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Giant viruses are remarkable for their large genomes, often rivaling
those of small bacteria, and for having genes thought exclusive
to cellular life. Most isolated to date infect nonmarine protists,
leaving their strategies and prevalence in marine environments
largely unknown. Using eukaryotic single-cell metagenomics in
the Pacific, we discovered a Mimiviridae lineage of giant viruses,
which infects choanoflagellates, widespread protistan predators
related to metazoans. The ChoanoVirus genomes are the largest yet
from pelagic ecosystems, with 442 of 862 predicted proteins lacking
known homologs. They are enriched in enzymes formodifying organic
compounds, including degradation of chitin, an abundant polysaccha-
ride in oceans, and they encode 3 divergent type-1 rhodopsins (VirR)
with distinct evolutionary histories from those that capture sunlight in
cellular organisms. One (VirRDTS) is similar to the only other putative
rhodopsin from a virus (PgV) with a known host (a marine alga). Un-
like the algal virus, ChoanoViruses encode the entire pigment biosyn-
thesis pathway and cleavage enzyme for producing the required
chromophore, retinal. We demonstrate that the rhodopsin shared by
ChoanoViruses and PgV binds retinal and pumps protons. Moreover,
our 1.65-Å resolved VirRDTS crystal structure and mutational analyses
exposed differences from previously characterized type-1 rhodopsins,
all of which come from cellular organisms. Multiple VirR types are
present in metagenomes from across surface oceans, where they are
correlated with and nearly as abundant as a canonical marker gene
from Mimiviridae. Our findings indicate that light-dependent energy
transfer systems are likely common components of giant viruses of
photosynthetic and phagotrophic unicellular marine eukaryotes.

giant viruses | viral evolution | marine carbon cycle | single-cell genomics |
host–virus interactions

Viruses are increasingly recognized as key participants in the
marine carbon cycle, short circuiting the classical flow of

carbon through food chains to higher trophic levels (1–3). Much
is known about how marine phages alter bacterial metabolism,
such as supplementing photosynthetic machinery during in-
fection (4, 5), and about viruses that infect protists (unicellular
eukaryotes), especially photosynthetic taxa, and the auxiliary
metabolic genes (AMGs) that they possess (6–8). Over the last 15 y,
there has also been the remarkable discovery of viruses with large
genomes (>300 Kb) that infect eukaryotes, the so-called giant
viruses (9–13). Giant viruses encode numerous functions previously
considered exclusive to cellular life, such as transfer RNA (tRNA)
synthetases, translation initiation and elongation factors, and
tRNAs. Those described so far primarily infect predatory protists
that live in soils, wastewater, and freshwater, especially members of
the Amoebozoa and Excavata eukaryotic supergroups, and have

genomes that range up to 2.4 Mb (Fig. 1A) (9–13). The 6 isolated
from the ocean water column, an environment where both viruses
and protists have massive ecological importance (14–17), infect
3 haptophyte algal species (Phaeocystis globosa, Emiliania huxleyi,
and Chrysochromulina ericina), 1 green alga (Tetraselmis sp.),
1 stramenopile alga (Aureococcus anophagefferens), and 1 non-
photosynthetic predatory stramenopile (Cafeteria roenbergensis)
(18–23). These marine viruses have smaller genomes, ranging from
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370 to 670 Kb, than many other giant viruses, and all belong to the
nucleocytoplasmic large DNA viruses (NCLDV) family, which
houses smaller eukaryotic marine viruses as well (24) (Dataset S1).
Nevertheless, the marine giants encode a number of AMGs that
connect to how they alter host metabolism during infection, such
as fermentation-related genes (20) and sphingolipid-biosynthesis
genes (6) in algal viruses, essential information for considering
downstream biogeochemical processes and modeling the impacts
of virus–host interactions on ecosystem processes.
The paucity of giant viruses isolated from marine ecosystems

likely results from dependence of classical viral isolation meth-
ods on cultured hosts, such as the bacterivorous stramenopile
Cafeteria, for recovering CroV (21). Unfortunately, many marine
protists remain uncultured (15, 25) and hence, are not available
for use as viral bait. This is especially so for predatory protists, in
part because the natural consortia that constitute their food base
are outcompeted by a few copiotrophic, relatively large bacterial
taxa once in enriched medium in the laboratory (25). In some

cases, metagenomics has been used to recover genome-level in-
formation while obviating cultivation. In particular, giant virus
genomes have been assembled from metagenomic data acquired
from low-diversity, simplified ecosystems [e.g., wastewater (12)
and a hypersaline lake in Antarctica (26)]. However, these ap-
proaches are less successful in high-diversity environments, un-
less the biological entity has high abundance, and they fail to
directly link virus to host (13), an important factor for under-
standing ecological impacts. To overcome these challenges, we
integrated multiple culture-independent and laboratory methods
to perform this cross-scale study, in which we first sorted indi-
vidual wild predatory protists and used single-cell metagenomics
to examine these eukaryotes and coassociated entities. With a
resulting genome from an uncultured giant virus in hand, we
asked how its predicted functional attributes differed from the
marine giant virus genomes characterized previously, all of which
come from cultivation-based isolation and sequencing, and from
the plethora of giant viruses from nonmarine habitats. Furthermore,
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we identified conserved attributes and established the distribu-
tion and biochemical function of a viral rhodopsin that thus far
seems unique to giant viruses in the marine biosphere.

