
HAL Id: hal-04273212
https://hal.science/hal-04273212

Preprint submitted on 8 Nov 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

GIBO: Global Integral-Based Optimization
Sebastien Labbé, Andrea del Prete

To cite this version:

Sebastien Labbé, Andrea del Prete. GIBO: Global Integral-Based Optimization. 2023. �hal-04273212�

https://hal.science/hal-04273212
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

GIBO: Global Integral-Based Optimization

Sebastien Labbe Andrea Del Prete
École normale supérieure - PSL University of Trento

Abstract

Numerical optimization has been the workhorse
powering the success of many machine learn-
ing and artificial intelligence tools over the last
decade. However, current state-of-the-art algo-
rithms for solving unconstrained non-convex op-
timization problems in high-dimensional spaces,
either suffer from the curse of dimensionality as
they rely on sampling, or get stuck in local min-
ima as they rely on gradient-based optimization.
We present a new graduated optimization method
based on the optimization of the integral of the
cost function over a region, which is incremen-
tally shrunk towards a single point, recovering
the original problem. We focus on the optimiza-
tion of polynomial functions, for which the inte-
gral over simple regions (e.g. hyperboxes) can
be computed efficiently. We show that this al-
gorithm is guaranteed to converge to the global
optimum in the simple case of a scalar decision
variable. While this theoretical result does not
extend to the multi-dimensional case, we empiri-
cally show that our approach outperforms state-
of-the-art algorithms (BFGS and CMA-ES) in
high dimensions (up to 72 decision variables)
when tested on sparse polynomial functions with
a high number of local minima.

1 Introduction

Many problems in the fields of science and engineering
can be cast as the minimization/maximization of a scalar
cost function with respect to its variables. When this func-
tion is convex and differentiable, efficient gradient-based
optimization algorithms [Rud16] can be used to find the
global minimizer/maximizer. However, when this function
is highly non-convex, gradient-based optimization can fail

Proceedings of the 27th International Conference on Artificial
Intelligence and Statistics (AISTATS) 2024, Valencia, Spain.
PMLR: Volume TBD. Copyright 2024 by the author(s).

to find a satisfying solution, and global optimization tech-
niques are necessary. For instance, this is the case in pro-
tein structure prediction [KB19], global cluster structure
optimization [Har11], and the training of deep neural net-
works [KB14].
The global optimization of non-convex functions in high
dimensional spaces is still an open problem. Current algo-
rithms can be divided in two categories. Stochastic algo-
rithm (e.g., evolutionary algorithms [BS93], Bayesian op-
timization [SLA12]) are able to explore the decision space,
but do not scale well because of the curse of dimensionality.
They indeed need to carry out a dense sampling of the whole
decision space, which scales exponentially with the num-
ber of decision variables [Han23]. Deterministic global
optimization algorithms exist, and can sometimes provide
strong optimality guarantees [JPS93; HN99; Las01]. How-
ever, they are typically limited to a specific class of func-
tions (e.g., polynomials, or Lipschitz functions) and they
also scale badly with the number of decision variables.
Our goal is thus to develop an algorithm that could over-
come these limitations. To do so, we rely on the key idea
to exploit the integral of the cost function, which, contrary
to the gradient, provides non-local information. This fact is
well-known in the literature, and it is at the core of methods
such as Gaussian Smoothing [GS22], Randomized Smooth-
ing, Gaussian Homotopy Continuation [Iwa+22] and Grad-
uated Optimization. However, such methods try to com-
pute the convolution between the function to optimize and a
smoothing kernel (typically a Gaussian kernel), which can-
not be computed analytically, and therefore needs to be ap-
proximated using sampling. Therefore, they suffer from the
curse of dimensionality, and tend to be inefficient in high
dimensions.
To overcome this issue, we restrict ourselves to functions
that are analytically integrable, which include polynomi-
als as a particularly interesting case. Moreover, rather than
computing the convolution with a Gaussian kernel, we com-
pute the convolution with a kernel that is unitary over a sim-
ple set (e.g. hyperbox) and zero elsewhere. This results in
a computationally efficient optimization method, which we
called Global Integral-Based Optimization (GIBO).
The method is implemented in Python, and evaluated on

GIBO: Global Integral-Based Optimization

several non-convex unconstrained optimization problems,
comparing it with other global optimization methods. Our
results show that GIBO has great capabilities of avoiding
local minima, outperforming the other algorithms in high
dimensions (up to 72 variables).

2 Method

2.1 Definitions

We are interested in solving unconstrained optimization
problems of the form:

minimize
𝑥

𝑓 (𝑥) (1)

where 𝑓 (⋅) ∶ ℝ𝑛 → ℝ is an arbitrary function, generally
nonconvex, and 𝑛 ∈ ℕ+ is the dimension of the pre-image
of 𝑓 . We introduce now the notation used throughout the
paper:

• 𝐴 ⊂ ℝ𝑛 is a connected and compact set over which we
integrate.

