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Abstract 30 

Humans are expert at processing speech but how this feat is accomplished remains a major 31 
question in cognitive neuroscience. Capitalizing on the concept of channel capacity, we developed 32 
a unified measurement framework to investigate the respective influence of seven acoustic and 33 
linguistic features on speech comprehension, encompassing acoustic, sub-lexical, lexical and supra-34 
lexical levels of description. We show that comprehension is independently impacted by all these 35 
features, but at varying degrees and with a clear dominance of the syllabic rate. Comparing 36 
comprehension of French words and sentences further reveals that when supra-lexical contextual 37 
information is present, the impact of all other features is dramatically reduced. Finally, we estimated 38 
the channel capacity associated with each linguistic feature and compared them with their generic 39 
distribution in natural speech. Our data point towards supra-lexical contextual information as the 40 
feature limiting the flow of natural speech. Overall, this study reveals how multilevel linguistic features 41 
constrain speech comprehension.  42 
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Introduction 43 

Humans are remarkably successful at quickly and effortlessly extracting meaning from 44 
spoken language. The classical method to study this ability and identify its processing steps is to 45 
reveal the constraints that limit speech comprehension. For example, the fact that speech 46 
comprehension drops when more than ~12 syllables per second are presented has been interpreted 47 
as evidence that at least one processing step concerns syllables extraction (Ghitza, 2013; Giraud & 48 
Poeppel, 2012; Versfeld & Dreschler, 2002). As language processing involves distinct 49 
representational and temporal scales, it is usually decomposed into co-existing levels of information, 50 
estimated with distinct linguistic features, from acoustic to supra-lexical (Christiansen & Chater, 51 
2016; Hickok & Poeppel, 2007; Rosen, 1992).  52 

Recently, neuroimaging studies have started to incorporate simultaneously acoustic and linguistic 53 
features to model brain activity (e.g., Di Liberto et al., 2015; Cross et al., 2016). However, most 54 
speech comprehension studies, i.e. studies that include behavioral measures of language 55 
comprehension, only investigate a single linguistic feature and, as a consequence, a complete 56 
picture of which processes underlie speech comprehension is still lacking. This is because there 57 
exists no common theoretical framework and no unique experimental paradigm to compare multiple 58 
linguistic features at the same time. Among the existing experimental paradigms, artificially 59 
increasing the speaking rate to generate adverse and challenging comprehension situations is a 60 
common approach. However, when speech is artificially time-compressed (Dupoux & Green, 1997; 61 
Foulke & Sticht, 1969; Garvey, 1953), all linguistic features are impacted by the modification, making 62 
it impossible to disentangle their unique impact on behavioral performance. It thus remains unknown 63 
whether the syllabic rate actually constrains comprehension, whether it is the phonemic rate or any 64 
other rate, or whether bottlenecks are present at different levels of processing.  65 

To solve this problem, we propose to rely on a concept inherited from information theory 66 
(Shannon, 1948), channel capacity, and to carefully orthogonalize multiple linguistic features to 67 
reveal their unique contribution to speech comprehension. The processing of each linguistic feature 68 
can be modeled as a transfer of information through a dedicated channel. Channel capacity is 69 
defined as the maximum rate at which information can be transmitted. Thanks to this approach, we 70 
identified and compared in a unique paradigm the potential impact of acoustic, sub-lexical, lexical 71 
and supra-lexical linguistic features on speech comprehension. 72 

First, speech is an acoustic signal characterized by a prominent peak in its envelope 73 
modulation spectrum, around 4-5 Hz, a feature shared across languages (Ding et al., 2017; Varnet, 74 
Ortiz-Barajas, Erra, Gervain, & Lorenzi, 2017). This acoustic modulation rate approximates the 75 
syllabic rate of the speech stream (Poeppel & Assaneo, 2020), which happens at around 2.5 – 8 76 
syllables per second in natural settings (Coupé, Oh, Dediu, & Pellegrino, 2019; Kendall, 2013; 77 
Pellegrino, Coupé, & Marsico, 2011). The acoustic modulation rate can serve as an acoustic guide 78 
for parsing syllables (Mermelstein, 1975). In addition to these, comprehension depends on the 79 
linguistic coding of phonemic details, necessitating parsing speech at the phonemic rate (Ghitza, 80 
2011; Giraud & Poeppel, 2012; Hyafil, Fontolan, Kabdebon, Gutkin, & Giraud, 2015; Peelle & Davis, 81 
2012; Poeppel, 2003; Stevens, 2002). We thus estimated three speech rates, the raw acoustic 82 
modulation rate, and the linguistically-motivated syllabic and phonemic rates. 83 

