n iterations, the forecast-error covariance matrix is null, meaning that there is no more error 
within the domain (independently of the initial uncertainty of the initial condition).

While in this section we considered a perfectly known boundary, this is not the situation encountered in real appli-
cations for example, in forecasting at regional scale where uncertainty at large scale should introduce an inflow 
of uncertainty at the entrance of the domain.

Hence, the inflow of “certainty” that results from the common covariance propagation Equation  A4 of the 
Kalman filter forecast step, but used without care, explains the loss of variance observed in ensemble forecasting 
when no perturbation of the boundary is used to represent the uncertainty (Nutter, Stensrud, & Xue, 2004; Nutter, 
Xue, & Stensrud, 2004).

The next section provides the correct formulation of the covariance dynamics in presence of uncertainty at the 
boundary.

A3. Uncertain Boundary Condition

Now, when considering that the boundary condition is uncertain, the forecast-error covariance matrix evolves as

𝐏𝐏
𝑓𝑓

𝑞𝑞 = 𝐌𝐌𝐏𝐏
𝑓𝑓

𝑞𝑞𝐌𝐌
𝑇𝑇 + 𝐅𝐅𝔼𝔼

[

𝑒𝑒𝑏𝑏𝑞𝑞
(

𝑒𝑒𝑏𝑏𝑞𝑞
)𝑇𝑇
]

𝐅𝐅
𝑇𝑇 +𝐌𝐌𝔼𝔼

[

𝑒𝑒
𝑓𝑓

𝑐𝑐 𝑞𝑞

(

𝑒𝑒𝑏𝑏𝑞𝑞
)𝑇𝑇
]

𝐅𝐅
𝑇𝑇 +

(

𝐌𝐌𝔼𝔼

[

𝑒𝑒
𝑓𝑓

𝑐𝑐 𝑞𝑞

(

𝑒𝑒𝑏𝑏𝑞𝑞
)𝑇𝑇
]

𝐅𝐅
𝑇𝑇

)𝑇𝑇

, (A6)

and reads as

𝐏𝐏
𝑓𝑓

𝑞𝑞 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0 0 ⋯ 0

0

⋮

(

𝐏𝐏
𝑓𝑓

𝑞𝑞

)−

0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

+

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝑉𝑉𝑏𝑏𝑞𝑞 0 ⋯ 0

0

⋮ (0)

0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

+

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0 0 ⋯ 0

∗

⋮ (0)

∗

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

+

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0 ∗ ⋯ ∗

0

⋮ (0)

0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, (A7)

where 𝐴𝐴 𝐴𝐴𝑏𝑏𝑞𝑞 = 𝔼𝔼

[

𝑒𝑒𝑏𝑏𝑞𝑞
(

𝑒𝑒𝑏𝑏𝑞𝑞
)𝑇𝑇
]

 is the variance of the uncertainty at the boundary, and where stars, *, correspond to 
a priori non zero coefficients which represents the correlations between the uncertainty at the boundary with 
the forecast-error in the remaining part of the domain (0, Λ]. Hence, the first term in Equation A10, 𝐴𝐴 𝐌𝐌𝐌𝐌

𝑓𝑓

𝑞𝑞𝐌𝐌
𝑇𝑇  , 
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is similar to the matrix shown in Equation A5. The other terms in Equation A10 will contribute to fill the first 
row and column of the matrix: the second term of Equation A10, 𝐴𝐴 𝐅𝐅𝔼𝔼

[

𝑒𝑒𝑏𝑏𝑞𝑞
(

𝑒𝑒𝑏𝑏𝑞𝑞
)𝑇𝑇
]

𝐅𝐅
𝑇𝑇 = 𝑉𝑉𝑏𝑏𝑞𝑞𝐅𝐅𝐅𝐅

𝑇𝑇  , where FF T is the 
null matrix except for the first coefficient that is one, fills the first coefficient of 𝐴𝐴 𝐏𝐏

𝑓𝑓

𝑞𝑞+1
 . Similarly, the third and the 

fourth terms of Equation A10 will fill the first row and the first column.