Results and Discussion
A Wild Predatory Protist in the North Pacific Ocean and Its Virus. To
capture uncultured heterotrophic protists, we used high-purity
fluorescence-activated cell sorting (FACS) of single cells with
acidic vacuole staining to discriminate protists from prokaryotes
and an additional exclusion gate against photosynthetic organisms
to select heterotrophic protists only (SI Appendix). In a FACS
survey in the eastern North Pacific, we recovered a coherent
population of choanoflagellates (Fig. 1 B and C), heterotrophic
predators belonging to the supergroup Opisthokonta that are
considered to be among the closest living unicellular relatives of
metazoans (27). Choanoflagellates comprised 99% of the 198 wells
for which V4 18S ribosomal RNA (rRNA) gene amplicons were
recovered after initial multiple displacement amplification of DNA
from single cells, and the remaining 3 wells harbored amplicons
with highest identity to uncultured syndiniales (putative parasites)
and 2 different uncultured cercozoans (bacterivores), respectively.
Choanoflagellates are widespread bacterivorous protists that we
expected to be targeted by our staining protocol, because they
contain an acidic food vacuole.
From one choanoflagellate cell, we assembled an 875-Kb viral

genome after eukaryotic single-cell metagenomic sequencing (SI
Appendix, Figs. S1 and S2). The virus, ChoanoV1, represents the
largest pelagic marine giant virus genome sequenced yet; its ge-
nomic DNA base composition (GC content) was low (22%), ri-
valed only by nonmarine Hokoviruses (21%) and CroV (23%),
whereas other giant viruses range to 64% GC (10, 12, 21) (SI
Appendix, Fig. S2 and Dataset S1). The ChoanoV1 genome
encoded 862 predicted proteins, and its gene content suggested
that it belonged to the NCLDV (Fig. 1D and SI Appendix, Fig.
S2), a diverse group of eukaryotic viruses (10, 11).
Presence of a eukaryotic virus coassociated with a single

choanoflagellate cell could reflect several possible ecological in-
teractions: first, that the virus had infected the choanoflagellate
and replicated there; second, that the virus had been consumed by
the predator as a prey item as reported in 2 prior culture-based
studies on viral-feeding by predatory protists (28, 29); and third,
that the virus had infected a prey item of the choanoflagellate
(before that prey was consumed). Multiple lines of evidence
support the first scenario. The average sequencing depth of the
viral genome (215 ± 157×) and other assembly statistics (SI Ap-
pendix) suggested the virus was highly replicated (30) in the sorted
choanoflagellate, implying there were many ChoanoV1 genomes
present in the host cell. Among nonviral reads in the well, more
than half belonged to the uncultured choanoflagellate Bicosta
minor. This was determined by mapping reads against an 87-Mb
partial B. minor genome that we generated from 4 other sort wells
(SI Appendix, Fig. S1B), each containing single identical 18S
rRNA gene sequences (assembled from metagenomic data and in
V4 18S rRNA gene amplicons) (Dataset S2) that had 99% identity
to B. minor as identified, handpicked, and sequenced in a prior
field study (31). Contigs from bacterial prey (and phages) were
also present in the choanoflagellate–virus-containing well but had
a lower N50 (i.e., the minimum contig length needed to cover 50%
of the genome; specifically, 13,326 vs. 86,624 for the virus ge-
nome), and none had genomes close to completion. These results
suggest that the bacteria present were diverse and potentially in a
degraded state as would occur in the choanoflagellate food vac-
uole. Additionally, the N50 of B. minor contigs (2,098) was lower
than in wells where the virus was not detected (8,546), suggesting
that it (as host) was also being degraded (SI Appendix, Fig. S1 B
and C). While these statistics point to an active infection, it is
hypothetically possible that many of the same virus had been
ingested, leading to the high-coverage statistics for ChoanoV1.

However, traditional metagenomic data from the same Pacific
Ocean site and sort date showed that prokaryotes (prey) were
>50,000 times more abundant than ChoanoV1 based on the rel-
ative numbers of bacterial 16S rRNA gene reads (a gene that is
often single copy in marine bacteria) and ChoanoV1 DNA Poly-
merase B (PolB) reads (a single-copy gene in viral genomes).
Hence, if choanoflagellates were to feed on giant viruses, the
predator–prey encounter rate would strongly favor consumption
of bacterial cells such that consumption of more than 1 ChoanoV1
virion is improbable. The other mechanism by which many of the
virus could have been ingested is consumption of an infected small
eukaryotic prey item. We did not detect sequences in the sort wells
from any of the picoeukaryotes that are abundant in marine wa-
ters, including those in prior reports on this region (32, 33). Ad-
ditionally, for the encounter rate of algal prey to be sufficiently
higher than bacteria, one might presume that a bloom is necessary.
However, Chlorophyll a concentrations at the depth sampled for
sorting and others from the same water column and date were not
indicative of a bloom; rather, the spring bloom seemed to be
initiated later in the season (Dataset S3) as is typical for the region
(34). Furthermore, the gene content of ChoanoV1 is highly dis-
tinct from the many available genome sequences from viruses of
picoeukaryotes (35, 36) or other known algal viruses (18–20, 22,
23, 37) (SI Appendix, Fig. S3). Collectively, these results point to us
having recovered an actively infected B. minor host cell in which
ChoanoV1 had already replicated. After Canarypox virus, which
infects birds (38), ChoanoV1 represents just the second giant virus
identified with an opisthokont host (Dataset S1).
We next sought to recover a ChoanoVirus genome from an-