Second, syllabic and phonemic sub-lexical units carry linguistic information. A description of 84 
speech in terms of linguistic information rates rather than speech rates could be more appropriate 85 
to understand how language is processed (Coupé et al., 2019; Pellegrino et al., 2011; Reed & 86 
Durlach, 1998). Moreover, the information rate (in bits/s), rather than an absolute informational value 87 
(in bits), is a more relevant dimensional space (Coupé et al., 2019), in accordance with the fact that 88 
neurocognitive ressources are best characterized as temporal bottlenecks (Hasson, Yang, Vallines, 89 
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Heeger, & Rubin, 2008; Honey et al., 2012; Lerner, Honey, Katkov, & Hasson, 2014; Lerner, Honey, 90 
Silbert, & Hasson, 2011; Vagharchakian, Dehaene-Lambertz, Pallier, & Dehaene, 2012). Hence, we 91 
estimated syllabic and phonemic informational rates. 92 

Third, at the lexical and supra-lexical levels, probabilistic constraints regulate language 93 
processing. It has been suggested that speech processing depends on predictive computations to 94 
guide the interpretation of incoming information. Predictions of upcoming individual words depend 95 
on both prior knowledge and contextual information (Brodbeck, Hong, & Simon, 2018; Donhauser & 96 
Baillet, 2020; Gagnepain, Henson, & Davis, 2012; Gwilliams, Linzen, Poeppel, & Marantz, 2018; 97 
Kutas, DeLong, & Smith, 2011; Pickering & Garrod, 2007; Sohoglu, Peelle, Carlyon, & Davis, 2012). 98 
Lexical (or word) frequency, the probabilistic knowledge about word occurrences, has a strong 99 
impact on lexical access time (Brysbaert, Lange, & Wijnendaele, 2000; Ferreira, Henderson, Anes, 100 
Weeks, & McFarlane, 1996). Hence, we estimated the context-independant or static lexical surprise 101 
rate, i.e., the amount of unexpectedness of word occurrences per second (see Methods). 102 
Additionally, recent models based on deep neural networks exploit contextual lexical information to 103 
predict brain activity during natural speech processing (Caucheteux, Gramfort, & King, 2021; 104 
Goldstein et al., 2020; Heilbron, Armeni, Schoffelen, Hagoort, & de Lange, 2020; Schrimpf et al., 105 
2020). We used CamemBERT (Martin et al., 2020), a transformer model trained for the French 106 
language, to estimate the contextual lexical surprise rate, i.e., the lexical surprise rate predicted by 107 
the context provided by  each sentence. 108 

To reveal the efficiency of the speech comprehension system and estimate its capacity and 109 
limitations with unprecedented levels of granularity, we developed and combined three innovative 110 
experimental approaches: 1) First, we developed the compressed speech gating paradigm, a 111 
behavioral approach allowing an efficient estimation of the relation between time-compression and 112 
comprehension performance. For each stimulus a comprehension point could be determined, 113 
corresponding to the compression rate at which comprehension emerges. 2) Second, speech is in 114 
essence a temporal signal, and previous work has shown the relevance of considering linguistic 115 
features as a number of units communicated per unit of time (i.e., in rate, or bit/s; (Coupé et al., 116 
2019; Pellegrino et al., 2011; Reed & Durlach, 1998). Each linguistic feature was thus expressed in 117 
a number of units per second. With such an approach, and utilizing the comprehension point as the 118 
maximum rate at which information is transmitted, the channel capacity associated with each 119 
linguistic feature can be estimated. Moreover, features can also be compared directly between one 120 
another and ranked according to the magnitude of their respective influence. 3) Third, to 121 
simultaneously estimate the impact of multiple linguistic features on comprehension capacities, we 122 
developed an original stimulus selection and orthogonalization procedure. We generated two speech 123 
corpora derived from large databases of natural stimuli and characterized them at the previously 124 
described seven linguistic levels, ranging from acoustic to supra-lexical. Thanks to a careful 125 
selection, all these features were orthogonalized across stimuli, enabling a fine-grained 126 
characterization of their respective influence on speech comprehension. The combination of these 127 
three methodological advances provides optimal conditions to investigate the linguistic features 128 
governing speech processing ability and limits.  129 

