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DE-BIASING PARTICLE FILTERING FOR A CONTINUOUS TIME
HIDDEN MARKOV MODEL WITH A COX PROCESS OBSERVATION

MODEL

RUIYANG JIN, SUMEETPAL S. SINGH, AND NICOLAS CHOPIN

Abstract. We develop a (nearly) unbiased particle filtering algorithm for a specific class of
continuous-time state-space models, such that (a) the latent process Xt is a linear Gaussian
diffusion; and (b) the observations arise from a Poisson process with intensity λ(Xt). The
likelihood of the posterior probability density function of the latent process includes an
intractable path integral. Our algorithm relies on Poisson estimates which approximate
unbiasedly this integral. We show how we can tune these Poisson estimates to ensure
that, with large probability, all but a few of the estimates generated by the algorithm
are positive. Then replacing the negative estimates by zero leads to a much smaller bias
than what would obtain through discretisation. We quantify the probability of negative
estimates for certain special cases and show that our particle filter is effectively unbiased.
We apply our method to a challenging 3D single molecule tracking example with a Born
and Wolf observation model.

1. Introduction

1.1. Background. Diffusion processes have been extensively used for modelling
continuous-time phenomena in a range of scientific areas, including finance [4, 22], bio-
chemistry [15, 16, 21], physics [26] and engineering [28]. These processes are usually applied
to model both the observed process and an unobserved signal/state process in a hierarchical
model.

This paper develops novel methods for optimal filtering of multivariate diffusion processes
observed at irregular time instances, which follow a Cox process whose intensity is a (non-
negative) function of the state process. The complete data likelihood of such a model
includes a path integral of the state trajectory (through the intensity function), which is
intractable. This precludes the use of standard particle filters.

Another common recognised problem in continuous time filtering for diffusion processes
is the unavailability of transition densities [13, 18]. In our problem though, the hidden
state is described by a linear SDE and thus state transition density is available, but the
likelihood still remains intractable for the reason mentioned above. Estimators proposed
by [24] replaces the path integral (with respect to time) with a Riemann approximation
based on a number of intermediate points. This technique is further used to construct the
transition density estimator of [10] and implemented in filtering context to approximate the
weights.

To remove the time-discretisation error in the numerical approximation of the path in-
tergral, the so-called Poisson estimator is often deployed. The path integral estimate is
computed using a (infinite) series expansion which is expressed as a random finite series
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2 DE-BIASING PARTICLE FILTERING FOR A CONTINUOUS TIME HIDDEN MARKOV MODEL

where the random truncation is given by a Poisson random variable. The first Poisson
estimator was introduced in the field of statistical physics by [32, 33]. This was subse-
quently further developed in the computational statistics literature, to provide an unbiased
estimation of diffusion transition densities by [3], to its generalisation forms and its use
in sequential importance sampling by [12], and to its variant using power series expansion
by [27]. One drawback of using a Poisson estimator is that it may return negative values,
which can result in an overall negative likelihood estimate and thus prohibiting the use of
the likelihood estimate for model calibration via Particle MCMC [1]. A naive way to ensure
positive estimates is to truncate all negative estimates to zero, which obviously comes at
the expense of introducing a bias to the estimate. [13] use Wald’s identity (for martingales)
to generate an unbiased estimate of the path integral that are guaranteed to be positive.
However, this method does not seem to yield an unbiased estimate of the likelihood itself
(see Section 4.1.3 for an elaboration on this point), and has a bias which appears difficult
to quantify.

1.2. Contributions. The approach we pursue in this work is to employ the standard Pois-
son estimate and retain only the positive part of the returned estimate. (In Section 4.1.3,
we discuss the retaining the absolute value which will allow us to completely de-bias the
estimate.) We are able to quantify the probability of encountering a negative weight (in
certain idealised scenarios) and show that this probability decreases exponentially with the
inverse of the time interval size over which the estimate is computed. (For some typical
experimental settings in our numerical work the probability is exceptionally small, of the
order 10−50.) This exponential decrease in the probability of a negative estimate yields a
few extra boons. The first being a rapidly diminishing mean square error, for the likelihood
estimate, in the available CPU time. The second being the probability a complete run of
an N -particle approximation for T/∆ time steps encountering a negative estimate (thus
needing truncation) being equally rare and straightforward to control using our proposed
(heuristic) tuning procedure. (Here [0, T ] is the time interval for smoothing, ∆ is the in-
terval over which the path integral is estimated and thus there are T/∆ path integrals to
estimate for each particle.) To control a negative weight event, the extra simulation cost
per-particle per-time step is O(∆) and thus the total extra cost is N × (T/∆)×∆, which
does not blow up ∆ tends to zero.

As for our second contribution, we apply our methodology to a challenging model cal-
ibration problem arising from single molecule fluoresencence microscopy, which is a very
popular live cell imaging technology. We combine our likelihood estimate with the particle
marginal Metropolis-Hastings algorithm [1] to estimate the model parameters for data that
arises from observing a diffusing molecule in 3D via a Cox process and a Born-Wolf obser-
vation model. We show how our particle filter significantly outperforms the conventional
time discretisation based approach for the intractable path integral as implemented in [8].
Our method is shown to have a negligible bias due to our tuning heuristic that controls the
occurrence of a negative Poisson path integral estimate (and thus the truncation induced
bias).

The paper is organised as follows. Section 2 presents the problem formulation while
Sections 3 and 4 present the particle filtering methodology in continuous time. Section 3
presents the particle filter that employs a simple time discretisation of the path integral
and Section 4 the more sophisticated particle filter that employs the Poisson estimator of
the path integral. Our proposed algorithm and accompanying theoretical results on its
performance are also presented in Section 4. Experiments including likelihood estimation,
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state estimation (smoothing) and parameter estimation are presented in Section 5. Proofs
and additional algorithms can be found in the Appendix.

2. Problem Formulation

2.1. Notation. We consider a latent continuous time Markov process {Xt}t≥0 which takes
values in X ⊂ Rn, has a time-inhomogeneous Markov transition density, Xtk |(Xtk−1

=
xk−1) ∼ f θtk−1,tk

(xk|xk−1), and initial density νθ. The superscript θ is the parameter of

the model, and will be defined subsequently. By X ∼ N (µ,Σ), we mean that X has
the distribution of a Gaussian random variable with mean µ and covariance Σ, whereas
N(x;µ,Σ) is the evaluation this Gaussian density at x. We use the standard sequence
notation i : j = i, i+ 1, . . . , j − 1, j, and dxe to denote the smallest integer number greater
than or equal to x ∈ R. The Y ⊂ Rm-valued stochastic process {Yk}k∈Z+ corresponds to
the observed process with observation density gθ(yk|xk). A realisation of a Poisson point
process on the positive real line is a sequence of increasing time points 0 < t1 < t2 < . . .
generated according to a non-negative intensity function t 7→ λt. For our application, the
intensity function is stochastic and state dependent, i.e. λt = λ(Xt) ≥ 0.

2.2. Hidden Markov Model Formulation. Let (t1, yt1), . . . , (tnp , ytnp ) be an observed
sequence of non-negative increasing arrival times 0 < ti < T and arrival locations yti of a
marked Poisson point process on the real line, recorded in the time interval [0, T ]. The arrival
times are generated by a Poisson point process on [0,∞) with stochastic intensity function
λ(Xt), which is determined by a latent continuous time Markov process {Xt}t≥0 ⊂ X and a
non-negative real valued function λ : X → R. The locations yti ∈ Y are marks of the point
process and are generated according to the conditional (on Xti = x) probability density
function,

Yti |(Xti = x) ∼ gθ(y|x)dy, i ∈ {1 : np} .
The exact likelihood is

(1) L = E

{(
np∏
i=1

λ (Xti) g
θ (yti |Xti)

}
× exp

(
−
∫ T

0

λ (Xs) ds

)}
where the expected value is computed with respect to the law of {Xt}0≤t≤T .

3. Particle filtering

We adopt a discretisation of the positive real axis which is divided into segments of
maximum length ∆ defined sequentially as follows:

t∆0 = 0,

t∆k = t∆k−1 + min
{

∆, T − t∆k−1, min
ti>t∆k−1

ti − t∆k−1

}
, k > 1(2)

where ti is the (observed) arrival time. Thus (2) defines an increasing sequence of time
points t∆0 = 0 < t∆1 < . . . < t∆m−1 < t∆m = T spaced ∆ apart unless the spacing is narrowed
to coincide with the arrival of the observation yti at time ti and ensures {t1, . . . , tnp} ⊂
{t∆1 , . . . , t∆m−1}. The exact likelihood (1) may be re-expressed using time points t∆i as

(3) L = E

{(
np∏
i=1

λ(Xti)g
θ(yti |Xti)

)
×

(
m∏
j=1

exp

(
−
∫ t∆j

t∆j−1

λ(Xs)ds

))}
.

The exact likelihood is not straightforwardly (using an approach such as in Algorithm 1)
amenable to unbiased estimation using particle filtering due to the path-integrals of λ(Xs).
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Algorithm 1: Bootstrap particle filter

1 for i ∈ {1 : N} do
2 Sample X

(i)
0 ∼ νθ(·).

3 Set W
(i)
0 = exp

(
−X(i)

0 (t∆1 − t∆0 )
)

.

4 Resample {X(i)
0 ,W

(i)
0 } to obtain {X̃(i)

0 , 1
N
}.

5 end
6 for k ∈ {1 : m− 1} do
7 for i ∈ {1 : N} do
8 Sample X

(i)
k ∼ f θ

t∆k−1,t
∆
k

(·|X̃(i)
k−1) and set X

(i)
0:k = (X̃

(i)
0:k−1, X

(i)
k ).

