
HAL Id: hal-04273213
https://hal.science/hal-04273213

Submitted on 7 Nov 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Predicting spotify audio features from Last.fm tags
Jaime Ramírez Castillo, M. Julia Flores, Philippe Leray

To cite this version:
Jaime Ramírez Castillo, M. Julia Flores, Philippe Leray. Predicting spotify audio features from Last.fm
tags. Multimedia Tools and Applications, 2023, �10.1007/s11042-023-17160-5�. �hal-04273213�

https://hal.science/hal-04273213
https://hal.archives-ouvertes.fr

Draft version

Predicting Spotify Audio Features from

Last.fm Tags

Jaime Ramı́rez Castillo1†, M. Julia Flores1*† and Philippe
Leray2

1*Departamento de Sistemas Informáticos, Universidad de
Castilla-La Mancha, Campus universitario s/n, Albacete, 02071,

Spain.
2Laboratoire des Sciences du Numérique de Nantes, Centre
national de la recherche scientifique, University of Nantes,

Nantes, France.

*Corresponding author(s). E-mail(s): Julia.Flores@uclm.es;
Contributing authors: Jaime.Ramirez@alu.uclm.es;

philippe.leray@univ-nantes.fr;
†These authors contributed equally to this work.

Abstract

Music information retrieval (MIR) is an interdisciplinary research field
that focuses on the extraction, processing, and knowledge discovery
of information contained in music. While previous studies have uti-
lized Spotify audio features and Last.fm tags as input values for
classification tasks, such as music genre recognition, their poten-
tial as target values has remained unexplored. In this article, we
address this notable gap in the research landscape by proposing a
novel approach to predict Spotify audio features based on a set of
Last.fm tags. By predicting audio features, we aim to explore the
relationship between subjective perception and concrete musical fea-
tures, shedding light on patterns and hidden correlations between how
music is perceived, consumed, and discovered. Additionally, the pre-
dicted audio features can be leveraged in recommendation systems
to provide users with explainable recommendations, bridging the gap
between algorithmic suggestions and user understanding. Our exper-
iments involve training models such as GPT-2, XGBRegressor, and
Bayesian Ridge regressor to predict Spotify audio features from Last.fm
tags. Through our findings, we contribute to the advancement of MIR

1

Draft version

2 Predicting Spotify Audio Features from Last.fm Tags

research by demonstrating the potential of Last.fm tags as target val-
ues and paving the way for future research on the connection between
subjective and objective music characterization. Our approach holds
promise for both listeners and researchers, offering new insights into
the intricate relationship between perception and audio signal in music.

Keywords: Music information retrieval, Artificial intelligence

1 Introduction

Music information retrieval (MIR) is an interdisciplinary research field that
encompasses the extraction, processing, and knowledge discovery of informa-
tion contained in music. MIR research covers a wide range of applications
and intersects with other areas, such as computer science, signal processing,
musicology, and sociology. Examples of MIR applications are recommendation
systems, music classification, music source separation, and music generation,
among others [1].

MIR applications often attempt to extract information from the music
audio signal, although analyzing associated metadata is also a common
practice. Audio signals are typically preprocessed and transformed into inter-
mediate formats, such as frequency-based signal representations (e.g. spectro-
grams), and sets of hand-crafted audio features, which are typically engineered
by using domain knowledge (e.g. MFCC, rhythm, or tonal descriptors).

The metadata associated with a music piece is available in multiple formats.
Editorial information or lyrics, for example, are mostly available in text format.
The ability to process images or videos might also be required, for example,
for analyzing album artwork, or music videos.

Depending on the specific MIR application, researchers and practitioners
create models that generate different output values. Applications that extract
audio features typically return audio descriptors, namely values related to the
tempo, the key, or the sample rate, to name a few. Open source libraries
such as Librosa1 and Essentia2 offer methods to extract these values. Other
applications might produce more abstract or subjective values, for example,
by using machine learning techniques that estimate the emotion that a track
induces, or the music genre of this track.

Among potentially useful input and output values, research has proved
Spotify audio features and Last.fm tags to be significant values used to charac-
terize music. Spotify audio features capture high-level information about the
music signal and how humans perceive this signal. Examples of these features
are such as energy, danceability, or valence. Last.fm tags are text labels that
users associate to songs, artists, and albums via the Last.fm social platform.

1https://librosa.org/
2https://essentia.upf.edu/index.html

Draft version

Predicting Spotify Audio Features from Last.fm Tags 3

Both Spotify audio features and Last.fm tags have been used as input data
mostly for classification tasks, such as music genre recognition, where, given
a set of Spotify audio features and/or Last.fm tags, the model estimates the
music genre(s) of a particular track. Previous studies, however, have not exper-
imented with these values as target outputs, to the best of our knowledge. This
unexplored aspect reveals what we believe is a potential research opportunity
in music analysis and recommendation.

In particular, this article focuses on predicting Spotify audio features, given
a set of Last.fm tags. By predicting Spotify audio features, we explore the rela-
tionship between the subjective text descriptions captured by Last.fm tags,
and the concrete (but still user-related) musical features that Spotify com-
putes. This approach might help to identify patterns and hidden correlations
between how music is perceived, consumed, and discovered.

Additionally, the predicted Spotify audio features could be used in recom-
mendation systems to provide users with explainable recommendations. Music
recommendations are typically difficult to interpret from the perspective of the
listener. Users often get recommendations without meaningful explanations or
justifications. By predicting Spotify features as an intermediate step in the
recommendation pipeline, we could use these features to explain to users why
the algorithm suggests a particular track. This process could be part of an
explainable recommendation pipeline, where users enter a set of tags, and as
a result, they get the predicted audio features, the closest tracks to those fea-
tures (as recommended tracks), and the distance values between each track
and the predicted features.