• 𝑠 ∈ ℝ+ denotes the target hypervolume (or size) of the
set 𝐴.

• 𝑆(⋅) is a function that takes a set 𝐴 and returns its hy-
pervolume (or, less formally, size).

• When 𝐴 is an axis-aligned hyper-rectangle, we
parametrize it with its center 𝑐 ∈ ℝ𝑛 and its half width
𝑤 ∈ ℝ𝑛

+. Thus, the set corresponding to a pair (𝑐, 𝑤)
is

𝐴𝑐𝑤 = {𝑦 ∈ ℝ𝑛
|𝑐 −𝑤 ≤ 𝑦 ≤ 𝑐 +𝑤}.

• 𝑆(𝑤) =
∏𝑛

𝑖=1(2𝑤𝑖) is a shortcut for the size 𝑆(𝐴𝑐𝑤).

We now describe the GIBO algorithm, which tries to find
the minimum of a given function 𝑓 over a given set 𝐴.

2.2 One-dimensional case

Before introducing our algorithm for the general multi-
variate case, we develop its core idea in the 1D case, which
gives us insight into its working principles.
Given a smooth non-convex function 𝑓 (⋅) ∶ ℝ → ℝ and
the optimization problem :

minimize
𝑥

𝑓 (𝑥) (2)

GIBO’s key idea is to minimize the integral of 𝑓 over an
interval of fixed width 𝑤 ∈ ℝ+, centered in 𝑐 ∈ ℝ:

minimize
𝑐 ∫

𝑐+𝑤

𝑐−𝑤
𝑓 (𝑥) d 𝑥 (3)

Algorithm 1 GIBO-1D
1: 𝐈𝐧𝐩𝐮𝐭(𝑓, 𝑐, 𝑤,𝑤𝑚𝑖𝑛, 𝛼𝑤)
2: while 𝑤 > 𝑤𝑚𝑖𝑛 do
3: 𝑐 ← 𝑐 − 𝛼𝑐𝜕𝑐𝐼(𝑐, 𝑤)
4: 𝑤 ← 𝑤 − 𝛼𝑤

We first solve the problem for a large interval (i.e. a large
value of𝑤) and then we slowly decrease it, each time warm-
starting the minimization with the result of the previous op-
timization, until we reach 𝑤 ≈ 0. Therefore, GIBO mini-
mizes the following two quantities in an alternate manner:

𝐼(𝑐, 𝑤) ≝ ∫

𝑐+𝑤

𝑐−𝑤
𝑓 (𝑥) d 𝑥

and
𝑆(𝐴𝑐,𝑤) = 𝑆(𝑤) = 2𝑤.

Algorithm 1 shows the GIBO algorithm in its simplest form.
The efficiency of this algorithm depends greatly on the
choice of the step sizes 𝛼𝑐 and 𝛼𝑤. One can find 𝛼𝑐 using
a line search procedure, but finding the optimal 𝛼𝑤 is more
complex.

2.3 Choosing 𝛼𝑤

To investigate the choice of 𝛼𝑤, we follow the classic
approach [SBC16] of analysing an Ordinary Differential
Equation (ODE) that is the limit of the 1D GIBO algorithm
for infinitesimal values of 𝛼𝑐 , 𝛼𝑤:

{

�̇�(𝑡) = −𝜕𝑐𝐼(𝑐(𝑡), 𝑤(𝑡))
�̇�(𝑡) = −𝛼𝑤

(4)

The first equation describes a gradient descent on the cost
function of (3), whereas the second equation describes the
decrease of the interval width 𝑤. In the following we omit
the time dependency to ease the notation. We begin by an-
alyzing how the system behaves if �̇� were proportional to
𝑤. We set 𝛼𝑤 = 𝜖𝑤, with 𝜖 being a positive constant.

{

�̇� = −𝜕𝑐𝐼(𝑐, 𝑤) = 𝑓 (𝑐 −𝑤) − 𝑓 (𝑐 +𝑤)
�̇� = −𝜖𝑤 (5)

Given this system we can deduce that if 𝑓 (𝑐+𝑤) < 𝑓 (𝑐−𝑤)
then �̇� > 0 and therefore 𝑐 moves towards 𝑐 +𝑤. Similarly,
if 𝑓 (𝑐 − 𝑤) < 𝑓 (𝑐 + 𝑤) then �̇� < 0 and therefore 𝑐 moves
towards 𝑐 − 𝑤. In any case 𝑐 moves towards the interval
extreme associated to the smaller value of 𝑓 , while𝑤moves
towards zero. It seems therefore reasonable that 𝑐 should
converge to the global minimum of 𝑓 . However, we show
that this only happens if 𝑤 does not decrease too fast. More
in detail, we prove that, if 𝜖 is sufficiently small, once 𝑐+𝑤
or 𝑐 − 𝑤 is at the global minimum, then 𝑐 keeps moving
towards it.