9 Set

W
(i)
k = exp

(
−X(i)

k (t∆k+1 − t∆k )
)
×

np∏
j=1

(
λ(X

(i)
k )gθ(ytj |X

(i)
k )
)I[t∆k ≤tj<t∆k+1]

.

10 % Find all ytj with tj ∈ [t∆k , t
∆
k+1).

11 Resample {X(i)
0:k,W

(i)
k } to obtain {X̃(i)

0:k,
1
N
}.

12 end
13 end
14 Compute the (unbiased) estimate of the likelihood in (4):

(6) L̂∆ =
m−1∏
k=0

{
1

N

N∑
i=1

W
(i)
k

}
.

A simple approach is to replace the path-integral over [0, T ] with the following Reimann
approximation

(4) L∆ = E

{(
np∏
i=1

λ(Xti)g
θ(yti |Xti)

)
×

m∏
j=1

exp
(
−λ(Xt∆j−1

)(t∆j − t∆j−1)
)}

(The subscript ∆ denotes the dependence on the time discretisation and emphasises that
L∆ 6= L.) The posterior density function of (X0, X1, . . . , Xm) = (Xt∆0

, Xt∆1
, . . . , Xt∆m

) for
this time discretised model is∫

pθ∆(x0, . . . , xm)h(x0:m)dx0:m

∝ E

{
h
(
Xt∆0

, . . . , Xt∆m

)
×

(
np∏
i=1

λ(Xti)g
θ(yti |Xti)

)
×

m∏
j=1

exp
(
−λ(Xt∆j−1

)(t∆j − t∆j−1)
)}(5)

This posterior density function and its likelihood can be estimated using a conventional
particle filter as described in Algorithm 1 [8].

The estimate L̂∆ returned by Algorithm 1 is an unbiased estimate of the time-discretised
likelihood L∆. In the next section we will develop a particle method that approximates
the exact (not-discretised) likelihood, and in the numerical section (Section 5) we will
extensively contrast its estimation accuracy compared to Algorithm 1 applied to model
(5).



DE-BIASING PARTICLE FILTERING FOR A CONTINUOUS TIME HIDDEN MARKOV MODEL 5

4. Particle Filtering to Mitigate Model Discretisation Error

We propose a simple method to nearly unbiasedly estimate the true likelihood L. The idea

to discretise the path integrals into smaller ∆ length time integrals, exp
(
−
∫ t+∆

t
λ(Xs)ds

)
,

which are amenable to simple unbiased estimation and whose probability of being positive
approaches 1 rapidly as ∆ tends to 0. We truncate a negative estimate to 0, and when
combined with the rarity of such events, it is simple to quantify the bias, which is also
shown to be rapidly decreasing as ∆ tends to 0. This estimate can be used within particle
filtering and Particle MCMC; such methods are known particle filtering with “random
weights” as in [29], [12] and [13].

Specifically, we are going to construct real valued random variables E1, . . . , Em, which are
conditionally independent given Xt∆0

, . . . , Xt∆m
(in the manner made precise below in (7))

and each unbiasedly estimates the corresponding term exp(−
∫ t∆i
t∆i−1

λ(Xs)ds) in the manner

of (8):

(7) p(e1, . . . , em|xt∆0 , . . . , xt∆m) =
m∏
i=1

pt∆i−1,t
∆
i

(ei|xt∆i−1
, xt∆i )

(8)

∫ ∞
−∞

eipt∆i−1,t
∆
i

(ei|xt∆i−1
, xt∆i )dei = E

{
exp

(
−
∫ t∆i

t∆i−1

λ(Xs)ds
)∣∣Xt∆i−1

= xt∆i−1
, Xt∆i

= xt∆i

}
.

With these random variables E1, . . . , Em, we retain the unbiasedness of the estimate of
the numerator and denominator (the likelihood),∫

pT (x0:m)h(x0:m)dx0:m

∝ E
{
h(Xt∆0

, Xt∆1
, . . . , Xt∆m

)×
( np∏
i=1

λ(Xti)g
θ(yti |Xti)

)
×

m∏
j=1

Ej

}

which follows through a conditioning expectation argument. For k ∈ {1 : m}, let∫
pt∆k (x0, . . . , xk)hk(x0:k)dx0:k

∝ E
{
hk(Xt∆0

, Xt∆1
, . . . , Xt∆k

)×
( np∏
i=1

[λ(Xti)g
θ(yti |Xti)]

I[ti≤t∆k ]
)
×

k∏
j=1

Ej

}
(9)

where, recall, tm = T . Once we have defined (7), it will be straightforward to construct a
particle approximation of the conditional probability density functions (9). These posterior
densities, unlike (5), do not have a time discretisation bias. Our particle filtering algorithm,
detailed in Algorithm 3, also returns an estimate the exact likelihood (3).

The next subsection explains how to construct these variables Ei using the Poisson esti-
mate approach. The following subsections will explain how to ensure that the probability
of Ei < 0 may be made negligible.
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4.0.1. The Poisson Estimator. We first consider a fixed trajectory {Xs}0<s≤t∆1 , then

exp

(
−
∫ t∆1

0

λ(Xs)ds

)
= exp(c) exp(I − c)

= exp(c)
∞∑
k=0

(I − c)k

k!

= exp(c+ η)
∞∑
k=0

exp(−η)
ηk

k!

(I − c
η

)k
= exp(c+ η)

∞∑
k=0

exp(−η)
ηk

k!

k∏
i=1

Eτi
(
−t∆1 λ(Xτi)− c

η

)

= exp(c+ η)Eκ

[
κ∏
i=1

Eτi
(
−t∆1 λ(Xτi)− c

η

)]
,

where I = −
∫ t∆1

0
λ(Xs)ds and −t∆1 λ(Xτi)’s are the unbiased estimates of I. The above

derivation follows the approach outlined in [27].
The inclusion of constant c is to optimise the resulting estimator. The inclusion of Po(η)

distribution is to allow an unbiased estimate to be based on a truncated sum and finally
Eκ(·) and Eτi(·) denote expectation with respect to κ ∼ Po(η) and τi ∼ U(0, t∆1 ). The final
line yields the resulting unbiased estimator:

(10) E1 = exp(c+ η)
[
I{κ=0} + I{κ>0}

( κ∏
i=1

−t∆1 λ(Xτi)− c
η

)]
as the sample from E1 ∼ p(e1|x0, xt∆1 ).

[27] discussed how to choose c and η in order to make the variance of the estimate as
small as possible. In particular, he showed that c? = I − η is the value of c that minimises
the variance (for a fixed η). Our approach is slightly different: we aim at controlling the
probability of the estimate being negative. For that purpose, we set c = −t∆1 λ(X0) − η
(which can also be seen as a tractable approximation of c?). This yields:

E1 = exp
{
−t∆1 λ (X0}

) [
I{κ=0} + I{κ>0}

(
κ∏
i=1

[
1 +

t∆1
η

(λ (X0)− λ (Xτi))

])]
.

We postpone the discussion on how to control the probability of a negative estimate to the
next sub-section.

The Poisson estimator for any time interval t∆i−1 ≤ t ≤ t∆i is detailed in Algorithm 2.
Note that we assume we can exactly sample Xτj from p(xτ |xτj−1

) for j ∈ {1 : κ}. This is
possible for linear Gaussian diffusions, as discussed in the introduction; see Appendix A for
details.

The particle filter with the Poisson estimator is described in Algorithm 3. Step 8 of this

algorithm makes a call to Algorithm 2 to get the desired samples E
(i)
k from p(ek|X(i)

t∆k−1
, X

(i)

t∆k
).

4.1. Negative Poisson Estimate Control. Although the Poisson estimator can return
negative values, the following lemma shows that the probability of this happening is con-
trollable by adjusting (η,∆) and in particular decays exponentially fast in ∆.
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Algorithm 2: PE(η, t∆i−1, t
∆
i , Xt∆i−1

)

Input: η, t∆i−1, t
∆
i , Xt∆i−1

1 Generate κ ∼ Po
(
η
)
.

2 Generate τ1, τ2, . . . , τκ ∼ U(t∆i−1, t
∆
i ), sort them in ascending order and relabel them

so that τ1 < τ2 < . . . , < τκ.
3 Sequentially sample Xτj from p(xτ |xτj−1

) for j ∈ {1 : κ} where τ0 = t∆i−1. Sample
Xt∆i

from p(xt∆i |xτκ).

4 Compute and return the estimate:

E = exp
(
−(t∆i − t∆i−1)× λ

(
Xt∆i−1

))
×[

I{κ=0} + I{κ>0}

(
κ∏
j=1

[
1 +

t∆i − t∆i−1

η

(
λ(Xt∆i−1

)− λ(Xτj)
)])]

.

Output: (E,Xt∆i
) % The sample from p(e, xt∆i |Xt∆i−1

)

Algorithm 3: Bootstrap particle filter in continuous time

1 Find ∆ (15) and define time steps (2).

2 for i ∈ {1 : N} do
3 Sample X̃

(i)

t∆0
∼ νθ(·) and set W

(i)
0 = 1

N .

4 Estimate l̂0. % See Section 4.1.1.

5 for k ∈ {1 : m} do
6 for i ∈ {1 : N} do
7 Set ηk =

(
t∆k − t∆k−1

)
l̂k−1.

8 Sample (E
(i)
k , X

(i)

t∆k
)←PE(ηk, t

∆
k−1, t

∆
k , X̃

(i)

t∆k−1

) and set(
X

(i)

t∆0
, . . . , X

(i)

t∆k

)
=

(
X̃

(i)

t∆0
, . . . , X̃

(i)

t∆k−1

, X
(i)

t∆k

)
.

