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WASTE-FREE SEQUENTIAL MONTE CARLO

HAI-DANG DAU & NICOLAS CHOPIN

Abstract. A standard way to move particles in an SMC sampler is to apply

several steps of an MCMC (Markov chain Monte Carlo) kernel. Unfortunately,

it is not clear how many steps need to be performed for optimal performance.
In addition, the output of the intermediate steps are discarded and thus wasted

somehow. We propose a new, waste-free SMC algorithm which uses the out-

puts of all these intermediate MCMC steps as particles. We establish that
its output is consistent and asymptotically normal. We use the expression of

the asymptotic variance to develop various insights on how to implement the

algorithm in practice. We develop in particular a method to estimate, from a
single run of the algorithm, the asymptotic variance of any particle estimate.

We show empirically, through a range of numerical examples, that waste-free
SMC tends to outperform standard SMC samplers, and especially so in sit-

uations where the mixing of the considered MCMC kernels decreases across

iterations (as in tempering or rare event problems).

1. Introduction

1.1. Background. Sequential Monte Carlo (SMC) methods are iterative stochas-
tic algorithms that approximate a sequence of probability distributions through
successive importance sampling, resampling, and Markov steps. Historically, they
were mainly used to approximate the filtering distributions of a state-space model.
More recently, they have been extended to an arbitrary sequence of probability dis-
tributions (Neal, 2001; Chopin, 2002; Del Moral et al., 2006); in such applications,
they are often called “SMC samplers”.

As an illustrative example, consider the tempering sequence:

(1) πt(dx) ∝ ν(dx)L(x)γt

based on increasing exponents, 0 = γ0 < . . . < γT = 1. This sequence may be used
to interpolate between a distribution ν(dx), which is easy to sample from, and a
distribution of interest, π(dx) ∝ ν(dx)L(x) (e.g. a Bayesian posterior distribution),
which may be difficult to simulate directly. Other sequences of interest will be
discussed later.

When used to sample from a fixed distribution (as in tempering), SMC samplers
present several advantages over MCMC (Markov chain Monte Carlo). First, they
provide an estimate of the normalising constant of the target distribution at no
extra cost; this quantity is of interest in several cases, in particular in Bayesian
model choice (e.g. Zhou et al., 2016). Second, they are easy to parallelise, as the
bulk of the computation treats the N particles independently (Lee et al., 2010).
Third, it is easy to make SMC samplers “adaptive”; that is, to use the current
particle sample to automate the choice of most of its tuning parameters. This is
often crucial for good performance.
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To elaborate on the third point, a common strategy to move the particles is to
apply a k−fold MCMC kernel that leaves the current distribution πt invariant. One
may use for instance a random walk Metropolis kernel, with the covariance of the
proposal set to a small multiple of the empirical covariance of the particle sample.
In that way, the algorithm automatically scales to the current distribution.

However, one tuning parameter of SMC samplers that is often overlooked in the
literature is the number k of MCMC steps that should be applied to move the
particles. For instance, Chopin and Ridgway (2017) set k = 3 arbitrarily in their
numerical experiments, but it turns out that this value is very sub-optimal, as we
show in our first numerical example.

A second issue with k is that there is no reason to set it to a fixed value across
iterations. In application such as tempering, πt may become more and more difficult
to explore through MCMC; thus k should be increased accordingly, and may become
very large.

To deal with these two issues, one could set k adaptively; that is, iterate MCMC
steps until a certain stability criterion is met (Drovandi and Pettitt, 2011; Kantas
et al., 2014; Ridgway, 2016; Salomone et al., 2018; Buchholz et al., 2020). However,
in our experience, these approaches are not always entirely reliable. There seems
to be a fundamental difficulty in determining, after k steps have been performed,
that this value of k is optimal, without performing several extra steps.

A third, and perhaps more essential issue, is that, if indeed large values of k are
required for good performance, the intermediate output of these k MCMC steps
are not used directly, and seems somehow wasted.

1.2. Motivation and plan. These issues motivated us to develop a waste-free
SMC algorithm that exploits the intermediate outputs of these MCMC steps; see
Section 2. The basic idea is to resample only M = N/P out of the N previous
particles, for some P ≥ 2. Then each resampled particle is moved P − 1 times
through the chosen MCMC kernel. The resampled particles and their P −1 iterates
are gathered to form a new sample of size N .

Standard results on the convergence of SMC estimates cannot be applied directly
to this new algorithm. We were able nonetheless to establish the consistency and
asymptotic normality of the output of waste-free SMC; see Section 3. We also
compared the performance and the robustness of waste-free SMC and standard
SMC through an artificial example.

These theoretical results (in particular the expression of the asymptotic variance)
gives us various insights on how to implement waste-free SMC in practice; see
Section 4. In particular, we are able to derive variance estimates and confidence
intervals for any particle estimate, which may be computed from a single run.

To assess the performance and versatility of waste-free SMC, we perform nu-
merical experiments in three different scenarios where SMC samplers already give
state-of-the-art performance: logistic regression with a large number of predictors;
the enumeration of Latin squares; and the computation of Gaussian orthant prob-
abilities; see Section 5. In each case, waste-free SMC performs at least as well as
properly tuned SMC samplers, while requiring considerably less tuning effort.

Proofs are delegated to the appendix.

1.3. Related work. We focus on SMC samplers based on invariant (MCMC) ker-
nels. These algorithms have proved popular recently in a variety of applications,
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such as rare events (Johansen et al., 2006; Cérou et al., 2012); experimental de-
signs (Amzal et al., 2006); cross-validation (Bornn et al., 2010); variable selec-
tion (Schäfer and Chopin, 2013); graphical models (Naesseth et al., 2014); PAC-
Bayesian classification (Ridgway et al., 2014); Gaussian orthant probabilities (Ridg-
way, 2016); Bayesian model choice in hidden Markov models (Zhou et al., 2016),
and un-normalised models (Everitt et al., 2017); among others.

We note in passing that SMC samplers may be generalised to non-invariant
kernels, as shown in Del Moral et al. (2006); see also Heng et al. (2020) for how to
calibrate such kernels. On the other hand, it is also possible to add MCMC steps to
various SMC algorithms that are not SMC samplers; the idea goes back to Berzuini
et al. (1997). In particular, SMCMC (Sequential MCMC, Septier et al., 2009;
Septier and Peters, 2016; Finke et al., 2020) algorithms approximate recursively
the filtering distribution of a state-space model: each iteration t runs a MCMC
chain that leaves invariant a certain (partly discrete) approximation of the current
filter. It is not clear however how to derive a waste-free version of these algorithms,
and thus we do not consider them further.

Finally, we mention that several improvements proposed for standard SMC sam-
plers might be also adapted to waste-free SMC, such as methods to combine the
output of the intermediate steps, see Beskos et al. (2017) and South et al. (2019).

Tan (2015) proposes several algorithms that are variations of the resample-move
algorithm of Gilks and Berzuini (2001); one of them (generalized resample-move)
bears a similarity with waste-free SMC in the context of of tempering.

2. Proposed algorithm

2.1. Notations. Throughout the paper, (X ,X) stands for a measurable space, and
ϕ : X → R for a measurable function; let ‖ϕ‖∞ := supx∈X |ϕ(x)| (supremum
norm). The expectation of ϕ(X) when X ∼ π(dx) is denoted by π(ϕ); i.e. π(ϕ) :=∫
ϕ(x)π(dx). Recall that a Markov kernel K(x, dy) is a map K : X × X → [0, 1]

such that x → K(x,A) is measurable in x, for any A ∈ X; and A → K(x,A) is
a probability measure (on (X ,X)), for any x ∈ X . We use the following standard
notations for the integral operators associated to Markov kernel K: πK is the
distribution such that πK(A) =

∫
X π(dx)K(x,A), and K(ϕ) is the function x →∫

X K(x,dy)ϕ(y), for ϕ : X → R.
Symbol ⇒ means convergence in distribution, and ‖·‖TV stands for the total

variation norm, ‖µ− ν‖TV = supA∈X |µ(A)− ν(A)|.

2.2. A generic SMC sampler. We consider a generic sequence of target proba-
bility distributions of the form (for t = 0, 1, . . . , T ):

(2) πt(dx) =
1

Lt
γt(x)ν(dx)

where ν(dx) is a probability measure, with respect to measurable space (X ,X), γt
is a measurable, non-negative function, and Lt :=

∫
X γt(x)ν(dx), the normalising

constant, is assumed to be properly defined, i.e. 0 < Lt < ∞. In the tempering
scenario mentioned in the introduction, γt(x) = L(x)γt , for certain exponents γt.
Other interesting scenarios include data tempering (sequential learning), where x
represents a parameter, ν(dx) its prior distribution, and γt(x) is the likelihood of
data-points y0, . . . , yt; rare-event simulation (and likelihood-free inference), where
γt(x) = 1Et(x), the indicator function of nested sets E0 ⊃ E1 ⊃ . . .; among others.
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See e.g. Chapter 3 of Chopin and Papaspiliopoulos (2020) for a review of common
applications of SMC samplers, and the sequence of target distributions arising in
these applications.

One way to track the sequence πt would be to perform sequential importance
sampling: sample particles (random variates) from the initial distribution ν(dx),
then reweight them sequentially according to weight functionGt(x) := γt(x)/γt−1(x)
(for t ≥ 1, and G0(x) := γ0(x)). In most applications however, the weights degen-
erate quickly, making this naive approach useless.

