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Introduction

Music information retrieval (MIR) is an interdisciplinary research field that encompasses the extraction, processing, and knowledge discovery of information contained in music. MIR research covers a wide range of applications and intersects with other areas, such as computer science, signal processing, musicology, and sociology. Examples of MIR applications are recommendation systems, music classification, music source separation, and music generation, among others [START_REF] Ramirez | Machine learning for music genre: multifaceted review and experimentation with audioset[END_REF].

MIR applications often attempt to extract information from the music audio signal, although analyzing associated metadata is also a common practice. Audio signals are typically preprocessed and transformed into intermediate formats, such as frequency-based signal representations (e.g. spectrograms), and sets of hand-crafted audio features, which are typically engineered by using domain knowledge (e.g. MFCC, rhythm, or tonal descriptors).

The metadata associated with a music piece is available in multiple formats. Editorial information or lyrics, for example, are mostly available in text format. The ability to process images or videos might also be required, for example, for analyzing album artwork, or music videos.

Depending on the specific MIR application, researchers and practitioners create models that generate different output values. Applications that extract audio features typically return audio descriptors, namely values related to the tempo, the key, or the sample rate, to name a few. Open source libraries such as Librosa 1 and Essentia 2 offer methods to extract these values. Other applications might produce more abstract or subjective values, for example, by using machine learning techniques that estimate the emotion that a track induces, or the music genre of this track.

Among potentially useful input and output values, research has proved Spotify audio features and Last.fm tags to be significant values used to characterize music. Spotify audio features capture high-level information about the music signal and how humans perceive this signal. Examples of these features are such as energy, danceability, or valence. Last.fm tags are text labels that users associate to songs, artists, and albums via the Last.fm social platform.

Both Spotify audio features and Last.fm tags have been used as input data mostly for classification tasks, such as music genre recognition, where, given a set of Spotify audio features and/or Last.fm tags, the model estimates the music genre(s) of a particular track. Previous studies, however, have not experimented with these values as target outputs, to the best of our knowledge. This unexplored aspect reveals what we believe is a potential research opportunity in music analysis and recommendation.

In particular, this article focuses on predicting Spotify audio features, given a set of Last.fm tags. By predicting Spotify audio features, we explore the relationship between the subjective text descriptions captured by Last.fm tags, and the concrete (but still user-related) musical features that Spotify computes. This approach might help to identify patterns and hidden correlations between how music is perceived, consumed, and discovered.

Additionally, the predicted Spotify audio features could be used in recommendation systems to provide users with explainable recommendations. Music recommendations are typically difficult to interpret from the perspective of the listener. Users often get recommendations without meaningful explanations or justifications. By predicting Spotify features as an intermediate step in the recommendation pipeline, we could use these features to explain to users why the algorithm suggests a particular track. This process could be part of an explainable recommendation pipeline, where users enter a set of tags, and as a result, they get the predicted audio features, the closest tracks to those features (as recommended tracks), and the distance values between each track and the predicted features.

The remainder of the article is organized as follows. Section 2 covers the details Last.fm tags and Spotify Audio Features. Section 3 performs a general review of previous research. Subsequently, sections 4 and 5 explain how the data was gathered and prepared, as well as the conducted experiments and their results. Finally, in section 6 we conclude our study.

Data Sources

Last.fm Tags

Last.fm is an online music community where users keep track of their music listening habits. Users apply tags to artists, tracks, and albums to categorize and describe the music they listen to, from their own perspective. The fact that Last.fm tags are community-contributed implies that the tag space does not fit into any structured ontology or data model. A tag can refer to any aspect that users consider valid and useful for the community, such as genre, emotion, or user listening context.

For nearly two decades, many music aficionados have collectively contributed their own unique, personal interpretation, opinions and feelings as tags in Last.fm. Although many of these tags are single-worded descriptors (e.g rock, dance, or happy), users also use short sentences to describe music, such as I like this track, or on the beach.

Tags are available via the Last.fm API.

Spotify Audio Features

Spotify, one of the leaders in the music streaming industry, provides information about the tracks in their catalog via the Spotify developers API. Among the different data entities exposed, the API provides access to the Audio Features for each track.

The Spotify audio features are numerical values that represent high-level audio information computed from a specific track. These values characterize a track, musically speaking, by measuring musical aspects that, in many of these features, are related to the user perspective or recommendation factors. For example, a danceability value of 0.95 means that a particular song is highly suitable for dancing.