other field site. Therefore, we exploited the low GC content
observed in ChoanoV1 to sequence and assemble a related virus
in an eastern North Pacific sample collected 200 km offshore 7 y
before the Bicosta single-cell study (Fig. 1B). This sample was
chosen for low %GC DNA enrichment on a density gradient,
followed by deep sequencing, because environmental clone li-
braries showed that the B. minor 18S rRNA gene was present
(100% identity) and vintage metagenomic data from the sample
(7) contained ChoanoV1-like reads. The resulting ChoanoV2
assembly contained 89% of ChoanoV1 genes (average 94%
amino acid identity), despite its fragmented nature resulting
from traditional metagenome assembly limitations (SI Appendix,
Fig. S4A). Our discovery poised us to investigate the evolution,
function, and importance of specific metabolic traits in viruses of a
key group of opisthokonts or more generally, heterotrophic ma-
rine protists and broader ecological implications.

Evolutionary Analyses Establish a Distinct NCLDV Giant Virus Lineage.
Preliminary analyses suggested the ChoanoViruses were NCLDVs,
with about 20% of the ChoanoV1 predicted proteins and 23%
of the more fragmented ChoanoV2 proteins showing highest
BLASTp affiliations to NCLDV proteins (Fig. 1D and SI Ap-
pendix, Fig. S4B). For proteins that had BLASTp affiliations
primarily to cellular life, most of those closest to eukaryotic pro-
teins seemed to be opisthokont derived, suggesting acquisition
from hosts in past time (SI Appendix, Fig. S4C). Unfortunately, the
paucity of genomic resources for marine eukaryotic viruses and
marine protists themselves precludes statistically valid examina-
tion of potential horizontal or host-to-virus gene transfer (HGT)
at a genome wide scale, and hence, we did not examine questions
of origin globally. The other half of the ChoanoVirus proteins have
not been seen in cellular organisms or viruses sequenced to date.
Overall, these observations, including ∼50% of proteins being un-
known, are quite typical of newly sequenced NCLDV genomes (13,
39), at least at this stage in time, in which relatively few have been
sequenced. Of these ChoanoVirus orphan genes, 70% were de-
tected in metatranscriptomes that we sequenced from the eastern
North Pacific, demonstrating expression (SI Appendix, Fig. S2).

20576 | www.pnas.org/cgi/doi/10.1073/pnas.1907517116 Needham et al.
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To reconstruct evolutionary relationships, we used phylogenomic
approaches to analyze proteins considered core to NCLDV ge-
nomes (40). We reexamined presence, absence, and copy num-
ber patterns for the 47 proteins previously proposed to be core
(40). We next excluded, for example, fast-evolving proteins and
proteins for which unclear paralogs existed within a single NCLDV
genome, and thereby expanded the set of NCLDV proteins suitable
for phylogenomics used in recent reconstructions (12) from 5 to
10 (Fig. 2A and Dataset S2). Phylogenomic reconstructions
with the 2 protein sets provided similar topologies, with higher
statistical node support in the 10 protein phylogeny (SI Appendix,
Fig. S5). These reconstructions showed the ChoanoViruses belong to
the extended Mimiviridae, comprising a divergent clade from those
already established (12, 13). PolB reconstructions highlighted a large
group of marine viral PolB, distinct from nonmarine Mimiviridae
(Mimiviruses, Tupanviruses, Klosneuviruses) and CroV, when
assembled metagenomic sequences from TARA Oceans (41)
and Global Ocean Survey (GOS) (42) were searched and included

(SI Appendix, Fig. S6). Within this broad marine group, the
ChoanoViruses formed a supported clade that incorporated
Pacific Ocean, Atlantic Ocean, and Southern Ocean sequences
for which the viral hosts remain unknown. These analyses
demonstrated the value of recovering viral genomes from uncultured
hosts, which exposed here the unique ChoanoVirus lineage and its
presence in multiple oceans.