9 Update l̂k using (16).

10 Set W
(i)
k = max{E(i)

k , 0} ×
∏np
j=1

(
λ(X̃

(i)

t∆k−1

)gθ(ytj |X̃
(i)

t∆k−1

)

)I[tj=t∆k−1]

.

11 % Incorporating ytj with tj = t∆k−1.

12 Resample
{

(X
(i)

t∆0
, . . . , X

(i)

t∆k
),W

(i)
k

}
to obtain

{
(X̃

(i)

t∆0
, . . . , X̃

(i)

t∆k
), 1
N

}
.

13 Compute the likelihood estimate:

(11) L̂ =
m∏
k=1

{
1

N

N∑
i=1

W
(i)
k

}
.

Lemma 1. Let {Xs}0≤s≤∆ be one dimensional Brownian motion which starts at

X0 = x0. Consider the estimate (10) (with t∆1 = ∆) of the path integral

E
{

exp
(
−
∫ ∆

0
λ(Xs)ds

)∣∣∣X∆ = x∆

}
. Let λ(·) be a non-negative l-Lipschitz function, then

the following bound holds when η > ∆l |x∆ − x0|,

Pr
(
E1 < 0|κ > 0, X∆ = x∆

)
< 2 exp

{
−

2η
∆l

( η
∆l
− |x∆ − x0|)

∆

}
.(12)
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Figure 1. Plot of probability (12) vs. ∆ for different choices of η.

Proof. See Appendix B. �

Note that the estimate is trivially positive when κ = 0 and hence the bound is given
conditionally on κ > 0. An illustration of how Pr(E1 < 0|κ > 0) and its corresponding
bound evolve as ∆ changes for different choices of η is provided in Figure 1. Each data point
is a Monte Carlo estimate of the conditional probability (conditioned on κ > 0) the random
variable (10), with t∆1 = ∆, is negative. The Monte Carlo estimate of the conditional
probability is computed for various choices of η and |x∆ − x0| using 108 experiments each.

(12) suggests that choosing η = c∆
3
2 l with |x∆ − x0| = d∆

1
2 (for some positive constants c

and d) results in constant bound. This is reflected by the straight line behaviour of the Data
1 in Figure 1. For contrast, the bound on the conditional probabilities are also illustrated.
We also compute the bound when averaging over X∆. Combining the bound (12) with
the expansion I[E1<0] ≤ I[E1<0]I[η>∆l|X∆−x0|] + I[η≤∆l|X∆−x0|], we can compute the unqualified
bound for Pr(E1 < 0|κ > 0) to be

(13) Pr(E1 < 0|κ > 0) ≤ 2 + 4Φ

(
2η

∆
3
2 l

)
− 6Φ

(
η

∆
3
2 l

)
where Φ is the CDF of a standard normal distribution. (The proof is provided in Ap-
pendix C.) In Section 4.1.1, we advocate a design choice of η = ∆l (with the Lipschitz
constant estimated in a causal manner with the population of particles) to ensure the
simulation cost decreases proportionally with the time discretisation ∆. An estimate of

E
{

exp
(
−
∫ T

0
λ(Xt)dt

)}
or

E

{
exp

(
−
∫ ∆

0

λ(Xt)dt

)
· · · exp

(
−
∫ T

b T
∆
c∆
λ(Xt)dt

)}
will entail the product of T/∆ (conditionally independent) estimates for the individual
intervals. Using (13), this estimate is negative with a probability no greater than Pr(E1 <
0|κ > 0) × T/∆. Figure 2 illustrates how the bound in (13), when multiplied with T/∆,
decays with the choice η = ∆l.
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Figure 2. Plot of (13) multiplied by T/∆ vs. ∆ for the design choice of
η = ∆l when T = 1 with fitted relationship.

4.1.1. Design choice for (η,∆). We employ a reasoning similar to the above to bound the
probability Algorithm 3 encounters a negative Poisson estimate. For a step-size ∆, an
N−particle implementation has dT/∆e forward steps and the event of encountering at least

one negative Poisson estimate is
{⋃N

n=1

⋃dT/∆e
i=1 {E(n)

i < 0}
}

. Using Lemma 1, its probability

may be bounded above by the union bound,

Pr

 N⋃
n=1

dT/∆e⋃
i=1

{E(n)
i < 0}

 ≤ N∑
n=1

dT/∆e∑
i=1

Pr
(
E

(n)
i < 0

)
< N

⌈
T

∆

⌉
× 2 exp

{
−

2η
∆l

( η
∆l
− d
√

∆)

∆

}

where we have assumed that |x∆−x(i−1)∆| ≤ d
√

∆, for all i ∈ {1 : dT/∆e}, for some constant

d > 0 and η/(∆l) > d
√

∆. (A similar heuristic could also be found using (13).) We can

make a design choice for η and ∆ (within the constraints η ≥ ∆
3
2 l and η/(∆l) > d

√
∆) to

ensure the probability of encountering a negative estimate is at most ε,

(14)

⌈
NT

∆

⌉
× 2 exp

{
−

2η
∆l

( η
∆l
− d
√

∆)

∆

}
≤ ε.

For example, using η = ∆l, the bound will fall below ε once ∆ is small enough, say ∆ = ∆̄,
and will continue to hold as ∆ is decreased further since the left hand side decreases as ∆
decreases. A similar heuristic could also be found using (13). In summary, set η = ∆l and

(15) ∆ = sup{∆ > 0 : (14) and dNT/∆e × (13) ≤ ε}

One can apply numerical methods such as Newton’s method to solve (14). Also, ε can be
exceptionally small, for example, ∆ = 0.01, NT = 104, d = 3 and η = ∆l yields ε ≈ 10−55.

The design choice ηk = ∆l̂k−1 can be computed sequentially in Algorithm 3. l̂k−1 is the
empirical Lipschitz constant updated sequentially as follows

(16) l̂k := max

 max
i∈{1:N}

|λ(X
(i)

t∆k
)− λ(X

(i)

t∆k−1
)|

|X(i)

t∆k
−X(i)

t∆k−1
|

, l̂k−1





10 DE-BIASING PARTICLE FILTERING FOR A CONTINUOUS TIME HIDDEN MARKOV MODEL

where the initial estimate l̂0 can be chosen to be the maximum ratio estimate as in (16)
but computed with the particle set at time t∆0 only and the maximum is found over i 6= j ∈
{1 : N}. These design choices for l̂k and ηk for Algorithm 3 are used in all the numerical
experiments presented in Section 5.

4.1.2. Truncation Bias. In Algorithm 3, we truncate the negative Poisson estimates to zero
which will induce a bias. Hence we wish to study the bias of this truncated estimate for
time discretisation, 0 < ∆ < · · · < m∆ = T when ∆ approaches zero, i.e.

E
{

exp

(
−
∫ T

0

λ(Xs)ds

)}
− E

{
E+

1 · · ·E+
m

}
.

where E+
i = EiIAci is the truncated Poisson estimate and Ai denotes the event Ei < 0.

To do so, we can bound the omitted term IA
∏m

i=1Ei where A = A1 ∪ . . . ∪ Am using the
following lemma.

Lemma 2. Let {Xs}0≤s≤∆ be one dimensional Brownian motion which starts at X0 = x0.
Let λ(·) be a non-negative l-Lipschitz function and consider the estimate of the path integral

E
{

exp

(
−
∫ ∆

0

λ(Xt)dt

)
· · · exp

(
−
∫ m∆

(m−1)∆

λ(Xt)dt

)}
= E {E1 · · ·Em} ,

where (Ei+1, X(i+1)∆)← PE(∆l, i∆, (i+ 1)∆, Xi∆) (see Algorithm 2) for i = 0, . . . ,m− 1.
Then the following bound holds,∣∣∣∣∣E

{
IA

m∏
i=1

Ei

}∣∣∣∣∣ ≤ exp(
T l

2
)×

(
1 + 4∆2l

1− 4∆2l

)m
2

×m
1
2

[
2 exp

(
− 1

2∆

)] 1
2

.

Proof. See Appendix D. �

For m = T/∆, the second (ratio) term in the product recedes quickly to one as ∆
approaches 0, which implies the final term dominates the bias. For m = T/∆, the final
term also tends to 0. Based on this result, as an indicative trend, the square of the relative
bias (which contributes additively in the relative MSE calculation) of Algorithm 3 is of the
order (

L − E(L̂)
)2

L2
≤ const(T )× 1

∆
exp

(
− 1

2∆

)
.

where L̂ is (11). This result is commented on further in Section 5.1.

4.1.3. Further comments. The following idea, based on Wald’s identity for sampling, was
employed in [13] to deal with negative weights in particle filtering. We describe it here
in the context of a single step within particle filtering and discuss its implications for es-
timating the likelihood. Consider X0 ∼ νθ and let Gθ(x0) be a non-negative function,
also assumed θ dependent, and the aim is to estimate the likelihood L(θ) = Eθ

(
Gθ(X0)

)
.

Assume there exists an unbiased estimate of Gθ(x0) for any (θ, x0) defined as follows.
Let pθ(e|x0) be a conditional pdf on the real line with mean

∫∞
−∞ ep

θ(e|x0)de = Gθ(x0).