The features provided by the Spotify API are listed in Table 1. Whereas Spotify provides a description of the audio features, how they compute or estimate these values is not publicly available. The reader can find further details about each feature in the Spotify API documentation 5 .

Table 1 Spotify audio features. These features provide high-level musical information about a track.

Feature name Description acousticness

The track is acoustic. From 0 to 1 danceability

The track encourages (or is adequate for) dancing. From 0 to 1 duration ms

Duration in milliseconds energy

The track is perceived as energetic. From 0 to 1 instrumentalness

The track is instrumental. From 0 to 1 key Key categories encoded as integers. From C (0) to 11 liveness

The audience is audible. From 0 to 1 loudness

In decibels. From -60 to 0 mode Major (1) or minor (0) speechiness Does the track contain speeches? From 0 to 1 tempo

In beats per minute (BPM) valence How happy is the track (BPM). From 0 to 1

Related Research

The use of Last.fm tags and Spotify audio features has been common and prolific in studies that have applied machine learning to resolve MIR challenges.

Last.fm Tags

In the last decade, researchers have studied the use of Last.fm tags in classification and regression tasks. Last.fm tags have been a popular source of metadata for MIR tasks, because they potentially contain subjective information related to the genre, mood, and style of music, and might be used to characterize certain features of a music piece. Additionally, Last.fm tags constitute a useful source of input knowledge when the audio signal is not available, for example, due to copyright limitations. Several studies have used Last.fm to predict music sentiment, mood, and even audio features. For example, Laurier et al. analyzed how Last.fm tags categorize mood. In their study, they created a semantic mood space based on Last.fm tags [START_REF] Laurier | Music mood representations from social tags[END_REF].

The use of Last.fm tags as input data is common in the literature. In particular, the Last.fm API has been tipically used to build datasets that are subsequently fed into MIR problems. For example, C ¸ano and Morisio performed an analysis of Last.fm tags to create a dataset of music lyrics annotated with Last.fm tags. In the creation process, they concluded that Last.fm tags are mostly related to the music genre and positive moods [START_REF] Morisio | Music mood dataset creation based on last.fm tags[END_REF].

In a similar direction, Bodó and Szilágyi generated a dataset for lyrics genre classification by combining Last.fm tags with MusicBrainz data [START_REF] Bodó | Connecting the last. fm dataset to lyricwiki and musicbrainz. lyrics-based experiments in genre classification[END_REF]. MusicBrainz is an online database of music editorial metadata 1 .

Among datasets that contain Last.fm tags, arguably, the Last.fm dataset2 has been the most widely used in research. This dataset is a complementary dataset of the Million Song Dataset (MSD) [START_REF] Bertin-Mahieux | The million song dataset[END_REF].

In general, Last.fm tags have been used, generally, as input features for extracting knowledge. The use of Last.fm tags as target features in machine learning models, however, although less frequent, is also present [START_REF] Eck | Autotagging music using supervised machine learning[END_REF].

Spotify Audio Features

Historically, the Spotify audio features features were called the Echo Nest audio features. The Echo Nest was an online music intelligence platform that provided users and clients with music analysis services. Among these services, the Echo Nest offered a database and an API to retrieve audio features for each of the tracks in the database 3 . Spotify acquired The Echo Nest in 2014. As a result, the Echo Nest API was eventually deactivated and Spotify migrated these audio features to the Spotify API.

Nowadays, the two terms can be found in published research. Whereas the most recent studies refer to the Spotify audio features, earlier studies use the Echo Nest denomination. Regardless of the term used, the list of available features remains the same. These features are a set of high-level descriptors, such as energy and danceability, which are related to the audio and to the listeners' perception.

Similarly to Last.fm, Spotify (or Echo Nest) audio features are commonly present in MIR research. In one statistical study, Wang and Horvát used these features to compare male and female artists and discovered significant differences between the two binary genres [START_REF] Wang | Gender differences in the global music industry: Evidence from musicbrainz and the echo nest[END_REF].

Regarding its use in machine learning problems, Jamdar et al. used Echo Nest audio features, combined with lyrics data to classify songs into emotion tags. These classes were first defined based on a Last.fm tags emotion mapping [START_REF] Jamdar | Emotion analysis of songs based on lyrical and audio features[END_REF]. In a different study, non-negative Matrix Factorization was applied in combination with EchoNest audio features for song recommendations [START_REF] Benzi | Song recommendation with non-negative matrix factorization and graph total variation[END_REF].