A4. Example With a Stationary AR(1) Boundary Error

As an instructive example, we consider the case where the error is a stationary AR(1) random process, 
𝐴𝐴 𝐴𝐴𝑏𝑏𝑞𝑞+1 = 𝑎𝑎𝐴𝐴𝑏𝑏𝑞𝑞 +

√

1 − 𝑎𝑎2
√

𝑉𝑉𝑏𝑏𝜁𝜁𝑞𝑞 , where Vb denotes the time independent variance of 𝐴𝐴 𝐴𝐴𝑏𝑏𝑞𝑞 (independent of q); 
𝐴𝐴 𝐴𝐴 = exp(−𝛿𝛿𝛿𝛿∕𝜏𝜏) where τ is the correlation time scale; and 𝐴𝐴 𝐴𝐴 = (𝐴𝐴𝑞𝑞)𝑞𝑞∈ is a process of independent and independent 

random variable, where for each q, ζq is normal law that is, 𝐴𝐴 𝐴𝐴𝑞𝑞 ∼  (0, 1) . The time correlation for this processes 
is the exponential 𝐴𝐴 𝐴𝐴𝐴𝐴𝐴𝐴

(

𝑒𝑒𝑏𝑏𝑞𝑞, 𝑒𝑒𝑏𝑏𝑞𝑞+𝐴𝐴
)

= exp(−𝐴𝐴𝑟𝑟𝑟𝑟∕𝜏𝜏) , that also reads as 𝐴𝐴 𝐴𝐴𝐴𝐴𝐴𝐴
(

𝑒𝑒𝑏𝑏𝑞𝑞, 𝑒𝑒𝑏𝑏𝑞𝑞−𝐴𝐴
)

= exp(−𝐴𝐴𝑟𝑟𝑟𝑟∕𝜏𝜏) because of the 
stationarity of the process (homogeneity in time).

Since after a long period, c(tq+1, xk)  =  bq−k, it follows that 
𝐴𝐴 𝐴𝐴𝑐𝑐(𝑡𝑡𝑞𝑞+1, 𝑥𝑥𝑘𝑘) = 𝐴𝐴𝑏𝑏𝑞𝑞−𝑘𝑘 so that the kth component of the vector 𝐴𝐴 𝔼𝔼

[

𝑒𝑒
𝑓𝑓

𝑐𝑐 𝑞𝑞

(

𝑒𝑒𝑏𝑏𝑞𝑞
)𝑇𝑇
]

 is 
𝐴𝐴 𝐴𝐴𝐴𝐴𝐴𝐴

(

𝑒𝑒
𝑓𝑓

𝐴𝐴 (𝑡𝑡𝑞𝑞, 𝑥𝑥𝑘𝑘), 𝑒𝑒𝑏𝑏𝑞𝑞
)

= 𝑉𝑉𝑏𝑏𝐴𝐴𝐴𝐴𝑐𝑐
(

𝑒𝑒𝑏𝑏𝑞𝑞, 𝑒𝑒𝑏𝑏𝑞𝑞−𝑘𝑘
)

= 𝑉𝑉𝑏𝑏𝐴𝐴𝐴𝐴𝑐𝑐
(

𝑒𝑒𝑏𝑏𝑞𝑞+𝑘𝑘, 𝑒𝑒𝑏𝑏𝑞𝑞
)

= 𝑉𝑉𝑏𝑏𝐴𝐴𝐴𝐴𝑐𝑐
(

𝑒𝑒𝑏𝑏𝑞𝑞+𝑘𝑘, 𝑒𝑒𝑏𝑏𝑞𝑞
)

= 𝑉𝑉𝑏𝑏 exp(−𝑘𝑘𝑘𝑘𝑡𝑡∕𝜏𝜏) . With                       
𝐴𝐴 𝐴𝐴

𝑓𝑓

𝑐𝑐 (𝑡𝑡𝑞𝑞+1, 0) = 𝐴𝐴𝑏𝑏𝑞𝑞 , 𝐴𝐴 𝐴𝐴
𝑓𝑓

𝑐𝑐 (𝑡𝑡𝑞𝑞+1, 𝑥𝑥𝑘𝑘) = 𝐴𝐴
𝑓𝑓

𝑐𝑐 (𝑡𝑡𝑞𝑞, 𝑥𝑥𝑘𝑘−1) , and δt = δx/U, then 𝐴𝐴 𝐴𝐴𝐴𝐴𝐴𝐴
(

𝑒𝑒
𝑓𝑓

𝐴𝐴 (𝑡𝑡𝑞𝑞+1, 𝑥𝑥0), 𝑒𝑒
𝑓𝑓

𝐴𝐴 (𝑡𝑡𝑞𝑞+1, 𝑥𝑥𝑘𝑘)
)