ChoanoVirus Auxiliary Metabolic Genes and Biogeochemical Implications.
AMGs are host-derived genes carried by viruses that are not directly
involved in viral replication but rather supplement or augment
cellular functions within infected cells (5, 6). An important ex-
ample in marine bacteriophages is oxygenic photosynthesis
proteins that augment cyanobacterial photosynthetic machin-
ery during infection (4). Although oxygenic photosynthesis-related
proteins have not been found in eukaryotic viruses sequenced to
date, the giant viruses encode a plethora of AMGs that augment
cellular processes. These include proteins involved in, for example,
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Fig. 2. Evolutionary relationships and functional aspects of the ChoanoVirus lineage. (A) Maximum likelihood phylogenomic reconstruction inferred from
10 proteins. Support >80% (500 bootstrap replicates) is indicated (LG + C20 + F + G-PMSF model) (SI Appendix, Fig. S5), and host group coloring is as in Fig. 1A.
ChoanoV1 (star; from M2 single-cell sort) and ChoanoV2 (from Station 67-70; low %GC-selected DNA with metagenomics) branched together in all recon-
structions adjacent to an algal stramenopile virus AaV (when included) (SI Appendix, Fig. S5), for which placement appears influenced by long-branch at-
traction. (B) Total number of tRNAs (Left) and orthogroup functional categorization (heat map; EggNOG categorization) of ChoanoV1 and representative
giant NCLDV (Dataset S1). The frequency of each category across the viral genomes determines x-axis ordering. (C) Distribution of functional categories in
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translation, transcription, lipid biosynthesis, and transport of
phosphate or ammonium (6–8, 43). Systematic analyses of Choa-
noVirus metabolic potential revealed a broad repertoire of such
proteins, several types being enriched or unique in ChoanoViruses
relative to other NCLDVs (Fig. 2 B–D and SI Appendix, Figs.
S3 and S7A). Like other giant viruses, the ChoanoVirus genomes
encode proteins for augmenting host processes, including aminoacyl-
tRNA synthetases, photolyases, and proteins involved in signal
transduction, replication, recombination and repair, cell wall bio-
genesis, and posttranslational modifications (Fig. 2B and SI Ap-
pendix, Fig. S7A) (6–13, 18–23). The ChoanoViruses also encode
22 tRNAs (Fig. 2B) such that tRNA numbers seem to roughly
scale with genome size, with more being found in the larger
genome-sized Tupanvirus from deep sea sediment (43) and less in
the smaller genome-sized pelagic marine giant viruses TetV,
CroV, PgV, and CeV (18, 20–22). Furthermore, the ChoanoVirus
tRNAs correspond to amino acid usage, suggesting preferential
retention of those optimized for amino acid usage of virus over
host, and 17 tRNAs are collocated in a single genomic region (SI
Appendix, Fig. S7 B and C). Hence, the large ChoanoVirus ge-
nomes encoded many proteins once considered unique to cel-
lular life, that now seem to be held in common across disparate
giant viruses (10–13, 18–21).
Clustering based on presence and absence patterns of

orthologous protein groups in NCLDV placed ChoanoV1 ad-
jacent to the only other sequenced marine pelagic virus with a
host that is a heterotrophic predator, CroV (SI Appendix, Fig.
S3) (21). These 2 viruses were part of a broader cluster incor-
porating marine algal giant viruses, which appeared more
similar to each other in their orthogroup presence and absence
patterns than to nonmarine giant viruses or smaller viruses that
infect marine algae. Many of the proteins making up these
orthogroups lack characterized functions or have only broad
functional classification. Combined with the limited overall
representation of giant virus lineages, these findings call for a
major initiative to expand viral taxonomic sampling so that the
significance of the presence and absence pattern observations
could be estimated.
Comparison of ChoanoV1 with other genome-sequenced viruses

shows an enrichment in NCLDV orthologs involved in transport
and metabolism of nucleotides, amino acids, and carbohydrates
(Fig. 2B and SI Appendix, Fig. S7A). ChoanoV2 shows the same
trend, although its more fragmented state precludes robust
global ortholog comparisons. Even among ChoanoVirus proteins
lacking orthologs in other NCLDV, these functional categories
are prominent (Fig. 2D and SI Appendix, Fig. S7D) and include a
chitinase new to marine viruses that is present in both Choano-
Viruses (SI Appendix, Fig. S8). Chitinase degrades the poly-
saccharide chitin, a component of zooplankton, some algae, and
many other organisms, to labile saccharides readily consumed by
marine microbes (44). This enzyme has been reported in a virus
of the freshwater alga Chlorella (45) and viruses that infect in-
sects, specifically Lepidoptera (46). Our phylogenetic analyses
placed moth virus chitinases in a clade with sequences from their
Lepidoptera hosts within bacterial chitinases (potentially a com-
plex series of transfer events), while Chlorella virus and fungal
chitinases grouped together (SI Appendix, Fig. S8). The ChoanoVirus
chitinase branched with opisthokont chitinases, suggesting po-
tential acquisition from a host of an ancestral opisthokont virus.
Collectively, these results suggest that acquisition by each of the
3 types of viruses occurred in independent events. From a
functional perspective, release of viral chitinase in Leptidoptera
larvae is necessary for liquefaction, but the mechanism and overall
roles during infection are unclear (46). The Chlorella virus chitinase
has hypothesized roles in degrading the chitin-rich host cell wall
(45). However, in contrast to moths and Chlorella, which have
chitin as an abundant structural component, choanoflagellates
lack known chitin-based structures, although they possess chitin

synthase (47). Thus, ChoanoVirus chitinase activity, potentially
on prey material, alongside activities of viral carbohydrate metabo-
lism proteins may supply hosts with nutrition when choano-
flagellate feeding is impacted by the infection or other factors.
Alternatively, a structural feature of choanoflagellate cells, such
as the theca, may have an as yet unrecognized chitin-containing
composition, in which case, the viral chitinase may operate in
host degradation. Regardless, the organic matter released from
the lysed host will provide more readily available carbon sources,
such as labile saccharides, to marine microbes than will hosts
infected and lysed by viruses that lack these enzymes or other
forces of mortality. As such, in addition to release of cellular
substrates on lysis, viral infection may “prime” substrates to be
accessed more readily, potentially altering the microbial loop (48)
in terms of rate and fate of the cellular material remineralization
in the ocean.