Panda and Redinho explored the use of Spotify audio features in Music Emotion Recognition (MER) [START_REF] Panda | How does the spotify api compare to the music emotion recognition stateof-the-art?[END_REF]. They identified that the energy, valence, and acousticness values are highly relevant for emotion classification. Another interesting observation of this study is the recognition of energy as a surrogate of valence. The Arousal-valence emotion plane is an important concept in emotion-related topics, such as MER, and represents the space of emotions in a 2-dimensional plane.

In general, Spotify audio features have been used as predictive input variables. We, to the best of our knowledge, are unaware of studies that use these features as target variables, or studies that have addressed the problem of audio features regression, based solely on Last.fm tags.

Similarly to Last.fm tags, Spotify audio features can be found in a number of datasets. Publicly available datasets of Spotify audio features can be found online, as a result of open-source and research communities collecting data from the Spotify API and publishing the results. It is unclear, however, whether these published datasets completely meet the Spotify API terms of service. For example, P4kxspotify is a publicly available dataset that combines music review texts with Spotify audio features. The dataset creators argue that, although the terms of service prohibit scraping, their work is ethical [START_REF] Pinter | P4kxspotify: A dataset of pitchfork music reviews and spotify musical features[END_REF].

Another publicly available dataset is the Spotify Audio Features Kaggle dataset 4 . This dataset contains more than 116,000 unique tracks, and includes audio features for each track.

Generating a Dataset

We have chosen to generate our own dataset for a number of reasons. First, we wanted to generate a dataset that combined both Last.fm tags and Spotify audio features. Second, there is a lack of clarity regarding the conditions under which Spotify allows the use of the audio features. And third, we wanted to explore a research line where machine learning models are trained by using the listening history of a single user.

Before conducting experiments to predict audio features from tags, we constructed a dataset of Last.fm tags and Spotify audio features, indexed by track, by gathering the data from the Last.fm and Spotify APIs.

The tracks were selected from the listening history of a single user.

A Single-user Dataset

This work is scoped within our single-user research line [START_REF] Ramirez | User-centric music recommendations[END_REF]. In this area, we explore the development of music recommender systems that characterize the music preferences and listening context only for a single user. Therefore, we extracted the data from the listening history of the corresponding author in Last.fm 5 . By training our system in a single-user space, we also raise the following question: Is it possible to train recommender systems, and in particular, usercentric systems, by using a single-user dataset? Additionally, we wanted to explore the idea of mimicking the fact that each human perceives music individually. If we train a system on data from different users, then the system would share the view of multiple individuals.

Using a single-user data set might sound counterproductive in a machine learning scenario, especially considering how machine learning breakthroughs have attempted, and succeeded in many cases, to generalize in a particular problem. This is not the objective of our research line, which explores how a machine learning model can represent the music consumption experience of a single human. Our final model must be able to generalize, but only within the context of the user's musical taste, which be believe can be possible, given a sufficiently large listening history.

Gathering Listening History and Tags from Last.fm

Last.fm uses the term scrobble to refer to the action of playing a track at a specific moment in time. Last.fm started monitoring user listening activity with a desktop application called Scrobbler. Users install this application on their computers to monitor their activity on players such as Winamp or iTunes. With the advent of music streaming services, the possibilities for users to scrobble their music habits expanded. Integrations were developed to integrate the scrobbler into popular platforms, such as Spotify, YouTube, or SoundCloud. Mobile versions of the Scrobbler were also developed for Android and iOS devices, while open source initiatives flourished too 6 .

For us, the first step to construct the dataset was to download the user listening activity. We queried the Last.fm API to download the user's scrobbling logs, reported from 2007 to 2022. For each scrobble, we gathered the following information:

• Playback timestamp • Track name • Artist name • Track tags
Last.fm maps each track (and artist) to a list of community-contributed tags. For each track-tag mapping, Last.fm includes a count value, which indicates the popularity of the given tag for the track. Last.fm normalizes this value in the 0-100 range, so the most popular tag for a track is typically associated with a count value of 100. For example, if jazz is the most popular tag for a track, then the track might be probably associated to the following tuple (jazz, 100).

Users typically listen to their favorite tracks several times, so the amount of unique tracks played is smaller than the number of track plays. In this case, the amount of individual tracks listened in a 15-year period is about 20 000 and the number of scrobblings is, approximately, 90 000. Therefore, the user has listened to each song, approximately, 4.5 times on average.