Given X0, let E(i), i = 1, 2, . . ., be independent samples from pθ(e|X0) and let K =

inf
{
k > 0 : E(1) + . . .+ E(k) > 0

}
. Then L̂ =

∑K
i=1 E

(i) has mean

Eθ(L̂) = Eθ
(
Gθ(X0)Eθ(K|X0)

)
6= L(θ)× constant

where product Gθ(X0)Eθ(K|X0) is Wald’s identity, Eθ(K|X0) is the mean of the number of
independent draws needed to ensure positivity and the constant on the right is θ indepen-
dent; a θ independent constant is needed for the method to be used for model calibration.
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This approach of sampling until the estimate is positive was proposed in [13] to address the
event that a negative estimate is returned by pθ(e|X0). The constant Eθ(K|X0) seems to
play no role in a particle filtering algorithm, since the weights are normalised before used
as an input to the resampling step. However Eθ(K|X0), which is clearly X0 dependent,

can be θ dependent as well, e.g. as it would for Gθ(x0) = Eθx0
{exp(−

∫ ∆

0
λ(Xs)ds)} and its

estimate E(i) returned by Algorithm 2 (for PE(η, 0,∆, x0)) since K would depend on the
law of {Xt}t. Also, the function Gθ(x0) can be θ dependent. As there is no easy way to
compute or remove this factor Eθ(K|X0), this precludes its use within e.g. a PMMH sampler
which require a (positive) unbiased estimator of L(θ) to generate MCMC samples from the
posterior density of the model parameters θ. We provide some experiments in Appendix E
to show that the idea of Wald’s identity for sampling returns biased estimates.

We note finally that it is possible to adapt our approach slightly to return (perfectly)
unbiased estimates. Recall that a particle filter such as Algorithm 3 may return an unbiased
estimate of not only the normalising constant, but more generally of any unnormalised path
expectation [9]; that is, the quantity

(17) L̂ ×

∑N
i=1W

(i)
m ϕ(X

(i)

t∆0
, . . . , X

(i)

t∆m
)∑N

i=1W
(i)
m

is an unbiased estimate of

E

{(
np∏
i=1

λ(Xti)g
θ(yti |Xti)

)
Ψ(Xt∆0

, . . . , Xt∆m
)× ϕ(Xt∆0

, . . . , Xt∆m
)

}
where Ψ(·) is the expectation of a product of Poisson estimates of the form

∏m
i=1 max(0, Ei).

This quantity would be equal to exp
(
−
∫ T

0
λ(Xs)ds

)
if we could replace each truncated

estimate max(0, Ei) by the estimate Ei itself.
We may use this to estimate unbiasedly the marginal likelihood of an alternative model,

based on a different likelihood for the data (given the states). In particular, consider a

variant of Algorithm 3 where max{E(i)
k , 0} is replaced by |E(i)

k | in line 11. (Adapt the
definition of Ψ accordingly.) The weights remain non-negative, and the output remains
biased (for estimating the true likelihood L). In (17), replace ϕ(·) by (−1)n, where n is
the number of negative Poisson estimates Ek that have occurred while constructing the
considered trajectory (the argument of ϕ(·)). It is easy to see that this is an unbiased
estimate of the true likelihood L. (Formally, ϕ is then a function of both the state trajectory
and the Ek variables that have been generated while constructing that trajectory in this
case).

In our numerical experiments, it was easy to set up the tuning parameters to make the
number of occurrences of negative weights equal to virtually zero, so we could not observe
any practical benefit in removing (entirely) the bias. However, this approach may be kept
in mind for more complicated scenarios.

5. Numerical Experiments

In this section, we present numerical examples to compare Algorithm 1 and Algorithm 3
for likelihood estimation, smoothing and model calibration using Particle MCMC.

5.1. 1D example with exact calculation. We first consider a simple example in which
the state Xt is a one dimensional Brownian motion and Xt is observed in zero mean unit
variance Gaussian noise. The intensity function of the Cox process is λ(x) = x + 10. The
state starts at x0 = 0 at time t = 0 and the record of observations stops at time T = 2.
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(a) (b)

Figure 3. Plot of relative variance, defined to be E{(L̂∆)2}/L2
∆− 1, for L̂∆

given by Algortihm 1. In (a) versus 1/N and in (b) as ∆ varies on a log scale.

The integration that defines this likelihood can be computed exactly and thus can serve
as ground truth; see Appendix F. We assume we observe np = 2 data-points, to make it
possible to do a large number of runs; see Appendix H for extra results with np > 2.

For the analysis below, we use the relative mean squared error (rMSE) as the metric to
measure the quality of likelihood estimates. Numerical results displayed in Figure 3a shows
that the estimate of L∆ given by Algorithm 1, for any ∆, has a relative variance which is
inversely proportional to the number of particles N used in the particle filter, where the
relative variance defined to be E{(L̂∆)2}/L2

∆−1. (We note though that the slope varies very
slightly with 1/N .) In Figure 3b, as expected, the relative variance for a fixed N stabilises
as ∆ decreases. (This reason is that a time-discretised particle system with systematic
resampling converges to a continuous time limit as ∆ approaches zero, as recently shown in
[7].) For any sufficiently smooth function λ(·), the weak error of Euler scheme (i.e. relative
bias (L∆/L) − 1 in our case) is at most of order ∆ [20, Chapter 17]. Overall, this implies
the following empirical relationship for all values of np when ∆ is small:

rMSE =
1

L2
E
{(
L̂∆ − L

)2
}

=
c1

N
+ c2∆2 =

c1

C∆
+ c2∆2(18)

where C denotes the CPU time spent to run the particle filter (Algorithm 1) to completion.
In the last equality, we use the relationship that C increases linearly with NT/∆ which
corresponds to T/∆ propagation steps for N particles. (Figure 4 confirms (18).) For fixed

CPU time of C, the value of ∆ that minimises the relative MSE is ∆∗ =
(
c1
c2C

) 1
3
. Substituting

this ∆∗ into (18) gives the best relative MSE value for each C, which is of order O(C− 2
3 ) and

confirmed in Figure 5. Similarly, we can apply the same idea to determine ∆ that minimises
the relative MSE for Algorithm 3,

rMSE ≤ c1

N
+
c2

∆
exp

(
− 1

2∆

)
=

c1

C∆
+
c2

∆
exp

(
− 1

2∆

)
(19)

Since the minimisation problem above cannot be solved exactly, one can pursue a surrogate
for ∆∗, in its vicinity, by minimising

f(∆) =
c1

C∆
+ c2 exp

(
− 1

2∆

)
.
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(a) (b)

Figure 4. Plot of relative MSE versus ∆ for fixed 1.5s CPU time for likeli-
hood estimates computed by Algorithm 1 (using (6)) for (a) np = 2 and (b)
np = 13. Overlaid is the fitted relationship in (18) to a range of ∆ values
around the minimum of rMSE, illustrated by the solid segment of the line.
The dashed segment cover data points there were not used in fitting. The
coefficients of the fitted curve to rMSEε are only 2.4% different to that of the
rMSE data points, hence it would be indistinguishable graphically.

Note that rMSE(∆) > f(∆), ∀0 < ∆ < 1. Minimising this equation gives ∆∗ =(
2 log

(
c2C
2c1

))−1

. Hence ∆∗, not being the true minimiser of (19), is a more conserva-

tive solution. Substituting this ∆∗ into (19) gives an indication of the best relative MSE
value for each C, which is of order of O (C−1log(C)). In practice, we do not recommend
this optimisation but rather choose (∆, η) as detailed in Section 4.1.1 and then stick to
this choice even if more CPU time C has become available. We define rMSEε to be (18)
with L replaced with LMC = L + ε. Recall we denote by LMC the Monte Carlo estimate
returned by the modified Algorithm 3 which uses the true path integral given by (30) in
Appendix rather than Poisson estimate. We ensure the Monte Carlo error ε is small enough
so that our conclusions in comparing the accuracy of Algorithms 1 and 3 are not rendered
inaccurate for the case np > 2 studied below. We use the np = 2 case to choose a value of
ε that ensures the best ∆ found using rMSEε is close enough to the desired (best) ∆ for
rMSE.

Continuing with for np = 2, Figure 4a reports the rMSE and rMSEε of Algorithm 1 for
a fix CPU budget and different ∆ values with the expected relationship in (18) fitted to a
range of ∆ values around the minimum. rMSEε uses LMC which is the average estimate of
L given by 106 runs of modified Algorithm 3 with each run using N = 106 particles. We
calculate the relative error between ∆∗ε and ∆∗, and between rMSEε(∆

∗
ε) and rMSE(∆∗),

using their fitted c1’s and c2’s values,∣∣∣∣∆∗ε −∆∗

∆∗

∣∣∣∣ = 1.1× 10−9,

∣∣∣∣rMSEε(∆
∗
ε)− rMSE(∆∗)

rMSE(∆∗)

∣∣∣∣ = 0.024.

This shows that 106-averaged runs of modified Algorithm 3 with N = 106 particles is more
than sufficient to produce accurate estimate LMC as the substitute of L. We used the same
number of Monte Carlo repetitions and N for values of np > 2 up to np = 13, which are
reported in Figure 4b. Both Figure 4a and 4b validate the expression for the rMSE (18)
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Figure 5. Comparison between likelihood estimates computed by Algorithm
1 (using (6)) and by Algorithm 3 (using (11)). The true likelihood is approx-
imated with Algorithm 3 using N = 104 particles and ∆ = 0.02. Note that
Algorithm 1 uses optimised ∆ and N to obtain the best MSE for a given CPU
budget. Algorithm 3 uses fixed ∆ value ∆ = 0.02 and the design choice for η
described in Section 4.1.1.

in the locality of the minimum ∆. We continue to use LMC to compare Algorithms 1 and
3. We use LMC to find the smallest relative MSE Algorithm 1 can achieve for a given CPU
budget, while we use LMC to compute the relative MSE of Algorithm 3 for the same CPU
budget. For Algorithm 1, for each value of C, we repeat the procedure illustrated in Figure
4 to find the ∆ that yields the smallest rMSEε – this ∆ is the minimiser of the fitted line as
illustrated in Figure 4b. For Algorithm 3, we spend the budget on increasing the number
of particles N while using a fixed ∆ value of ∆ = 0.02. The results of this comparison are
shown in Figure 5. It appears that Algorithm 3 achieves the best decay rate of rMSE with
CPU budget, which is the inverse relationship, whereas Algorithm 1 can only achieve a rate
of C−2/3.