= 𝑉𝑉𝑏𝑏 exp(−𝑘𝑘𝑘𝑘𝑥𝑥∕(𝑈𝑈𝑈𝑈)) . 
Hence, after a relaxation period, the error covariance matrix is stationary with a spatial correlation function given 
as an exponential correlation of length-scale l = Uτ.

A5. Extension of the Space Domain for a Boundary Error Modeled by an AR(1)

When the boundary error is an auto-regressive process of order 1, it is possible to rewords the dynamics Equa-
tion A3, by extending the physical domain with an additional one point corresponding to the boundary condition 
that will enter to the domain in the future. Focusing on error dynamics, this reads as follow:

Considering the extended vector 𝐴𝐴 𝐴𝐴𝐴𝑞𝑞 =
[

𝐴𝐴𝑏𝑏𝑞𝑞, 𝐴𝐴
𝑓𝑓

𝑞𝑞

]𝑇𝑇

 of dimension n + 1, then Equation A3 is written as

𝑒𝑒𝑞𝑞+1 = �̃�𝐌𝑒𝑒𝑞𝑞 + �̃�𝐅𝜁𝜁𝑞𝑞, (A8)

where

�̃�𝐌 =

⎡

⎢

⎢

⎣

𝑎𝑎 0

𝐅𝐅 𝐌𝐌

⎤

⎥

⎥

⎦

, (A9)

and 𝐴𝐴 �̃�𝐅 =

[
√

1 − 𝑎𝑎2𝑉𝑉𝑏𝑏, 0, . . . , 0

]𝑇𝑇

 . With this formulation, Equation A8 is similar to the classic formulation of the 
KF equation in presence of model error (that would be here the second term 𝐴𝐴 �̃�𝐅𝜁𝜁𝑞𝑞 ), leading to the error covariance 
dynamics

�̃�𝐏
𝑓𝑓

𝑞𝑞+1
= �̃�𝐌�̃�𝐏

𝑓𝑓

𝑞𝑞 �̃�𝐌
𝑇𝑇 + �̃�𝐐, (A10)

where 𝐴𝐴 �̃�𝐐 = �̃�𝐅�̃�𝐅
𝑇𝑇  .

This extension of the domain also applies for auto-regressive process of order m where we need to add m points.

Appendix B: Closure of the PKF Dynamics for the Diffusion Equation
The computation of the PKF dynamics for the diffusion Equation 22, with SymPKF, leads to the dynamical 
system

𝜕𝜕𝑡𝑡𝑓𝑓 = 𝐷𝐷𝜕𝜕
2
𝑥𝑥𝑓𝑓 + 𝜕𝜕𝑥𝑥𝐷𝐷𝜕𝜕𝑥𝑥𝑓𝑓 𝑓 (B1a)

𝜕𝜕𝑡𝑡𝑉𝑉𝑓𝑓 = −
2𝐷𝐷𝑉𝑉𝑓𝑓

𝑠𝑠𝑓𝑓𝑓𝑓𝑓𝑓𝑓
+𝐷𝐷𝜕𝜕

2
𝑓𝑓𝑉𝑉𝑓𝑓 −

𝐷𝐷(𝜕𝜕𝑓𝑓𝑉𝑉𝑓𝑓 )
2

2𝑉𝑉𝑓𝑓

+ 𝜕𝜕𝑓𝑓𝐷𝐷𝜕𝜕𝑓𝑓𝑉𝑉𝑓𝑓 𝑓 (B1b)
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𝜕𝜕𝑡𝑡𝑠𝑠𝑓𝑓𝑓𝑓𝑓𝑓𝑓 = 2𝐷𝐷𝑠𝑠
2