Gathering Spotify Audio Features

After collecting the listening history and track tags from Last.fm, and identifying the unique tracks that represent the user music collection, we queried the Spotify API to collect audio features for each one of the 20 000 individual tracks.

The mapping between Last.fm and Spotify tracks was performed on an artist-track basis. For each track, the artist and track name extracted from Last.fm were used as parameters of the Spotify Search API. The Last.fm API provides a unique identifier, the MusicBrainz ID for some tracks. The Spotify API, however, does not provide this value so we could not establish an unequivocal mapping.

Filtering Missing Values

After retrieving audio features, we identified that the Spotify API had failed to provide audio features for a portion of the tracks. Similarly, Last.fm returned an empty tag list for another subset of the tracks. To prevent problems with missing values, we decided to filter out these tracks from the dataset. After filtering tracks that were missing Last.fm tags or Spotify audio features, the dataset resulted in 14 009 samples. Compared to the original 20 000 unique tracks included in the listening history, approximately 6000 songs were missing either Spotify or Last.fm data. In other words, about 70% of the tracks in the user listening history included relevant information for the study.

Dataset Comparison

Considering that the data was gathered from a single user, we explored the data to verify that the distribution of the Spotify audio features was comparable to larger, and possibly more balanced, Spotify datasets. In particular, we verified that the distribution of the features, described in Table 2 and Figure 1, was comparable to the distribution of the Spotify Audio Features Kaggle dataset. Our dataset, which we call Last.fm Single-user dataset, presents mean (µ) and standard deviation(σ) values that are comparable to the same values of the Spotify Audio Features Kaggle dataset, as illustrated in Table 3 and Figure 2. 

Experiments

We trained three commonly used machine learning models to predict Spotify audio features from Last.fm tags by using the Last.fm Single-user dataset.

Considering that predicting the audio feature values is a regression problem, we tested the following models:

• Boosted tree regressor [START_REF] Chen | Xgboost: A scalable tree boosting system[END_REF] • Bayesian Ridge Regressor [START_REF] Tipping | Sparse bayesian learning and the relevance vector machine[END_REF] • GPT-2 model (fine-tuning) [START_REF] Radford | Language Models are Unsupervised Multitask Learners[END_REF] Fig. 2 Distribution of audio features in the Spotify Audio Features Kaggle dataset.

Models

The Boosted tree regressor is a specific implementation of the XGBoost algorithm for regression tasks. This algorithm is an ensemble learning technique that combines simple multiple decision trees to create a stronger predictive model. This model has proved to be a powerful solution for classification and regression problems on high-dimensional, structured data. The Bayesian Ridge regressor is a regression model that combines the principles of Bayesian statistics with ridge regression. Compared to linear regression, which assumes that the model estimated parameters have a deterministic value, the Bayesian Ridge regressor treats the model coefficients as variables with a prior distribution. By incorporating prior distributions into the learning process, the model is able to capture uncertainty. The ridge regression technique enables the model to handle noisy, collinear, structured data.

The GPT-2 model is a transformer model. Transformers are a type of neural network architecture that has been widely used in natural language processing (NLP) tasks, such as text generation and question answering. GPT-2 has been trained on a large corpus of text, and is typically used as a language model to generate text that resembles human-written language. However, in this study, we have experimented with GPT-2 as a regressor. Rather than retraining the model from scratch, we have fine-tuned the model to behave as a regressor and predict Spotify audio features. The basic idea behind this approach is to feed a string of concatenated Last.fm tags as input to the GPT-2 model, and then use the model's output as the predicted value of a specific Spotify audio feature.

Models Parametrization

Due to the different models and input encodings that we employed in the models, we decided to limit the dimensionality of the experiments, by using mostly the default hyperparameters that the most common libraries set for these models.

For the Bayesian ridge regressor, we used the default hyperparameters set by the scikit-learn library. The training parameters for the Bayesian ridge are listed in table 4.

To fine-tune the GPT-2 model, we used the GPT2ForSequenceClassification model of the Transformers Python library. The parameters used are listed in table 5. Similarly, for the boosted tree regressor, we used the default parameters set in the xgboost Python library. We configured the boosted tree regressor model with the training parameters listed in table 6.

Last.fm Tags Input Format

The preceding models require specific input formats. In particular, the boosted tree and Bayesian Ridge regressors require structured data (e.g a set of predictor features and a set of target variables), whereas GPT-2 expects text strings as input.