Results from three behavioral experiments converge to show that multilevel linguistic 130 
features independently constrain speech comprehension, with the syllabic rate having the strongest 131 
impact. When supra-lexical contextual information is provided to participants, the impact of all other 132 
features is dramatically reduced. Estimating the channel capacity associated with each feature, we 133 
show in particular that comprehension drops when phonemic or syllabic rates are respectively above 134 
~40 Hz or ~15 Hz. Finally, comparing these estimated channel capacities with the generic distribution 135 
of the linguistic features in natural speech, we find that at original speed contextual lexical information 136 
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is already close to its channel capacity, which suggests that it is the main cognitive feature limiting 137 
the flow of natural speech. 138 

 139 

 140 
 141 
Figure 1. Experimental design and analysis pipeline. a) Stimulus selection procedure. 251 words and 100 sentences 142 
were used in experiments 1 and 2, respectively. Word stimuli were retrieved from the French Lexique database and 143 
sentence stimuli from the Web Inventory of Transcribed and Translated Talks database. Seven linguistic features were 144 
computed for each stimulus, illustrated here for an example sentence (sentences in experiment 2 were 7-words long). 145 
Features corresponded to the acoustic modulation rate (in Hz), syllabic rate (in Hz), phonemic rate (in Hz), syllabic 146 
information rate (in bit/s), phonemic information rate (in bit/s), static lexical surprise (in bit/s) and contextual lexical surprise 147 
(in bit/s). The selection procedure ensured that low correlations (all r < 0.15) across stimuli were present between features 148 
in the selected stimulus sets (see Methods). b) Behavioral paradigm. A modified gating paradigm was used for both 149 
experiments. In each trial, participants were presented with time-compressed versions of the original audio stimulus, from 150 
the most to the least compressed version, and were asked to report what they heard after each audio presentation. 151 
Behavioral responses were classified into incorrect and correct responses (incorrect: white bubbles; correct: black 152 
bubbles). At each trial, a “comprehension point” (black circle) was determined. It corresponds to the compression rate at 153 
which comprehension emerged, estimated across gates with a logistic regression model (see Methods). c) Behavioral 154 
responses were entered into a generalized linear mixed models (GLMM) to assess the respective contribution of each 155 
feature on comprehension performance. The equation includes participants and compression rates as random effects and 156 
linguistic features as fixed effects. Entering compression rates as random effects ensured that correlations between stimuli 157 
across compression rates were controlled for in the model.  158 
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Results 159 

Compressed speech gating paradigm.  160 

 We collected behavioral data from three independent experiments in which participants were 161 
required to understand successive time-compressed versions of either spoken monosyllabic words 162 
or sentences, respectively in Experiment 1, 2 and 3 (Fig. 1).21, 21 and 20 participants (age range: 163 
20–43 years; 57% of females) were respectively recruited for experiments 1, 2 and 3. At each trial, 164 
the same spoken utterance was presented at decreasing compression rates ranging from 165 
unintelligible, to challenging, to intelligible. Using regression analyses, we modeled the individual 166 
comprehension performance fluctuation at the single trial level, as a function of a mixture of features 167 
encompassing the entire linguistic hierarchy from acoustic to supra-lexical levels of description. 168 
Linguistic features were chosen based on a large body of literature identifying them as influential 169 
constraints on speech comprehension (see Introduction). Our corpus selection procedure 170 
guaranteed that feature distributions selected in the final experimental material were representative 171 
of generic stimuli statistics as derived from large databases (Fig. Supp. 1a and 1d). In experiment 1, 172 
the limitations in terms of existing monosyllabic words prevented us from reaching a stimulus set in 173 
which the syllabic information rate was representative of the original database. Specifically, both the 174 
mean and variance of the distribution across stimuli differed between the original and selected 175 
stimulus sets (Fig. Sup. 1b and 1e). We thus excluded this feature from the data analyses of 176 
experiment 1. We also ensured that within the subset of selected stimuli, correlations between 177 
linguistic features were low (all r < 0.12; Fig. Supp. 1c and 1f), thanks to an orthogonalization 178 
procedure. This is a crucial condition to be able to determine their respective impact on speech 179 
comprehension performance. Finally, by investigating each feature in a similar measurement 180 
framework we were able to directly compare their respective impact on speech comprehension.  181 