Sebastien Labbe, Andrea Del Prete

Theorem 1. Let 𝑐⋆ be the unique global minimizer of the
function 𝑓 . Assume the initial values of 𝑐, 𝑤 are such that
𝑐(0)−𝑤(0) ≤ 𝑐∗ ≤ 𝑐(0)+𝑤(0), and assume that 𝜀 satisfies
the following bound:

𝜀 < 2
𝑓 (𝑐⋆ + 𝑦) − 𝑓 (𝑐⋆)

|𝑦|
∀𝑦 ∈[𝑐(0) −𝑤(0) − 𝑐∗, 𝑐(0) +𝑤(0) − 𝑐∗]

(6)

Then, letting 𝑐(𝑡) and 𝑤(𝑡) evolve according to the ODE (5)
we have that:

lim
𝑡→∞

𝑐(𝑡) = 𝑐⋆

lim
𝑡→∞

𝑤(𝑡) = 0
(7)

Proof. It is straightforward to see that (𝑐∗, 0) is an equi-
librium for the system (5). To prove the convergence
of the algorithm to this equilibrium point, we prove the
asymptotic stability of the ODE (5) using Lyapunov’s di-
rect method [Lya92], which has many analogies with op-
timization theory [PS17]. We use the following candidate
Lyapunov function:

𝑉 (𝑐, 𝑤) = |𝑐 +𝑤 − 𝑐⋆| + |𝑐 −𝑤 − 𝑐⋆|

This function satisfies the two basic conditions of being al-
ways positive, except at (𝑐∗, 0), where it is null:

{

𝑉 (𝑐, 𝑤) > 0 ∀(𝑐, 𝑤) ≠ (𝑐∗, 0)
𝑉 (𝑐⋆, 0) = 0

To show that 𝑉 is indeed a Lyapunov function we need to
prove that

�̇� = 𝜕𝑐𝑉 ⋅ �̇� + 𝜕𝑤𝑉 ⋅ �̇� < 0 ∀ (𝑐, 𝑤) ≠ (𝑐∗, 0)

Because of the non-differentiability of the absolute value,
we must separately analyze three cases.

1. If 𝑐−𝑤 < 𝑐⋆ < 𝑐+𝑤, then �̇� = (1−1)�̇�+2(−𝜀𝑤) =
−2𝜀𝑤 < 0.

2. If 𝑐⋆ = 𝑐 + 𝑤, then 𝜕𝑐𝑉 depends on the sign of
�̇� + �̇� = 𝑓 (𝑐 −𝑤) − 𝑓 (𝑐⋆)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
>0

−𝜀𝑤. If 𝜀 is small enough

to satisfy (6) we have �̇� + �̇� > 0, which implies that
�̇� = −2𝜀 < 0.

3. If 𝑐⋆ = 𝑐 − 𝑤, then 𝜕𝑐𝑉 depends on the sign of
�̇� − �̇� = 𝑓 (𝑐⋆) − 𝑓 (𝑐 +𝑤)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
<0

+𝜀𝑤. If 𝜀 is small enough

to satisfy (6) we have �̇� − �̇� < 0, which implies that
�̇� = −2𝜀 < 0.

Therefore, in all three cases we have �̇� < 0, as long as 𝜀
is sufficiently small to satisfy (6). This guarantees that 𝑐
and 𝑤 converge to the minimizer of 𝑉 , i.e. 𝑐 → 𝑐⋆ and
𝑤 → 0.

This proof shows that 𝑐⋆ never leaves [𝑐−𝑤, 𝑐+𝑤] because
every time 𝑐⋆ touches one extreme, that extreme moves
away. Moreover, from the analysis of �̇� in the case where
𝑐⋆ = 𝑐 +𝑤, we obtain the following bound on 𝜀.

𝑓 (𝑐 −𝑤) − 𝑓 (𝑐⋆) > 𝜀𝑤
𝑓 (𝑐⋆ − 2𝑤) − 𝑓 (𝑐⋆) > 𝜀𝑤

𝜀 < 2
𝑓 (𝑐⋆ − 2𝑤) − 𝑓 (𝑐⋆)

2𝑤

(8)

Similarly, from the case where 𝑐⋆ = 𝑐 −𝑤, we obtain:

𝜀 < 2
𝑓 (𝑐⋆ + 2𝑤) − 𝑓 (𝑐⋆)

2𝑤
(9)

These bounds, which are equivalent to the condition (6),
tell us that 𝜀 must be upper bounded by the (normalized)
difference between 𝑓 (𝑐⋆) and any other values of 𝑓 . From
this we can infer that:

• if there are local minima that are very distant from 𝑐⋆,
but with value very close to 𝑓 (𝑐⋆), then we need to set
𝜀 very small to ensure �̇� < 0;

• if there exist multiple global minima, then the upper
bound on 𝜀 is zero, therefore the above analysis breaks
down.