Viral Rhodopsin Sequence Characterization. Strikingly, we also
identified 3 distinct putative rhodopsins in each ChoanoVirus
genome (Dataset S4). Rhodopsins are integral membrane proteins
that capture or sense sunlight using a bound retinal chromophore
in cellular organisms (49). Microbial (type-1) rhodopsins include a
variety of light-driven ion pumps (including H+, Cl−, Na−) (SI
Appendix, Table S1) and sensory receptors involved in signal
transduction (including Sensory Rhodopsins I and II, which have
been shown to regulate phototaxis in some protists) (50–52).
Additionally, heliorhodopsins are considered distantly related
family members and are thought to have light-sensing activities
(53). Type-1 proton-pumping rhodopsins are widespread in het-
erotrophic marine bacteria (54, 55), increasing survival during
starvation when illuminated (50), and homology-based studies
postulate that some eukaryotic algae have similar systems (56).
Phylogenetic analyses show that the ChoanoVirus rhodopsins split
into 2 type-1 groups composed primarily of metagenomic se-
quences, which collectively exhibit distinct phylogenetic histories
from those in cellular organisms (Fig. 3A). Among viruses with
known hosts, the only other rhodopsin reported is in the giant
virus PgV, which infects the marine haptophyte alga P. globosa
(18, 57), and belongs to a clade that includes 1 of the 3 Choa-
noVirus rhodopsins (Fig. 3A). We term these 2 groups (clades)
that have this distinct history from those of cellular organisms
VirR Group-I and VirR Group-II. Importantly, all VirR are highly
diverged from a microbial rhodopsin clade harboring the fu-
sion protein Rho-PDE that is present in the genome-sequenced
choanoflagellate Salpingoeca rosetta, wherein it exhibits light-
dependent phosphodiesterase activity (58, 59). While we identi-
fied homologs of Rho-PDE in 2 transcriptome-sequenced
choanoflagellate species (Fig. 3A), it is absent from genome-
sequenced Monosiga brevicollis and is not found in transcriptome
assemblies from 17 other choanoflagellate species or in the Bicosta 4-
well partial genome assembly. Overall, the ChoanoVirus VirR pro-
teins do not seem to be derived from extant opisthokonts. Indeed,
the tree topology and additional testing (SI Appendix) suggest that
rhodopsin may have been present in an ancestral virus before host-
range expansion into disparate algae and heterotrophs (Fig. 3A).
Several marine studies have now reported putative viral rho-

dopsins in traditional metagenomic data—for which the viral
hosts are by default unknown (57, 60–62). The function of these
is not clear, since often, they lack the amino acid motifs that have
been shown through biochemical characterization of various
type-1 rhodopsins to generally confer functional differences.
Indeed, the function of type-1 rhodopsins can sometimes be
inferred from 3 key amino acid residues (referred to as motif
sequences), such as the proton (DTD, DTE) and chloride (TSA,
NTQ) pump motifs (49). In bacteriorhodopsin (BR), the resi-
dues that make up the motif are at positions 85, 89, and 96. BR
has been biochemically characterized to function as a proton
pump, wherein the D85 acts as a proton acceptor, T89 forms a
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hydrogen bond with D85, and D96 acts as a proton donor in this
DTD motif rhodopsin (49); other motifs have proton pumping or
other functions (SI Appendix, Table S1). Previously detected
VirR sequences in PgV and GOS were hypothesized to have
sensory roles in host phototaxis (57) or to be involved in light
sensing in the host (61), because some lack the retinylidence
Schiff base proton donor carboxylate, which has been taken to be
essential for proton transport, similar to sensory rhodopsins (63).
However, recent work has shown that some rhodopsins lacking
the proton donor carboxylate do pump protons (64). Based on in
silico transmembrane predictions (TMHMM, a method for pre-
diction of transmembrane domains based on hidden markov
models), the 3 different rhodopsin proteins in the ChoanoViruses
each have 7 transmembrane (TM) domains, as expected (49), and
we detected transcripts for 2 of 3 in eastern North Pacific meta-
transcriptomes from Stations M1 and M2 (Fig. 1B), demonstrating
their expression (SI Appendix, Fig. S2). The Viral Group-I rho-
dopsin present in each ChoanoVirus and in PgV has a DTS motif
(VirRDTS) (Fig. 3A). Prokaryotic DTS-motif rhodopsins have been
reported in proton-pumping clades (e.g., the proteorhodopsin [PR]
clade and DTG-motif clade) and the xenorhodopsin clade (e.g.,
Anabaena sensory rhodopsin, ASR) of sensory rhodopsins, in-
dicating that information on the motif sequence alone is not
enough to predict function (65, 66). The motifs of the Choano-
Virus Group-II rhodopsins, DTV and YML, are not present in
functionally characterized rhodopsins (SI Appendix, Fig. S9). The
bacterium Thermochromatium tedium has a YTM motif, with

some similarity to YML, that is predicted to be sensor type but as
yet not functionally characterized (67). Unlike the observed YML
motif, the DTS and DTV motifs have been observed in environ-
mental sequences inferred to come from viruses at Station
ALOHA in the North Pacific Gyre (60), in the Red Sea (61), and
in coastal sediments (62). Our results provided evidence for VirR
proteins being in viruses of heterotrophic protists and for a single
virus having both Group-I and Group-II viral rhodopsins. How-
ever, the amino acid differences for all VirR from biochemically
characterized proteins alongside their long-branch lengths (Fig.
3A) left uncertainty regarding function, as is the case for many
proteins identified in marine metagenomic studies.