SMC samplers alternate such reweighting steps with resampling and Markov
steps. For the latter, we introduce Markov kernels Mt(xt−1,dxt) which leave in-
variant the target distributions: πt−1Mt = πt−1 for t ≥ 1. It is easy to check that
the sequence of Feynman-Kac distributions (for t = 0, . . . , T ) defined as:

(3) Qt(dx0:t) =
1

Lt
ν(dx0)

t∏
s=1

Ms(xs−1,dxs)
t∏

s=0

Gs(xs)

is such that the marginal distribution of variable Xt (with respect to Qt) is πt.
We call Feynman-Kac model the set of the components that define this sequence of
distributions, that is, the initial distribution ν, the kernels Mt, t = 1, . . . , T , and the
functions Gt, t = 0, . . . , T . For more background on Feynman-Kac distributions,
see e.g. Del Moral (2004).

Algorithm 1 recalls the structure of an SMC sampler that corresponds to this
Feynman-Kac model; and in particular which targets at each iteration t distribution
πt. It takes as inputs: N , the number of particles, the considered Feynman-Kac
model, and the chosen resampling scheme (function resample). Several resampling
schemes exist. In this paper, we focus for simplicity on multinomial resampling,
which generates ancestor variables Ant independently from the categorical distribu-
tion that generates label m with probability Wm

t .

Algorithm 1: Generic SMC sampler

Input: Integer N ≥ 1, a Feynman-Kac model (initial distribution ν(dx),
functions Gt, Markov kernels Mt)

for t← 0 to T do
if t = 0 then

for n = 1 to N do
Xn

0 ∼ ν(dx0)

else
A1:N
t ∼ resample(N,W 1:N

t−1 )

for n = 1 to N do

Xn
t ∼Mt(X

Ant
t−1,dxt)

for n← 1 to N do
wnt ← Gt(X

n
t )

for n← 1 to N do

Wn
t ← wnt /

∑N
m=1 w

m
t
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At any iteration t, quantity
∑N
n=1W

n
t ϕ(Xn

t ) is an estimate of the expectation

πt(ϕ), for ϕ : X → R, and quantity LNt :=
∏t
s=0 `

N
s , where `Ns := N−1

∑N
n=1 w

n
s ,

is an estimate of the normalising constant Lt. These estimates are consistent and
asymptotically normal (as N → +∞) under general conditions.

2.3. Note on the generality of Algorithm 1. While generic, Algorithm 1 is a
simplified version of most practical SMC samplers. In particular, we have stressed
in the introduction the importance of making SMC samplers adaptive; that is, to
adapt both the distributions πt and the Markov kernels Mt on the fly. This means
that these quantities may depend on the current particle sample. For simplicity,
our notations do not account for this. We will see later that similar adaptation
tricks may be developed for waste-free SMC.

Another interesting generalisation is when the state space X evolves over time; in
particular when its dimension increases. This happens for instance when performing
sequential inference on a model involving latent variables. The ideas developed in
this paper may easily be adapted to this scenario, as we shall see in our third
numerical example. For the sake of exposition, however, we focus on the fixed state
space case.

2.4. Proposed algorithm: waste-free SMC. The idea behind waste-free SMC
is to resample only M ancestors, with M � N . Then each of these ancestors is
moved P − 1 times through Markov kernel Mt. The resulting M chains of length
P are then put together to form a new particle sample, of size N = MP . See
Algorithm 2.

Algorithm 2: Waste-free SMC sampler

Input: Integers M,P ≥ 1 (let N ←MP ), a Feynman-Kac model (initial
distribution ν(dx), functions Gt, Markov kernels Mt)

for t← 0 to T do
if t = 0 then

for n← 1 to N do
Xn

0 ∼ ν(dx0)

else
A1:M
t ∼ resample(M,W 1:N

t−1 )

for m← 1 to M do

X̃m,1
t ← X

Amt
t−1

for p← 2 to P do

X̃m,p
t ←Mt(X̃

m,p−1
t ,dxt)

Gather variables X̃m,p
t so as to form new sample X1:N

t

for n← 1 to N do
wnt ← Gt(X

n
t )

for n← 1 to N do

Wn
t ← wnt /

∑N
m=1 w

m
t
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Figure 1. Pictorial representation of dependencies in standard
SMC and waste-free SMC. Left: in standard SMC, an ancestor
generates 3 children for the next iteration. Right: in waste-free
SMC, the same ancestor generates itself, one child, and one grand-
child. Each arrow corresponds to one transition through kernel
Mt.

The output of the algorithm may be used exactly in the same way as for standard

SMC: e.g.
∑N
n=1W

n
t ϕ(Xn

t ) is an estimate of πt(ϕ).
To get some intuition why waste-free SMC may be a valid and interesting alter-

native to standard SMC, consider at time t − 1 a fictitious particle Xn
t−1, whose

weight Wn
t−1 is large. In a standard SMC sampler, this particle is selected many

times as an ancestor for the Markov step. Then, if Mt mixes poorly, its many
children will be strongly correlated.

On the other hand, in waste-less SMC, provided that M � N , the particle Xn
t−1

is selected a much smaller number of times; each time it is selected, P successive
variables are introduced in the sample. By construction, two such variables should
be less correlated than if they had the same ancestor (as in standard SMC); see
Figure 1 for a graphical representation of this idea.

Another insight is provided by chaos propagation theory (Del Moral, 2004, Chap.
8), which says that, when M � N , M resampled particles behave essentially like
M independent variables that follows the current target distribution. Thus, in a
certain asymptotic regime, we expect the particle sample to behave like the variables
of M independent, stationary Markov chains, of length P .

Before backing these intuitions with a proper analysis, we provide a last insight
regarding the underlying structure of waste-free SMC.

2.5. Feynman-Kac model associated with waste-free SMC. Algorithm 2
may be cast as a standard SMC sampler that propagates and reweights parti-
cles that are Markov chains of length P . The components of the corresponding
Feynman-Kac model may be defined as follows. Assume P ≥ 1 is fixed. Let
Z = XP , and, for z ∈ Z, denote component p as z[p]: z = (z[1], . . . , z[P ]). Then
define the potential functions as:

(4) Gwf
t (z) :=

1

P

P∑
p=1

Gt(z[p])
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the initial distribution as: νwf(dz) :=
∏P
p=1 ν(dz[p]), and the Markov kernels as:

(5) Mwf
t (zt−1,dzt) :={

P∑
p=1

Gt−1(zt−1[p])∑P
q=1Gt−1(zt−1[q])

×Mt(zt−1[p],dzt[1])

}
P∏
p=2

Mt(zt[p− 1],dzt[p]).

The following proposition explains how this waste-free Feynman-Kac model re-
lates to the initial Feynman-Kac model of Algorithm 1.

Proposition 1. The Feynman-Kac model associated with initial distribution νwf ,
Markov kernels Mwf

t , and functions Gwf
t , that is, the sequence of distributions:

Qwf
t (dz0:t) =

1

Lwf
t

νwf(dz0)

t∏
s=1

Mwf
s (zs−1,dzs)

t∏
s=0

Gwf
s (zs)

where Lwf
t is a normalising constant, is such that:

• Lwf
t = Lt, the normalising constant of (2) and (3);

• Qwf
t (dzt) is the distribution of a stationary Markov chain of size P whose

Markov kernel is Mt (and thus whose initial distribution is πt):

Qwf
t (dzt) = πt(dzt[1])

P∏
p=2

Mt(zt[p− 1],dzt[p]).

We can now interpret Algorithm 2 as an instance of Algorithm 1 where the
number of particles is M , and the underlying Feynman-Kac model is defined as
above. In particular, consider how Algorithm 1 would operate if applied to that
Feynman-Kac model. At time t, it would select randomly an ancestor zt−1 (a chain

of length P ), with probability ∝
∑P
p=1Gt−1(zt−1[p]). Then, when kernel Mwf

t is
applied to this chain, one component would be selected randomly, with probability

Gt−1(zt−1[p])/
∑P
q=1Gt−1(zt−1[q]). Thus, this particular component would be used

as a starting point of the subsequent chain with probability ∝ Gt−1(zt−1[p]). This
is precisely what is done in Algorithm 2.

This interpretation of waste-free SMC as a standard SMC sampler makes it
easy to derive several of its properties; for instance, regarding its estimates of the
normalising constants.

Proposition 2. At iteration t ≥ 0 of Algorithm 2 , the quantity

(6) LNt :=

t∏
s=0

`Ns , where `Ns :=
1

N

N∑
n=1

Gs(X
n
s )

is an unbiased estimate of Lt, the normalising constant of target distribution πt, as
defined in (2).

This proposition is a small variation over the well known result of (Del Moral,
1996) that, in a standard SMC sampler, the estimate of the normalising constant
estimate is unbiased.

We can also use the interpretation of waste-free SMC as a standard SMC sampler
to derive asymptotic results.
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Proposition 3. For P ≥ 1 fixed, and ϕ : X → R measurable and bounded, the
output of Algorithm 2 at time t ≥ 0 is such that

√
N

(
1

N

N∑
n=1

ϕ(Xn
t )− πt−1(ϕ)

)
⇒ N

(
0, ṼPt (ϕ)

)
(7)

√
N

(
N∑
n=1

Wn
t ϕ(Xn

t )− πt(ϕ)

)
⇒ N

(
0,VPt (ϕ)

)
(8)

as M → +∞, N = MP , where πt−1 means ν in (7) when t = 0, ṼP0 (ϕ) := Varν(ϕ),

ṼPt (ϕ) := VPt−1(M̄P
t ϕ) + vP (Mt, ϕ), t ≥ 1,(9)

VPt (ϕ) := ṼPt
(
Ḡt(ϕ− πtϕ)

)
, t ≥ 0,(10)

Ḡt := Gt/`t, M̄
P
t = P−1

∑P
p=1M

p−1
t ,

vP (Mt, ϕ) := Var

(
1√
P

P−1∑
p=0

ϕ(Yp)

)
and (Yp)p≥0 stands for a stationary Markov chain with kernel Mt (i.e. Y0 ∼ πt).