In conclusion, setting �̇� = −𝜀𝑤 is troublesome for two
main reasons. First, it requires information on 𝑓 to ensure
that 𝜀 is small enough. Second, it can lead to very slow con-
vergence if the needed 𝜖 is very small. We thus look for an
alternative strategy to decrease 𝑤.

2.3.1 Tying �̇� and �̇�

As we just saw, using a �̇� proportional to 𝑤 can lead to slow
convergence. Relying on the convergence proof presented
above, we can ask what is the largest �̇� that we can use
while always satisfying the following three inequalities:

1. if 𝑐 −𝑤 < 𝑐⋆ < 𝑐 +𝑤 ∶ �̇� = 2�̇� < 0

2. if 𝑐⋆ = 𝑐 +𝑤 ∶ if �̇� + �̇� ≥ 0 ⇒ �̇� = 2�̇� < 0

3. if 𝑐⋆ = 𝑐 −𝑤 ∶ if �̇� − �̇� ≤ 0 ⇒ �̇� = 2�̇� < 0

We thus obtain the following constraints:

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

�̇� < 0

�̇� + �̇� > 0 ⟺

−�̇�≤0
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
𝑓 (𝑐⋆) − 𝑓 (𝑐 −𝑤) < �̇� < 0

�̇� − �̇� < 0 ⟺ 𝑓 (𝑐⋆) − 𝑓 (𝑐 +𝑤)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

�̇�≤0

< �̇� < 0

GIBO: Global Integral-Based Optimization

Algorithm 2 GIBO-1D
1: 𝐈𝐧𝐩𝐮𝐭(𝑓, 𝑐, 𝑤,𝑤𝑚𝑖𝑛, 𝛽, 𝜀)
2: while 𝑤 > 𝑤𝑚𝑖𝑛 do
3: 𝑐𝑑𝑜𝑡 ← 𝛼𝑐 ⋅ 𝜕𝑐𝐼(𝑐, 𝑤)
4: 𝑐 ← 𝑐 − 𝑐𝑑𝑜𝑡
5: 𝑤 ← 𝑤 − 𝛽 ⋅ 𝑎𝑏𝑠(𝑐𝑑𝑜𝑡) − 𝜀𝑤

We can infer that �̇� should be bounded in [−|�̇�|, 0]. In our
case we decide to use �̇� = −𝛽|�̇�| with 0 < 𝛽 < 1. The
advantage of this choice of �̇� is that it does not require any
prior information on 𝑓 to tune its hyper-parameters. The
only issue with this version is that the ODE could converge
to points that are only local minima, because as soon as �̇� =
0 we also have �̇� = 0. This however can be simply avoided
by adding a small linear term in the update rule:

�̇� = −𝛽|�̇�| − 𝜀𝑤

This time, 𝜀 can be set arbitrarily small without affecting
the convergence speed of the algorithm, which would be
anyway ensured by the first term. This new update rule for
𝑤 gives us Algorithm 2.

2.4 Multi-dimensional case

Based on the 1-D algorithm we now explain its extension
to the multi-variate case. First of all, we must choose a
parametrization for the set over which the integral is com-
puted. While in the 1D case this choice was trivial, in the
multi-dimensional case we have countless options. Ideally,
we would like a parametrization that allows to represent any
bounded connected set, but that is simply not possible in
practice. More realistically, we could choose a complex
parametrization (e.g., a deep neural network) that allows
to represent complex set shapes. However, by doing so,
computing the integral of 𝑓 over such a complex set would
not be efficient. Given our objective to obtain an efficiently
computable integral, we choose a simple parametrization,
which is however sufficiently expressive to give good re-
sults in practice, an axis-aligned hyper-rectangle:

𝐴𝑐𝑤 = {𝑦 ∈ ℝ𝑛
|𝑐 −𝑤 ≤ 𝑦 ≤ 𝑐 +𝑤},

parametrized by its center 𝑐 ∈ ℝ𝑛 and half-width 𝑤 ∈ ℝ𝑛
+.

Thus, the two values that GIBO minimizes become:

𝐼(𝑐, 𝑤) = ∫𝐴𝑐𝑤

𝑓 (𝑥) d𝑛𝑥

and
𝑆(𝐴𝑐𝑤) = 𝑆(𝑤) =

𝑛
∏

𝑖=1
(2𝑤𝑖).