Viral Rhodopsin Activity and Structure. Because of the presence of
VirRDTS in the only pelagic marine giant viruses with known
hosts (i.e., the uncultured ChoanoViruses and the cultured algal
virus PgV), we next turned to laboratory experiments to examine
the structure and function of this VirR protein. Heterologous
expression in Escherichia coli of the homolog from PgV caused
substantial light-induced acidification of retinal-amended medium
up on illumination, demonstrating that it has proton-pumping ca-
pabilities (Fig. 3B). This clear pH change was abolished by proto-
nophore addition. VirRDTS predominantly possessed all-trans retinal
(SI Appendix, Fig. S10A). At neutral pH, the Schiff base linkage was
protonated (pKa = 7.8), and a counterion residue was deprotonated
(pKa = 3.6) (SI Appendix, Fig. S10 B and C). We analyzed the
photocycle of VirRDTS, demonstrating that time constant of
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acid identity) structural comparison. Key residues (teal, BR; red, VirRDTS) and H2O molecules (spheres) are indicated. (F) VirRDTS absorption spectrum.
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recovery from the O540 intermediate to the original state was
386 ms (SI Appendix, SI Results and Discussion and Fig. S10 D
and E). This recovery time is longer than that of BR from
Halobacterium salinarum (BR, t = 10 ms), an archaeal proton-
pumping rhodopsin, but similar to proton-pumping rhodopsins
from other taxa, such as BR from Haloquadratum walsbyi
(∼300 ms), thermophilic rhodopsin from Thermus thermophilus
(277 ms), and PRs from a number of marine bacteria (PRs;
∼250 ms) (SI Appendix, Table S2) (68–70).
Because VirRDTS is divergent from characterized light-driven

proton-pumping rhodopsins and no viral rhodopsin structure is
known, we next dissected how it pumps protons. The crystal
structure of the cell-free synthesized VirRDTS was determined at
1.65-Å resolution, revealing broad-scale similarities to BR (Fig. 3
C and D and SI Appendix, SI Results and Discussion and Fig. S11
A–E) (71). The root-mean-square deviation (RMSD) was 1.83 Å,
while adoption of a different structure from BR was observed in
the loops, especially the TM3–TM4 short helix. The pentagonal
cluster formed by 3 water molecules (Wat401, -402, and -406),
Asp81, and Asp207, corresponding to the most important region
for BR proton pumping, did have a similar structure to that of
BR (Fig. 3E). Electron densities around the retinal showed that
it is in all-trans conformation, covalently attached to Lys211. We
then examined several residues that hold key positions in VirRDTS
and other opsins (SI Appendix, Fig. S11 B–I), including Asp81 and
Ser92, which are similarly positioned to Asp85 and Asp96 of the
BR DTD-motif group (71) (Fig. 3E). Mutation analyses of these
and other residues established their essentiality for proton-
pumping activity, especially the proton acceptor residue Asp81
(SI Appendix, Fig. S11J). In addition, we showed that maximal
VirRDTS absorption is in the green wavelengths (Fig. 3F).
Finally, we compared the VirRDTS structure with 2 typical

structures of sensory rhodopsins: ASR (from Anabaena) and
SRII, the Natronomonas pharaonis sensory rhodopsin II (SI
Appendix, Fig. S11 F and G) (66, 72). Given our data, it seems
that VirRDTS is a proton-pumping opsin; however, it is possible
that it could have a sensory function as previously proposed
based on sequence data (61). There is much debate about in-
terpretation of sequence data alone as well as photocycle data
and its comparability when conducted using different conditions.
Hence, ultimately, in vivo manipulation in the proper cell bi-
ological context will be needed to determine overall function.
Our in silico comparisons show that the overall structures of
ASR and SRII have similarities to that of VirRDTS, with RMSDs
of 1.94 and 2.22 Å, respectively. While the positions of Ser92
(corresponding to Ser86 in ASR) are similar between VirRDTS
and ASR, the water molecule and amino acid positions around
the retinal adopt quite different structures (SI Appendix, Fig.
S11F). Likewise, these aspects of ASR positions are different
from BR (SI Appendix, Fig. S11H). However, the corresponding
portion of SRII is similar to that of VirRDTS and BR (SI Ap-
pendix, Fig. S11 G and I). Our searches for the proteins required
for signal transduction by sensory rhodopsins using queries
known to fulfill this function (e.g., HtrI and HtrII [73]) did not
recover related proteins in either the Bicosta 4-well assembly or
the ChoanoVirus genomes. The viral rhodopsins also lack fu-
sions of known transducer-related domains that occur in
eukaryotic sensory rhodopsins (74), although notably, VirRYML
has an N-terminal domain of unknown function. Furthermore, a
fusion protein integrating a rhodopsin and phosphodiesterase
(RhoPDE; also discussed above, Fig. 3A) was recently discov-
ered in S. rosetta, which, like other choanoflagellates, lacks an
eyespot or other known light-sensory structures (58, 59, 75).
While we found phosphodiesterases in Bicosta, again, no rho-
dopsin (or related fusion protein) was recovered, and we did not
find these proteins in M. brevicollis or 17 of 19 transcriptome-
sequenced choanoflagellates (27). Thus, if the viral rhodopsin was
a sensory rhodopsin, the potential mechanisms by which it operates

remain elusive as are the biological implications. These observa-
tions indicate that motifs, monomeric structures, or photocycle
data are individually not enough to determine whether a rhodopsin
functions as a pump or sensor. Collectively, our results show that
VirRDTS is a green light-absorbing proton pump that has a struc-
ture similar to that of BR and transfers light energy in a manner
that substantially changes medium pH when expressed in a cell.