5.2. 3D Single Molecule Model. In this section we apply our methodology to track a
moving biological molecule (biomolecule) in a live cell, in three dimensions, arising from
single molecule fluorescence microscopy. An illustration of how the data is generated is
given Figure 6. Single molecule fluorescence microscopy is a live cell imaging technique
where biomolecules of interest are tagged with a fluorophore, which are then excited with
light at a particular frequency. These molecules fluoresce under excitation and emit light
a different frequency, which is then captured by a CCD camera after optical magnification.
The recorded images are used to uncover their motion. A mathematical abstraction of
the problem is precisely the model in Section 2.2, see also [25] and [8]. In particular,
the moving molecule follows a diffusion model and its observations are the (random) arrival
times and locations of individual photons. The data are both the arrival times and locations
of the photons. The photon arrival times are governed by the depth of the molecule (see
Figure 8) as the excitation of the molecule varies inversely with the molecule’s depth due
to the attenuation of the excitation light. Photon arrival locations are imprecise (noise
corrupted) observations of the molecule’s location in the other two dimensions as governed
by diffraction theory. The relevant photon location model is the Born and Wolf model for
the point spread function, which describes how a point light source appears in an image
as it moves in and out of focus [25]. We let (Xt)0≤t≤T := (X1,t, X2,t, X3,t)

>
0≤t≤T denote
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Figure 6. Illustration of the setup about how the image is acquired by a
microscope. X(t) denotes the object location at time t and Y (t) denotes the
detected photon location at time t.

the true, 3-dimensional location of the molecule at time t. The three components of the
molecule state, i.e.(X1,t, X2,t, X3,t)

T
0≤t≤T , are its (x, y, z)> location and assumed to follow

the Ornstein-Uhlenbeck (O-U) model,

dXi,t = −φi(Xi,t − µi)dt+ dWi,t, for i = 1, 2, 3

where φi > 0 and (Wi,t)0≤t≤T , i = 1, 2, 3, are independent Brownian motions. We assume
that the initial distribution which generates X0 is N (µ,Σ0), where the covariance matrix
Σ0 = p0 × I3×3. The transition density f θδ (x′|x) of the process can be expressed as follows,

Xi,t+δ|
(
Xi,t = xi

)
∼ N

(
µi + e−δφi(xi − µi),

1

2φi
(1− e−2δφi)

)
, i = 1, 2, 3.(20)

For an object located at (x1, x2, x3)T ∈ R3 in the object space (prior to magnification), the
location (on the detector) at which a photon is detected is specified probabilistically with
2D probability density function,

(21) gθ(y|x) :=
1

|M |
qx3

(
M−1y − (x1, x2)ᵀ

)
, y ∈ R2

where M ∈ R2×2 is an invertible lateral magnification matrix and the image function qx3 :
R2 → R describes the image of an object in the detector space when that object is located
at (0, 0, x3) in the object space, where x3 ∈ R is the location of the object on the optical
axis. This 3D Born and Wolf model is the resulting image function, derived from diffraction
theory, for a point source that can also be out of focus [6]. For (x1, x2) ∈ R2,

(22) qx3(x1, x2) =
4πn2

α

λ2
e

∣∣∣∣∫ 1

0

J0(
2πnα
λe

√
x2

1 + x2
2ρ) exp(

jπn2
αx3

n0λe
ρ2)ρdρ

∣∣∣∣2 ,
where n0 is the refractive index of the objective lens immersion medium and nα is the
numerical aperture of the objective lens. λe is the emission wavelength of the molecule.
J0(·) and J1(·) represents the zero-th order and the first order Bessel function of the first
kind, respectively. The probability density functions of Born and Wolf model at different
defocus levels are plotted in Figure 7. A large defocus tends to produce images of poor
quality and this will further pose difficulty in estimating the molecule’s position.

The time instances at which the photons arrive on the detector are random as well, and
the photon emission process is modelled as a Poisson process [25]. The photon rate, denoted
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(a) x3 = 0µm (b) x3 = 2µm

(c) x3 = 5µm (d) x3 = 8µm

Figure 7. Born and Wolf point spread function at different defocus levels.
Mesh representations are shown for (22) at different defocuses x3, computed
with wavelength λe = 0.52µm, numerical aperture nα = 1.4, refractive index
of the objective lens immersion medium n0 = 1.515. The x3 values shown
correspond to point source positions (a) x3 = 0µm (in focus), (b) 2µm, (c)
5µm and (d) 8µm.

as λ(t), is the rate at which photons are emitted by the object at time t is often assumed
to be constant. For example, [8] and [31] applied particle filtering to jointly calibrate the
model and localise the single molecule under the assumption that the molecule is static on
the optical axis, or at least their movement on the optical axis has an insignificant effect
on the photon rate. In contrast to their modelling assumption, we follow the approach of
[30] to incorporate movement in all three coordinates. The molecule’s depth effects the
photon arrival rate and arrival locations, the former through a state (depth) dependent
photon detection rate λ(Xt) and the latter through the 3D Born and Wolf model. Figure
8 illustrates the total internal reflection phenomenon. For comprehensive review, see [2].
This phenomenon is caused by the surface-associated evanescent electromagnetic field that
is generated when an excitation beam is internally reflected at a planar interface between
two transparent mediums with different refractive indices, n1 and n2. [30] have shown that
the photon detection rate λ(·) decays exponentially along x3-axis, λ(x3) = λ0 exp(−x3

d
),

where λ0 denotes the rate of photons emitted by a fluorophore at x3 = 0. Under this set-up,
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Figure 8. Total internal reflection fluorescence. An excitation beam with
wavelength λv traveling from a high refractive index (n1) medium into a
lower refractive index (n2) medium is totally internal reflected at a planar
interface. The reflection generates a thin layer of light in the lower refractive
index medium, whose intensity decays exponentially along the x3-axis with
a characteristic constant d. While the molecule moves in the field, it is illu-
minated/excited and thus fluoresces. Parameter µ along x3-direction is the
mean of X3,t which the molecule diffuses about.

one could consider x3-movement of a single molecule as a reflected diffusion process since
the molecule should reflect when it encounters the cover slip. However, there is no practical
approach available for exact simulation of this reflected process. For instance, [5]’s approach
requires infinite expected running time, hence impractical when adapting into the particle
filtering algorithms. We adopt a simpler approach by assuming standard O-U process which
would be suitable if the molecule does not encounter a boundary (i.e. either cover slip x3 = 0
or its maximum depth d) over its observation period, e.g. if the observation periods are
short and/or the molecule is diffusing about a mean depth µ in the middle of the cell
with large φ3 (i.e. stronger attraction to µ), see Figure 8. In Figure 9a, we plot the true
trajectory of the molecule for the numerical studies, which is generated by the SDE in (20)
with parameters {φ = (φ1, φ2, φ3)> = (1, 1, 4)>, µ = (µ1, µ2, µ3)> = (0, 0, 2)>, p0 = 1/(2φ)}
for the time interval [0, 5.0]. The initial variance p0 is set to be the stationary variance. We
used a thinning algorithm (Algorithm 4 detailed in Appendix I) to generate the observation
times by using the intensity function (see (5.2)) with parameters {λ0 = 100, d = 20µm}.
Given these observation times, we generate the observed photon locations with the photon
distribution profile given by (21) and (22). The associated parameters are {M = mI2×2,m =
100, nα = 1.4, λe = 0.52µm, n0 = 1.515, σ2

a = 49 × 10−4µm2} and corresponding data set
of photon locations is shown in Figure 9b. The colours in Figure 9a indicate time, and as
described by the legend, the colours lighten with the progress of time. Figure 9c shows the
mean of the estimated (X1, X2) locations of the molecule found using Algorithm 3, which
does track the true trajectory. Figure 9d shows true X3 position of the molecule, the mean
of the estimated X3 position (also obtained using Algorithm 3), along with the standard
deviations. During periods when there are no observations, the estimated X3 value is larger,
as we would expect since this corresponds to a smaller photon arrival intensity function.
Figure 9d also shows that large X3 state values degrade the estimation quality (which is
more clearly seen for the X3 values). This is due to the Born and Wolf observation model
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(a) (b)

(c) (d)

Figure 9. (a) True trajectory of a molecule; (b) observed photon locations;
(c) estimated (x1, x2) molecule locations and (d) true x3 molecule locations
and estimated location.

for an out-of-focus molecule, see (22). Additional results of this phenomenon are reported
in Appendix J.

Figure 10 shows a comparison between the estimation quality of Algorithms 1 (with
∆ = 0.03, 0.003 and 0.0003) and 3 (with ∆ = 0.1) for this single molecule example. For
both methods, the CPU time is increased by increasing the number of particles used in the
algorithms. The superiority of Algorithm 3 is apparent as measured using relative MSE of
the likelihood estimate. As can be seen, the best ∆ for Algorithm 1 is not necessarily the
smallest one for a fix CPU budget. This also has practical consequences. For high frequency
data, there will be potentially more time intervals between observation arrivals of which are
much smaller than ∆. This would lead to a small bias for Algorithm 1 although at a higher
computational cost. Further reducing the bias, the relative MSE would be dominated by
the variance if the CPU budget only permits a smaller number of particles.