Each individual sample in the Last.fm singe-user dataset corresponds to a unique track and contains the list of Last.fm tag-count tuples (e.g. [(electronic, 100), (dance, 45), ...]) and the values of Spotify audio features. The Last.fm single-user dataset was converted to the formats described in the following sections and then fed into the corresponding models.

Last.fm Tags as Table Columns

The tabular format represents the Last.fm tags as columns in a table. Each tag is defined by a column and each cell contains the count value of a tag for a track. If a tag is not present for a particular track, then cell c track,tag is 0.

Counting the total amount of Last.fm tags in the user collection resulted, initially, in more than five million tags. Under this high-dimensionality scenario, building a tabular data set, in which every row contains millions of columns (i.e. Last.fm tags) was theoretically possible, but presented scalability problems. In addition to scalability limitations, classic machine learning models might not take advantage of using the full collection of tags present in the user history. These models might even perform poorly if too many input features are provided. The reason for this is spurious relations or redundancy between input features. Models might find relations that are not real, and latent, redundant variables might be accountable multiple times, which can lead to biased outputs. Feature subject selection aims at solving these problems.

Therefore, we reduced the number of tags by picking a subset of the most relevant tags. We used a feature selection algorithm by using a basic data aggregation algorithm: grouping the data by tag, aggregating by summing the count values for each tag, ordering by the aggregated count, and finally selecting the top-K tags of the ranking. Three values of K, were used, thus generating three subsets: 100, 1000, and 10 000. We consider this reduction approach an initial approach in our experiments. For this particular aspect, dimensionality reduction algorithms, such as PCA, are good candidates for future work.

After selecting the top-K tags, the Last.fm single-user dataset was formatted as follows:

• Given that T ags K is the set of most K frequent Last.fm tags in the user listening history , where each tag ∈ T ags K . • Given that Audio is the set of Spotify audio features, where each f eat ∈ Audio. • For each track:

-X tag,track is the count value of tag for track. This value is in the 0 -100 range. -y track , f eature is the value of the audio feature y for track.

An example of this data format is provided in table 7. The main drawback of this representation is data sparsity. For most of the tracks, many columns are 0.

This format was tested with the Bayesian Ridge and the Boosted Tree regressors. 

Tokens as Table Columns

This format is also structured, but the input data is a set of tokens instead of tag count values. These tokens are the result of passing the tags, concatenated as a string, through a tokenizer. Tokenizers are crucial elements in the preprocessing of text data. A tokenizer dissects a piece of text into smaller units, called tokens. These tokens can be words, subwords, or even characters. When breaking down the text into tokens, the tokenizer assigns a unique numerical identifier to each token. These identifiers are based on the vocabulary that the tokenizer has been trained on. For example, when the tokenizer processes the "pop rock" string, the pop token might be assigned to ID 123 and the rock token might be assigned to ID 34534. Consequently, the result of tokenizing pop rock would be [123,34534].

Note that, although tokenizers are most commonly used in combination with transformer models, in this paper, we test the possibility of using a tokenizer to preprocess the data passed to the models that require structured data.

Because the tokenizer requires a string as the input, we converted the set of tags for each track into a string, in a process that we called stringification.

To stringify the tags, we concatenated Last.fm tags by following these three strategies:

• Order by count: "rock, pop". • Include tag count: "rock 2, pop 1".

• Replicate tags count times: "rock rock, pop".

In this particular case, the X values of the tabular input data are the token IDs. These tokens are obtained by passing the string of concatenated Last.fm tags through the GPT-2 tokenizer, as the following procedure explains:

• Given that S is the stringification strategy.

• Given that X L is the token vocabulary, where L is the maximum vocabulary length.

• Given that Audio is the set of Spotify audio features, where each f eat ∈ Audio. • For each track and S:

tags track,str is the string of concatenated tags produced by strategy S.

tokens track is the list of token IDs produced after tokenizing tags str . -X n,track is token ID found at position n of tokens track . Predicting Spotify Audio Features from Last.fm Tags y f eature,track is the value of the audio feature y for track.

An example of this data format is provided in table 8. Similarly to the tags tabular format, we also defined fixed values for the number of columns: 10, 1,000, and 10,000. This format was also used in the Bayesian and Boosted Tree regressors. In contrast to the previous format, this format does not present sparsity. It incorporates, however, other problems, such as the lack of normalization of the values, which do not represent scalars, but IDs. It is also harder to inspect because the meaning of each token is unknown.