A Viral Chromophore Biosynthesis Pathway. Demonstration of
VirRDTS proton-pumping activity on illumination raises ques-
tions regarding the natural source of the carotenoids needed to
produce the light-harvesting chromophore, retinal (50, 51), es-
pecially in a nonphotosynthetic host, like Bicosta. Most algae,
including PgV’s host Phaeocystis, biosynthesize the required pig-
ment, β-carotene (and related carotenoids), as well as the retinal-
producing carotenoid cleavage oxygenase (Blh) (Fig. 4). However,
most heterotrophic eukaryotes, including animals, do not bio-
synthesize β-carotene, instead acquiring carotenoids through diet.
As expected, cultured genome-sequenced choanoflagellates en-
code only early steps that overlap between sterol and carotenoid
biosynthesis and a final cleavage enzyme (Dataset S5). Likewise,
BLASTx searches against the Bicosta 4-well partial genome as-
sembly failed to recover carotenoid biosynthesis enzymes. Re-
markably, the ChoanoVirus genome analyses exposed both the
β-carotene biosynthesis pathway and Blh, with 4 proteins being
adjacent to one another, similar to the pathway in bacteria (76)
(Fig. 4, SI Appendix, Fig. S12A, and Dataset S5). Eastern North
Pacific metatranscriptomes confirmed expression of all compo-
nents (Fig. 4). Thus, while the algal virus relies on its host to
biosynthesize the pigment used in light-energy transfer, Choano-
Viruses encode the complete rhodopsin-based photosystem.
The evolutionary origins of the retinal biosynthesis proteins in

the ChoanoViruses remain unclear. They seem to derive from
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archaea (phytoene synthase) or marine bacteria (phytoene desa-
turase) or are too divergent for robust phylogenetic conclusions
(lycopene cyclase, Blh) (SI Appendix, Fig. S12 B–E). In each case,
the respective ChoanoV1 and ChoanoV2 proteins clustered to-
gether, indicating their common origin. Rhodopsin-bearing bac-
terial or archaeal lineages with retinal biosynthesis-related genes
are each thought to have acquired them together as a unit by HGT
(77). However, despite the 4 ChoanoVirus retinal biosynthesis
genes being colocated in the genome, long branch lengths and
incomplete taxonomic sampling make it unclear whether these
proteins were accumulated over time or acquired in a single HGT
event, although the latter scenario seems most likely.

Viral Rhodopsins in the Global Ocean.Our studies now provided the
structure and function of VirRDTS, but the frequency of VirR
genes as a whole in nature remained unclear. Prior analyses of
viral rhodopsins in traditional metagenomic data focused on

individual locations, specifically the Red Sea (61) and Station
ALOHA (60), or had relatively shallow sequencing depth, such as
GOS (57). It should be noted that one other metagenomic study of
coastal sediments reported 30 VirR (62) that were similar to PgV
VirRDTS and to the VirR metagenomic sequences from Organic
Lake that have been suggested to come from another (currently
unknown) haptophyte algal virus. These partial metagenomic se-
quences (62) may well, therefore, represent remnants of a senesced
(infected) haptophyte bloom exported to sediments at 11- to 50-m
bottom depth. Our searches of TARA metagenomic assemblies
greatly expanded the global VirR repertoire (Fig. 5A and Dataset
S6). Assembled VirR proteins were recovered at 37 of 39 TARA
photic-zone sampling sites examined, and only at photic-zone
depths in Station ALOHA profiles that included deep ocean
sampling (Fig. 5B), as expected for a sunlight-dependent energy
transfer system. Motifs were diverse; however, the DTS motif was
the most common vertically and globally (Fig. 5 B and C).
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Phylogenetic analyses of the assembled sequences that we
recovered from deeply sequenced TARA samples and other
metagenomic studies showed 3 statistically supported clades
within Group-I VirR proteins: one harboring only DTT (64%)
and DTS (36%) motifs, another dominated by DTS (72%) and
DTT (17%) and having 4 other motifs represented, and a small
clade composed of 5 different motifs (SI Appendix, Fig. S13).
Likewise, the Group-II VirR proteins delineated into 3 clades,
2 of which are dominated by the DTV motif, with 100 and 73%
DTV, respectively. The latter had 4 additional motifs, including
18% DSV. The smallest Group-II VirR clade had just 4 se-
quences and 3 motifs. In total, our survey of VirR revealed
8 previously unreported motifs, in addition to the observed DTS,
DTV, and DTT, and indicated that motifs generally grouped in a
manner connecting to the evolutionary history of these proteins.
Functional characterization will be important for understanding
the cell biological implications during infection as will identifi-
cation of the corresponding natural hosts.
Finally, more than 99% of environmental VirR had 1 of