𝑓𝑓𝑓𝑓𝑓𝑓𝑓
𝔼𝔼
(

𝜀𝜀𝑓𝑓𝜕𝜕
4
𝑓𝑓𝜀𝜀𝑓𝑓

)

− 3𝐷𝐷𝜕𝜕
2
𝑓𝑓𝑠𝑠𝑓𝑓𝑓𝑓𝑓𝑓𝑓 − 2𝐷𝐷

+
6𝐷𝐷(𝜕𝜕𝑓𝑓𝑠𝑠𝑓𝑓𝑓𝑓𝑓𝑓𝑓)

2

𝑠𝑠𝑓𝑓𝑓𝑓𝑓𝑓𝑓
−

2𝐷𝐷𝑠𝑠𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝜕𝜕
2
𝑓𝑓𝑉𝑉𝑓𝑓

𝑉𝑉𝑓𝑓

+
𝐷𝐷𝜕𝜕𝑓𝑓𝑉𝑉𝑓𝑓𝜕𝜕𝑓𝑓𝑠𝑠𝑓𝑓𝑓𝑓𝑓𝑓𝑓

𝑉𝑉𝑓𝑓

+
2𝐷𝐷𝑠𝑠𝑓𝑓𝑓𝑓𝑓𝑓𝑓(𝜕𝜕𝑓𝑓𝑉𝑉𝑓𝑓 )

2

𝑉𝑉 2

𝑓𝑓

− 2𝑠𝑠𝑓𝑓𝑓𝑓𝑓𝑓𝑓
𝑑𝑑2

𝑑𝑑𝑓𝑓2
𝐷𝐷

+ 2𝜕𝜕𝑓𝑓𝐷𝐷𝜕𝜕𝑓𝑓𝑠𝑠𝑓𝑓𝑓𝑓𝑓𝑓𝑓 −
2𝑠𝑠𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝜕𝜕𝑓𝑓𝐷𝐷𝜕𝜕𝑓𝑓𝑉𝑉𝑓𝑓

𝑉𝑉𝑓𝑓

 (B1c)

where this time the term 𝐴𝐴 𝔼𝔼
[

𝜀𝜀𝑓𝑓𝜕𝜕
4
𝑥𝑥𝜀𝜀𝑓𝑓

]

 is not determined from f, Vf and sf,xx. This dynamics can be closed considering 
the closure Equation 23b.

Appendix C: Specification of the Temporal Metric Tensor for Evolution Equations
This section details the link between the temporal metric Equation 30a, 𝐴𝐴 𝐠𝐠𝑡𝑡𝑡𝑡 = 𝔼𝔼[𝜕𝜕𝑡𝑡𝜀𝜀𝜕𝜕𝑡𝑡𝜀𝜀] , and the dynamics of the 
error. Since the trend of the normalized error reads as

𝜕𝜕𝑡𝑡𝜀𝜀 =
1

√

𝑉𝑉

𝜕𝜕𝑡𝑡𝑒𝑒 −
1

2𝑉𝑉 3∕2
𝑒𝑒𝜕𝜕𝑡𝑡𝑉𝑉 𝑉 (C1)

then the temporal metric tensor is written as

𝑔𝑔𝑡𝑡𝑡𝑡 =
1

𝑉𝑉
𝔼𝔼
[

(𝜕𝜕𝑡𝑡𝑒𝑒)
2
]

−
1

𝑉𝑉 2
𝔼𝔼[𝑒𝑒𝜕𝜕𝑡𝑡𝑒𝑒]𝜕𝜕𝑡𝑡𝑉𝑉 +

1

4𝑉𝑉 3
𝔼𝔼
[

𝑒𝑒
2
]

(𝜕𝜕𝑡𝑡𝑉𝑉 )
2
. (C2)

However, we recognize the expression of the variance 𝐴𝐴 𝐴𝐴 = 𝔼𝔼
[

𝑒𝑒2
]

 and its trend, Equation 16a, so that the temporal 
metric simplifies as

𝑔𝑔𝑡𝑡𝑡𝑡 =
1

𝑉𝑉
𝔼𝔼
[

(𝜕𝜕𝑡𝑡𝑒𝑒)
2
]