5.2.1. Model calibration using PMCMC. Estimating the parameters of the molecular dy-
namics is also important in single molecule studies. [8] calibrate the model using using
maximum likelihood estimation after discretising the path integral. In contrast, we use
the particle marginal Metropolis-Hastings (PMMH) algorithm [1] to sample from the pos-
terior density p(θ, x0:m|y0:m) where θ = (φ, µ). Data is simulated from from the model
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Figure 10. Plot of rMSEε of likelihood estimates versus CPU time for Al-
gorithm 3 with ∆ = 0.1 and Algorithm 1 with ∆ = 0.03, 0.003 and 0.0003.
rMSE of likelihood estimates based on the average estimate of L given by 106

runs of Algorithm 3 with each run using N = 106 particles, and the design
choice for l and η given in Section 4.1.1. Here 600 CPU seconds corresponds
to 2× 105 particles for Algorithm 3.

{φ = (1, 1, 4)>, µ = (0, 0, 2)>, p0 = (0.5, 0.5, 0.125)>}> with intensity function parametrised
by {λ0 = 25, d = 20}. The parameters of the Born and Wolf model remain the same as
before. Precise estimation of φ3 requires a longer time series as it is weakly identified and we
use 350 observations collected in the time interval [0, 15s]. The following independent priors
are used: φ3 ∼ U(0, 10) and µ3 ∼ U(0, 10). (U denotes the continuous uniform distribu-
tion.) We used a normal random-walk Metropolis Hastings proposal with initial covariance
0.1× I2×2 to update the parameters jointly. The continuous covariance adaptation scheme
of [17] is adopted in the PMMH algorithm. We chose the following three experimental
settings:

• Experiment 1 (low CPU budget): C = 1.5s, which only allows a coarse time dis-
cretisation, which coincides with the time of arrivals of data for both Algorithms 1
and 3. This forces large ∆ in L∆ for Algorithm 1. N is adjusted accordingly so that
CPU budget is the same for both algorithms.
• Experiment 2 (larger CPU budget): C = 2.5s permits a finer time discretisation

than the observation arrival times. The best ∆ and N (within the CPU budget) are
chosen for Algorithm 1 using the procedure outlined in Section 5.1. (Employing a
larger CPU budget allows a smaller ∆ than Experiment 1 in L∆.) For Algorithm 3,
we used ∆ = 0.01 and its CPU cost adjusted N .
• Experiment 3 (effective sample size based comparison): C = 2.0s, the effective

sample size (ESS) for PMMH using Algorithm 3 with ∆ = 0.01 is found, and then
the best ∆ and N are chosen for Algorithm 1 while ensuring its ESS matches that
of Algorithm 3. The ESS, which measures the number of ‘independent samples,’ is

ESS =
M

−1 + 2
∑K

t=0 (ρ2t + ρ2t+1)

where ρt is estimated autocorrelation at lag n and K is the last integer for which
the sum in the sum bracket is still positive. The general trend is that the ESS of
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Figure 11. PMMH experiments: posterior densities p(µ3|yt1:tnp ) and
p(φ3|yt1:tnp ) for experiment 1 in top panel, experiment 2 in middle panel and
experiment 3 in bottom panel.

PMMH with Algorithm 1 increases when ∆ is increased (i.e. larger N for the fixed
CPU budget), although the estimation will be more biased for Algorithm 1.

We ran the algorithms for 105 with a 104 burn-in iterations. Figure 11 displays the estimates
of the marginal posterior densities for µ3 and φ3 for all three experiments. Experiment 1
shows that Algorithm 3 effectively removes bias in the estimation of parameters while the
performance of Algorithm 1 is compromised by the limited CPU budget. Experiment 2
shows that given sufficient budget Algorithm 1 is able to achieve almost the same perfor-
mance of Algorithm 3. Comparison between experiments 1 and 2 show that the unbiased
posterior produced by Algorithm 3 remain unaffected by the amount of available CPU bud-
get. Experiment 3 is carried out under the setting that both algorithms produce equally
“efficient” MCMC samples for a fix CPU budget, the result shows that Algorithm 1 still
yields some amount of bias to the estimation.
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6. Conclusion

In this paper we addressed the problem of smoothing and model calibration for a par-
tially observed diffusion with a Cox process observation model. The intractable likelihood
was estimated using the positive part of a Poisson estimate, for the path integrals within,
embedded within particle filtering. The probability of encountering a negative Poisson es-
timate in one complete particle filtering pass through the data was strongly controlled by
adjusting η = O(∆l). As such, due to the rarity of the occurrence of a negative estimate
– which triggers the particle weight truncation – the time discretisation error which biases
conventional particle implementations such as in [8] is effectively removed in this work. The
numerical results showed that our proposed particle method (Algorithm 3) outperforms the
conventional (discretisation-based) particle filter in terms of relative MSE, ours decaying

with order O(C−1) compared to O(C− 2
3 ) where C is the computational budget. Our particle

filter was then applied to a challenging three-dimensional single molecule microscopy ex-
ample to estimate both the trajectory of the moving molecule and to calibrate the model.
The bias in the posterior distribution for the model parameters computed using a conven-
tional implementation like [8] was clearly illustrated, whereas in ours it was not discernible.
Although the bias in the conventional method can be reduced by employing a smaller ∆,
the time discretisation interval, this not only requires significant additional CPU time, it
will also prohibit the application of backward sampling steps in particle filtering. This is
a direction in which this work could taken further, which is to define a forward filtering
backward sampling implementing of our method. In the context of diffusions, this is a
challenging problem, see [34] for a recent study.

Appendix A. Bridge density for linear Gaussian diffusion

Consider the following stochastic differential equation (SDE),

(23) dXt = b(t,Xt)dt+ σ(t,Xt)dWt

where Xt is an n-dimensional diffusion process, Wt is an m-dimensional standard Brownian
motion for m ≤ n. For b(t,Xt) := b0 + b1(t)Xt and σ(t,Xt) := σ(t) ∈ Rn×m, the solution to
(23) at discrete time points t0 < t1 < . . . is given by [11, 19]

(24) Xti+1
= Φ(ti, ti+1)Xti + a(ti, ti+1) +

∫ ti+1

ti

Φ(ti, t)σ(t)dWt

where the fundamental matrix function Φ ∈ Rn×n satisfies the following for all s, t, u ≥ t0

dΦ(s, t)

dt
= b1(t)Φ(s, t), Φ(t, t) = In×n, Φ(s, t)Φ(t, u) = Φ(s, u),

the vector a(ti, ti+1) ∈ Rn is given by a(ti, ti+1) =
∫ ti+1

ti
b0Φ(ti, t)dt. Therefore the transition

density fti,ti+1
(x′|x) can be expressed as a Gaussian as follows,

fti,ti+1
(x′|x) :=

exp
(
−1

2
(x′ − µ(x, ti, ti+1))>R−1(ti, ti+1) (x′ − µ(x, ti, ti+1))

)
√
|2πR−1(ti, ti+1)|

,

∝
exp

(
−1

2
(x− µ̂(x′, ti, ti+1))> R̂−1(ti, ti+1) (x− µ̂(x′, ti, ti+1))

)
√
|2πR̂−1(ti, ti+1)|

:= f̂ti,ti+1
(x|x′),
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where

µ(x, ti, ti+1) := Φ(ti, ti+1)x+ a(ti, ti+1),

µ̂(x′, ti, ti+1) := Φ−1(ti, ti+1)x′ − Φ−1(ti, ti+1)a,

R(ti, ti+1) :=

∫ ti+1

ti

Φ(ti, t)σ(t)σ>(t)Φ>(ti, t)dt,

R̂(ti, ti+1) :=

∫ ti+1

ti

Φ−1(t, ti+1)σ(t)σ>(t)Φ−>(t, ti+1)dt.

Assume s < τ < t, then in addition to sampling p(xτ |xs) exactly, one can also sample
Xτ ∼ p(xτ |xs, xt) exactly where

p(xτ |xs, xt) ∝ fs,τ (xτ |xs)fτ,t(xt|xτ ) ∝ fs,τ (xτ |xs)f̂τ,t(xτ |xt)

∝ N

(
xτ ;
(
R−1(s, τ) + R̂−1(τ, t)

)−1 (
R−1(s, τ)µ(xs, s, τ) + R̂−1(τ, t)µ̂(xt, τ, t)

)
,(

R−1(s, τ) + R̂−1(τ, t)
)−1
)
.

Appendix B. Proof of Lemma 1

The following propositions will be used in the final proof.

Proposition 3. Let X be the Brownian motion which starts at X0 = x0, then the following
equality holds for any a > 0:

Pr
(

sup
0≤s≤∆

Xs −X0 ≥ a|X∆ = x∆

)
=

{
exp

{
− 2a

∆
[a− (x∆ − x0)]

}
, a > x∆ − x0

1, a ≤ x∆ − x0

Proof. Define τa as the hitting time of a as follows,

τa = inf {s ∈ [0,∆] |Xs −X0 = a}

A hitting time is also a stopping time. Then by applying the reflection principle (please refer
to Theorem 2.19 of [23]), the process {X∗ : t ≥ 0}, called Brownian motion {Xt : t ≥ 0}
reflected at τa, defined by

X∗t = XtIt≤τa + (2Xτa −Xt)It>τa
= XtIt≤τa + (2a+ 2x0 −Xt)It>τa

is also a Brownian motion. Thus,

Pr
(
τa ≤ ∆, X∆ ∈ [x∆, x∆ + dx]

)
=Pr

(
X∗∆ ∈ [2a+ 2x0 − x∆ − dx, 2a+ 2x0 − x∆]

)
=Pr

(
X∗∆ −X0 ∈ [2a+ x0 − x∆ − dx, 2a+ x0 − x∆]

)
=

dx√
2π∆

exp
{
− [2a− (x∆ − x0)]2

2∆

}
.
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Note that,

Pr
(
X∆ ∈ [x∆, x∆ + dx]

)
=Pr

(
X∆ −X0 ∈ [x∆ − x0, x∆ − x0 + dx]

)
=

dx√
2π∆

exp
{
− (x∆ − x0)2

2∆

}
.