Compressed speech impairs speech comprehension.  182 

Across the different compression rates, comprehension shifted from not understood (mean 183 
performance accuracy of 0.03 % and 0.1 % for experiments 1 and 2, respectively) to perfectly 184 
understood (96.3 % and 99 %), with a characteristic sigmoid function, indicating that the range of 185 
compression rates selected was well suited to investigate speech comprehension at its limits (Fig. 186 
2). A mean performance accuracy of 50 % was observed for a compression rate of 3.5 in both 187 
experiments. At a compression rate of 5 or above, comprehension was essentially residual (< 10 %). 188 

 189 

 190 
Figure 2. Comprehension performance as a function of compression rate. Performance is expressed in proportion of 191 
correct responses. Thin dashed grey lines depict individual performance. Thick black lines indicate average performance. 192 
In experiment 1, participants were presented with the same audio stimuli (words) at ten different compression rates. In 193 
experiment 2, participants were presented with the same audio stimuli (sentences) at seven different compression rates. 194 
 195 
 196 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 10, 2021. ; https://doi.org/10.1101/2021.12.08.471750doi: bioRxiv preprint 

https://doi.org/10.1101/2021.12.08.471750
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

7 

Multifactorial linguistic constraints concurrently limit speech comprehension. 197 

We used generalized linear mixed-effects models (GLMMs) to evaluate the extent to which 198 
multiple linguistic features were predictive of behavioral performance (word or sentence 199 
comprehension). The GLMM approach enables a fine-grained characterization of the independent 200 
contributions of the different features (see Methods). 201 

In experiment 1, a GLMM with a logit link function was conducted to model spoken word 202 
comprehension. The model included participants and compression rates as random effects and five 203 
linguistic features, acoustic modulation rate, the phonemic and syllabic rates, phonemic information 204 
rate and static lexical surprise, as fixed effects (Fig. 3, left panel; table 1; see Methods). The stimuli 205 
consisting of isolated words, no contextual lexical surprise was defined. The full model accounted 206 
for 74 % of the variance of the data. The model revealed a significant effect of the acoustic 207 
modulation rate (β = -0.7 ± 0.06, p < 0.001), the phonemic rate (β = -0.25 ± 0.07, p = 0.001) and the 208 
syllabic rate (β = -1.07 ± 0.08, p < 0.001), indicating that they independently and additively impact 209 
comprehension. The model’s coefficients read as follows: !"#"$%&'(")*+,-"./+."./*"011-"02"3454,3"+"210 

6077*6." 7*-80,-*"+7*")9:.48:4*1";<"*=8>$%&'(?"@"+7*"14541*1";<"A" 207"+," 4,67*+-*"02"0,*"-.+,1+71"211 

1*54+.40," 4," -<::+;46" 7+.*B" 1*)0,-.7+.4,3" ./*" +15*7-*" 4)8+6." 02 increased syllabic rate on speech 212 
comprehension. Phonemic information rate did not significantly contribute to the model (β = -0.03 ± 213 
0.03, p = 0.258). Finally, the static lexical surprise was significantly associated with listeners’ speech 214 
comprehension (β = -0.91 ± 0.07,  p < 0.001), indicating that words’ unexpectedness worsens 215 
participants' comprehension. 216 

 217 

 218 

 219 
 220 
 221 
Figure 3.  GLMM results. Log-odds ratios of the linguistic features included in the GLMM models in experiments 222 
1 and 2. Coefficients were standardized and read as follows: in experiment 1, the odds of giving a correct response are 223 
multiplied by exp(-1.07) ≈ 0.33 ≈ are divided by 3 for an increase of one standard deviation in syllabic rate (orange dot in 224 
experiment 1). In other words, an increase of one standard deviation in syllabic rate divides the odds of understanding the 225 
word by 1/exp(-1.07) ≈ 3. Negative log-odds ratios indicate a negative effect on performance. In both models, linguistic 226 
features were entered as fixed effects. Participants and compression rates were entered as random effects. *p < 0.05; ***p 227 
< 0.001. Error bars indicate standard error of the mean across participants. 228 
 229 
 230 
 231 
 232 
 233 
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 Experiment 1 (words)  Experiment 2 (sentences)  