−
1

4𝑉𝑉 2
(𝜕𝜕𝑡𝑡𝑉𝑉 )

2
. (C3a)

Introducing the trend of the error Equation 3 and by definition of 𝐴𝐴 𝐴𝐴 = 𝑒𝑒∕
√

𝑉𝑉  , the temporal metric reads as

𝑔𝑔𝑡𝑡𝑡𝑡 =
1

𝑉𝑉
𝔼𝔼

[

(

(𝜀𝜀
√

𝑉𝑉 𝑉 𝑉𝑉(𝜀𝜀
√

𝑉𝑉 ))

)2
]

−
1

4𝑉𝑉 2
(𝑉𝑉𝑡𝑡𝑉𝑉 )

2
. (C3b)

Appendix D: Time Auto-Correlation Boundary Condition for the Diffusion Equation
The computation of the time auto-correlation metric Leverages on SymPKF. For the diffusion equation, SymPKF 
leads to

𝑔𝑔𝑓𝑓𝑓𝑓𝑓𝑓𝑓 = 𝐷𝐷
2
𝔼𝔼
(

𝜀𝜀𝑓𝑓𝜕𝜕
4
𝑥𝑥𝜀𝜀𝑓𝑓

)

+ 2𝐷𝐷2
𝜕𝜕
2
𝑥𝑥𝑔𝑔𝑓𝑓𝑓𝑥𝑥𝑥𝑥 −

𝐷𝐷2𝑔𝑔𝑓𝑓𝑓𝑥𝑥𝑥𝑥𝜕𝜕
2
𝑥𝑥𝑉𝑉𝑓𝑓

𝑉𝑉𝑓𝑓

+
𝐷𝐷2𝜕𝜕𝑥𝑥𝑉𝑉𝑓𝑓𝜕𝜕𝑥𝑥𝑔𝑔𝑓𝑓𝑓𝑥𝑥𝑥𝑥

𝑉𝑉𝑓𝑓

+
3𝐷𝐷2𝑔𝑔𝑓𝑓𝑓𝑥𝑥𝑥𝑥(𝜕𝜕𝑥𝑥𝑉𝑉𝑓𝑓 )

2

2𝑉𝑉 2

𝑓𝑓

+
𝐷𝐷2

(

𝜕𝜕2𝑥𝑥𝑉𝑉𝑓𝑓

)2

4𝑉𝑉 2

𝑓𝑓

−
𝐷𝐷2(𝜕𝜕𝑥𝑥𝑉𝑉𝑓𝑓 )

2
𝜕𝜕2𝑥𝑥𝑉𝑉𝑓𝑓

4𝑉𝑉 3

𝑓𝑓

+
𝐷𝐷2(𝜕𝜕𝑥𝑥𝑉𝑉𝑓𝑓 )

4

16𝑉𝑉 4

𝑓𝑓

+𝐷𝐷𝜕𝜕𝑥𝑥𝐷𝐷𝜕𝜕𝑥𝑥𝑔𝑔𝑓𝑓𝑓𝑥𝑥𝑥𝑥

+
𝐷𝐷𝑔𝑔𝑓𝑓𝑓𝑥𝑥𝑥𝑥𝜕𝜕𝑥𝑥𝐷𝐷𝜕𝜕𝑥𝑥𝑉𝑉𝑓𝑓

𝑉𝑉𝑓𝑓

+
𝐷𝐷𝑔𝑔𝑓𝑓𝑓𝑥𝑥𝑥𝑥𝜕𝜕𝑓𝑓𝑉𝑉𝑓𝑓

𝑉𝑉𝑓𝑓

+
𝐷𝐷𝜕𝜕𝑥𝑥𝐷𝐷𝜕𝜕𝑥𝑥𝑉𝑉𝑓𝑓𝜕𝜕

2
𝑥𝑥𝑉𝑉𝑓𝑓

2𝑉𝑉 2

𝑓𝑓

−
𝐷𝐷𝜕𝜕𝑓𝑓𝑉𝑉𝑓𝑓𝜕𝜕

2
𝑥𝑥𝑉𝑉𝑓𝑓

2𝑉𝑉 2

𝑓𝑓

−
𝐷𝐷𝜕𝜕𝑥𝑥𝐷𝐷(𝜕𝜕𝑥𝑥𝑉𝑉𝑓𝑓 )