This proposition is stated without proof, as it amounts to applying known cen-
tral limit theorems (see Chapter 11 of Chopin and Papaspiliopoulos, 2020, and
references therein) for SMC estimates to the waste-free Feynman-Kac model men-
tioned above. Notice how the asymptotic variances depend on P in a non-trivial
way. This suggests that the fixed P regime is not very convenient; in particular it
is not clear how to choose P for optimal performance. If we take P → +∞, we
expect the first term of (9) to go to zero, and the second term to converge to the
asymptotic variance of kernel Mt. This suggests, at the very least, that taking P
large may often be reasonable. The next section studies the asymptotic behaviour
of the algorithm as P → +∞.

3. Convergence as P → +∞

3.1. Assumptions. This section is concerned with the behaviour of waste-free
SMC in the “long-chain” regime, that is, when P → +∞, while M is either fixed
or may grow with P at some rate. We start by remarking that this regime requires
some assumption on the mixing of the Markov kernels Mt. Indeed, assume that Mt

is the identity kernel: Mt(xt−1,dxt) = δxt−1
(dxt). In that case, at time 1, one has:

1

N

N∑
n=1

ϕ(Xn
1 ) =

1

M

M∑
m=1

ϕ(X
Am0
0 )

since the P particles X̃m,p
t are identical for a given m. The variance of this quantity

should be O(M−1), and cannot go to zero if M is kept fixed.
We thus consider the following assumptions.

Assumption (M). The Markov kernels Mt are uniformly ergodic, that is, there
exist constants Ct ≥ 0 and ρt ∈ [0, 1[ such that,∥∥Mk

t (xt−1,dxt)− πt−1(dxt)
∥∥
TV
≤ Ctρkt , ∀xt−1 ∈ X , k ≥ 1.

Assumption (G). The functions Gt are upper-bounded, Gt(x) ≤ Dt for some
Dt > 0 and all x ∈ X .
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Ergodic Markov kernels in an SMC sampler was also considered in Beskos et al.
(2014) in order to study the behaviour of the algorithm as the dimension of the
state space gets high.

3.2. Non-asymptotic bound. We first state a non-asymptotic result.

Proposition 4. Under Assumptions (M) and (G), there exist constants ct and
c′t such that the following inequalities apply to the output of iteration t ≥ 0 of
Algorithm 2, for any M,P ≥ 1, and any bounded function ϕ : X → R:

E

{
1

N

N∑
n=1

ϕ(Xn
t )− πt−1(ϕ)

}2

≤ ct
‖ϕ‖2∞
N

(11)

E

{
N∑
n=1

Wn
t ϕ(Xn

t )− πt(ϕ)

}2

≤ c′t
‖ϕ‖2∞
N

(12)

where πt−1 means ν in (11) at time t = 0.

The constants ct and c′t are not sharp. However, this result remains interesting, in
that it shows that waste-free SMC is consistent (in L2 norm, and thus in probability)
whenever N = MP → +∞, that is, whenever P → +∞, or M → +∞, or both
simultaneously, possibly at different rates.

3.3. Central limit theorems. We now state a central limit theorem for the long
chain regime.

Theorem 1. Under Assumptions (M) and (G), for M = M(P ) = O(Pα), α ≥ 0
(i.e. M is either fixed or grows with P at a certain rate) and ϕ : X → R measurable
and bounded, one has at any time t ≥ 0

√
N

(
1

N

N∑
n=1

ϕ(Xn
t )− πt−1(ϕ)

)
⇒ N

(
0, Ṽt(ϕ)

)
(13)

√
N

(
N∑
n=1

Wn
t ϕ(Xn

t )− πt(ϕ)

)
⇒ N (0,Vt(ϕ))(14)

as P →∞ (or equivalently as N →∞, since N = MP ), where πt−1 in (13) means

ν at time t = 0, Ṽ0(ϕ) = Varν(ϕ),

Ṽt(ϕ) := v∞(Mt, ϕ) := Var (ϕ(Y0)) + 2

∞∑
p=1

Cov (ϕ(Y0), ϕ(Yp)) , t ≥ 1,(15)

Vt(ϕ) := Ṽt
(
Ḡt(ϕ− πtϕ)

)
, t ≥ 0,(16)

and (Yp)p≥0 stands for a stationary Markov chain with kernel Mt (hence Y0 ∼ πt).

The most striking feature of the asymptotic variances above is that they depend
only on the current time step t; in standard CLTs for SMC algorithms, these quan-
tities are a sum of terms depending on all the previous time steps. More precisely,

v∞(Mt, ϕ) is the asymptotic variance of an average P−1
∑P
p=1 ϕ(Yp) obtained from

a single stationary Markov chain with kernel Mt. Equation (15) shows that the
N particles Xn

t behave like M independent, ‘long’ Markov chains. This simple
interpretation will make it possible to construct estimates of the asymptotic vari-
ances above; see Section 4.3. We also note that these asymptotic variances do not
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depend on M (when M is fixed), or its growth rate (when M = O(Pα), α > 0).
This suggests that the performance of the algorithm should depend weakly on the
actual value of M , provided M � N .

We now consider a similar result for the normalising constant estimates that may
be obtained from Algorithm 2.

Theorem 2. Under Assumptions (M) and (G), for M = O(Pα), α ∈ [0, 1) (i.e.
either M is fixed, or M grows sub-linearly with P ), and ϕ : X → R measurable and
bounded, one has at time t ≥ 0:

(17)
√
N
(
logLNt − logLt

)
⇒ N

(
0,

t∑
s=0

v∞(Ms, Ḡs)

)
as P →∞ (or equivalently as N →∞ since N = MP ).

The theorem above puts a stronger constraint on M ; i.e. it requires M � P ,
and thus M � N1/2 (while Theorem 1 requires only M � N).

Note that

logLNt − logLt =

t∑
s=0

(
log `Ns − log `s

)
, where `Ns =

1

N

N∑
n=1

Gs(X
n
s ),

and we could already deduce from (13) and the delta-method that
√
N
(
log `Ns − log `s

)
⇒ N

(
0, v∞(Ms, Ḡs)

)
.

Thus, (17) suggests that the error terms in this decomposition are nearly in-
dependent. Again, we shall use this interpretation to derive an estimate of the
asymptotic variance of LNt .

3.4. Comparing the asymptotic variances of standard and waste-free SMC.
In this sub-section, we use the previous results to compare formally the performance
of standard SMC and waste-free SMC in an artificial example.

Let At, t = 0, 1, . . . be a sequence of subsets of X such that A0 ⊃ A1 ⊃ . . . and
ν(At) = rt for some r < 1, and some initial distribution ν. Consider the Feynman-
Kac distributions such that Gt(xt) = 1At(xt) and Mt = Kk

t , i.e. the k−fold kernel
such that Kt(x,B) = (1− p)1B(x) + pπt−1(B) for some 0 < p < 1. (In words, with
probability p, do not move, with probability 1− p, sample exactly from the current
target.)

A standard SMC sampler applied to this problem will fulfil a CLT of the form:

√
N

(
N∑
n=1

Wn
t ϕ(Xn

t )− πt(ϕ)

)
⇒ N

(
0,Vstd,k

t (ϕ)
)

;

see (31) in the proof of Proposition 5 for an expression for Vstd,k
t (ϕ) and e.g. Chapter

11 of Chopin and Papaspiliopoulos (2020) for more details. Define the ‘inflation
factor’ (relative error) for standard SMC to be:

IFstd,k
t (ϕ) :=

Vstd,k
t (ϕ)

Varπt(ϕ)
.

For waste-free SMC, we take k = 1, i.e. Mt = Kt, and define similarly its

inflation factor to be IFwf
t (ϕ) :=

Vwf
t (ϕ)

Varπt (ϕ)
, where Vwf

t (ϕ) is the asymptotic variance

defined in Theorem 1.
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Proposition 5. For the model considered above, let k0 := log r/2 log(1− p), then

(1) The quantities IFstd,k
t (ϕ) and IFwf

t (ϕ) do not depend on ϕ.

(2) For the standard SMC sampler, the inflation factor IFstd,k
t is stable with

respect to t if and only if k ≥ k0. If k < k0 however, IFstd,k
t explodes

exponentially with t.

(3) For the waste-free SMC sampler, IFwf
t is stable with respect to t and is

always equal to 1
r

(
2
p − 1

)
.

(4) For any choice of k, we have

lim
t→∞

IFwf
t

k IFstd,k
t

≤ 4.

In words, the performance of standard SMC may deteriorate very quickly when-
ever the number of MCMC steps, k, is set to a too small value. On the other
hand, up to small factor, waste-free SMC provides the same level of performance
as standard SMC based on a well chosen value for k.

Of course, these statements are proven here for a specific example; however, our
numerical experiments (Section 5) suggest they apply more generally.

4. Practical considerations

4.1. Choice of M . By default, we recommend to take M � N , first, because our
previous results indicate that, within this regime, performance should be robust
to the precise value of M ; and, second, because we observe empirically that this
regime usually leads to best performance (i.e. lowest variance for a given CPU
budget). See our numerical experiments in Section 5.

On parallel hardware, we recommend to take M equal to, or larger than the
number of processors, as it is easy to divide the computational load of each iteration
of Algorithm 2 into M independent tasks.

4.2. Choice of kernels Mt. As discussed in the introduction, a standard practice
is to set Mt to be a k−fold Metropolis kernel, whose proposal is calibrated on
the current particle sample; e.g. for a random walk proposal, set the covariance
matrix of the proposal to a certain fraction of the empirical covariance matrix of
the particles.

This type of recipe may be used within waste-free SMC, with one important
twist. Contrary to standard SMC, we recommend to always take k = 1. This
recommendation is based on the following thinning argument. We know from
MCMC theory that thinning (subsampling) an MCMC chain is generally detrimen-
tal: Geyer (1992, Theorem 3.3) shows that kv∞(Mk

t , ϕ) > v∞(Mt, ϕ) (provided
Mt is reversible and irreducible). In words, between two estimates computed from
the same long chain, one using all the samples, and the other using only one every
other k-sample, the former will have a lower variance (asymptotically, as the length
of the chain goes to infinity).