Fixed effects 

 Log-odds SE CI (95%) p Log-odds  SE CI (95%) p 

Intercept -0.02 0.32 -0.64 0.60 0.956 0.43 0.31 -0.17 1.04 0.161 

Acoustic modulation rate -0.70 0.06 -0.82 0.59 <0.001 -0.30 0.03 -0.35 -0.24 <0.001 

Phonemic rate -0.25 0.07 -0.39 -0.11 0.001 -0.05  0.02 -0.10 -0.01 0.022 

Syllabic rate -1.07 0.08 -1.23 -0.91 <0.001 -0.56 0.02 -0.60 -0.51 <0.001 

Phonemic information rate -0.03 0.03 -0.10 0.03 0.258 -0.12 0.02 -0.16 -0.07 <0.001 

Syllabic information rate      -0.12 0.02 -0.16 -0.08 <0.001 

Static lexical surprise -0.91 0.07 -1.04 -0.77 <0.001 -0.40  0.04 -0.48 -0.32 <0.001 

Contextual lexical surprise      -0.41 0.01 -0.44 -0.39 <0.001 

Random effects 

σ2 3.29 3.29 

τ00 
0.14 participant 

0.93 compression rate 
0.16 participant 

0.62 compression rate 

ICC 0.25 0.19 

Number of observations 

N 10 compression rate 
21 participant 

7 compression rate 
21 participant 

Observations 52710 14700 

Marginal R2 / Conditional R2 0.659 / 0.743 0.427 / 0.536 

 234 
Table 1. Results from the Generalized (binomial) Linear Mixed Models for experiments 1 and 2 with comprehension 235 
performance as dependent variable. Acoustic modulation rate, phonemic rate, syllabic rate, phonemic information rate, 236 
syllabic information rate, static lexical surprise and contextual lexical surprise as fixed effects in experiment 2 model. In 237 
experiment 1 model, syllabic information rate and contextual lexical surprise are not included. All fixed effects were z-238 
transformed to obtain comparable estimates. Random intercepts are also included for each participant. 10 and 7 239 
compression rates are included as random variables in experiment 1 and experiment 2 respectively. 21 participants took 240 
part in experiment 1 and 21 participants took part in experiment 2. The models were run on 52710 and 14700 individual 241 
responses in experiment 1 and 2 respectively. Statistical significance of predictors was assessed using likelihood ratio 242 
tests (p). 243 
 244 
 245 

Holm-corrected post-hoc comparisons were performed to identify differences among 246 
selected features in modulating spoken word comprehension. Features were ordered from the most 247 
to the least influential, and compared between neighbours. The analysis revealed no significant 248 
difference between the two most influential features, syllabic rate and static lexical surprise (β = -249 
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0.16, z = -1.58, p = 0.12). In contrast, all other pairwise comparisons were significantly different (all 250 
p < 0.05).   251 

In experiment 2, a GLMM with a logit link function was also used to model spoken sentences 252 
comprehension. The model included seven linguistic features as fixed effects (Fig. 3, right panel; 253 
table 1; see Methods). All linguistic features significantly contributed to the model and together 254 
explain 54 % of the variance of the data (Fig. 3, right panel; table 1). Similar to experiment 1, post-255 
hoc comparisons were conducted to assess differences between the relative influence of each 256 
linguistic feature on sentence comprehension. The analysis showed that the syllabic rate has the 257 
largest impact on performance, with significantly more influence than contextual lexical surprise (β 258 
= -0.14, z = -5.22,  p < 0.001). Conversely, the contrast between contextual and static lexical surprise 259 
rate did not reach significance (β = -0.01, z = -0.34,  p > 0.05). Whereas modulatory effect of the 260 
static lexical surprise and the acoustic modulation rate on comprehension was not significantly 261 
different (β = -0.10, z = -2.07, p > 0.05), this latter alter significantly more speech comprehension 262 
than syllabic information rate (β = -0.18, z = -4.87,  p < 0.001). Finally, modulation of performance 263 
induced by syllabic information rate, phonemic information rate and phonemic rate do not 264 
significantly differ (all p > 0.41). 265 
 266 
Adding contextual information reduces the influence of the other linguistic features. 267 

Comparing experiments 1 and 2, we first observed a similar profile of response weights, with 268 
a larger impact of syllabic rate and static lexical surprise, a medium influence of the acoustic 269 
modulation rate, and lower weights for the other linguistic features (Fig. 3).  270 