3

4𝑉𝑉 3

𝑓𝑓

+
𝐷𝐷𝜕𝜕𝑓𝑓𝑉𝑉𝑓𝑓 (𝜕𝜕𝑥𝑥𝑉𝑉𝑓𝑓 )

2

4𝑉𝑉 3

𝑓𝑓

+ 𝑔𝑔𝑓𝑓𝑓𝑥𝑥𝑥𝑥(𝜕𝜕𝑥𝑥𝐷𝐷)
2
+

(𝜕𝜕𝑥𝑥𝐷𝐷)
2
(𝜕𝜕𝑥𝑥𝑉𝑉𝑓𝑓 )

2

4𝑉𝑉 2

𝑓𝑓

−
𝜕𝜕𝑥𝑥𝐷𝐷𝜕𝜕𝑓𝑓𝑉𝑉𝑓𝑓 𝜕𝜕𝑥𝑥𝑉𝑉𝑓𝑓

2𝑉𝑉 2

𝑓𝑓

+
(𝜕𝜕𝑓𝑓𝑉𝑉𝑓𝑓 )

2

4𝑉𝑉 2

𝑓𝑓

.

 (D1)
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Considering the analytical closure Equation 23a for the unclosed term 𝐴𝐴 𝔼𝔼
(

𝜀𝜀𝑓𝑓𝜕𝜕
4
𝑥𝑥𝜀𝜀𝑓𝑓

)

 , the correspondence is written  as

𝑔𝑔𝑓𝑓𝑓𝑓𝑓𝑓𝑓 = 3𝐷𝐷2
𝑔𝑔
2

𝑓𝑓𝑓𝑓𝑓𝑓𝑓
−

𝐷𝐷2𝑔𝑔𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝜕𝜕
2
𝑓𝑓𝑉𝑉𝑓𝑓

𝑉𝑉𝑓𝑓

+
𝐷𝐷2𝜕𝜕𝑓𝑓𝑉𝑉𝑓𝑓𝜕𝜕𝑓𝑓𝑔𝑔𝑓𝑓𝑓𝑓𝑓𝑓𝑓

𝑉𝑉𝑓𝑓

+
3𝐷𝐷2𝑔𝑔𝑓𝑓𝑓𝑓𝑓𝑓𝑓(𝜕𝜕𝑓𝑓𝑉𝑉𝑓𝑓 )

2

2𝑉𝑉 2

𝑓𝑓

+
𝐷𝐷2

(

𝜕𝜕2𝑓𝑓𝑉𝑉𝑓𝑓

)2

4𝑉𝑉 2

𝑓𝑓

−
𝐷𝐷2(𝜕𝜕𝑓𝑓𝑉𝑉𝑓𝑓 )

2
𝜕𝜕2𝑓𝑓𝑉𝑉𝑓𝑓

4𝑉𝑉 3

𝑓𝑓

+
𝐷𝐷2(𝜕𝜕𝑓𝑓𝑉𝑉𝑓𝑓 )

4

16𝑉𝑉 4

𝑓𝑓

+𝐷𝐷𝜕𝜕𝑓𝑓𝐷𝐷𝜕𝜕𝑓𝑓𝑔𝑔𝑓𝑓𝑓𝑓𝑓𝑓𝑓 +
𝐷𝐷𝑔𝑔𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝜕𝜕𝑓𝑓𝐷𝐷𝜕𝜕𝑓𝑓𝑉𝑉𝑓𝑓