While in the 1D case the minimization of the integral was
only changing the variable 𝑐, in the multi-dimensional case
it must change both 𝑐 and 𝑤. This is because we can now

change 𝑤 without changing the size of 𝐴𝑐𝑤. Therefore, the
minimization problem becomes:

minimize
𝑐,𝑤

𝐼(𝑐, 𝑤)

subject to 𝑆(𝑤) = 𝑠,
(10)

with 𝑠 being the set size that we wish to maintain. Instead of
dealing with a constrained optimization problem, we have
found that it works better to relax the constraint and add to
the cost a quadratic penalty on 𝑆(𝑤)−𝑠 with a large weight
𝜁 :

𝐼𝑝(𝑐, 𝑤, 𝑠) = 𝐼(𝑐, 𝑤) + 𝜁 ⋅ (𝑠 − 𝑆(𝑤))2

2.4.1 Efficient Integral Evaluation

Finally, we need to discuss the computation of the integral.
Even for analytically integral functions, in general the eval-
uation of the integral over an axis-aligned hyper-rectangle
requires 2𝑛 evaluations of the primitive function. To un-
derstand this, let us analyze an example of a generic 3D
function 𝑓 (𝑥, 𝑦, 𝑧), and assume we want to compute:

∫

�̄�

𝑧 ∫

�̄�

𝑦 ∫

�̄�

𝑥
𝑓 (𝑥, 𝑦, 𝑧) d 𝑥 d 𝑦 d 𝑧 (11)

Let us define the following primitive functions, which we
assume we can compute analytically:

𝑓𝑥(𝑥, 𝑦, 𝑧) ≜ ∫ 𝑓 (𝑥, 𝑦, 𝑧) d 𝑥

𝑓𝑦(𝑥, 𝑦, 𝑧) ≜ ∫ 𝑓𝑥(𝑥, 𝑦, 𝑧) d 𝑦

𝑓𝑧(𝑥, 𝑦, 𝑧) ≜ ∫ 𝑓𝑦(𝑥, 𝑦, 𝑧) d 𝑧

(12)

The integral (11) can be expressed as:

∫

�̄�

𝑧 ∫

�̄�

𝑦

(

𝑓𝑥(�̄�, 𝑦, 𝑧) − 𝑓𝑥(𝑥, 𝑦, 𝑧)
)

d 𝑦 d 𝑧 =

∫

�̄�

𝑧

(

𝑓𝑦(�̄�, �̄�, 𝑧) − 𝑓𝑦(𝑥, �̄�, 𝑧) − 𝑓𝑦(�̄�, 𝑦, 𝑧) + 𝑓𝑦(𝑥, 𝑦, 𝑧)
)

d 𝑧 =

𝑓𝑧(�̄�, �̄�, �̄�) − 𝑓𝑧(𝑥, �̄�, �̄�) − 𝑓𝑧(�̄�, 𝑦, �̄�) + 𝑓𝑧(𝑥, 𝑦, �̄�)−

𝑓𝑧(�̄�, �̄�, 𝑧) + 𝑓𝑧(𝑥, �̄�, 𝑧) + 𝑓𝑧(�̄�, 𝑦, 𝑧) − 𝑓𝑧(𝑥, 𝑦, 𝑧)
(13)

Therefore, evaluating the 3D integral (11) requires 23 = 8
evaluations of the primitive function 𝑓𝑧. This would make
the algorithm inefficient for large values of 𝑛. For this rea-
son, we restricted our focus on functions with this form:

𝑓 (𝑥) =
∑

𝑖
𝑎𝑖
∏

𝑗
𝑓𝑖,𝑗(𝑥𝑗),

where each 𝑓𝑖,𝑗 is an analytically integrable function that de-
pends only on a single variable 𝑥𝑗 . Note that all polynomi-
als can be represented under this form, where the functions

Sebastien Labbe, Andrea Del Prete

Algorithm 3 GIBO-implementation-nD
1: 𝐈𝐧𝐩𝐮𝐭(𝑓, 𝑐, 𝑤, 𝑠𝑚𝑖𝑛, 𝛽, 𝛾)
2: 𝑠 ← 𝑆(𝑤)
3: while 𝑠 > 𝑠𝑚𝑖𝑛 do
4: 𝑐𝑑𝑜𝑡 ← 𝛼𝑐 ⋅ 𝜕𝑐𝐼(𝑐, 𝑤)
5: 𝑐 ← 𝑐 − 𝑐𝑑𝑜𝑡
6: 𝑤 ← 𝑤 − 𝛽 ⋅ 𝑎𝑏𝑠(𝑐𝑑𝑜𝑡)
7: 𝑠 ← min(𝑆(𝑤), 𝑠∕𝛾)
8: 𝑤 ← argmin𝑥 𝐼𝑝(𝑐, 𝑥, 𝑠)