Text Strings

When using transformer models, the input data is a string. To use GPT-2, we had to represent the Last.fm tags, which are defined as (tag, count) tuples, as strings. To this end, we applied the same three transformations used in the tabular tokens formats, concatenating the tags by ordering by count, by including the tag count, and by duplicating the tags.

After converting to a string, the formal definition of the input data is as follows:

• Given that X is tags represented as text.

• Given that Audio is the set of Spotify audio features, where each f eat ∈ Audio. • For each track:

-X track , n is set of tags for track, encoded as a single string.

y track , f eature is the value of the audio feature y for track.

An example of this data format is provided in table 9. 

Experiments Execution and Results

Experimental setup

The experiments tested the three models previously described, and the three values of K: 100, 1000, 10 000. In the Bayesian Ridge and Boosted tree regressors, and we tested the two structured data formats: tags and tokens as columns. In the GPT-2 model, we tested the text data format.

For the formats that required the concatenation of tags into text strings, we tested the three different stringification strategies, namely tokens-from-tagorder (where they are ordered by count), tokens-from-tag-weight (where they include the weight or count in the text) and tokens-from-repeat-tags (where they are replicated count times).

The data was split into a training set (8654 samples), a validation set(2164 samples), and a test set (2705 samples). The quality of the model was evaluated by using the root mean squared error (RMSE). This metric was computed on the test set.

Experimental results

Table 10 summarises the experiments' results. The table provides RMSE values for each experiment. Considering, the model paradigm, the feature which is best estimated, the least error, is marked in boldface.

From the obtained results, we can extract some interesting conclusions, which will summarise here. First of all, considering the targeted feature to be predicted: the Spotify feature that the models had best capability to estimate are danceability and then energy. These two provide much lower errors than the rest. The instrumentalness, however, was the feature that presented the highest deviations from the value to predict. Acousticness and valence also presented high RMSE values, but the behaviour of the models is slightly better than for instrumentalness. This can be easily explained by the original distribution of these features (see Fig. 1), their variability is bigger and their distribution is too far from normal. In the case of instrumentalness, notice that the closer the instrumentalness value is to 1.0, the greater likelihood the track contains no vocal content, and on the contrary, values closer to 0 means that they are mainly vocal. If the values above 0.5 are intended to represent instrumental tracks, but confidence is higher as the value approaches 1. It is quite normal to have songs which are either instrumental or not. Besides, in this dataset (and in most users), there would be a predominant type of music (vocal vs instrumental). Then, it seems reasonable that this feature is not so properly estimated with regression techniques, no matter the input features we use to it, but even more difficult with the Last.fm tags.

Another analysis concerns the comparison of performance among models. For that purpose, apart from Table 10, we can look at the plots in Figures 3, 4 and5. We can see clearly that GPT-2 model was the best model to predict the danceability, with a 0.145 RMSE. The Boosted tree was the best model to predict the instrumentalness, with a RMSE value of 0.29. 5 String. Given tags (rock, 3), (pop, 2), input is formatted as "rock, rock, rock, pop, pop". 6 String. Given tags (rock, 3), (pop, 2), input is formatted as "rock, pop". 7 String. Given tags (rock, 3), (pop, 2), input is formatted as "'rock' 3, 'pop' 2". In general, the three models performed similarly, with GPT-2 achieving slightly better results in danceability, acousticness, and valence. The Boosted Tree regressor was the best model to predict energy, and instrumentalness. It seems that the GPT model is able to predict those features that are easier to be represented in describing text and words interrelations, while the regressor tree might be focused on key terms.

Another perspective to analyse the results is the performance of the models considering how the input information is pre-processed. There is a key parameter that accounts for the limit of columns to be used. We can see how the two regressors achieved the best results when using the Tags as columns format, mostly with 10 000 tags. Interestingly, the Boosted Tree regressor achieved better results with tokens when estimating valence, which provides even better results than GPT-2. In the rest of the features, the regressors worked better with tags as columns.

An interesting result comes from this: using a higher number of predictor variables was not a synonym for lower error values when using tokens as columns.

Finally, we will see the relationship between the prediction of an audio feature and the type of input used as a string (stringification technique), explicitly plotted in Figure 6, which also includes the tabular representation (labelled as probs). From this point of view, we can see that the Bayesian regressor is slightly more sensitive to changes in tag formatting. This model tends to work better with data formatted by using the Tag Count stringification method. The Boosted Tree regressor presented less sensitivity to format changes, although the model generally performed better with the Tags as columns format too. The replicated stringification method consistently performed worse with the GPT-2 transformer model. The nature of its model makes them more able to work more consistently with one kind of textual representation, but when examining which input type the ranking relationship in their performance seems to be maintained, so that including the weight is the best one but doesn't outperforms the probability-based approach.