𝑉𝑉𝑓𝑓

+
𝐷𝐷𝑔𝑔𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝜕𝜕𝑓𝑓𝑉𝑉𝑓𝑓

𝑉𝑉𝑓𝑓

+
𝐷𝐷𝜕𝜕𝑓𝑓𝐷𝐷𝜕𝜕𝑓𝑓𝑉𝑉𝑓𝑓𝜕𝜕

2
𝑓𝑓𝑉𝑉𝑓𝑓

2𝑉𝑉 2

𝑓𝑓

−
𝐷𝐷𝜕𝜕𝑓𝑓𝑉𝑉𝑓𝑓𝜕𝜕

2
𝑓𝑓𝑉𝑉𝑓𝑓

2𝑉𝑉 2

𝑓𝑓

−
𝐷𝐷𝜕𝜕𝑓𝑓𝐷𝐷(𝜕𝜕𝑓𝑓𝑉𝑉𝑓𝑓 )

3

4𝑉𝑉 3

𝑓𝑓

+
𝐷𝐷𝜕𝜕𝑓𝑓𝑉𝑉𝑓𝑓 (𝜕𝜕𝑓𝑓𝑉𝑉𝑓𝑓 )

2

4𝑉𝑉 3

𝑓𝑓

+ 𝑔𝑔𝑓𝑓𝑓𝑓𝑓𝑓𝑓(𝜕𝜕𝑓𝑓𝐷𝐷)
2
+

(𝜕𝜕𝑓𝑓𝐷𝐷)
2
(𝜕𝜕𝑓𝑓𝑉𝑉𝑓𝑓 )

2

4𝑉𝑉 2

𝑓𝑓

−
𝜕𝜕𝑓𝑓𝐷𝐷𝜕𝜕𝑓𝑓𝑉𝑉𝑓𝑓 𝜕𝜕𝑓𝑓𝑉𝑉𝑓𝑓

2𝑉𝑉 2

𝑓𝑓

+
(𝜕𝜕𝑓𝑓𝑉𝑉𝑓𝑓 )

2

4𝑉𝑉 2

𝑓𝑓

.

 (D2)

The latter expression being quite complex, simplifications are introduced. First the variance field is assumed 
locally homogeneous at the boundary that is, ∂xVf(t, x = 0) = 0, so that Equation D2 simplifies as

𝑔𝑔𝑓𝑓𝑓𝑓𝑓𝑓𝑓 = 3𝐷𝐷2
𝑔𝑔
2

𝑓𝑓𝑓𝑓𝑓𝑓𝑓
+𝐷𝐷𝐷𝐷𝑓𝑓𝐷𝐷𝐷𝐷𝑓𝑓𝑔𝑔𝑓𝑓𝑓𝑓𝑓𝑓𝑓 +

𝐷𝐷𝑔𝑔𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝐷𝐷𝑓𝑓𝑉𝑉𝑓𝑓

𝑉𝑉𝑓𝑓

+ 𝑔𝑔𝑓𝑓𝑓𝑓𝑓𝑓𝑓(𝐷𝐷𝑓𝑓𝐷𝐷)
2
+

(𝐷𝐷𝑓𝑓𝑉𝑉𝑓𝑓 )
2

4𝑉𝑉 2

𝑓𝑓

.

 (D3)

Then, if the variance is moreover assumed stationary, then Equation D3 becomes

𝑔𝑔𝑓𝑓𝑓𝑓𝑓𝑓𝑓 = 3𝐷𝐷2
𝑔𝑔
2

𝑓𝑓𝑓𝑓𝑓𝑓𝑓
+𝐷𝐷𝐷𝐷𝑓𝑓𝐷𝐷𝐷𝐷𝑓𝑓𝑔𝑔𝑓𝑓𝑓𝑓𝑓𝑓𝑓 + 𝑔𝑔𝑓𝑓𝑓𝑓𝑓𝑓𝑓(𝐷𝐷𝑓𝑓𝐷𝐷)

2
. (D4)

Eventually, then the diffusion coefficient field is homogeneous, then the spatio-temporal connection between the 
temporal metric and the spatial metric reads

𝑔𝑔𝑓𝑓𝑓𝑓𝑓𝑓𝑓 = 3𝐷𝐷2
𝑔𝑔𝑓𝑓𝑓𝑓𝑓𝑓𝑓. (D5)

While Equation D5 is a particular case, this equality is considered as a proxy for setting the auto-correlation time 
scale of the boundary perturbation even when the variance and the diffusion fields are heterogeneous.