Division between two equations above concludes the proof. �

Proposition 4. Let X be the Brownian motion which starts at X0 = x0, then the following
equality holds for any a > 0:

Pr

(
inf

0≤s≤∆
Xs −X0 ≤ −a|X∆ = x∆

)
=

{
exp

{
−2a

∆
[a+ (x∆ − x0)]

}
, a > −(x∆ − x0)

1, a ≤ −(x∆ − x0).

Proof. A similar approach as in Proof B but define τ−a = inf{s ∈ [0,∆]|Xs−X0 = −a} and
apply the reflection principle by defining the Brownian motion {X∗ : t ≥ 0}, the Brownian
motion {Xt : t ≥ 0} reflected at τ−a, formally defined by

X∗t = XtIt≤−τa + (−2a+ 2x0 −Xt)It≥−τa .

�

Proposition 5. Let X be defined as in Proposition 3, then the following inequality holds:

Pr
(

sup
0≤s≤∆

|Xs −X0| ≥ a|X∆ = x∆

)
≤

{
2 exp

{
− 2a

∆
[a− |x∆ − x0|]

}
, a > |x∆ − x0|

1, a < |x∆ − x0|

Proof.

Pr
(

sup
0≤s≤∆

|Xs −X0| ≥ a|X∆ = x∆

)
≤Pr

(
sup

0≤s≤∆
Xs −X0 ≥ a|X∆ = x∆

)
+ Pr

(
inf

0≤s≤∆
Xs −X0 ≤ −a|X∆ = x∆

)
=

{
exp

{
−2a

∆
[a− (x∆ − x0)]

}
+ exp

{
−2a

∆
[a+ (x∆ − x0)]

}
a > |x∆ − x0|

1, a ≤ |x∆ − x0|

≤

{
2 exp

{
−2a

∆
[a− |x∆ − x0|]

}
a > |x∆ − x0|

1, a ≤ |x∆ − x0|

�

Proof of Lemma 1.
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Proof.

Pr
(
E1 > 0

∣∣∣κ = k > 0
)

=E

{
I

[(
k∏
j=1

(
1 +

∆

η
(λ (X0))− λ

(
Xτj

)))
> 0

] ∣∣∣κ = k, τ1, . . . , τk

}

≥E
{
I
[

max
j∈{1,...,k}

∆

η
|λ (X0)− λ

(
Xτj

)
| < 1

] ∣∣∣κ = k, τ1, . . . , τk

}
=Pr

(
max

j∈{1,...,k}
|λ (X0)− λ

(
Xτj

)
| ≤ η

∆

∣∣∣κ = k, τ1, . . . , τk

)
.

We can obtain an upperbound for Pr(E1 < 0|κ = k) by

Pr
(
E1 < 0

∣∣∣κ = k
)
≤ Pr

(
max

j∈{1,...,k}
|λ (X0)− λ

(
Xτj

)
| ≥ η

∆

∣∣∣κ = k, τ1, . . . , τk

)
≤ Pr

(
max

j∈{1,...,k}
|X0 −Xτj | ≥

η

∆l

∣∣∣κ = k, τ1, . . . , τk

)

where we assume λ(·) is an l−Lipschitz function.

Pr

(
max

j∈{1,...,k}
|X0 −Xτj | ≥

η

∆l

∣∣∣κ = k, τ1, . . . , τk

)
≤ Pr

(
sup

0≤s≤∆
|X0 −Xs| ≥

η

∆l

)
.

Applying Proposition 5, we have

Pr (E1 < 0|κ > 0) ≤

2 exp

{
−

2η
∆l(

η
∆l
−|x∆−x0|)

∆

}
, η

∆l
≥ |x∆ − x0|

1, η
∆l
≤ |x∆ − x0|

�
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Appendix C. Expectation of the probability bound

This section establishes the unqualified bound ((13)). The goal is to determine the
following expectation for Y = |X∆ − X0| where X∆ − X0 ∼ N (0,∆), (thus Y is a half-
normal random variable):

E {I [E < 0] |κ > 0}

=E
{
I [E < 0]× I

[
Y <

η

∆l

]
+ I [E < 0]× I

[
Y ≥ η

∆l

]
|κ > 0

}
≤E

{
2 exp

(
−

2η
∆l

(
η

∆l
− Y

)
∆

)
I
[
Y <

η

∆l

]}
+ Pr

(
Y ≥ η

∆l

)
=

∫ ∞
0

2 exp

(
−

2η
∆l

(
η

∆l
− y
)

∆

)
I
[
y <

η

∆l

]
×
√

2√
π∆

exp

(
− y2

2∆

)
dy + Pr

(
Y ≥ η

∆l

)
=

∫ η
∆l

0

2
√

2√
π∆

exp

(
− 2η2

∆3l2

)
× exp

(
−
(
y − 2η

∆l

)2 − 4η2

∆2l2

2∆

)
dy + Pr

(
Y ≥ η

∆l

)
=

∫ η
∆l

0

2
√

2√
π∆

exp

(
−
(
y − 2η

∆l

)2

2∆

)
dy + Pr

(
|X∆ −X0| ≥

η

∆l

)
=4

[
Φ

(
2η

∆
3
2 l

)
− Φ

(
η

∆
3
2 l

)]
+ 2×

(
1− Φ

(
η

∆
3
2 l

))
=2 + 4Φ

(
2η

∆
3
2 l

)
− 6Φ

(
η

∆
3
2 l

)
.

Appendix D. Proof of Lemma 2

Proof.

Ei = exp
(
−∆λ(X(i−1)∆)

) κi∏
j=1

(
1 +

λ(X(i−1)∆)− λ(Xτj)

l

)

≤
κi∏
j=1

(
1 +

∣∣X(i−1)∆ −Xτj

∣∣)
≤

κi∏
j=1

(
1 + max

(i−1)∆≤s≤i∆

∣∣Xs −X(i−1)∆

∣∣)
=

(
1 + max

0≤s≤∆
|Bs|

)κi
=: Fi.(25)

We truncate the Poisson estimate as E+
i = EiIAci and bound IA

∏m
i=1Ei as follows.

(26)

∣∣∣∣∣E
{
IA

m∏
i=1

Ei

}∣∣∣∣∣ ≤ E

{
m∏
i=1

E2
i

} 1
2

E {IA}
1
2 .

The term E {IA}
1
2 can be bound using the union bound

(27) E {IA} ≤
m∑
i=1

E {IAi} = mE {IAi} = m× 2 exp

(
− 1

2∆

)
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The other term can be proved to be finite, i.e. E {
∏m

i=1E
2
i } < ∞. Since the increment of

Brownian motion X is independent of each other, and using the inequality (25), one can
show

E

{
m∏
i=1

E2
i

}
≤ E

{
m∏
i=1

F 2
i

}
= E

{
F 2
i

}m
, ∀ i.

It remains therefore to bound E {F 2
i }.

E
{
F 2
i

}
= E

{(
1 + max

0≤s≤∆
|Bs|

)2κi
}

= E

{
∞∑
k=0

(∆l)ke−∆l

k!

(
1 + max

0≤s≤∆
|Bs|

)2k
}

= exp(−∆l)E
{

exp

(
∆l(1 + max

0≤s≤∆
|Bs|)2

)}
≤ exp(−∆l)E

{
exp

(
∆l(2 + 2× max

0≤s≤∆
B2
s )

)}
= exp(∆l)E

{
exp

(
2∆l × max

0≤s≤∆
B2
s

)}
= exp(∆l)×

∫ ∞
0

Pr

(
exp

(
2∆l × max

0≤s≤∆
B2
s

)
> w

)
dw

= exp(∆l)×
[
1 +

∫ ∞
1

Pr

(
exp

(
2∆l × max

0≤s≤∆
B2
s

)
> w

)
dw

]
= exp(∆l)×

[
1 +

∫ ∞
1

Pr

(
max

0≤s≤∆
|Bs| >

√
log(w)

2∆l

)
dw

]

≤ exp(∆l)×
[
1 +

∫ ∞
1

2 exp

(
− log(w)

4∆2l

)
dw

]
= exp(∆l)×

[
1 +

∫ ∞
1

2w−
1

4∆2ldw

]
= exp(∆l)×

(
1 + 4∆2l

1− 4∆2l

)
where in the fourth last line we apply the inequality for running maximum of Brownian

motion which starts at zero, i.e. Pr (max0≤s≤∆ |Bs| > a) ≤ 2 exp
(
− a2

2∆

)
for any positive

number a.
Therefore,

E
{
E2

1 · · ·E2
m

}
≤ exp (T l)×

(
1 + 4∆2l

1− 4∆2l

)m
.(28)

Plugging (27) and (28) into (26) concludes the proof. �

Appendix E. Wald experiments

In this section, we wish to numerically show that the Wald estimate is biased, i.e.
Eθ(L̂(θ))/L(θ) changes as θ changes where K = inf{k > 0 : E(1) + . . . + E(k) > 0},
L̂(θ) =

∑K
i=1E

(i) and L(θ) = Eθ
(
Gθ(X0)

)
.
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(a) (b) (c)

Figure 12. (a) Plot of Eθ(K|X0 = 0), (b) L̂′/L and (c) estimate (29)/L
versus θ = b.