𝑓𝑖,𝑗(𝑥𝑗) are simply powers of 𝑥𝑗 . These functions allow for
an efficient evaluation of their integral, where the analyti-
cal primitive of each function 𝑓𝑖,𝑗 needs to be evaluated only
twice:

𝐼(𝑐, 𝑤) =
∑

𝑖
𝑎𝑖
∏

𝑗 ∫

𝑐𝑗+𝑤𝑗

𝑐𝑗−𝑤𝑗

𝑓𝑖,𝑗(𝑦)𝑑𝑦

2.4.2 Overview of the algorithm

Putting it all together, we summarize the multi-dimensional
version of GIBO in Algorithm 3.
Lines 4, 5, 6 are almost the same as in the 1d algorithm.
The only difference is that the corrective term −𝜖𝑤, which
ensured a non-zero decrease of 𝑤, is here replaced by line
7, which ensures that 𝑠 decreases by at least a 𝛾 factor at
each iteration. Lines 6 and 7 play the role of decreasing 𝑠
and changing 𝑤 proportionally to 𝑐𝑑𝑜𝑡. Then, in line 8 we
try to minimize the cost by changing the set’s shape with-
out changing its size. To achieve this, we perform gradient
descent with the function 𝐼𝑝(𝑐, ⋅, 𝑠), warm-started with the
current value of 𝑤.
In this algorithm we decided to decouple the minimization
with respect to 𝑤 and 𝑐 in order to first use 𝑐𝑑𝑜𝑡 to decrease
the size of 𝑤, and then to optimize the set’s shape with re-
spect to the new size. To speed up the algorithm, the min-
imization in line 8 can be limited to a certain number of
iterations of gradient descent. In our tests, we used 2 steps
of gradient descent.
We also set a lower bound for the width 𝑤 in order to better
spread out the optimization on all the variables and to stop
GIBO from optimizing some variables really well to meet
the area size constraint.
The values that we chose for the hyper-parameters are:

• 𝛼𝑐 is chosen by doing a line search along 𝜕𝑐𝐼(𝑐, 𝑤).
• 𝛽 represents the speed at which 𝑤 decreases, and we

chose values in [0.5, 0.99].
• 𝜁 represents the weight of the constraint penalty, and

we chose values in [105, 109].

Figure 1: Sampling regions for the 𝑎𝑖,𝑗 variables.

• 𝛾 represents the minimum rate of decrease for 𝑠, and
we used values in [1.001, 1.05].

3 Results

We designed our tests to see how well GIBO performed
when trying to minimize non-convex polynomial functions,
compared to other two approaches: repetitive gradient de-
scent (RGD) from random initial points, and the Covariance
Matrix Adaptation Evolution strategy (CMA-ES). In order
to test the algorithms in high dimensions, we focused on
sparse polynomial functions, which are common in many
real-world applications, such as optimal control problems.

3.1 Implementation Details

We implemented the algorithm in python [XX] and used
2 outside function calls per loop. The gradient descent
step which updates the rectangle’s center 𝑐𝑑𝑜𝑡 is com-
puted using the minimize function from the scipy library,
with the Sequential Least SQuares Programming (SLSQP)
method. The 𝑎𝑟𝑔𝑚𝑖𝑛𝑥𝐼𝑝 step is computed using the same
scipy.minimize function with the quasi-Newton method
of Broyden, Fletcher, Goldfarb, and Shanno (BFGS).
The repetitive gradient descnet (RGD) approach was im-
plemented by running the scipy.minimize function with
BFGS, repetitively starting from uniformly chosen random
points within the bounds.
CMA-ES was implemented using the fast-cma-es library
[Wol22]. The advretry.minimize functions was used.

3.2 Test functions

The cost functions are of the form 𝑓 (𝑥) = 𝑝(𝑥) + 𝑐(𝑥). The
first term is defined as 𝑝(𝑥) = Σ𝑛

𝑖=1Π
6
𝑗=1(𝑥𝑖 − 𝑎𝑖,𝑗), with

𝑎𝑖,𝑗 chosen uniformly at random in an interval of width 2
3 ,

centered around −2 + (𝑗 − 1) 45 (see Figure 1 and 2). This
term is simply the sum of 𝑛 1D 6-th order polynomial, de-
fined in a way to obtain as many local minima as possible.
The second term is instead defined as 𝑐(𝑥) = Σ𝑛−1

𝑖=1 𝑏𝑖𝑥𝑖𝑥𝑖+1.
This term introduces coupling between neighbor decision
variables. For these functions, the global minimum is con-
tained in the hyper-rectangle 𝐴𝑐=0,𝑤=2.2.

GIBO: Global Integral-Based Optimization

(a) Example 1.

(b) Example 2.
Figure 2: Example functions for p(x) (values rounded to 1
decimal place).