We assessed, for each linguistic feature, potential significant differences between experiments 1 and 271 
2. This analysis (Fig. Supp. 3) reveals that the weights associated with the four features of interest -272 
the acoustic modulation, phonemic and syllabic rates and the static lexical surprise- are significantly 273 
larger in Experiment 1 than in Experiment 2 (all p < 0.05 Holm-corrected for multiple comparison). 274 
This difference is associated with a reduction of (around or more than) 50% in experiment 2 275 
compared to experiment 1. This hence suggests that adding contextual lexical information (the main 276 
difference between experiments 1 and 2) reduces the impact of all other features on comprehension. 277 

Of note, a fifth feature investigated in this comparison -phonemic information- was associated with 278 
a non-significant weight in experiment 1, a significant but marginal weight in experiment 2, and these 279 
weights are not significantly different across experiments, which confirms the marginal impact of this 280 
linguistic feature on comprehension. 281 

 Experiment 1 (words)  Experiment 2 (sentences)  

Fixed effects 

 Log-odds SE CI (95%) p Log-odds  SE CI (95%) p 

Intercept 3.92 0.10 3.73 4.10 <0.001 3.23 0.03 3.16 3.29 <0.001 

Acoustic modulation rate -0.19 0.03 -0.25 -0.13 <0.001 -0.03 0.01 -0.06 -0.01 0.002 

Phonemic rate -0.06 0.03 -0.12 -0.01 0.027 -0.03 0.01 -0.05 -0.00 0.019 

Syllabic rate -0.21 0.03 -0.26 -0.15 <0.001 -0.05 0.01 -0.08 -0.03 <0.001 

Phonemic information rate -0.01 0.03 -0.06 0.05 0.765 0.00 0.01 -0.02 0.02 0.989 

Syllabic information rate      -0.03 0.01 -0.06 -0.01 0.002 

Static lexical surprise -0.20 0.03 -0.26 -0.15 <0.001 -0.04 0.01 -0.07 -0.02 <0.001 

Contextual lexical surprise      -0.20 0.01 -0.22 -0.18 <0.001 
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Random effects 

σ2 4.16 0.25 

τ00 0.18 participant 0.02 participant 

ICC 0.04 0.08 

Number of observations 

N 21 participant 21 participant 

Observations 5250 2100 

Marginal R2 / Conditional R2 0.025 / 0.065 0.172 / 0.241 

 282 
 283 
Table 2. Results from the binomial Linear Mixed Models for experiment 1 and 2 with comprehension point as dependent 284 
variable. Acoustic modulation rate, phonemic rate, syllabic rate, phonemic information rate, syllabic information rate, static 285 
lexical surprise and contextual lexical surprise were entered as fixed effects in experiment 2 model. In experiment 1 model, 286 
syllabic information rate and contextual lexical surprise are not included. All fixed effects were z-transformed to obtain 287 
comparable estimates. Random intercepts are also included for each participant. The models were run on 5250 and 2100 288 
individual responses in experiment 1 and 2 respectively. Statistical significance of predictors was assessed using likelihood 289 
ratio tests (p). 290 
 291 

Multilevel linguistic features consistently shift the comprehension point.  292 

Following the main GLMM analysis, we aimed at characterizing the relationship between the 293 
value of each linguistic feature at original speed (x1) – which reflects the intrinsic linguistic properties 294 
of the stimulus sets – and the comprehension point (i.e the compression rate at which participants' 295 
comprehension reaches 75 % of accuracy, see Methods). This analysis ought to confirm the 296 
individual propensity of each linguistic feature to modulate the comprehension point (see Methods). 297 
In experiment 1, a linear mixed model analysis fully reproduced the results from the main GLMM 298 
analysis (Table 2), revealing a significant impact of all features but the phonemic information rate, 299 
on comprehension (all p < 0.05). In experiment 2, the linear mixed model revealed that, apart from 300 
phonemic information rate, all other features significantly delayed the comprehension point (all p < 301 
0.05), also confirming the previous analysis. The putative effect size associated with phonemic 302 
information rate is probably negligible, even if significance has been limited by the number of 303 
observations taken into account in this  alternative model (2100 vs. 14700 behavioral responses, 304 
see Methods). Overall, these new analyses confirm the robustness of the results previously obtained 305 
with the GLMM and directly show that the linguistic properties of the non-compressed stimuli predict 306 
the maximal compression rate at which comprehension can be maintained.  307 