The remainder of the article is organized as follows. Section 2 covers the
details Last.fm tags and Spotify Audio Features. Section 3 performs a general
review of previous research. Subsequently, sections 4 and 5 explain how the
data was gathered and prepared, as well as the conducted experiments and
their results. Finally, in section 6 we conclude our study.

2 Data Sources

2.1 Last.fm Tags

Last.fm is an online music community where users keep track of their music
listening habits. Users apply tags to artists, tracks, and albums to categorize
and describe the music they listen to, from their own perspective. The fact
that Last.fm tags are community-contributed implies that the tag space does
not fit into any structured ontology or data model. A tag can refer to any
aspect that users consider valid and useful for the community, such as genre,
emotion, or user listening context.

For nearly two decades, many music aficionados have collectively con-
tributed their own unique, personal interpretation, opinions and feelings as
tags in Last.fm. Although many of these tags are single-worded descriptors
(e.g rock, dance, or happy), users also use short sentences to describe music,
such as I like this track, or on the beach.

Draft version

4 Predicting Spotify Audio Features from Last.fm Tags

Tags are available via the Last.fm API.

2.2 Spotify Audio Features

Spotify, one of the leaders in the music streaming industry, provides informa-
tion about the tracks in their catalog via the Spotify developers API. Among
the different data entities exposed, the API provides access to the Audio
Features for each track.

The Spotify audio features are numerical values that represent high-level
audio information computed from a specific track. These values characterize a
track, musically speaking, by measuring musical aspects that, in many of these
features, are related to the user perspective or recommendation factors. For
example, a danceability value of 0.95 means that a particular song is highly
suitable for dancing.

The features provided by the Spotify API are listed in Table 1. Whereas
Spotify provides a description of the audio features, how they compute or
estimate these values is not publicly available. The reader can find further
details about each feature in the Spotify API documentation5.

Table 1 Spotify audio features. These features provide high-level musical information
about a track.

Feature name Description

acousticness The track is acoustic. From 0 to 1
danceability The track encourages (or is adequate for) dancing.

From 0 to 1
duration ms Duration in milliseconds
energy The track is perceived as energetic. From 0 to 1
instrumentalness The track is instrumental. From 0 to 1
key Key categories encoded as integers. From C (0) to 11
liveness The audience is audible. From 0 to 1
loudness In decibels. From -60 to 0
mode Major (1) or minor (0)
speechiness Does the track contain speeches? From 0 to 1
tempo In beats per minute (BPM)
valence How happy is the track (BPM). From 0 to 1

3 Related Research

The use of Last.fm tags and Spotify audio features has been common and
prolific in studies that have applied machine learning to resolve MIR challenges.

5https://developer.spotify.com/documentation/web-api/reference/#/operations/
get-audio-features

https://developer.spotify.com/documentation/web-api/reference/#/operations/get-audio-features
https://developer.spotify.com/documentation/web-api/reference/#/operations/get-audio-features

Draft version

Predicting Spotify Audio Features from Last.fm Tags 5

3.1 Last.fm Tags

In the last decade, researchers have studied the use of Last.fm tags in classifica-
tion and regression tasks. Last.fm tags have been a popular source of metadata
for MIR tasks, because they potentially contain subjective information related
to the genre, mood, and style of music, and might be used to characterize cer-
tain features of a music piece. Additionally, Last.fm tags constitute a useful
source of input knowledge when the audio signal is not available, for example,
due to copyright limitations.

Several studies have used Last.fm to predict music sentiment, mood, and
even audio features. For example, Laurier et al. analyzed how Last.fm tags
categorize mood. In their study, they created a semantic mood space based on
Last.fm tags [2].

The use of Last.fm tags as input data is common in the literature. In par-
ticular, the Last.fm API has been tipically used to build datasets that are
subsequently fed into MIR problems. For example, Çano and Morisio per-
formed an analysis of Last.fm tags to create a dataset of music lyrics annotated
with Last.fm tags. In the creation process, they concluded that Last.fm tags
are mostly related to the music genre and positive moods [3].

In a similar direction, Bodó and Szilágyi generated a dataset for lyrics
genre classification by combining Last.fm tags with MusicBrainz data [4].
MusicBrainz is an online database of music editorial metadata1.

Among datasets that contain Last.fm tags, arguably, the Last.fm dataset2

has been the most widely used in research. This dataset is a complementary
dataset of the Million Song Dataset (MSD) [5].

In general, Last.fm tags have been used, generally, as input features for
extracting knowledge. The use of Last.fm tags as target features in machine
learning models, however, although less frequent, is also present [6].

3.2 Spotify Audio Features

Historically, the Spotify audio features features were called the Echo Nest
audio features. The Echo Nest was an online music intelligence platform that
provided users and clients with music analysis services. Among these services,
the Echo Nest offered a database and an API to retrieve audio features for each
of the tracks in the database3. Spotify acquired The Echo Nest in 2014. As
a result, the Echo Nest API was eventually deactivated and Spotify migrated
these audio features to the Spotify API.

Nowadays, the two terms can be found in published research. Whereas the
most recent studies refer to the Spotify audio features, earlier studies use the
Echo Nest denomination. Regardless of the term used, the list of available
features remains the same. These features are a set of high-level descriptors,

1https://musicbrainz.org/
2Last.fm dataset, the official song tags and song similarity collection for the Million Song

Dataset, available at: http://millionsongdataset.com/lastfm.
3https://en.wikipedia.org/wiki/The Echo Nest

Draft version

6 Predicting Spotify Audio Features from Last.fm Tags

such as energy and danceability, which are related to the audio and to the
listeners’ perception.