Here is an example of which we know the true solution to. The dynamics that describes
how one dimensional process X evolves is given by

dXt = bdt+ dWt

where b is some constant and W is a one dimensional Brownian motion. Hence

Xt|Xt′ = x ∼ N (x+ b× (t− t′), t− t′) .

Thus, θ = b in this case. We can exactly calculate L(θ) for λ(x) = x+ 10,

L(θ) = E
(

exp

(
−
∫ T

0

λ(Xt)dt

) ∣∣∣X0 = 0

)
= exp

(
−10T − b

2
T 2 +

1

6
T 3

)
where the expectation is taken with respect to Brownian motion X|X0 = 0. Note that∫ T

0
(10 +X0 + bt+Wt −W0)dt ∼ N

(
10T + b

2
T 2, 1

3
T 3
)

for X0 = W0 = 0.

We obtain N = 106 independent samples L̂(b) for every value of b:

L̂′(b) =
1

N

N∑
j=1

Kj∑
i=1

E
(i)
j ≈ Eθ(L̂(b))

where Kj = inf{k > 0 : E
(1)
j + . . . + E

(k)
j > 0}. Each E

(i)
j is an independent sample where

E
(i)
j ← PE(T, 0, T, 0). Figure 12a shows that as b increases, the number of draws to make

Wald estimate positive increases. For this example E is

E = exp (−T (X0 + 10))
κ∏
i=1

[1 + [X0 −Xτi ]]

where κ ∼ Po(T ) and τ1, . . . , τκ ∼ U(0, T ) are i.i.d. samples. Larger b (i.e. larger drift
dragging the particle towards positive direction) increases the chances of meeting negative

Poisson estimate. In Figure 12b, we notice a clear trend that the empirical ratio, L̂′(b)/L(b),
increases with b. Finally we plot

(29)
1

N

N∑
j=1

1

Kj

Kj∑
i=1

E
(i)
j .
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Appendix F. Exact computation of likelihood function

This section is to determine the following likelihood function.

E
{

exp

[
−
∫ T

τ

(αXt + β) dt

] ∣∣∣Xτ = x0, XT = x1

}
The procedure can be splitted into 4 steps.

(1) As Xt|XT is a Gaussian process, the Lebesgue integral is Gaussian random variable,
see [14]: approximate the given integral as Riemann sums and each Riemann sum
is Gaussian and hence the limit will also be Gaussian.(∫ T

τ

αXt + βdt
∣∣∣Xτ = x0, XT = x1

)
∼ N

(
αµ+ β (T − τ) , α2σ2

)
(2) Calculate mean µ:

E
[∫ T

τ

Xtdt
∣∣∣Xτ = x0, XT = x1

]
=

∫ T

τ

E
[
Xt

∣∣∣Xτ = x0, XT = x1

]
dt

=

∫ T

τ

x0 +
t− τ
T − τ

(x1 − x0) dt

=
1

2
(T − τ) (x0 + x1)

(3) Calculate variance σ2:

E
[(∫ T

τ

Xtdt

)(∫ T

τ

Xtdt

) ∣∣∣Xτ = x0, XT = x1

]
− µ2

=E
[∫

[τ,T ]2
XuXvdudv

∣∣∣Xτ = x0, XT = x1

]
− µ2

=

∫
[τ,T ]2

E
[
XuXv

∣∣∣Xτ = x0, XT = x1

]
dudv − µ2

=

∫
[τ,T ]2

cov (Xu, Xv) + E
[
Xu

∣∣∣Xτ = x0, XT = x1

]
× E

[
Xv

∣∣∣Xτ = x0, XT = x1

]
dudv − µ2

=

∫
[τ,T ]2

(u ∧ v − τ)(T − u ∨ v)

T − τ
+

(
x0 +

u− τ
T − τ

(x1 − x0)

)
×
(
x0 +

v − τ
T − τ

(x1 − x0)

)
dudv − µ2

=

∫ T

τ

∫ v

τ

(u− τ)(T − v)

T − τ
dudv +

∫ T

τ

∫ T

v

(v − τ)(T − u)

T − τ
dudv

=
(T − τ)3

12

(4) Calculate the likelihood:

E
{

exp

[
−
∫ T

τ

(αXt + β)dt

] ∣∣∣Xτ = x0, XT = x1

}
= exp

[
−α

2
(T − τ)(x0 + x1)− β(T − τ) +

α2(T − τ)3

24

]
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Therefore, the exact likelihood for t1:np and yt1:tnp , where np is the number of observations,
is

L = E

{[
np∏
i=1

(Xti + 10) gθ(yti |Xti) × exp

(
−ti − ti−1

2

(
Xti−1

+Xti

)
− 10(ti − ti−1) +

(ti − ti−1)3

24

)]
× exp

(
−
T − tnp

2

(
Xtnp +XT

)
− 10(T − tnp) +

(T − tnp)3

24

)}
.

To find the ground truth for values of np > 2, we use Algorithm 3 with line 8 using the exact
evaluation (given by (30)). This allows the computation of Monte Carlo estimate described
in Section 5.1.

(30) E
(i)
k = exp

[
−1

2
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) (
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k−1 +X∆

k

)
− 10
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)
+

(
t∆k − t∆k−1

)3

24

]
.

Appendix G. No Observation Case and Two Observation Case

The exact likelihood for no observation received within [0, T ] is

E
{

exp

(
−
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0

λ(Xs)ds

)}
=E

{
E
[
exp
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)
and the exact likelihood for two observations received within [0, T ] is

L =E
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2∏
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The second integral with respect to v2 is∫ ∞
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The third integral with respect to v1 is as follows,∫ ∞
−∞

(v1 + 10) (µ2 + v1 + 10) exp

(
−

(yt1 − v1)2 + y2
t2
− 2v1yt2 + v2

1

2σ2
y

)

× exp

(
σ2

2

2

(
a2v2

1 + 2abv1 + b2
))
× exp

(
−t1v1

2
− (t2 − t1) v1 − (T − t2)v1

)
exp

(
− v

2
1

2t1

)
dv1

=

∫ ∞
−∞

[
(σ2

2a+ 1)v2
1 +

(
10(σ2

2a+ 1) + σ2
2b+ 20

)
v1 + 10σ2

2b+ 100
]

× exp

(
−
(

1

σ2
y

− a2σ2
2

2
+

1

2t1

)
v2

1 +

(
2yt1 + 2yt2

2σ2
y

+ abσ2
2 +

t1 − 2T

2

)
v1

)
× exp

(
−
y2
t1

+ y2
t2

2σ2
y

+
b2σ2

2

2

)
dv1

=
√

2πσ2
1

[
(σ2

2a+ 1)(µ2
1 + σ2

1) +
(
10(σ2

2a+ 1) + σ2
2b+ 20

)
µ1 + 10σ2

2b+ 100
]

× exp

(
−
y2
t1

+ y2
t2

2σ2
y

+
b2σ2

2

2
+

µ2
1

2σ2
1

)
where σ2

1 =
(

2
σ2
y
− a2σ2

2 + 1
t1

)−1

and µ1 = σ2
1

(
yt1+yt2
σ2
y

+ abσ2
2 + t1−2T

2

)
Therefore,

L =
1

2πσ2
y

× σ1σ2√
t1 (t2 − t1)

[(
σ2

2a+ 1
) (
µ2

1 + σ2
1

)
+
(
10
(
σ2

2a+ 1
)

+ σ2
2b+ 20

)
µ1 + 10σ2

2b+ 100
]

× exp

(
−
y2
t1

+ y2
t2

2σ2
y

+
b2σ2

2

2
+

µ2
1

2σ2
1

)
× exp

(
−10T +

t31 + (t2 − t1)3 + (T − t2)3

24
+

1

8
(T − t2)3

)
.



DE-BIASING PARTICLE FILTERING FOR A CONTINUOUS TIME HIDDEN MARKOV MODEL 31

Figure 13. Plot of relative variance versus ∆ for different values of np and
fixed N = 100 in log scale.

The exact likelihood are used to compute the relative MSE for Section 5 and Appendix H.

Appendix H. Empirical relationship between relative variance and ∆

Figure 13 reports the relationship between relative variance and ∆ for different np values
and fixed N = 100. For np = 0 and np = 2 cases, the exact likelihood is computed using
solutions calculated in Section G, for other larger values of np, the Monte Carlo estimate
LMC is used in relative variance computation. Results show that the relationship between
relative variance and ∆ can be highly np-dependent. As np of problem increases, the rate of
change in relative variance becomes less positive when ∆ approaches zero. A more general
trend that applies to all values of np is that the relative variance eventually becomes constant
as ∆ goes to zero.

Appendix I. Thinning algorithm for creating data

This section describes the thinning algorithm we use to generate observation data. Please
refer Algorithm 4 for details.

Appendix J. Additional experiments

In Figure 9a, we plot the true trajectory of a molecule, and simulate using parameters {θ =
(1.0, 1.0, 1.0)>, µ = (0.5, 0.5, 6.0)>, p0 = 0.01} for time interval [0, 5.0]. Other parameters
remain the same as in Section 5.2. Figure 9c shows the filtered (x1, x2) mean locations of
molecules, which deviate from their right positions. Figure 9d shows the filtered mean of x3

and regions of ±1 standard deviation together with the true state of X3 at the observation
times. In comparison to the Figure 9c and 9d, Figure 14c and 14d shows that higher values
of x3 degrade the estimation quality of particle filtering algorithm on the state of molecule
and this is due to the exponential function structure of Born and Wolf image function which
generates photons that are detected very far from the true molecule position.
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