The same remark applies to waste-free SMC: if we compare a waste-free SMC
sampler with N particles, and Markov kernels Mt = Kk

t , for a certain Kt, with the
same algorithm with kN particles, and kernels Mt = Kt, then the latter will have
(asymptotically) lower variance, given the expression of the asymptotic variances
in Theorem 1.
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As announced in the introduction, we see therefore that waste-free SMC is indeed
more economical than standard SMC, as it is able to exploit all the intermediate
steps of a given MCMC kernel (while standard SMC often requires to take k � 1
for optimal performance).

4.3. Variance estimation from a single run. As explained below Theorem 1,
the output of waste-free SMC at time t behaves asymptotically like M independent,
stationary chains of size P . Thus, to estimate the asymptotic variance Ṽt(ϕ) =

v∞(Mt, ϕ) in (13), we propose the following ‘M -chain estimate’. Denote by γM,P
t,q

the empirical autocovariance of order q ∈ {0, 1, . . . , p− 1} computed from the M
chains:

γM,P
t,q :=

1

MP

M∑
m=1

P−q∑
p=1

[
ϕ(X̃m,p

t )− µM,P
t (ϕ)

] [
ϕ(X̃m,p+q

t )− µM,P
t (ϕ)

]
where µM,P

t (ϕ) := N−1
∑M
m=1

∑P
p=1 ϕ(X̃m,p

t ) is the empirical mean. Then, the
estimator is defined as

ṼM,P
t (ϕ) := ψP

(
γM,P
t,0 (ϕ), . . . , γM,P

t,P−1(ϕ)
)

where ψP : RP → R is a certain estimator of the asymptotic variance v∞(Mt, ϕ)
based on the autocorrelations of a single chain of length P .

Several such single-chain estimators ψP have been proposed in the literature, see
e.g. the introduction of Flegal and Jones (2010). In our experiments, we found the
initial monotone sequence estimator of Geyer (1992) to be a convenient default, as
it is simple to use (no tuning parameter), and it seems to work well. Note however
that this estimator is based on a property which is specific to reversible kernels
(namely that sums of adjacent pairs of autocovariance form a decreasing sequence).
When the chosen kernels Mt are not reversible, one may consider an alternative
estimator; see our third numerical experiment (Section 5) for more discussion on
this point.

To estimate Vt(ϕ) = Ṽt(Gt(ϕ − Qt(ϕ))), we use the same approach with ϕ re-

placed by Gt(ϕ − QNt (ϕ)), QNt (ϕ) =
∑N
n=1W

n
t ϕ(Xn

t ). Similarly, to estimate each
term in the asymptotic variance of the log normalising constant, (17), we replace
Ḡt = Gt/`t by Gt/`

N
t .

We note that there is an alternative approach to obtain variance estimates from
a single run of waste-free SMC. It consists in (a) casting waste-free SMC as a
standard SMC sampler, as we did in Section 2.5 (taking P fixed); and (b) to apply
the method of Lee and Whiteley (2018), see also Chan and Lai (2013), Olsson
and Douc (2019) and Du and Guyader (2019), for obtaining variance estimates
from SMC outputs. This method relies on genealogy tracking (i.e. tracking the
ancestors at time 0 of each current particle).

This alternative approach has two drawbacks however. First, it relies on the
fixed P regime, while, as already said, we recommend by default to run waste-free
SMC in the P → +∞ regime, i.e. by taking M � N . Second, the method of Lee
and Whiteley (2018) degenerates as soon as the number of common ancestors of
the N particle drops to one; something which tends to occur quickly as t increases.

One may mitigate the degeneracy by tracking the genealogy only up to time t−l,
for a certain lag value l, as recommended by Olsson and Douc (2019). However this
introduces a bias, and choosing l is non-trivial.
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We will compare both approaches in the numerical experiments of Section 5.

4.4. On-line adaptation of P . In certain applications, the mixing of kernels Mt

may vary wildly with t; for instance, for a tempering sequence, the mixing of Mt

may deteriorate over time. The second numerical example in Section 5 illustrates
this phenomenon.

In such a case, it makes sense to adjust the computational effort to the mixing of
the chain. That is, at time t, take P = Pt so that the variance of estimates computed
at time t stay of the same order of magnitude. In practice, we found the following
strategy to work reasonably well: at iteration t, adjust Pt so that it exceeds κ times
the auto-correlation time of kernel Mt, i.e. the quantity v∞(Mt, ϕ)/2Varπt(ϕ) for
a certain constant κ ≥ 1, and a certain function ϕ, as estimated from the current
sample (which consists of M chains of length Pt). In our simulations, we took
ϕ = logGt, and κ between 2 and 10. To adjust Pt, we set it to an initial value,
then we doubled it until the requirement was met.

The main drawback of this adaptive approach is that it makes the CPU time of
the algorithm random, which is less convenient for the user. On the other hand,
it seems to present two advantages, as observed in our experiments (see second
example in Section 5): (a) it avoids the poor performance one obtains by taking a
value for P that is too small for certain iterations t; and (b) it makes the variance
estimates more robust in this type of scenario.

5. Numerical experiments

In this section, we evaluate the performance of waste-free SMC in a variety of
challenging scenarios, covering different types of state-spaces (continuous or dis-
crete, with a fixed or an increasing dimension), of sequence of target distributions
(based on tempering or something else), and of MCMC kernels (Metropolis or
Gibbs). In each example, standard SMC is known to be a competitive approach,
and we assess in particular how waste-free SMC may improve on the performance
of standard SMC.

5.1. Logistic regression. We consider the problem of sampling from, and com-
puting the normalising constant of, the posterior distribution of a logistic regression
model, based on data (yi, zi) ∈ {−1, 1} × Rp, parameter x ∈ Rp, and likelihood

L(x) =

nD∏
i=1

F (yix
T zi), F (x) =

1

1 + e−x
.

We consider the sonar dataset (available in the UCI machine learning repository),
which is one of the more challenging datasets considered in Chopin and Ridgway
(2017), and for which SMC tempering is one of the competitive alternatives (and
the only one that may be used to estimate the marginal likelihood). Following
standard practice, each predictor is rescaled to have mean 0 and standard deviation
0.5; an intercept is added; the dimension of X is then p = 63. The prior is an
independent product of centred normal distributions, with standard deviation 20
for the intercept, 5 for other coordinates.

We compare the performance of standard SMC and waste-free SMC when applied
to the tempering sequence πt(dx) ∝ ν(dx)L(x)γt . In both cases, the tempering
exponents are set automatically (using Brent’s method) so that the ESS of each
importance sampling step equals αN , and the Markov kernel Mt is a k-fold random
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Figure 2. Logistic regression: estimates of the normalising con-
stant obtained from waste-free SMC (N = 2 × 105) and standard
SMC (N = 2× 105/k).

walk Metropolis kernel calibrated to the resampled particles (see Section 4.2). For
waste-free, we always take k = 1 (as per the thinning argument of the same Section).
We take α = 1/2 here; see the supplement for results with other values of α.

Figure 2 plots box-plots of estimates of the log of the normalising constant of
the posterior obtained from 100 independent runs of standard SMC, for k = 5, 20,
100, 500, and 1000 and waste-free SMC for k = 1, and M = 50, 100, 200, 400
and 800. The number of particles is set to N = N0/k, with N0 = 2× 105, so that
all algorithms have roughly the same CPU cost. (For waste-free, P is adjusted
accordingly, i.e. P = N/M , with N = 2 × 105.) Figure 3 does the same for the
estimate of the posterior expectation of the mean of all components of x, namely
πT (ϕ) with ϕ(x) := p−1

∑p
s=1 xs for x ∈ Rp.

These figures deserve several comments. First, waste-free seems to perform best
in the “long chain” regime, when M � N . Second, within this regime, the perfor-
mance seems robust to the choice of M ; notice how the same level of performance
is obtained whether M = 50 or M = 400 (similar performance is also obtained for
M < 50, results not shown. We focused on M ≥ 50 for reasons related to parallel
hardware as discussed in Section 4.1.) Third, in contrast, it seems difficult to choose
k to obtain optimal performance; notice in particular that Figure 3 suggests to take
k = 100, but, for this value of k, the estimate of the log-normalising constant seems
biased, see Figure 2. (Interestingly, we observed such an upward bias for all values
of k when we ran standard SMC for a smaller value of N , N = 105; hence stan-
dard SMC seems also slightly less robust to the choice of N ; results not shown.)
Fourth, and perhaps most importantly, we are able to obtain better performance
from waste-free SMC for a given CPU budget.

We now evaluate the performance of the variance estimates discussed in Sec-
tion 4.3. Figure 4 shows box-plots of these estimates obtained from 100 runs of
waste-free SMC, for N = 2 × 105 and M = 50: the M−chain estimate advocated
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Figure 3. Same plot as Figure 2 for the estimate of the posterior
expectation of the mean of all coordinates.

in Section 4.3; the estimate of Olsson and Douc (2019), with a lag of 3 (the biased,
but more stable version of Lee and Whiteley (2018), as explained in Section 4.3)
and finally, the empirical variance over 10 independent runs. All these variance
estimates are re-scaled by the same factor, such that the empirical variance over
the 100 runs equals one. (Other values for the lag in the method of Olsson and
Douc (2019) did not seem to give better results.)

Clearly, the M−chain estimator is more satisfactory, as it performs better (espe-
cially for the normalising constant, left plot) than the empirical variance, although
being computed from a single run. On the other hand, the approach of Lee and
Whiteley (2018) performs poorly. To be fair, this approach works more reasonably
if we increase significantly M (results not shown), but since taking M too large de-
creases the performance of the algorithm, it seems fair to state that this approach
is not useful for waste-free SMC, at least in this example.