Similarly to Last.fm, Spotify (or Echo Nest) audio features are commonly
present in MIR research. In one statistical study, Wang and Horvát used
these features to compare male and female artists and discovered significant
differences between the two binary genres [7].

Regarding its use in machine learning problems, Jamdar et al. used Echo
Nest audio features, combined with lyrics data to classify songs into emotion
tags. These classes were first defined based on a Last.fm tags emotion mapping
[8]. In a different study, non-negative Matrix Factorization was applied in
combination with EchoNest audio features for song recommendations [9].

Panda and Redinho explored the use of Spotify audio features in Music
Emotion Recognition (MER) [10]. They identified that the energy, valence,
and acousticness values are highly relevant for emotion classification. Another
interesting observation of this study is the recognition of energy as a surrogate
of valence. The Arousal-valence emotion plane is an important concept in
emotion-related topics, such as MER, and represents the space of emotions in
a 2-dimensional plane.

In general, Spotify audio features have been used as predictive input vari-
ables. We, to the best of our knowledge, are unaware of studies that use these
features as target variables, or studies that have addressed the problem of
audio features regression, based solely on Last.fm tags.

Similarly to Last.fm tags, Spotify audio features can be found in a number
of datasets. Publicly available datasets of Spotify audio features can be found
online, as a result of open-source and research communities collecting data
from the Spotify API and publishing the results. It is unclear, however, whether
these published datasets completely meet the Spotify API terms of service.
For example, P4kxspotify is a publicly available dataset that combines music
review texts with Spotify audio features. The dataset creators argue that,
although the terms of service prohibit scraping, their work is ethical [11].

Another publicly available dataset is the Spotify Audio Features Kaggle
dataset4. This dataset contains more than 116,000 unique tracks, and includes
audio features for each track.

4 Generating a Dataset

We have chosen to generate our own dataset for a number of reasons. First,
we wanted to generate a dataset that combined both Last.fm tags and Spotify
audio features. Second, there is a lack of clarity regarding the conditions under
which Spotify allows the use of the audio features. And third, we wanted to
explore a research line where machine learning models are trained by using
the listening history of a single user.

4https://www.kaggle.com/datasets/tomigelo/spotify-audio-features

Draft version

Predicting Spotify Audio Features from Last.fm Tags 7

Before conducting experiments to predict audio features from tags, we con-
structed a dataset of Last.fm tags and Spotify audio features, indexed by track,
by gathering the data from the Last.fm and Spotify APIs.

The tracks were selected from the listening history of a single user.

4.1 A Single-user Dataset

This work is scoped within our single-user research line [12]. In this area, we
explore the development of music recommender systems that characterize the
music preferences and listening context only for a single user. Therefore, we
extracted the data from the listening history of the corresponding author in
Last.fm5.

By training our system in a single-user space, we also raise the following
question: Is it possible to train recommender systems, and in particular, user-
centric systems, by using a single-user dataset? Additionally, we wanted to
explore the idea of mimicking the fact that each human perceives music indi-
vidually. If we train a system on data from different users, then the system
would share the view of multiple individuals.

Using a single-user data set might sound counterproductive in a machine
learning scenario, especially considering how machine learning breakthroughs
have attempted, and succeeded in many cases, to generalize in a particular
problem. This is not the objective of our research line, which explores how a
machine learning model can represent the music consumption experience of a
single human. Our final model must be able to generalize, but only within the
context of the user’s musical taste, which be believe can be possible, given a
sufficiently large listening history.

4.2 Gathering Listening History and Tags from Last.fm

Last.fm uses the term scrobble to refer to the action of playing a track at a spe-
cific moment in time. Last.fm started monitoring user listening activity with
a desktop application called Scrobbler. Users install this application on their
computers to monitor their activity on players such as Winamp or iTunes.
With the advent of music streaming services, the possibilities for users to scrob-
ble their music habits expanded. Integrations were developed to integrate the
scrobbler into popular platforms, such as Spotify, YouTube, or SoundCloud.
Mobile versions of the Scrobbler were also developed for Android and iOS
devices, while open source initiatives flourished too6.

For us, the first step to construct the dataset was to download the user lis-
tening activity. We queried the Last.fm API to download the user’s scrobbling
logs, reported from 2007 to 2022. For each scrobble, we gathered the following
information:

• Playback timestamp
• Track name

5https://www.last.fm/user/jimmydj2000
6https://github.com/elamperti/OpenWebScrobbler

Draft version

8 Predicting Spotify Audio Features from Last.fm Tags

• Artist name
• Track tags

Last.fm maps each track (and artist) to a list of community-contributed
tags. For each track-tag mapping, Last.fm includes a count value, which indi-
cates the popularity of the given tag for the track. Last.fm normalizes this
value in the 0-100 range, so the most popular tag for a track is typically asso-
ciated with a count value of 100. For example, if jazz is the most popular tag
for a track, then the track might be probably associated to the following tuple
(jazz, 100).

Users typically listen to their favorite tracks several times, so the amount
of unique tracks played is smaller than the number of track plays. In this case,
the amount of individual tracks listened in a 15-year period is about 20 000
and the number of scrobblings is, approximately, 90 000. Therefore, the user
has listened to each song, approximately, 4.5 times on average.

4.3 Gathering Spotify Audio Features

After collecting the listening history and track tags from Last.fm, and iden-
tifying the unique tracks that represent the user music collection, we queried
the Spotify API to collect audio features for each one of the 20 000 individual
tracks.

The mapping between Last.fm and Spotify tracks was performed on an
artist-track basis. For each track, the artist and track name extracted from
Last.fm were used as parameters of the Spotify Search API. The Last.fm API
provides a unique identifier, the MusicBrainz ID for some tracks. The Spo-
tify API, however, does not provide this value so we could not establish an
unequivocal mapping.