Note that another expression for the spatio-temporal consistency Equation  D2 can be obtained when first 
considering the dynamics of the variance given by Equation 24b, leading to replace the trend of the variance by 

𝐴𝐴 𝐴𝐴𝑡𝑡𝑉𝑉𝑓𝑓 = −2𝐷𝐷𝑉𝑉𝑓𝑓𝑔𝑔𝑓𝑓𝑓𝑓𝑓𝑓𝑓 +𝐷𝐷𝐴𝐴2𝑓𝑓𝑉𝑉𝑓𝑓 −
𝐷𝐷(𝐴𝐴𝑓𝑓𝑉𝑉𝑓𝑓 )

2

2𝑉𝑉𝑓𝑓
+ 𝐴𝐴𝑓𝑓𝐷𝐷𝐴𝐴𝑓𝑓𝑉𝑉𝑓𝑓 , so that Equation D2 simplifies as

𝑔𝑔𝑓𝑓𝑓𝑓𝑓𝑓𝑓 = 2𝐷𝐷2
𝑔𝑔
2

𝑓𝑓𝑓𝑓𝑓𝑓𝑓
+

𝐷𝐷2𝜕𝜕𝑓𝑓𝑉𝑉𝑓𝑓𝜕𝜕𝑓𝑓𝑔𝑔𝑓𝑓𝑓𝑓𝑓𝑓𝑓

𝑉𝑉𝑓𝑓

+
𝐷𝐷2𝑔𝑔𝑓𝑓𝑓𝑓𝑓𝑓𝑓(𝜕𝜕𝑓𝑓𝑉𝑉𝑓𝑓 )

2

𝑉𝑉 2

𝑓𝑓

+𝐷𝐷𝜕𝜕𝑓𝑓𝐷𝐷𝜕𝜕𝑓𝑓𝑔𝑔𝑓𝑓𝑓𝑓𝑓𝑓𝑓

+
2𝐷𝐷𝑔𝑔𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝜕𝜕𝑓𝑓𝐷𝐷𝜕𝜕𝑓𝑓𝑉𝑉𝑓𝑓

𝑉𝑉𝑓𝑓

+ 𝑔𝑔𝑓𝑓𝑓𝑓𝑓𝑓𝑓(𝜕𝜕𝑓𝑓𝐷𝐷)
2
𝑓

 (D6)

from which the assumption of local homogeneity at the boundary that is, ∂xVf(t, x = 0) = 0, leads to

𝑔𝑔𝑓𝑓𝑓𝑓𝑓𝑓𝑓 = 2𝐷𝐷2
𝑔𝑔
2

𝑓𝑓𝑓𝑓𝑓𝑓𝑓
+𝐷𝐷𝐷𝐷𝑓𝑓𝐷𝐷𝐷𝐷𝑓𝑓𝑔𝑔𝑓𝑓𝑓𝑓𝑓𝑓𝑓 + 𝑔𝑔𝑓𝑓𝑓𝑓𝑓𝑓𝑓(𝐷𝐷𝑓𝑓𝐷𝐷)

2
. (D7)

When the diffusion field is constant, then the time auto-correlation metric is related to the space auto-correlation 
metric by
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𝑔𝑔𝑓𝑓𝑓𝑓𝑓𝑓𝑓 = 2𝐷𝐷2
𝑔𝑔𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 (D8)

which is a different result from Equation D5.

It is not clear whether the appropriate consistency should be given by Equations D5 or D8 that is, if it is right to 
replace the trend of the variance Equation 24b in the consistency relation Equation D2.

From numerical experiment, it appears that setting the time auto-correlation of boundary perturbation with Equa-
tion D5 in the EnKF is in agreement with the PKF results. This suggests that taking into account the trend of the 
variance would lead to a kind of over-specification of the boundary condition for the diffusion equation in an 
EnKF approach.

Data Availability Statement
V1.0 of the Boundary conditions for the parametric Kalman filter forecast software used to compute and analyze 
the numerical experiments presented in this paper is preserved at 10.5281/zenodo.7193985 and developed openly 
at https://github.com/opannekoucke/pkf-boundary (Sabathier et al., 2022).
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