2 amino acids (M, L; Met89 in VirRDTS) that confer increased
green light absorption relative to blue, in contrast to the multiple
wavelengths used by marine prokaryotic rhodopsins (78). With
VirR proteins being in only 2 genome-sequenced viruses with
known hosts, we could not parse the metagenomic sequences
recovered into percentages coming from viruses of phytoplank-
ton vs. heterotrophs. However, our recruitment of assembled
PolB genes from TARA (12,684 in total) recovered 6 times more
than vintage TARA 454-metagenome analyses (13, 79), and
protein similarity networks identified 1,026 PolB as being from
Mimiviridae (SI Appendix, Fig. S14). The computed ratio of VirR
to Mimiviridae PolB was 0.7, suggesting that VirR is a common
component of many giant viruses in sunlit ocean environments
(Fig. 5 D and E and Dataset S6).

Conclusions
Predatory protists have important ecosystem roles in the transfer
of organic carbon (prey-based) to higher trophic levels in addi-
tion to their top-down control of microbial cells (15). Here, using
both cultivation-independent and laboratory methods, we per-
formed cross-scale analyses—from the sequencing of giant virus
genomes and their host to evolutionary relationships, functional
attributes, and presence in broader ocean samples. Our studies
reveal a virus of a widespread group of marine predatory protists
related to metazoans, the choanoflagellates.
Alongside CroV, which infects a host from different eukaryotic

supergroup, the ChoanoViruses bring the number of genomes
available from giant viruses that infect known predatory hosts in
pelagic marine environments to a total of 3. While the Choano-
Viruses share cellular life-like proteins observed in nonmarine
viruses, overall gene retention patterns seem tuned to habitat,
akin to the marine nature of VirR and potentially, to host trophic
mode. Additional studies that target uncultured eukaryotes and
coassociated entities will more fully expose viral mechanisms for
modulating the host environment and the relative strengths of
evolutionary history vs. environment on viral gene content.
The AMGs identified in the ChoanoVirus genomes are of par-

ticular import for the intracellular replication environment (the
host) and marine host–environment interactions. During infection,
the host can be considered a “virocell,” wherein the viruses mod-

ulate intracellular processes and their own replication (39). It is
during this time that the ChoanoVirus has multifaceted roles in
utilizing organic compounds in a manner that could facilitate
rhodopsin-based photoheterotrophy, providing mechanisms for
reshaping host nutrition, physiology, and the quality of remaindered
organic matter. These findings raise questions on the dynamics of
host–virus interactions and potential for transient mutualism. In
addition to chitinase and enzymes for transport and metabolism of
multiple organic molecules, the ChoanoViruses encode an un-
precedented viral multigene pathway for a rhodopsin-based pho-
tosystem. Our characterization of a putative rhodopsin encoded by
eukaryotic viruses, crystal structure, and biochemical assays iden-
tifies a mechanism for viral-induced light-driven energy transfer.
While VirRDTS proton pumping may facilitate energy transfer in
connection with host-derived adenosine triphosphate (ATP) syn-
thases, the plethora of other VirR-motif types observed herein
remains to be functionally and structurally characterized. This will
involve identifying the host membrane in which the rhodopsins
localize, be it mitochondrial, plasma, or endomembrane systems, as
well as the duration, timing, and precise functional role during in-
fection. Given the variety of viral rhodopsins, it seems that a diverse
suite of roles in host manipulation awaits discovery, potentially in-
volving host signaling, photomotility, and action potential for fla-
gellar beating or lysis as well as photoheterotrophy. While type-
1 rhodopsins are relatively widespread in marine bacteria (53, 78),
they appear to be absent from marine phage genomes. In contrast,
our studies, and their extension by analysis of global metagenomes,
indicate that VirR is a common aspect of how giant viruses of
eukaryotes reshape host physiology and potentially energy transfer
in both heterotrophic and photosynthetic marine protists.

Materials and Methods
Detailed materials and methods are provided in the SI Appendix. This in-
cludes information on field work, flow sorting, whole-genome amplifica-
tion, amplicon library construction and sequencing, data processing,
assembly and analysis, including gene predictions, as well as phylogenetic,
crystallization and phylogenomic analyses. The final ChoanoV1 genome as-
sembly was assembled from 13,802,665 quality-filtered reads, and viral
contigs were differentiated from the cellular assembly by tetranucleotide
frequency and GC content. The ChoanoV1 assembly consisted of 11 contigs
with average coverage of 215 ± 157×. For eastern North Pacific Ocean gene
expression analyses, reads from metatranscriptomes were mapped to
ChoanoVirus genomes at >95% nucleotide identity with bbmap. For 18S
V4 amplicon sequencing, we had on average 131,385 ± 121,027 amplicons
well−1 (the lowest number being 1,037) clustered at 99% and classified via
the Protistan Ribosomal Reference database. Rhodopsin functionality of vi-
ral VirRDTS was determined via heterologous expression in E. coli. The VirRDTS

crystallization samples were produced by a cell-free system, and crystals
were grown using the in meso approach. Accession numbers and DOI for
alignment and tree files are available in Dataset S2.
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