4.4 Filtering Missing Values

After retrieving audio features, we identified that the Spotify API had failed to
provide audio features for a portion of the tracks. Similarly, Last.fm returned
an empty tag list for another subset of the tracks. To prevent problems with
missing values, we decided to filter out these tracks from the dataset. After
filtering tracks that were missing Last.fm tags or Spotify audio features, the
dataset resulted in 14 009 samples. Compared to the original 20 000 unique
tracks included in the listening history, approximately 6000 songs were missing
either Spotify or Last.fm data. In other words, about 70% of the tracks in the
user listening history included relevant information for the study.

4.5 Dataset Comparison

Considering that the data was gathered from a single user, we explored the data
to verify that the distribution of the Spotify audio features was comparable to
larger, and possibly more balanced, Spotify datasets. In particular, we verified
that the distribution of the features, described in Table 2 and Figure 1, was

Draft version

Predicting Spotify Audio Features from Last.fm Tags 9

comparable to the distribution of the Spotify Audio Features Kaggle dataset.
Our dataset, which we call Last.fm Single-user dataset, presents mean (µ) and
standard deviation(σ) values that are comparable to the same values of the
Spotify Audio Features Kaggle dataset, as illustrated in Table 3 and Figure 2.

Table 2 Audio features description of the
Last.fm Single-user dataset.

Feature µ σ

Danceability 0.60 0.19
Energy 0.63 0.23
Acousticness 0.22 0.30
Instrumentalness 0.51 0.38
Valence 0.44 0.28

Table 3 Audio features description of
Spotify Audio Features Kaggle dataset.

Feature µ σ

Danceability 0.58 0.19
Energy 0.57 0.26
Acousticness 0.34 0.25
Instrumentalness 0.22 0.36
Valence 0.44 0.26

Fig. 1 Distribution of audio features in the Last.fm Single-user dataset.

5 Experiments

We trained three commonly used machine learning models to predict Spotify
audio features from Last.fm tags by using the Last.fm Single-user dataset.
Considering that predicting the audio feature values is a regression problem,
we tested the following models:

• Boosted tree regressor [13]
• Bayesian Ridge Regressor [14]
• GPT-2 model (fine-tuning) [15]

Draft version

10 Predicting Spotify Audio Features from Last.fm Tags

Fig. 2 Distribution of audio features in the Spotify Audio Features Kaggle dataset.

5.1 Models

The Boosted tree regressor is a specific implementation of the XGBoost algo-
rithm for regression tasks. This algorithm is an ensemble learning technique
that combines simple multiple decision trees to create a stronger predictive
model. This model has proved to be a powerful solution for classification and
regression problems on high-dimensional, structured data.

The Bayesian Ridge regressor is a regression model that combines the
principles of Bayesian statistics with ridge regression. Compared to linear
regression, which assumes that the model estimated parameters have a deter-
ministic value, the Bayesian Ridge regressor treats the model coefficients as
variables with a prior distribution. By incorporating prior distributions into the
learning process, the model is able to capture uncertainty. The ridge regression
technique enables the model to handle noisy, collinear, structured data.

The GPT-2 model is a transformer model. Transformers are a type of
neural network architecture that has been widely used in natural language
processing (NLP) tasks, such as text generation and question answering. GPT-
2 has been trained on a large corpus of text, and is typically used as a language
model to generate text that resembles human-written language. However, in
this study, we have experimented with GPT-2 as a regressor. Rather than
retraining the model from scratch, we have fine-tuned the model to behave
as a regressor and predict Spotify audio features. The basic idea behind this
approach is to feed a string of concatenated Last.fm tags as input to the GPT-
2 model, and then use the model’s output as the predicted value of a specific
Spotify audio feature.

5.1.1 Models Parametrization

Due to the different models and input encodings that we employed in the
models, we decided to limit the dimensionality of the experiments, by using

Draft version

Predicting Spotify Audio Features from Last.fm Tags 11

mostly the default hyperparameters that the most common libraries set for
these models.

For the Bayesian ridge regressor, we used the default hyperparameters set
by the scikit-learn library. The training parameters for the Bayesian ridge are
listed in table 4.

To fine-tune the GPT-2 model, we used the
GPT2ForSequenceClassification model of the Transformers Python library.
The parameters used are listed in table 5.

Table 4 Training parameters for Bayesian
Ridge regressor

Parameter Value

Maximum iterations 300
Tolerance1 1× 10−3

alpha 1 1× 10−6

alpha 2 1× 10−6

lambda 1 1× 10−6

lambda 2 1× 10−6

1Tolerance for the stopping criteria.
Table 5 Training parameters for GPT-2
regressor

Parameter Value

Batch size 10
Problem type regression
Epochs 10
Sequence length (tokens) 256
Tokenizer GPT-2 tokenizer

Table 6 Training parameters for XGBoost
regressor

Parameter Value

objective reg:squarederror
base score 0.5
booster gbtree
colsample bylevel 1
colsample bynode 1
colsample bytree 1
gamma1 0
learning rate 0.3
max delta step 0
max depth 6
min child weight 1
estimators 200
n jobs 12
num parallel tree 1
predictor auto
random state 0
reg alpha 0
reg lambda 1
scale pos weight 1
subsample 2
tree method auto

1Tolerance for the stopping criteria.

Similarly, for the boosted tree regressor, we used the default parameters
set in the xgboost Python library. We configured the boosted tree regressor
model with the training parameters listed in table 6.

5.2 Last.fm Tags Input Format

The preceding models require specific input formats. In particular, the boosted
tree and Bayesian Ridge regressors require structured data (e.g a set of predic-
tor features and a set of target variables), whereas GPT-2 expects text strings
as input.