The syllabic rate is the strongest determinant of speech comprehension.  308 

To more directly visualise the data from both experiments, a complementary approach was 309 
adopted. For each compression rate, performance was first binned as a function of the syllabic rate 310 
(see Methods), as this feature had the strongest impact on performance in the two experiments (Fig. 311 
Supp. 3 and Fig. Supp. 4a). This visualisation highlights the major influence of the syllabic rate on 312 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 10, 2021. ; https://doi.org/10.1101/2021.12.08.471750doi: bioRxiv preprint 

https://doi.org/10.1101/2021.12.08.471750
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

11 

behavioral outcome independently of the compression rate, in both experiments. Second, data were 313 
also binned as a function of the other features, after having been stratified as a function of the syllabic 314 
rate (Fig. Supp. 3 and Fig. Supp. 4). This highlights their additional impact over the major influence 315 
of syllabic rate. This visualisation enables a better grasping of the relative influence of each linguistic 316 
feature on comprehension and confirmed graphically the genuine results obtained with the more 317 
fine-grained GLMM and LMM approaches. 318 

Stimulus repetition has no effect on comprehension performance. 319 

The compressed speech gating paradigm requires that the same speech stimulus be 320 
repeated immediately with a lower compression rate. Such a procedure could bias the 321 
comprehension point in favour of earlier comprehension, as participants might understand a little 322 
more with each repetition of the stimulus. Although this paradigm specificity is unlikely to have an 323 
impact on the main results (e.g. GLMM/LMM analyses, Fig. 3), it is possible that the comprehension 324 
point would occur later if the stimuli were not repeated immediately. 325 

In order to address this concern, we ran a control experiment (experiment 3). We recruited a 326 
new pool of twenty participants online. They performed a shorter version of experiment 2. The 327 
participants were presented with the same stimuli than in experiment 2, but at only one compression 328 
rate (*3.5), the compression rate leading to approximately 50% of comprehension in experiment 2 329 
(the inflexion point of the sigmoid curve of comprehension). Importantly, in experiment 2, this 330 
compression rate corresponded to the gate n°4, i.e., the fourth repetition of the same sentence in a 331 
row, while in the new experiment it corresponds to the first and unique presentation (gate n°1). It is 332 
hence appropriate to investigate the potential impact of stimulus repetition on comprehension. Like 333 
in experiment 2, participants were asked to repeat the sentence after each single presentation. Data 334 
were scored exactly as in experiment 2. 335 

We assessed whether stimulus repetition was biasing the comprehension point and our 336 
estimation of the channel capacities associated with each linguistic feature. We performed an 337 
independent t-test to assess the difference of performance between experiments 2 and 3. The 338 
statistical procedure revealed no significant difference between the two samples (p> 0.05, t(39) = -339 
1.8; Fig. 4), which indicates that stimulus repetition does not facilitate comprehension compared to 340 
a unique presentation nor bias the comprehension point towards earlier understanding, and hence 341 
does not bias our estimation of the channel capacities associated to each linguistic features. 342 

To summarize, the repeated presentation paradigm (experiment 2) and the unique 343 
presentation paradigm (experiment 3) yield converging estimations in terms of linguistic feature 344 
importance and channel capacity estimation. 345 

 346 

 347 

 348 
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Figure 4. Mean individual comprehension performance in experiment 2 and 3 obtained at compression rate *3.5. In both 349 
experiments, the same sentence stimuli were presented at the same compression rate (*3.5). In experiment 2, it corresponded to the 350 
4th gate (4th repetition) whereas in experiment 3, it was the first time that participants were presented with the stimuli (1rst gate). An 351 
independent t-test reveals no significant difference in performance across experiments (p > 0.05, t(39)= -1.8). This result indicates that 352 
in our original experiments, repetition does not bias the comprehension points and hence that our estimation of the channel capacities 353 
associated to each linguistic feature is accurate.  354 
 355 

Estimation of the channel capacity associated with each linguistic feature.  356 

Thanks to the compressed speech gating paradigm, we were able to derive for each feature 357 
the distribution of its values (in rate) at the comprehension point, which provided an estimation of its 358 
channel capacity (see Methods). This estimation corresponds to the value (in rate, or bit/s) at which 359 
comprehension consistently emerges. This threshold thus reflects a successful transmission of 360 
linguistic information but also determines the highest rate of information flow. As such, stimuli 361 
containing linguistic feature’s values above this threshold will exceed channel capacity leading to a 362 
drop in comprehension performance. Overall, we found that channel capacities associated with each 363 
linguistic feature investigated were on the same order of magnitude in both experiments (Fig. 5). 364 
Specifically, the estimated maximum acoustic modulation and syllabic rates were both centred 365 
around 10-15 Hz, while the phonemic rate’s channel capacity was centred around 35 Hz. 366 