Conclusions

In this paper, we have shown how those tags provided by the community can be used for predictive main features about songs. This is innovative as we are not using the song itself, nor their audio or their lyrics and still the results are quite good. We really feel this is a promising research field.

In general, we believe that this novel approach has the potential to benefit both listeners and researchers. By combining subjective user-generated tags with objective audio features, we can gain new insights into the complex relationship between perception and audio signal in music.

Our approach also presents limitations. One limitation is the assumption of a strong relationship between Last.fm tags and Spotify features, which may not be true in all cases. Future work could explore other sources of input values, possibly related to the user context, to improve the accuracy of the predictions.

Track mapping between Last.fm and Spotify is another opportunity for research and improvement. Although Last.fm provides the MusicBrainz unique identifier, Spotify does not provide this value. The mapping was performed by using the track artist and name, but this approach resulted in about 30% of the tracks not being found on Spotify.

The standard deviation values that are displayed in figure 6 are in the 0.1-0.2 margin. Considering this factor, we argue that the RMSE values that some models manifest are, in fact, noteworthy. For example, the best value for instrumentalness is 0.291. Considering that the mean and standard deviation for all the experiments with this variable are, respectively,0.414 and0.106, the z-scores of 0.291 and 0.297 are -1.16 and -1.10. We can conclude that the 0.291 and 0.297 values are close to other and exhibit a similar level of deviation from the mean.

We consider this reduction approach an initial approach in our experiments. For this particular aspect, dimensionality reduction algorithms, such as PCA, are good candidates for future work.
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Table 2

 2 Audio features description of the Last.fm Single-user dataset.

	Feature	µ	σ
	Danceability	0.60 0.19
	Energy	0.63 0.23
	Acousticness	0.22 0.30
	Instrumentalness 0.51 0.38
	Valence	0.44 0.28

Table 3

 3 Audio features description of Spotify Audio Features Kaggle dataset.

	Feature	µ	σ
	Danceability	0.58 0.19
	Energy	0.57 0.26
	Acousticness	0.34 0.25
	Instrumentalness 0.22 0.36
	Valence	0.44 0.26

Fig. 1 Distribution of audio features in the Last.fm Single-user dataset.

Table 4

 4 Training parameters for Bayesian Ridge regressor

			Table 6 Training parameters for XGBoost
			regressor	
			Parameter	Value
	Parameter	Value	objective	reg:squarederror
			base score	0.5
	Maximum iterations 300	booster	gbtree
	Tolerance 1	1 × 10 -3	colsample bylevel	1
	alpha 1	1 × 10 -6	colsample bynode 1
	alpha 2	1 × 10 -6	colsample bytree	1
	lambda 1	1 × 10 -6	gamma 1	0
	lambda 2	1 × 10 -6	learning rate	0.3
			max delta step	0
	1 Tolerance for the stopping criteria.	max depth	6
	Table 5 Training parameters for GPT-2	min child weight	1
	regressor		estimators	200
			n jobs	12
	Parameter	Value	num parallel tree	1
			predictor	auto
	Batch size	10	random state	0
	Problem type	regression	reg alpha	0
	Epochs	10	reg lambda	1
	Sequence length (tokens) 256	scale pos weight	1
	Tokenizer	GPT-2 tokenizer	subsample	2
			tree method	auto

1 

Tolerance for the stopping criteria.

Table 7

 7 Tabular data format for Last.fm tags in XGBoost and Bayesian regressors

	Track	X electronic	X ambient	X...	yenergy	y valence	y...
	Massive Attack -Blue Lines 62	6	. . .	0.496	0.947	. . .
	The Beta Band -Squares	40	3	. . .	0.446	0.507	. . .
	. . .	. . .	. . .	. . .	. . .	. . .	. . .

Table 8

 8 Tabular data format for tokens in XGBoost and Bayesian regressors

	Track	X0	X1	X2	X...	yenergy	y valence	y...
	Massive Attack -Blue Lines 101 5099 6154 . . .	0.496	0.947	. . .
	The Beta Band -Squares	101 4522 2600 . . .	0.446	0.507	. . .
	. . .	. . .	. . .	. . .	. . .	. . .	. . .	. . .