Each individual sample in the Last.fm singe-user dataset corresponds
to a unique track and contains the list of Last.fm tag-count tuples (e.g.
[(electronic, 100), (dance, 45), ...]) and the values of Spotify audio

Draft version

12 Predicting Spotify Audio Features from Last.fm Tags

features. The Last.fm single-user dataset was converted to the formats
described in the following sections and then fed into the corresponding models.

5.2.1 Last.fm Tags as Table Columns

The tabular format represents the Last.fm tags as columns in a table. Each
tag is defined by a column and each cell contains the count value of a tag for
a track. If a tag is not present for a particular track, then cell ctrack,tag is 0.

Counting the total amount of Last.fm tags in the user collection resulted,
initially, in more than five million tags. Under this high-dimensionality sce-
nario, building a tabular data set, in which every row contains millions of
columns (i.e. Last.fm tags) was theoretically possible, but presented scalability
problems. In addition to scalability limitations, classic machine learning models
might not take advantage of using the full collection of tags present in the user
history. These models might even perform poorly if too many input features
are provided. The reason for this is spurious relations or redundancy between
input features. Models might find relations that are not real, and latent, redun-
dant variables might be accountable multiple times, which can lead to biased
outputs. Feature subject selection aims at solving these problems.

Therefore, we reduced the number of tags by picking a subset of the most
relevant tags. We used a feature selection algorithm by using a basic data
aggregation algorithm: grouping the data by tag, aggregating by summing
the count values for each tag, ordering by the aggregated count, and finally
selecting the top-K tags of the ranking. Three values of K, were used, thus
generating three subsets: 100, 1000, and 10 000. We consider this reduction
approach an initial approach in our experiments. For this particular aspect,
dimensionality reduction algorithms, such as PCA, are good candidates for
future work.

After selecting the top-K tags, the Last.fm single-user dataset was format-
ted as follows:

• Given that TagsK is the set of most K frequent Last.fm tags in the user
listening history , where each tag ∈ TagsK .

• Given that Audio is the set of Spotify audio features, where each feat ∈
Audio.

• For each track:

– Xtag,track is the count value of tag for track. This value is in the 0− 100
range.

– ytrack,feature is the value of the audio feature y for track.

An example of this data format is provided in table 7.
The main drawback of this representation is data sparsity. For most of the

tracks, many columns are 0.
This format was tested with the Bayesian Ridge and the Boosted Tree

regressors.

Draft version

Predicting Spotify Audio Features from Last.fm Tags 13

Table 7 Tabular data format for Last.fm tags in XGBoost and Bayesian regressors

Track Xelectronic Xambient X... yenergy yvalence y...

Massive Attack - Blue Lines 62 6 . . . 0.496 0.947 . . .
The Beta Band - Squares 40 3 . . . 0.446 0.507 . . .
. .

5.2.2 Tokens as Table Columns

This format is also structured, but the input data is a set of tokens instead of
tag count values. These tokens are the result of passing the tags, concatenated
as a string, through a tokenizer. Tokenizers are crucial elements in the pre-
processing of text data. A tokenizer dissects a piece of text into smaller units,
called tokens. These tokens can be words, subwords, or even characters.

When breaking down the text into tokens, the tokenizer assigns a unique
numerical identifier to each token. These identifiers are based on the vocabu-
lary that the tokenizer has been trained on. For example, when the tokenizer
processes the "pop rock" string, the pop token might be assigned to ID 123

and the rock token might be assigned to ID 34534. Consequently, the result
of tokenizing pop rock would be [123, 34534].

Note that, although tokenizers are most commonly used in combination
with transformer models, in this paper, we test the possibility of using a tok-
enizer to preprocess the data passed to the models that require structured
data.

Because the tokenizer requires a string as the input, we converted the set
of tags for each track into a string, in a process that we called stringification.
To stringify the tags, we concatenated Last.fm tags by following these three
strategies:

• Order by count: "rock, pop".
• Include tag count: "rock 2, pop 1".
• Replicate tags count times: "rock rock, pop".

In this particular case, the X values of the tabular input data are the token
IDs. These tokens are obtained by passing the string of concatenated Last.fm
tags through the GPT-2 tokenizer, as the following procedure explains:

• Given that S is the stringification strategy.
• Given that XL is the token vocabulary, where L is the maximum vocabulary

length.
• Given that Audio is the set of Spotify audio features, where each feat ∈
Audio.

• For each track and S:

– tagstrack,str is the string of concatenated tags produced by strategy S.
– tokenstrack is the list of token IDs produced after tokenizing tagsstr.
– Xn,track is token ID found at position n of tokenstrack.

Draft version

14 Predicting Spotify Audio Features from Last.fm Tags

– yfeature,track is the value of the audio feature y for track.

An example of this data format is provided in table 8.

Table 8 Tabular data format for tokens in XGBoost and Bayesian regressors

Track X0 X1 X2 X... yenergy yvalence y...

Massive Attack - Blue Lines 101 5099 6154 . . . 0.496 0.947 . . .
The Beta Band - Squares 101 4522 2600 . . . 0.446 0.507 . . .
. .

Similarly to the tags tabular format, we also defined fixed values for the
number of columns: 10, 1,000, and 10,000. This format was also used in the
Bayesian and Boosted Tree regressors. In contrast to the previous format, this
format does not present sparsity. It incorporates, however, other problems,
such as the lack of normalization of the values, which do not represent scalars,
but IDs. It is also harder to inspect because the meaning of each token is
unknown.

5.2.3 Text Strings

When using transformer models, the input data is a string. To use GPT-2,
we had to represent the Last.fm tags, which are defined as (tag, count) tuples,
as strings. To this end, we applied the same three transformations used in
the tabular tokens formats, concatenating the tags by ordering by count, by
including the tag count, and by duplicating the tags.