3.3 Test Description

Each function was optimized using 3 different algorithms.
Given a generated function 𝑓 and its set 𝐴0,2.2:

1. We first ran GIBO on 𝑓,𝐴0,2.2 to completion.

2. We then ran RGD multiple times, each time starting
from a random point in 𝐴0,2.2.

3. We then ran CMA-ES multiple times, using 𝐴0,2.2 as
bounds.

All the algorithm were given the same amount of time as
GIBO and they were all given a single core to run on an
intel core i7 8th generation with 32Gb of RAM. For each
function we also ran a forth test, simply used to normalize
the results. We randomly sampled points in 𝐴0,2.2 for the
same amount of time as GIBO and used the average and
minimum value of 𝑓 at the sampled points to normalize the
results of the other algorithms. In particular, a score of 0
means that the algorithm has found a solution equal to the
average value found by random sampling. A score of -1
instead means that the algorithm has found the same mini-
mum found by random sampling. Lower scores mean that
the algorithm performed better than random sampling.

Figure 3: Average performance of the algorithms, as a func-
tion of the number of decision variables.

Figure 4: Percentage of tests where each algorithm outper-
formed the others.

3.4 Discussion of the Results

Figure 3 shows the average performance and its standard de-
viation after running each algorithm 10 times on randomly
generated functions of different sizes. Figure 4 shows the
number of times each algorithm found the best minimum
out of all three algorithms (when they obtain equal minima
we consider that they both outperformed the others). Unsur-
prisingly, as soon as the dimension is larger than 2, all three
algorithms perform better than random sampling because
they always obtain a score < −1. This is even more the case
as the problem size increases, highlighting a growing inef-
ficiency of pure random sampling. Compared to CMA-ES

Figure 5: Relative minimum found as a function of compu-
tation time, averaged over 10 tests with 2 decision variables.

Sebastien Labbe, Andrea Del Prete

Figure 6: Relative minimum found as a function of com-
putation time, averaged over 10 tests with 23 decision vari-
ables.

Figure 7: Relative minimum found as a function of com-
putation time, averaged over 10 tests with 72 decision vari-
ables.

and RGD, GIBO struggles in small dimensions, probably
due to the relatively small number of local minima, which
allows RGD and CMA-ESto quickly find the global min-
imum. However, as the problem dimension grows, GIBO
closes the gap and even outperforms CMA-ES by dimen-
sion 25. After that GIBO continues to distance itself from
the other algorithms as the dimension grows. This shows
that GIBO is less affected by the problem dimension, and
it works better than the other algorithms when the number
of local minima becomes very large. For instance, con-
sider that in dimension 70, our test functions have roughly
370 ≈ 1033 local minima.
Figures 5, 6, 7 show how fast each algorithm converges to
its final value. We can see that in dimension 2 GIBO con-
verges slowly and does not always find the best minimum.
However, in higher dimensions, GIBO not only converges
faster, but also finds better results.

4 Conclusions

We have presented GIBO, a novel unconstrained optimiza-
tion algorithm for non-convex functions. While state-of-
the-art algorithms for global optimization rely on sampling
and local optimization, which do not scale well to high di-
mensions, we rely on the analytical integral of the cost func-

tion, which gives us rich non-local information.
We were able to minimize polynomial functions with up
to 74 variables, computing their integral over axis-aligned
hyper-rectangles. We have compared GIBO with the Co-
variance Matrix Adaptive Evolution Strategy algorithm and
a gradient-based optimization algorithm initialized through
random sampling. Our results show that GIBO outper-
formed the other algorithms for problem sizes above 20,
empirically proving the interest of this idea.
However, there are still directions that we would like to in-
vestigate to improve GIBO. First, the limitations placed on
the type of functions that can be optimized. In this paper
we have focused on the optimization of polynomial func-
tions because they are simple to integrate. A possible way
to generalize our approach to other functions could be to
use Integral Neural Networks [Kor23; LIA20], which are
networks that provide a direct evaluation of the exact in-
tegral of a function. However, this still does not solve the
issue that to integrate the function over an 𝑁-dimensional
hyperbox requires evaluating the network 2𝑁 times.
Moreover, this work has only explored hyper-boxes as re-
gions over which integrals are computed. It may however
be possible to compute integrals over more complex shapes
while maintaining computational efficiency.
Finally, the update rule for the set size can be potentially
improved to skip over many useless iterations where the po-
sition of the set does not change significantly, and thus the
set size is slowly reduced as well.

References

[XX] X. X. X. X. X.
[Lya92] A.M. Lyapunov. “The general problem of mo-

tion stability”. In: Annals of Mathematics Stud-
ies 17 (1892).