Table 9

 9 Text data format for GPT-transformer. In this particular case, the tags have been concatenated by ordering by tag count

	Track	X	yenergy	y valence	y...
	Massive Attack -Blue Lines "hip hop, chill, bristol, . . . " 0.496	0.947	. . .
	The Beta Band -Squares	"alternative rock, folk, . . . "	0.446	0.507	. . .
	. . .	. . .	. . .	. . .	. . .

Table 10

 10 Experiment results. Cells values correspond to the RMSE value. Highlighted values correspond to the best RMSE value achieved by each model, for each variable. These tokens are passed to the model in tabular format. Columns are token1, token2, ..., token N .3 Ordered tokens in tabular format. Tags (rock, 3), (pop, 2), are converted to the "rock, pop" string, which a tokenizer converts to the list of input tokens (e.g. [101,1005,16588,1005,2531, ...]). These tokens are passed to the model in tabular format. Columns are token1, token2, ..., token N .

	M	Input format	Danceabilty Acousticness Energy Valence Instrumentalness
	Base		0.276	0.438	0.329	0.395	0.541
	Bayes 100 tags 1	0.159	0.261	0.197	0.243	0.307
	Bayes 1000 tags	0.153	0.253	0.190	0.237	0.299
	Bayes 10000 tags	0.152	0.251	0.189	0.236	0.297
	Bayes 100 tokens D 2	0.307	0.307	0.238	0.281	0.383
	Bayes 1000 tokens D	0.201	0.315	0.249	0.297	0.399
	Bayes 10000 tokens D	0.359	0.507	0.394	0.479	0.613
	Bayes 100 tokens O 3	0.191	0.305	0.237	0.282	0.376
	Bayes tokens O	0.237	0.343	0.276	0.339	0.428
	Bayes 10000 tokens O	0.237	0.343	0.276	0.339	0.428
	Bayes 100 tokens TC 4	0.191	0.304	0.236	0.281	0.380
	Bayes 1000 tokens TC	0.202	0.320	0.247	0.248	0.404
	Bayes 10000 tokens TC 0.234	0.341	0.274	0.321	0.430
	Tree	100 tags	0.154	0.257	0.188	0.240	0.302
	Tree	1000 tags	0.149	0.249	0.184	0.236	0.292
	Tree	10000 tags	0.148	0.250	0.181	0.235	0.291
	Tree	100 tokens D	0.274	0.274	0.212	0.256	0.330
	Tree	1000 tokens D	0.173	0.278	0.215	0.268	0.339
	Tree	10000 tokens D	0.172	0.276	0.217	0.266	0.342
	Tree	100 tokens O	0.179	0.294	0.225	0.271	0.350
	Tree	1000 tokens O	0.182	0.294	0.224	0.270	0.353
	Tree	10000 tokens O	0.182	0.294	0.225	0.267	0.353
	Tree	100 tokens TC	0.172	0.280	0.211	0.262	0.342
	Tree	1000 tokens TC	0.174	0.282	0.215	0.268	0.344
	Tree	10000 tokens TC 0.175	0.281	0.214	0.270	0.345
	GPT	Duplicated 5	0.157	0.244	0.193	0.245	0.322
	GPT	Ordered 6	0.149	0.237	0.188	0.235	0.297
	GPT	Tags,Counts 7	0.145	0.237	0.187	0.233	0.301
	4 Tokens in tabular format from tags and counts. Tags (rock, 3), (pop, 2), are converted to
	the "'rock' 3, 'pop' 2" string, which a tokenizer converts to the list of input tokens
	(e.g. [101,1005,16588,1005,2531, ...]). These tokens are passed to the model in tabular
	format. Columns are token1, token2, ..., token N .			

1 

Tags in tabular format. Given (rock, 3), the cell in the rock column contains 3.

2 Duplicated tokens in tabular format. Tags (rock, 3), (pop, 2), are converted to the "rock, rock, rock, pop, pop" string, which a tokenizer converts to the list of input tokens (e.g. [101,1005,16588,1005,2531, ...]).

https://developer.spotify.com/documentation/web-api/reference/#/operations/ get-audio-features

https://musicbrainz.org/

Last.fm dataset, the official song tags and song similarity collection for the Million Song Dataset, available at: http://millionsongdataset.com/lastfm.

https://en.wikipedia.org/wiki/The Echo Nest

https://www.kaggle.com/datasets/tomigelo/spotify-audio-features

https://www.last.fm/user/jimmydj2000

https://github.com/elamperti/OpenWebScrobbler
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