After converting to a string, the formal definition of the input data is as
follows:

• Given that X is tags represented as text.
• Given that Audio is the set of Spotify audio features, where each feat ∈
Audio.

• For each track:

– Xtrack,n is set of tags for track, encoded as a single string.
– ytrack,feature is the value of the audio feature y for track.

An example of this data format is provided in table 9.

Table 9 Text data format for GPT-transformer. In this particular case, the tags have
been concatenated by ordering by tag count

Track X yenergy yvalence y...

Massive Attack - Blue Lines ”hip hop, chill, bristol, . . . ” 0.496 0.947 . . .
The Beta Band - Squares ”alternative rock, folk, . . . ” 0.446 0.507 . . .
.

Draft version

Predicting Spotify Audio Features from Last.fm Tags 15

5.3 Experiments Execution and Results

5.3.1 Experimental setup

The experiments tested the three models previously described, and the three
values of K: 100, 1000, 10 000. In the Bayesian Ridge and Boosted tree regres-
sors, and we tested the two structured data formats: tags and tokens as
columns. In the GPT-2 model, we tested the text data format.

For the formats that required the concatenation of tags into text strings,
we tested the three different stringification strategies, namely tokens-from-tag-
order (where they are ordered by count), tokens-from-tag-weight (where they
include the weight or count in the text) and tokens-from-repeat-tags (where
they are replicated count times).

The data was split into a training set (8654 samples), a validation set(2164
samples), and a test set (2705 samples). The quality of the model was evaluated
by using the root mean squared error (RMSE). This metric was computed on
the test set.

5.3.2 Experimental results

Table 10 summarises the experiments’ results. The table provides RMSE values
for each experiment. Considering, the model paradigm, the feature which is
best estimated, the least error, is marked in boldface.

From the obtained results, we can extract some interesting conclusions,
which will summarise here. First of all, considering the targeted feature to be
predicted: the Spotify feature that the models had best capability to estimate
are danceability and then energy. These two provide much lower errors than the
rest. The instrumentalness, however, was the feature that presented the highest
deviations from the value to predict. Acousticness and valence also presented
high RMSE values, but the behaviour of the models is slightly better than for
instrumentalness. This can be easily explained by the original distribution of
these features (see Fig. 1), their variability is bigger and their distribution is
too far from normal. In the case of instrumentalness, notice that the closer
the instrumentalness value is to 1.0, the greater likelihood the track contains
no vocal content, and on the contrary, values closer to 0 means that they are
mainly vocal. If the values above 0.5 are intended to represent instrumental
tracks, but confidence is higher as the value approaches 1. It is quite normal
to have songs which are either instrumental or not. Besides, in this dataset
(and in most users), there would be a predominant type of music (vocal vs
instrumental). Then, it seems reasonable that this feature is not so properly
estimated with regression techniques, no matter the input features we use to
it, but even more difficult with the Last.fm tags.

Another analysis concerns the comparison of performance among mod-
els. For that purpose, apart from Table 10, we can look at the plots in Figures
3, 4 and 5. We can see clearly that GPT-2 model was the best model to predict
the danceability, with a 0.145 RMSE. The Boosted tree was the best model to
predict the instrumentalness, with a RMSE value of 0.29.

Draft version

16 Predicting Spotify Audio Features from Last.fm Tags

Table 10 Experiment results. Cells values correspond to the RMSE value. Highlighted
values correspond to the best RMSE value achieved by each model, for each variable.

M Input format Danceabilty Acousticness Energy Valence Instrumentalness

Base 0.276 0.438 0.329 0.395 0.541

Bayes 100 tags1 0.159 0.261 0.197 0.243 0.307
Bayes 1000 tags 0.153 0.253 0.190 0.237 0.299
Bayes 10000 tags 0.152 0.251 0.189 0.236 0.297
Bayes 100 tokens D2 0.307 0.307 0.238 0.281 0.383
Bayes 1000 tokens D 0.201 0.315 0.249 0.297 0.399
Bayes 10000 tokens D 0.359 0.507 0.394 0.479 0.613
Bayes 100 tokens O3 0.191 0.305 0.237 0.282 0.376
Bayes 1000 tokens O 0.237 0.343 0.276 0.339 0.428
Bayes 10000 tokens O 0.237 0.343 0.276 0.339 0.428
Bayes 100 tokens TC4 0.191 0.304 0.236 0.281 0.380
Bayes 1000 tokens TC 0.202 0.320 0.247 0.248 0.404
Bayes 10000 tokens TC 0.234 0.341 0.274 0.321 0.430

Tree 100 tags 0.154 0.257 0.188 0.240 0.302
Tree 1000 tags 0.149 0.249 0.184 0.236 0.292
Tree 10000 tags 0.148 0.250 0.181 0.235 0.291
Tree 100 tokens D 0.274 0.274 0.212 0.256 0.330
Tree 1000 tokens D 0.173 0.278 0.215 0.268 0.339
Tree 10000 tokens D 0.172 0.276 0.217 0.266 0.342
Tree 100 tokens O 0.179 0.294 0.225 0.271 0.350
Tree 1000 tokens O 0.182 0.294 0.224 0.270 0.353
Tree 10000 tokens O 0.182 0.294 0.225 0.267 0.353
Tree 100 tokens TC 0.172 0.280 0.211 0.262 0.342
Tree 1000 tokens TC 0.174 0.282 0.215 0.268 0.344
Tree 10000 tokens TC 0.175 0.281 0.214 0.270 0.345

GPT Duplicated5 0.157 0.244 0.193 0.245 0.322
GPT Ordered6 0.149 0.237 0.188 0.235 0.297
GPT Tags,Counts7 0.145 0.237 0.187 0.233 0.301