5.2. Latin squares. Our second example concerns the enumeration of Latin squares
of size d; that is, d× d matrices with entries in {0, . . . , d− 1}, and such that each
integer in that range appears exactly once in each row and in each column; see
Table 5.2 for an example. The number l(d) of Latin squares of size d increases very
quickly with d, and is larger than 1043 for d = 11, the largest value for which it is
known; see sequence A002860 of the OEIS database (OEIS Foundation Inc., 2020).

Let X be the set of permutation squares of size d, that is, d × d matrices such
that each row is a permutation of {0, . . . , d − 1}, and let p(d) its cardinal, p(d) =
(d!)d. We consider the following sequence of tempered distributions: πt(dx) =
ν(dx) exp{−λtV (x)}/Lt, where ν(dx) stands for the uniform distribution over X ,
and V is a certain score function such that V (x) = 0 if x is a Latin square, V (x) ≥ 1
otherwise. Specifically, denoting the entries of matrix x by x[i, j], we take

V (x) =

d∑
j=1


d∑
l=1

(
d∑
i=1

1(x[i, j] = l)

)2

− d

 .
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Figure 4. Logistic regression: box-plots of variance estimates
over 100 runs obtained with waste-free SMC. Left: variance of the
log-normalising constant estimate. Right: variance of the mean of
all coefficients estimate. The variance estimates are re-scaled so
that the empirical variance over the 100 runs equals one; see text
for more details.

1 5 0 3 7 8 9 6 2 4
0 4 5 8 6 9 1 7 3 2
2 8 7 0 9 4 5 3 1 6
3 7 4 1 5 2 8 0 6 9
6 0 9 5 1 3 2 8 4 7
8 2 1 9 4 0 6 5 7 3
9 6 3 2 0 5 7 4 8 1
5 1 6 4 3 7 0 2 9 8
4 9 2 7 8 6 3 1 5 0
7 3 8 6 2 1 4 9 0 5

Table 1. A Latin square of size 10

The quantity Lt×p(d) will be at distance ε of l(d), the number of Latin squares,
as soon as λt ≥ log(p(d)/ε). Thus, we select adaptively the successive exponents
λt (as in the previous example), and stop the algorithm at the first iteration t such
that this condition is fulfilled, for ε = 10−16.

We set the Markov kernel Mt to be a k-fold Metropolis kernel based on the
following proposal distribution: given x, select randomly a row i, two columns j,
j′, and swap components x[i, j] and x[i, j′].

Figure 5 compares the performance of standard SMC and waste-free SMC for
evaluating the log of the normalising constant LT , that is (up to a small error as
explained above), the log of the number of Latin squares l(d); we take d = 11 since
this is the largest value of d for which l(d) is known exactly.

As in the previous example, the compared algorithms are given (roughly) the
same CPU budget: N = 2 × 105/k for standard SMC, while N = 2 × 105 for
waste-free (and k = 1, as already discussed). We make the same observations as
in the previous example: best performance is obtained from waste-free SMC in the
long chain regime (M � N), and, within this regime, performance does not seem
to depend strongly on M .
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Figure 5. Latin squares: box-plots of estimates of logLT (log of
number of Latin squares) obtained from 100 independent runs of
the following algorithms: waste-free SMC (N = 2 × 105, different
values of M , the number of resampled particles), and standard
SMC (N = 2×105/k, different values for k, the number of MCMC
steps).
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Figure 6. Latin squares: acceptance rate of the Metropolis kernel
described in the text at each iteration t of a run of waste-free SMC.

One distinctive feature of this example is that the mixing of the Metropolis
kernel used to move the particles significantly decreases over time; see Figure 6,
which plots the acceptance rate of that kernel at each iteration t of a waste-free
SMC run.

It is interesting to note that waste-free SMC seems to work well despite this.
Unfortunately, it does seem to affect the performance of our M−chain variance
estimate. The left panel of Figure 7 makes the same comparison as Figure 4 in
our first example. This time, however, the M−chain estimator seems to be biased
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Figure 7. Latin squares: same plot as Figure 4, for the estimate of
log-normalising constant logLT . Left: non-adaptive version (M =
50, N = 2× 105); Right: adaptive version (M = 50, N0 = 5). See
text for more details.

downward, by a factor of two. This bias seems to originate from the terms of for
the last values of t; these terms are both larger, and more difficult to estimate if P
is not large enough.

These results showcase the interest of adapting P across time, as discussed in
Section 4.4. We re-run waste-free SMC for the same problem, with M = 50,
and κ = 5; that is, at each iteration t, Pt is adjusted to be close to κ times
the auto-correlation time, for function Ḡt. The right side of Figure 7 repeats the
comparison of the variance estimates, but for the adaptive P algorithm. This time,
our M−chain estimate seems to perform satisfactorily.

In addition, Figure 8 compares the CPU vs error trade-off for both variants
of waste-free SMC. In both cases, we set M = 50; “CPU time” on the x-axis
is measured by the number of calls to the score function, re-scaled so that the
smallest observed value is 1. (Both axis use a log 2-scale.) Each dot corresponds to
an average over 100 runs. For the vanilla version, we set N = 6250, 2.5× 104, 105,
4× 105 and 8× 105. For the adaptive version, we set κ = 2, 5 and 10. The dotted
lines have slope −1. For high CPU time both algorithms show the same level of
performance. If N is set to too low a value for vanilla waste-free (e.g. N = 6250),
then one obtains a very large MSE, because P = N/M = 125 is too small relative
to the auto-correlation time of the kernels Mt for large t. Note that for the adaptive
version, it does not make sense to take κ� 2, as one cannot properly estimate the
auto-correlation time of a chain without running it for a length commensurate with
its auto-correlation time. In a sense, the adaptive version of waste-free prevents us
from setting P to too low a value, where performance becomes sub-optimal.

By and large, in any problem when there is some evidence that the mixing of
kernels Mt may decrease significantly over time, we recommend to use the adaptive
P strategy. It is a bit less practical to use, as it gives less control to the user on
the running time of the algorithm; but on the other hand it seems to provide more
reliable variance estimates in this kind of scenario.

5.3. Orthant probabilities. Finally, we consider the problem of evaluating Gauss-
ian orthant probabilities, i.e. p(a,Σ) := P(Z ≥ a), where a ∈ Rd, Z ∼ Nd(0,Σ),
and Σ is a covariance matrix of size d× d.



WASTE-FREE SMC 19

0 1 2 3 4 5 6 7
log2-cpu

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

lo
g2

-m
se

Adaptive Waste-free SMC
Waste-free SMC

Figure 8. Latin squares: MSE (mean square error) vs CPU time
(number of calls to score function), averaged over 100 independent
runs of vanilla waste-free (grey dots, N = 6250, 2.5 × 104, 105,
4 × 105, 8 × 105), and adaptive waste-free (black dots, κ = 2, 5,
10). Both axes use a log 2−scale; parallel dotted lines have slope
−1.

Ridgway (2016) developed the following SMC approach for evaluating such prob-
abilities. Let Γ be the lower triangle in the Cholesky decomposition of Σ: Σ = ΓΓT ;
Γ = (γij) and γii > 0 for all i. The orthant probability p(a,Σ) may be rewritten
as the joint probability that Xt ≥ ft(X1:t−1) for t = 1, . . . , d, where ft(x1:t−1) =
(at −

∑
s<t γstxs)/γtt, and the Xt’s are IID N (0, 1) variables. (At time 1, f1(x1:0)

is simply a1, i.e. the constraint is X1 ≥ a1.)
The SMC algorithm of Ridgway (2016) applies the following operations to par-

ticles Xn
1:t, from time 1 to time T = d. (We change notations slightly and start at

time 1, for the sake of readability.) (a) At time t, particles Xn
1:t−1 are extended by

sampling an extra component, Xn
t , from a univariate truncated Gaussian distribu-

tion (the distribution of Xt ∼ N(0, 1) conditional on Xt ≥ ft(x0:t−1)); (b) particles
Xn

1:t are then reweighted according to function Φ(−ft(Xn
1:t−1)), where Φ is the

N (0, 1) cumulative distribution function; and (c) when the ESS (effective sample
size) of the weights gets too low, the particles are moved through k iterations of
a certain MCMC kernel that leaves invariant πt, the distribution that corresponds
to X1:t ∼ Nt(0, It) constrained to Xs ≥ fs(X1:s−1) for s = 1, . . . , t. Based on
numerical experiments, Ridgway (2016) recommended to use for the MCMC kernel
at time t a Gibbs sampler that leaves πt invariant. (the update of each variable
amounts to sampling from a univariate truncated normal distribution.)

This SMC algorithm does not fit in the framework of Algorithm 1; in particular
the dimension of the state-space X = Rt increases over time. However, we can
easily generalise waste-free SMC to this setting: whenever an MCMC rejuvenation
step is applied, resample M � N particles, apply P −1 steps of the chosen MCMC
kernels to these M resampled particles, and gather the N = MP so obtained values
to form the new particle sample.

To make the problem challenging, we take d = 150, a = (1.5, 1.5, . . .), and Σ a
random correlation matrix with eigenvalues uniformly distributed in the simplex
{x1 + · · ·+ xd = 150, xi ≥ 0}, which we simulated using the algorithm of Davies
and Higham (2000). As in Ridgway (2016), before the computation we re-order the
variables according to the heuristic of Gibson et al. (1994).
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Figure 9. Orthants: estimates of the log normalizing constant
obtained from waste-free SMC (N = 2 × 105) and standard SMC
(N = 2× 105/k).