[BS93] Thomas Bäck and Hans-Paul Schwefel. “An
overview of evolutionary algorithms for param-
eter optimization”. In: Evolutionary computa-
tion 1.1 (1993), pp. 1–23.

[JPS93] Donald R Jones, Cary D Perttunen, and Bruce
E Stuckman. “Lipschitzian optimization with-
out the Lipschitz constant”. In: Journal of op-
timization Theory and Applications 79 (1993),
pp. 157–181.

[HN99] Waltraud Huyer and Arnold Neumaier. “Global
optimization by multilevel coordinate search”.
In: Journal of Global Optimization 14 (1999),
pp. 331–355.

[Las01] Jean B Lasserre. “Global optimization with
polynomials and the problem of moments”.
In: SIAM Journal on optimization 11.3 (2001),
pp. 796–817.

GIBO: Global Integral-Based Optimization

[Har11] Bernd Hartke. “Global optimization”. In: Wi-
ley Interdisciplinary Reviews: Computational
Molecular Science 1.6 (2011), pp. 879–887.

[SLA12] Jasper Snoek, Hugo Larochelle, and Ryan P
Adams. “Practical bayesian optimization of
machine learning algorithms”. In: Advances
in neural information processing systems 25
(2012).

[KB14] Diederik P Kingma and Jimmy Ba. “Adam: A
method for stochastic optimization”. In: arXiv
preprint arXiv:1412.6980 (2014).

[Rud16] Sebastian Ruder. “An overview of gradient
descent optimization algorithms”. In: CoRR
abs/1609.04747 (2016). arXiv: 1609.04747.
URL: http://arxiv.org/abs/1609.04747.

[SBC16] Weijie Su, Stephen Boyd, and Emmanuel J.
Candès. “A differential equation for model-
ing Nesterov’s accelerated gradient method:
Theory and insights”. In: Journal of Machine
Learning Research 17 (2016), pp. 1–43. ISSN:
15337928.

[PS17] Boris Polyak and Pavel Shcherbakov. “Lya-
punov Functions: An Optimization Theory Per-
spective”. In: IFAC-PapersOnLine. Vol. 50. 1.
2017, pp. 7456–7461. DOI: 10 . 1016 / j .
ifacol.2017.08.1513.

[KB19] Brian Kuhlman and Philip Bradley. “Advances
in protein structure prediction and design”. In:
Nature Reviews Molecular Cell Biology 20.11
(2019), pp. 681–697.

[LIA20] Steffan Lloyd, Rishad A Irani, and Mojtaba
Ahmadi. “Using neural networks for fast nu-
merical integration and optimization”. In: IEEE
Access 8 (2020), pp. 84519–84531. ISSN:
21693536. DOI: 10 . 1109 / ACCESS . 2020 .
2991966.

[GS22] Katelyn Gao and Ozan Sener. Generalizing
Gaussian Smoothing for Random Search. 2022.
arXiv: 2211.14721 [cs.LG].

[Iwa+22] Hidenori Iwakiri et al. Single Loop Gaussian
Homotopy Method for Non-convex Optimiza-
tion. 2022. arXiv: 2203.05717 [math.OC].

[Wol22] Dietmar Wolz. fcmaes - A Python-3 derivative-
free optimization library. Available at https:
//github.com/dietmarwo/fast-cma-es.
Python/C++ source code, with description and
examples. 2022.

[Han23] Nikolaus Hansen. The CMA Evolution Strat-
egy: A Tutorial. 2023. arXiv: 1604 . 00772
[cs.LG].

[Kor23] Ryan Kortvelesy. Fixed Integral Neural Net-
works. Tech. rep. 3. 2023, pp. 16113–16122.
DOI: 10 . 1109 / cvpr52729 . 2023 . 01546.
arXiv: arXiv:2307.14439v3.

https://arxiv.org/abs/1609.04747
http://arxiv.org/abs/1609.04747
https://doi.org/10.1016/j.ifacol.2017.08.1513
https://doi.org/10.1016/j.ifacol.2017.08.1513
https://doi.org/10.1109/ACCESS.2020.2991966
https://doi.org/10.1109/ACCESS.2020.2991966
https://arxiv.org/abs/2211.14721
https://arxiv.org/abs/2203.05717
https://github.com/dietmarwo/fast-cma-es
https://github.com/dietmarwo/fast-cma-es
https://arxiv.org/abs/1604.00772
https://arxiv.org/abs/1604.00772
https://doi.org/10.1109/cvpr52729.2023.01546
https://arxiv.org/abs/arXiv:2307.14439v3

	Introduction
	Method
	Definitions
	One-dimensional case
	Choosing w
	Tying and

	Multi-dimensional case
	Efficient Integral Evaluation
	Overview of the algorithm

	Results
	Implementation Details
	Test functions
	Test Description
	Discussion of the Results

	Conclusions