1Tags in tabular format. Given (rock, 3), the cell in the rock column contains 3.
2Duplicated tokens in tabular format. Tags (rock, 3), (pop, 2), are converted to the "rock,

rock, rock, pop, pop" string, which a tokenizer converts to the list of input tokens (e.g.
[101,1005,16588,1005,2531, ...]). These tokens are passed to the model in tabular for-
mat. Columns are token1, token2, ..., tokenN .
3Ordered tokens in tabular format. Tags (rock, 3), (pop, 2), are converted to the
"rock, pop" string, which a tokenizer converts to the list of input tokens (e.g.
[101,1005,16588,1005,2531, ...]). These tokens are passed to the model in tabular for-
mat. Columns are token1, token2, ..., tokenN .
4Tokens in tabular format from tags and counts. Tags (rock, 3), (pop, 2), are converted to
the "’rock’ 3, ’pop’ 2" string, which a tokenizer converts to the list of input tokens
(e.g. [101,1005,16588,1005,2531, ...]). These tokens are passed to the model in tabular
format. Columns are token1, token2, ..., tokenN .
5String. Given tags (rock, 3), (pop, 2), input is formatted as "rock, rock, rock, pop, pop".
6String. Given tags (rock, 3), (pop, 2), input is formatted as "rock, pop".
7String. Given tags (rock, 3), (pop, 2), input is formatted as "’rock’ 3, ’pop’ 2".

Draft version

Predicting Spotify Audio Features from Last.fm Tags 17

Fig. 3 RMSE mean and standard deviation by model and tags/tokens limit.

Fig. 4 RMSE mean and standard deviation by model and audio feature.

In general, the three models performed similarly, with GPT-2 achieving
slightly better results in danceability, acousticness, and valence. The Boosted
Tree regressor was the best model to predict energy, and instrumentalness. It
seems that the GPT model is able to predict those features that are easier to

Draft version

18 Predicting Spotify Audio Features from Last.fm Tags

Fig. 5 RMSE mean and standard deviation by model and input type (tag probablities or
tokens).

be represented in describing text and words interrelations, while the regressor
tree might be focused on key terms.

Another perspective to analyse the results is the performance of the models
considering how the input information is pre-processed. There is a key
parameter that accounts for the limit of columns to be used. We can see how
the two regressors achieved the best results when using the Tags as columns
format, mostly with 10 000 tags. Interestingly, the Boosted Tree regressor
achieved better results with tokens when estimating valence, which provides
even better results than GPT-2. In the rest of the features, the regressors
worked better with tags as columns.

An interesting result comes from this: using a higher number of predic-
tor variables was not a synonym for lower error values when using tokens as
columns.

Finally, we will see the relationship between the prediction of an audio fea-
ture and the type of input used as a string (stringification technique), explicitly
plotted in Figure 6, which also includes the tabular representation (labelled
as probs). From this point of view, we can see that the Bayesian regressor is
slightly more sensitive to changes in tag formatting. This model tends to work
better with data formatted by using the Tag Count stringification method. The
Boosted Tree regressor presented less sensitivity to format changes, although
the model generally performed better with the Tags as columns format too.
The replicated stringification method consistently performed worse with the
GPT-2 transformer model. The nature of its model makes them more able
to work more consistently with one kind of textual representation, but when
examining which input type the ranking relationship in their performance

Draft version

Predicting Spotify Audio Features from Last.fm Tags 19

Fig. 6 RMSE mean and standard deviation by audio feature and input type (tag probabilities
or tokens).

seems to be maintained, so that including the weight is the best one but doesn’t
outperforms the probability-based approach.

6 Conclusions

In this paper, we have shown how those tags provided by the community can
be used for predictive main features about songs. This is innovative as we are
not using the song itself, nor their audio or their lyrics and still the results are
quite good. We really feel this is a promising research field.

In general, we believe that this novel approach has the potential to ben-
efit both listeners and researchers. By combining subjective user-generated
tags with objective audio features, we can gain new insights into the complex
relationship between perception and audio signal in music.

Our approach also presents limitations. One limitation is the assumption
of a strong relationship between Last.fm tags and Spotify features, which may
not be true in all cases. Future work could explore other sources of input values,
possibly related to the user context, to improve the accuracy of the predictions.

Track mapping between Last.fm and Spotify is another opportunity for
research and improvement. Although Last.fm provides the MusicBrainz unique
identifier, Spotify does not provide this value. The mapping was performed by
using the track artist and name, but this approach resulted in about 30% of
the tracks not being found on Spotify.

The standard deviation values that are displayed in figure 6 are in the
0.1-0.2 margin. Considering this factor, we argue that the RMSE values that

Draft version

20 Predicting Spotify Audio Features from Last.fm Tags

some models manifest are, in fact, noteworthy. For example, the best value for
instrumentalness is 0.291. Considering that the mean and standard deviation
for all the experiments with this variable are, respectively,0.414 and0.106, the
z-scores of 0.291 and 0.297 are −1.16 and −1.10. We can conclude that the
0.291 and 0.297 values are close to each other and exhibit a similar level of
deviation from the mean.

We consider this reduction approach an initial approach in our experiments.
For this particular aspect, dimensionality reduction algorithms, such as PCA,
are good candidates for future work.

Acknowledgments

This work has been partially funded by the Government of Castilla -
La Mancha (SBPLY/21/180225/000062) and by the Spanish Government
(PID2019-106758GB-C33 MCIN/AEI/10.13039/501100011033), and also by
the UCLM (University of Castilla-La Mancha) and “ERDF A way of making
Europe” (2023-GRIN-34437).

Declarations

Conflict of Interests The authors declare that there is no conflict of interest
with this work.