Figures 9 and 10 do the same comparison of standard SMC and waste-free SMC
as in the two previous examples: N = 2 × 105 for waste-free, N = 2 × 105/k for
standard SMC, and M (resp. k) varies over a range of values. Figure 9 plots box-
plots of estimates of logLT (the log of the orthant probability), while Figure 10

does the same for QT (ϕ), with ϕ(x0:T ) = (
∑T
t=0 xt)/T ; i.e. the expectation of ϕ

with respect to the corresponding truncated Gaussian distribution.
We observe again that waste-free SMC outperforms standard SMC, at least

whenever M � N . In addition, the greater robustness of waste-free is quite striking
in this example.

Finally, Figure 11 compares M−chain estimators of the variance of the orthant
probability estimate based on two single-chain estimators: the initial sequence esti-
mator we recommended by default in Section 4.3, and we used in the two previous
examples; and a spectral estimator based on the Tukey-Hanning window (see e.g.
Flegal and Jones, 2010). In this example, the kernels Mt are Gibbs kernels, and are
therefore not reversible. This seems to explain the poor performance of the former.

(As in previous plots, Figures 4 and 7, we include for comparison the variance
estimator obtained by taking an empirical variance over 10 runs; however we do
not include, for the sake of readability, the estimator based on Lee and Whiteley
(2018), but note simply it performs poorly in this case too.)

6. Concluding remarks

6.1. Connection with nested sampling. In our definition of waste-free SMC,
we took N = MP , with P ≥ 2; thus M divides N . We may generalise the algorithm
to any pair (M,N), M < N : at time t, resample M particles, generate M chains of
length k := bN/Mc (using kernel Mt, and the resampled particles as the starting
points); then select (without replacement) N−Mk chains and extend them to have
length k + 1. The total number of particles is then N .
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Figure 10. Orthants: Same plot as Figure 9 for QT (ϕ), the ex-

pectation of function ϕ(x0:T ) = (
∑T
t=0 xt)/T with respect to trun-
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Figure 11. Orthants: box-plots of variance estimates over 100
runs for the estimate of the log orthant probability. The variance
estimates are re-scaled so that the empirical variance over the 100
runs equals one; see text for more details.

One interesting special case is M = N − 1. In that case, N − 1 particles are re-
sampled (thus at least one particle is discarded), and, among these N−1 resampled
particles, only one particle is moved through kernel Mt. In addition, if the target
distributions πt are of the form πt(dx) ∝ ν(dx)1{L(x) ≥ lt}, where ν is a prior
distribution, and L a likelihood function, then one recovers essentially the nested
sampling algorithm of Skilling (2006).

This raises the question whether the regime M = N − 1 is useful, either for
such a sequence of distributions, or more generally. For the former, the numerical
experiments of Salomone et al. (2018) seem to indicate than standard SMC, when
applied to this type of sequence, may perform as well as nested sampling. This
suggests waste-free SMC should also perform at least as well as nested sampling,
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although we leave that point for further investigation. For the latter, we note that
taking M = N − 1 is not very convenient, as this means we move only one particle
at each iteration, although each iteration costs O(N). (In nested sampling, the
cost of a single iteration may be reduced to O(1) by using the fact that weights are
either 0 or 1.)

6.2. Further work. Our convergence results assume that the kernels Mt are uni-
formly ergodic. However, many practical MCMC kernels are not uniformly ergodic,
hence it seems worthwhile to extend these results to, say, geometrically ergodic ker-
nels. Another result we would like to establish is that waste-free SMC dominates
standard SMC in terms of asymptotic variance, at least under certain conditions
on the mixing of the kernels Mt.

In terms of applications, we wish to explore how waste-free may be implemented
in various SMC schemes, in particular in the SMC2 algorithm of Chopin et al.
(2013). This algorithm is an SMC sampler with expensive Markov kernels (as a
single step amounts to propagate a large number of particles in a “local” particle
filter), hence the benefits brought by waste-free SMC may be particularly valuable
in this type of scenario.

The original implementation of the numerical examples may be found at https:
//github.com/hai-dang-dau/waste-free-smc. Waste-free SMC is also now im-
plemented in the particles library, see https://github.com/nchopin/particles.
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Appendix A. Proofs

A.1. Proof of Proposition 2. We may rewrite (6) as:

t∏
s=0

{
1

M

M∑
m=1

(
1

P

P∑
p=1

Gs(z
m
s [p])

)}

where zms [p] stands for variable X̃m,p
s which is defined inside Algorithm 2.

We recognise the normalising constant estimate of a standard SMC sampler,
Algorithm 1, when applied to the waste-free Feynman-Kac model defined in Propo-
sition 1. The expectation of this quantity is therefore the normalising constant
Lwf
t = Lt (Proposition 1), since such estimates are unbiased (Del Moral, 1996).

A.2. Proof of Proposition 4. We start by establishing two technical lemmas
regarding a uniformly ergodic Markov chain (Xp)p≥0, (Xp) for short, on probability
space (X ,X); i.e.

∥∥Kk(x, dx′)− π(dx′)
∥∥
TV
≤ Cρk for certain constants C > 0 and

ρ < 1 and a certain probability distribution π, where Kk(x, dx) stands for the
k−fold Markov kernel that defines the distribution of Xp+k given Xp. Then π(dx)
is its stationary distribution.

https://github.com/hai-dang-dau/waste-free-smc
https://github.com/hai-dang-dau/waste-free-smc
https://github.com/nchopin/particles
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Lemma 1. Assume that (Xp) is stationary, i.e. X0 ∼ π(dx), and therefore Xp ∼
π(dx) for all p ≥ 0. Then there exists a constant C1 > 0 such that:

Var (ϕ(X0)) + 2

∞∑
k=1

|Cov (ϕ(X0), ϕ(Xk))| ≤ C1 ‖ϕ‖2∞

for any measurable bounded function ϕ : X → R.

Proof. One has

|Cov (ϕ(X0), ϕ(Xk))| = |E[ϕ(X0)ϕ(Xk)]− E[ϕX0]E[ϕXk]|

=

∣∣∣∣∫ {∫ ϕ(xk)Kk(x0,dxk)−
∫
ϕ(xk)π(dxk)

}
ϕ(x0)π(dx0)

∣∣∣∣
≤ 2ρkC ‖ϕ‖2∞

from which the result follows. �

In the second lemma, the distribution of the initial state X0 is arbitrary, and
therefore the chain is not necessarily stationary.

Lemma 2. There exists a constant C2 > 0 (which does not depend on the initial
distribution of the chain, i.e. the distribution of X0), such that

Var

(
1

P

P∑
p=1

ϕ(Xp)

)
≤ C2

‖ϕ‖2∞
P

for any P ≥ 1 and any bounded measurable function ϕ : X → R.

Proof. The proof relies on a standard coupling argument, see e.g. Chapter 19 of
Douc et al. (2018). We introduce an arbitrary integer R, 1 ≤ R ≤ P , and a Markov
chain (X?

p ) constructed as follows: (a) X?
0 ∼ π(dx), the stationary distribution of

(Xp); (b) variables XR, X?
R are maximally coupled, which implies that:

(18) P(XR 6= X?
R) =

∥∥∥∥∫ µ(dx0)K(x0,dxp)− π(dxp)

∥∥∥∥
TV

≤ CρR

where µ(dx0) denotes the probability distribution of X0, and the inequality stems
from the uniform ergodicity of the chain; (c) if XR = X?

R, the two chains re-
main equal until time P , otherwise they are independent; (d) the distribution of
X?

1 , . . . , X
?
R−1 given X?

0 , X?
R is the conditional distribution of these states induced

by K(x,dx′), the Markov kernel of (Xp). For more details on maximal coupling of
two probability distributions, see e.g. Chap. 19 of Douc et al. (2018).

Using the inequality Var(X + Y +Z) ≤ 3(Var(X) + Var(Y ) + Var(Z)), we have:

Var

(
1

P

P∑
p=1

ϕ(Xp)

)
≤ 3Var

(
1

P

P∑
p=1

ϕ(X?
p )

)
+ 3Var

(
1

P

R∑
p=1

{
ϕ(Xp)− ϕ(X?

p )
})

+ 3Var

1{XR 6= X?
R}

1

P

P∑
p=R

{
ϕ(Xp)− ϕ(X?

p )
}

≤
3C1 ‖ϕ‖2∞

P
+

12R2 ‖ϕ‖2∞
P

+ CρR ‖ϕ‖2∞
where we have applied Lemma 1 to the first term, and (18) to the third term. We

conclude by taking R = d
√
P e.
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�

We now prove Proposition 4 by induction. Clearly, (11) holds at time 0. The
implication (11) ⇒ (12) at time t follows the same lines as for a standard SMC
sampler, see e.g. Section 11.2.2 in Chopin and Papaspiliopoulos (2020). Now
assume that (12) holds at time t−1 ≥ 0, and let ϕ̄ = ϕ−Qt−1(ϕ), Ft−1 = σ(X1:N

t−1 )
(the σ-field generated by variables Xn

t−1, n = 1, . . . , N). Then

E

( 1

N

N∑
n=1

ϕ(Xn
t )− Qt−1(ϕ)

)2
∣∣∣∣∣∣Ft−1


= E

( 1

M

M∑
m=1

1

P

P∑
p=1

ϕ̄(X̃m,p
t )

)2
∣∣∣∣∣∣Ft−1


=

(
E

[
1

P

P∑
p=1

ϕ̄(X̃1,p
t )

∣∣∣∣∣Ft−1
])2

+
1

M
Var

(
1

P

P∑
p=1

ϕ̄(X1,p
t )

∣∣∣∣∣Ft−1
)

since the blocks of variables Xm,1:P
t are IID (independent and identically dis-

tributed) conditional on Ft−1.