Data availability statement The datasets generated and analysed dur-
ing the current study are not publicly available due to the need for Last.fm
API approval, but are available from the corresponding author on reasonable
request. It is permitted to use the Last.fm Data solely for non-commercial
purposes.

For the sake of reproducibility, we would share the coding project, where
we also indicate how to download one user’s history (scrobbling – listening
habits and uploads) plus the associated community tags via Last.fm API.

References

[1] Ramirez, J., Flores, M.J.: Machine learning for music genre: multi-
faceted review and experimentation with audioset. Journal of Intelligent
Information Systems 55(3), 469–499 (2020) https://doi.org/10.1007/
s10844-019-00582-9

[2] Laurier, C., Sordo, M., Serra, J., Herrera, P.: Music mood representations
from social tags. In: Proceedings of the 10th International Society for
Music Information Retrieval Conference (ISMIR), pp. 381–386 (2009)

[3] Çano, E., Morisio, M.: Music mood dataset creation based on last.fm
tags. In: Proceedings of the 4th International Conference on Artificial
Intelligence and Applications, pp. 15–26 (2017). https://doi.org/10.5121/
csit.2017.70603

https://doi.org/10.1007/s10844-019-00582-9
https://doi.org/10.1007/s10844-019-00582-9
https://doi.org/10.5121/csit.2017.70603
https://doi.org/10.5121/csit.2017.70603

Draft version

Predicting Spotify Audio Features from Last.fm Tags 21

[4] Bodó, Z., Szilágyi, E.: Connecting the last. fm dataset to lyricwiki
and musicbrainz. lyrics-based experiments in genre classification. Acta
Universitatis Sapientiae, Informatica 10(2), 158–182 (2018)

[5] Bertin-Mahieux, T., Ellis, D.P.W., Whitman, B., Lamere, P.: The million
song dataset. In: Proceedings of the 12th International Conference on
Music Information Retrieval (ISMIR), pp. 591–596 (2011)

[6] Eck, D., Bertin-Mahieux, T., Lamere, P.: Autotagging music using
supervised machine learning. In: Proceedings of the 8th International
Conference on Music Information Retrieval (ISMIR), pp. 367–368 (2007)

[7] Wang, Y., Horvát, E.: Gender differences in the global music industry:
Evidence from musicbrainz and the echo nest. In: Proceedings of the Inter-
national AAAI Conference on Web and Social Media, vol. 13, pp. 517–526
(2019)

[8] Jamdar, A., Abraham, J., Khanna, K., Dubey, R.: Emotion analysis
of songs based on lyrical and audio features. International Journal of
Artificial Intelligence & Applications 6(3), 35–50 (2015)

[9] Benzi, K., Kalofolias, V., Bresson, X., Vandergheynst, P.: Song recommen-
dation with non-negative matrix factorization and graph total variation.
In: Proceedings of the 2016 IEEE International Conference on Acous-
tics, Speech and Signal Processing (ICASSP), pp. 2439–2443 (2016).
https://doi.org/10.1109/ICASSP.2016.7472115

[10] Panda, R., Redinho, H., Gonçalves, C., Malheiro, R., Paiva, R.P.: How
does the spotify api compare to the music emotion recognition state-
of-the-art? In: Proceedings of the 18th Sound and Music Computing
Conference (SMC), pp. 238–245 (2021). https://doi.org/10.5281/zenodo.
5045100

[11] Pinter, A.T., Paul, J.M., Smith, J., Brubaker, J.R.: P4kxspotify: A
dataset of pitchfork music reviews and spotify musical features. In: Pro-
ceedings of the International AAAI Conference on Web and Social Media,
vol. 14, pp. 895–902 (2020)

[12] Ramirez, J., Flores, M.J., Nicholson, A.E.: User-centric music recommen-
dations. In: 16th Bayesian Modelling Applications Workshop, Confer-
ence on Uncertainty in Artificial Intelligence (2022). https://abnms.org/
uai2022-apps-workshop/papers/S2.pdf Accessed 2023-09-12

[13] Chen, T., Guestrin, C.: Xgboost: A scalable tree boosting system. In:
Proceedings of the 22nd ACM International Conference on Knowledge
Discovery and Data Mining (SIGKDD), pp. 785–794 (2016). https://doi.
org/10.1145/2939672.2939785

https://doi.org/10.1109/ICASSP.2016.7472115
https://doi.org/10.5281/zenodo.5045100
https://doi.org/10.5281/zenodo.5045100
https://abnms.org/uai2022-apps-workshop/papers/S2.pdf
https://abnms.org/uai2022-apps-workshop/papers/S2.pdf
https://doi.org/10.1145/2939672.2939785
https://doi.org/10.1145/2939672.2939785

Draft version

22 Predicting Spotify Audio Features from Last.fm Tags

[14] Tipping, M.E.: Sparse bayesian learning and the relevance vector machine.
Journal of machine learning research 1, 211–244 (2001)

[15] Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., Sutskever, I.:
Language Models are Unsupervised Multitask Learners (2019). https:
//github.com/openai/gpt-2

https://github.com/openai/gpt-2
https://github.com/openai/gpt-2

	Introduction
	Data Sources
	Last.fm Tags
	Spotify Audio Features

	Related Research
	Last.fm Tags
	Spotify Audio Features

	Generating a Dataset
	A Single-user Dataset
	Gathering Listening History and Tags from Last.fm
	Gathering Spotify Audio Features
	Filtering Missing Values
	Dataset Comparison

	Experiments
	Models
	Models Parametrization

	Last.fm Tags Input Format
	Last.fm Tags as Table Columns
	Tokens as Table Columns
	Text Strings

	Experiments Execution and Results
	Experimental setup
	Experimental results

	Conclusions