The expectation of the first term may be bounded by c′t−1 ‖ϕ‖
2
∞ /N by applying

(12) to function P−1
∑P−1
p=0 M

p
t ϕ. The second term may be bounded by C2 ‖ϕ‖2∞ /N

using Lemma 2.

A.3. Proof of Theorem 1. We start by proving a few basic lemmas. The first
one concerns product measures. We use symbol

⊗
throughout to represent the

product of two probability measures.

Lemma 3 (Total variation distance for product measure). Let µ1:N and ν1:N be
2N probability measures on (X ,X). Then the following inequality holds:∥∥∥∥∥

N⊗
n=1

µn −
N⊗
n=1

νn

∥∥∥∥∥
TV

≤
N∑
n=1

‖µn − νn‖TV .

Proof. Take N = 2. Then

‖µ1 ⊗ µ2 − ν1 ⊗ ν2‖TV ≤ ‖µ1 ⊗ µ2 − µ1 ⊗ ν2‖TV + ‖µ1 ⊗ ν2 − ν1 ⊗ ν2‖TV

and we may bound the first term as follows:

‖µ1 ⊗ µ2 − µ1 ⊗ ν2‖TV

= sup
f :X 2→[0,1]

∣∣∣∣∫ (∫ f(x, y)µ1(dx)

)
µ2(dy)−

∫ (∫
f(x, y)µ1(dx)

)
ν2(dy)

∣∣∣∣
≤ sup
g:X→[0,1]

∣∣∣∣∫ g(y)µ2(dy)−
∫
g(y)ν2(dy)

∣∣∣∣ = ‖µ2 − ν2‖TV .

The result follows by bounding the second term similarly. For N ≥ 3, proceed
recursively. �

The two next lemmas concern the behaviour of M ≥ 1 independent, stationary,
Markov chains, (Y mp )p≥0 on (X ,X), m = 1, . . . ,M with uniformly ergodic Markov

kernel K, and invariant distribution π: ‖δxKp − π‖TV ≤ Cρk for constants C ≥ 0
and ρ ∈ [0, 1).
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Lemma 4. The product kernel

K⊗M (x1:M ,dx
′
1:M ) =

M∏
m=1

K(xm,dx
′
m)

is uniformly ergodic, with stationary distribution π⊗M .

Proof. This is a direct consequence of Lemma 3:∥∥∥δx1:M

(
K⊗M

)p − π⊗M∥∥∥
TV
≤

M∑
m=1

‖δxmKp − π‖TV

≤ CMρp.

�

Lemma 5. For ϕ : X → R measurable and bounded, one has:

√
MP

(∑M
m=1

∑P
p=1 ϕ(Y mp )

MP
− π(ϕ)

)
⇒ N (0, v∞(K,ϕ))

as P → +∞, whether M ≥ 1 is fixed, or M grows with P ; i.e. M = M(P )→ +∞
as P → +∞.

Proof. For M = 1, this is simply the classical central limit theorem for uniformly
ergodic Markov chains, see e.g. Theorem 23 in Roberts and Rosenthal (2004) and
references therein. For M ≥ 2 fixed, we may apply the same theorem to the Markov
chain (Y 1:M

p )p in (XM ,XM ), which is also uniformly ergodic (Lemma 4) and to test

function ϕM (y1:M ) = M−1
∑M
m=1 ϕ(ym).

Assume now M = M(P ) grows with P . Let ϕ̄ = ϕ− π(ϕ) and let SP denote a

variable with the same distribution as SmP := P−1/2
∑P
p=1 ϕ̄(Y mp ) for m = 1, . . . ,M .

(These M variables are IID.) By the formula (19) of Roberts and Rosenthal (2004),
we have E[S2

P ]→ v∞(K,ϕ). Therefore, fixing u ∈ R, we wish to prove that ∆P → 0,
where

∆P :=

∣∣∣∣∣(EeiuSP /
√
M
)M
−
(

1− u2

2M
E(S2

P )

)M ∣∣∣∣∣ .
Let M0 ≥ 1 be fixed such that u2E[S2

P ]/2M0 < 1 for all P > M0. Since∣∣aM − bM ∣∣ ≤ M |a− b| for |a| , |b| ≤ 1 and
∣∣eix − 1− ix+ x2/2

∣∣ ≤ min(x2, |x3|/6)
for x ∈ R, we have, for any M ≥M0:

(19) ∆P ≤ E min

(
u2S2

P ,

∣∣u3S3
P

∣∣
6
√
M

)
≤ EfM0

(SP )

where fm(x) := min
(
u2x2,

∣∣u3x3/6√m∣∣) = f1m(x) + f2m(x), f1m(x) := u2x2 and

f2m(x) := 1|x|≤6√m/|u|
(∣∣u3x3∣∣ /6√m− u2x2). Then, if G is a Gaussian variable

with variance v∞(K,ϕ), we have Ef1M0
(SP ) → Ef1M0

(G) as P → +∞. Moreover,

Ef2M0
(SP )→ Ef2M0

(G) by Theorem 23 of Roberts and Rosenthal (2004) and the fact

that f2M0
is a bounded function and is only discontinuous on a set of measure zero

with respect to a Gaussian distribution. Thus (19) implies that lim supP→∞∆P ≤
EfM0

(G). But EfM0
(G)→ 0 as M0 →∞ by the dominated convergence theorem,

hence ∆P → 0 and the lemma is proved. �
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We now prove Theorem 1. We proceed by induction: (13) at time 0 is simply
the standard central limit theorem for IID variables. The implication (13) ⇒ (14)
at time t may be established exactly as in other proofs for central limit theorems
for SMC algorithms; see e.g. Section 11.3 of Chopin and Papaspiliopoulos (2020).

We now assume that (14) holds at time t−1 ≥ 0, and we wish to show that (13)
holds at time t, or, equivalently, that:

(20)
1√
P

P∑
p=1

ϕM (Zp)⇒ N (0, v∞(Mt, ϕ))

where (dropping the dependence on t as it is fixed) Zp := (X̃1,p
t , . . . , X̃M,p

t ) is
a Markov chain on XM , which is uniformly ergodic (Lemma 4), and ϕM (z) =

M−1/2
∑M
m=1 ϕ̄(z[m]).

We apply the coupling construction we used in the proof of Lemma 2 to this
Markov chain: we introduce a stationary Markov chain, (Z?p ), with the same Markov

kernel as (Zp), i.e. M⊗Mt , which is coupled to (Zp) at time R, 1 ≤ R ≤ P , with
maximum coupling probability:

(21) P(ZR 6= Z?R) =
∥∥L(Z1)(M⊗Mt )R − π⊗Mt−1

∥∥
TV
≤MCρR

If the two chains are successfully coupled at time R, they remain equal at times
R+ 1, . . . , P .

We decompose the left-hand side of (20) as:

(22)
1√
P

P∑
p=1

ϕM (Zp) =
1√
P

P∑
p=1

ϕM (Z?p ) +
1√
P

R∑
p=1

ϕM (Zp)

− 1√
P

R∑
p=1

ϕM (Z?p ) +
1√
P

1{ZR 6= Z?R}
P∑

p=R+1

(
ϕM (Zp)− ϕM (Z?p )

)
.

The first terms converges to N (0, v∞(Mt, ϕ)), see Lemma 5. What remains to
prove is that the three other terms converge to zero in probability.

The fourth term is non-zero with probability (21), and tends to zero as soon as
R → +∞; e.g. R = O(P β), β ∈ (0, 1). Using the inequality Var(Y1 + . . . + YR) ≤
R (Var(Y1) + . . .+ Var(YR)), we may bound the the L2 norm of the third term as
follows:

Var

(
1√
P

R∑
p=1

ϕM (Z?p )

)
≤ R2

P
Varπ(ϕ̄) ≤ 2

R2

P
‖ϕ‖2∞

which tends to zero as soon as R2 � P , e.g. R = O(P β), β ∈ (0, 1/2).
The second term equals:

(23) R

√
M

P

(
1

M

M∑
m=1

1

R

R∑
p=1

ϕ̄(X̃m,p
t )

)
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and, since the M chains X̃m,1:P
t are independent, for m = 1, . . . ,M , conditional on

Ft−1 = σ(X1:N
t−1 ), we have:

E

( 1

M

M∑
m=1

1

R

R∑
p=1

ϕ̄(Xm,p
t )

)2
∣∣∣∣∣∣Ft−1


=

(
E

[
1

R

R∑
p=1

ϕ̄(X̃1,p
t )

∣∣∣∣∣Ft−1
])2

+
1

M
Var

(
1

R

R∑
p=1

ϕ(X̃m,p
t )

∣∣∣∣∣Ft−1
)

≤

{
QNt−1

(
1

R

R∑
p=1

Mp−1
t ϕ̄

)}2

+
2

M
‖ϕ‖2∞

where QNt−1(ϕ) =
∑N
n=1W

n
t−1ϕ(Xn

t−1).

The expectation of the first term can be bounded by a constant times ‖ϕ‖2∞ /N

by Proposition 4, thus the L2 norm of (23) is O(R/
√
MP ), which tends to zero as

soon R2 � MP . Taking R = O(P β), β ∈ (0, 1/2) therefore ensures that all the
terms in (22), minus the first, goes to zero.

A.4. Proof of Theorem 2. Before proving Theorem 2, we need to define some new
notations to work comfortably with the convergence of conditional distributions.
We start with a simple example.

Most Markov chains used in MCMC algorithms admit a central limit theorem
regardless of its starting point, i.e., one has, for a Markov chain (Yp) with invariant
distribution π, and and a fixed point y1,

√
P

(
1

P

P∑
p=1

ϕ(Yp)− π(ϕ)

)∣∣∣∣∣Y1 = y1 ⇒ N (0, σ2)

for some σ2, as P → ∞. For uniformly ergodic Markov chains, stronger results
hold. For example, for any deterministic sequence (yp)

∞
p=1:

√
P

(
1

P

P∑
p=1

ϕ(Yp)− π(ϕ)

)∣∣∣∣∣Y1 = yP ⇒ N (0, σ2).

If instead of having a single Markov chain, we have M = M(P ) chains (Y mp ),
m = 1, . . . ,M , running in parallel, then, provided that the number of chains M
is negligible compared to their length P , it is possible to average the result of M
chains to get a better one. Specifically, it can be shown that for any deterministic
sequence (ymP ) indexed by m and p,

(24)
√
MP

(
1

M

M∑
m=1

1

P

P∑
p=1

ϕ(Y mp )− π(ϕ)

)∣∣∣∣∣Y 1:M
1 = y1:MP ⇒ N (0, σ2)

as P →∞. It is natural to reformulate (24) using the following simplified notation:

(25)
√
MP

(
1

M

M∑
m=1

1

P

P∑
p=1

ϕ(Y mp )− π(ϕ)

)∣∣∣∣∣Y 1:M
1 ⇒ N (0, σ2)

while keeping in mind that M = M(P ) and in particular the σ-algebra generated
by Y 1:M

1 does not stay the same when P →∞. While the interpretation (24) of the
notation of (25) is intuitive, a more rigorous formalization will make manipulations
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easier. That is the point of the following definition and lemma, which are simple
specific cases of more general results in Sweeting (1989). The difference with Sweet-
ing (1989) is that we prefer, if possible, to work with probability conditioned on an
event, which is simpler than probability conditioned on a filtration or a variable.

Definition 1 (Convergence of conditional distributions). Let (Xn)∞n=1 be a se-
quence of random variables and let (Fn)∞n=1 be a sequence of σ-algebras (which
are not necessarily nested as in a filtration). We say that the sequence Xn|Fn of
conditional distributions converge as n→∞ to distribution π,

Xn|Fn ⇒ π,

if for any sequence (Bn)∞n=1 of events such that Bn ∈ Fn and P(Bn) > 0, we have
Xn|Bn ⇒ π.

Lemma 6. Under the notations of definition 1, we have, for any continuous
bounded function ϕ : X → R,

E [ϕ(Xn)| Fn]
a.s.→ π(ϕ).

Remark. This result is in fact used in Sweeting (1989) as the definition of
convergence in conditional probability. As said above, we prefer Definition 1 as
we find it more convenient to work with probability conditioned on events than
probability conditioned on sigma-algebras.

Proof. For some ε > 0, define the events Bn as

Bn := {E [ϕ(Xn)| Fn]− π(ϕ) ≥ ε} .
If P(Bn) > 0, one can write, since Bn ∈ Fn:

(26) E [ϕ(Xn)|Bn] = E [E [ϕ(Xn)| Fn]|Bn] ≥ π(ϕ) + ε.

If there exists an infinity of n such that P(Bn) > 0, we have by Definition 1 that
Xn|Bn ⇒ π, which leads to a contradiction if we let n→∞ in both sides of (26).
Thus, there exists some n1 such that P(Bn) = 0,∀n ≥ n1. Similarly, one may show
that there exists n2 such that P(Cn) = 0, ∀n ≥ n2, where

Cn = {E[ϕ(Xn)|Fn]− π(ϕ) < −ε} .
Now, note that the desired almost-sure convergence is equivalent to the fact that
the random variable

R := lim sup
n→∞

|E[ϕ(Xn)|Fn]− π(ϕ)|

equals 0 almost surely. Indeed, for any ε > 0, the event {R ≥ ε} is contained in(⋃∞
n=n1

Bn
)
∪
(⋃∞

n=n2
Cn
)
, which has probability zero. �

Lemma 7. Let (Xn)∞n=1 and (Yn)∞n=1 be two sequences of random variables such
that Xn ⇒ PX and Yn|Xn ⇒ PY where the latter is understood in terms of Defini-
tion 1. Then (Xn, Yn) ⇒ PX ⊗ PY .

Proof. Let Y be a PY -distributed random variable. We have that∣∣E[eiuXn+ivYn ]− E[eiuXn ]E[eivY ]
∣∣ =

∣∣E [eiuXn (E[eivYn |Xn]− E[eivY ]
)]∣∣

tends to 0 by dominated convergence theorem and the fact that E[eivYn |Xn]−E[eivY ]
converges almost surely to 0 (Lemma 6). �

We are now able to prove Theorem 2.
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Proof. The idea of the proof is to show something very similar to (24). Indeed, we
shall show the following conditional version of (20):

(27)
1√
P

P∑
p=1

ϕM (Zp)

∣∣∣∣∣Ft−1 ⇒ N (0, v∞(Mt, ϕ))

which by Definition 1 means

(28)
1√
P

P∑
p=1

ϕM (Zp)

∣∣∣∣∣Bt−1 ⇒ (0, v∞(Mt, ϕ))

for any sequence Bt−1 (implicitly indexed by P ) of events such that BPt−1 ∈ FPt−1.
The left hand side of (28) can be decomposed into four terms as in (22), where

now (Z?p ) is a stationary Markov chain constructed via a maximal coupling of Q⊗Mt−1
and the conditional (instead of the full) distribution of ZR. The first, third and
the fourth terms of (22) can be treated exactly as before. The second term tends
to 0 in probability when R = N ε for small enough ε, because M = O(Nα) for
α < 1/2. Thus (27) holds. Applying it for ϕ = Gt and using the delta method give

the convergence of
√
N(log ˆ̀

t − log `t)|Ft−1 with asymptotic variance v∞(Mt, Ḡt).
Furthermore, note that by Definition 1, the convergence of XN |FN implies the
convergence of XN |F ′N if F ′n ⊂ Fn for all n. Hence

(29)
√
N
(
log `Nt − log `t

)∣∣∣√N (logLNt−1 − logLt−1
)
⇒ N

(
0, v∞(Mt, Ḡt)

)
.

We can now proceed by induction. Suppose that the assertion is verified up to
time t− 1, that is,

(30)
√
N
(
logLNt−1 − logLt−1

)
⇒ N

(
0,

t−1∑
s=0

v∞(Ms, Ḡs)

)
.

Then, (29), (30) and Lemma 7 prove the assertion at time t. �

A.5. Proof of Proposition 5. We first calculate Vstd,k
t (ϕ) by using e.g. formula

(11.14) in Chopin and Papaspiliopoulos (2020):

(31) Vstd,k
t (ϕ) =

t∑
s=0

Qs−1
[{
ḠsRs+1:tCtϕ

}2]
where Ḡt = Gt/r, Rt(ϕ) := MtḠtϕ, Rs+1:t := Rs+1 ◦ . . . ◦ Rt, and Ct(ϕ) :=
ϕ− Qt(ϕ). Note that Mt, Ḡt and Ct are all linear functionals. From the definition
of Mt, we have

Mt(xt−1, B) = (1− p̃k)1B(xt−1) + p̃kπt−1(B),

with p̃k = 1− (1− p)k, which leads to

ḠsRs+1:tCtϕ = Ḡs
[
p̃kQ?sḠs+1 + (1− p̃k)Ḡs+1

]
. . .
[
p̃kQ?t−1Ḡt + (1− p̃k)Ḡt

]
Ctϕ.

It is easy to fully extend the above expression if one remarks that for any l < t,
p̃kQ?l Ḡl+1:tCtϕ = 0. Therefore only terms without any p̃kQ?l Ḡl+1 actually con-
tribute to the result. Thus

ḠsRs+1:tCtϕ = (1− p̃k)t−sḠs:tCtϕ.
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We can now plug this into (31) and get

Vstd,k
t (ϕ) =

t∑
s=0

(1− p̃k)2(t−s)Qt−1
[
Ḡ2
s:t(Ctϕ)2

]
=

t∑
s=0

(1− p̃k)2(t−s)Qs−1

[
Ḡs:t

1

rt−s+1
(Ctϕ)2

]

=

t∑
s=0

1

r

[
(1− p̃k)2

r

]t−s
Qt
[
(Ctϕ)2

]
=

1

r

t∑
s=0

(
(1− p)2k

r

)s
VarQt(ϕ).

We thus see that the variance of the standard SMC sampler evolves proportion-
ally to the sum of a geometric series and its stability depends on whether the base
of the series is smaller than or greater than 1. This proves the second point of the
proposition. For the third point, note that

Ṽt(ϕ) = Qt−1

[
(Ct−1ϕ)2 + 2

∞∑
s=1

(Ct−1ϕ)(Ks
tCt−1ϕ)

]

= Qt−1

[
(Ct−1ϕ)2 + 2

∞∑
s=1

(Ct−1ϕ)2(1− p)s
]

=

(
2

p
− 1

)
Qt−1

[
(Ct−1ϕ)2

]
,

from which

Vwf
t (ϕ) = Ṽt(ḠtCtϕ)

=

(
2

p
− 1

)
Qt−1

[
(Ct−1ḠtCtϕ)2

]
=

(
2

p
− 1

)
Qt−1

[
(ḠtCtϕ)2

]
=

1

r

(
2

p
− 1

)
VarQt(ϕ).

Finally, to prove the last point of the proposition, we write

(32) lim
t→∞

IFwf
t

k IFstd,k
t

=
r−1( 2

p − 1)

r−1k
(

1− (1−p)2k
r

)−1 ≤ (2

p
− 1

)
1− (1− p)2k

k

as the second to last expression is non-decreasing in r. Next, consider the function
f(p) := (1 − p)2k + 2kp of which the derivative f ′(p) = 2k(1 − (1 − p)2k−1) is
non-negative thanks to the fact that k ≥ 1. We have f(p) ≥ f(0) = 1, which, when
plugged into Equation (32), gives

lim
t→∞

IFwf
t

k IFstd,k
t

≤
(

2

p
− 1

)
2kp

k
≤ 4.
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