 367 

 368 

 369 
Figure 5. Channel capacity associated with each linguistic feature estimated in experiments 1 (words) and 2 370 
(sentences). At each trial, the comprehension point – which corresponds to the compression rate at which comprehension 371 
emerged – was estimated (upper right panel, see Methods). As each feature significantly impacts comprehension (see Fig. 372 
3), their maximal rate before they begin to negatively impact comprehension can be estimated. Values of each linguistic 373 
feature at comprehension points were extracted and aggregated across trials. The resulting distribution provides an 374 
estimate of the channel capacity associated with each linguistic feature. Data from experiment 1 (words) is depicted in 375 
lighter colors. For each linguistic feature, the channel capacity estimated in experiments 1 and 2 are of the same order of 376 
magnitude. Dashed vertical lines indicate the median of each distribution.  377 
 378 
 379 
 380 
 381 
 382 
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Contextual information rate constrains the flow of natural speech.  383 

We finally estimated whether any linguistic feature was close to its channel capacity in the 384 
non-compressed stimulus sets. For each linguistic feature, we thus compared its value at the 385 
comprehension point (i.e. its channel capacity) and at original speed (i.e. its intrinsic statistics) and 386 
estimated a percentage of overlap across distributions.  387 

In experiment 2, for each feature, the percentage of overlap between the two distributions 388 
was below 1 %, with the exception of the contextual lexical surprise, which was reaching a ~18 % of 389 
overlap (a value significantly higher than the others; repeated-measures ANOVA: F (6,140) = 3482.3, 390 
p < 0.001; post-hoc paired t-tests: contextual lexical surprise vs. others: all p < 0.001 Tukey-391 
corrected; all other comparisons: p > 0.9 Tukey-corrected; Fig. 6, upper right panel). This indicates 392 
that it is not unusual in natural speech to observe an amount of contextual lexical surprise close to 393 
its channel capacity, while natural speech operates much farther from the channel capacity of the 394 
other linguistic features. In experiment 1, the percentage of overlap was around 5% for all features 395 
(repeated-measures ANOVA: F (3,80) = 4.9, p = 0.003; post-hoc paired t-tests, all p > 0.001 Tukey-396 
corrected; Fig. Supp. 5). 397 

 398 

 399 
Figure 6. Experiment 2 (sentences). Overlap between the channel capacity associated with each linguistic feature 400 
and their generic distribution in the stimulus set. Distribution of the linguistic features in the selected stimulus set at 401 
original speed (non-compressed, lighter color) and at the different compression rates (in grey). Superimposed is their 402 
corresponding estimated channel capacity (see Fig. 5; darker color). Upper right (grey panel): Overlap ratio between the 403 
channel capacity associated with each linguistic feature and its generic distribution at original speed. Error bars indicate 404 
standard error of the mean across participants. 405 

  406 
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Discussion  407 

In this study, we investigated the extent to which multilevel linguistic features independently 408 
constrain speech comprehension. We expressed each linguistic feature in a number of units per 409 
second and derived their associated channel capacity thanks to an innovative experimental 410 
paradigm, the compressed speech gating paradigm. Guided by previous lines of research on speech 411 
comprehension (Coupé et al., 2019; Ghitza, 2014; Giraud & Poeppel, 2012; Schrimpf et al., 2020), 412 
we focused on features encompassing the entire linguistic hierarchy, from acoustic to supra-lexical 413 
levels of description, and investigated their individual effect on trial-by-trial performance fluctuations 414 
using generalized mixed linear model (GLMM) analyses. We report convergent results using two 415 
independent sets of stimuli (words and sentences) and participant sets. Moreover, we showed the 416 
robustness of the findings across two different experimental settings (in-lab and online) and 417 
complementary analyses (GLMM and LMM). Finally, we reproduce key findings from the literature 418 
and report plausible conclusions, compatible with current theoretical models and known biological 419 
evidence.  420 

Previous work has focussed on characterizing prominent speech features relevant for 421 
comprehension. In particular, speech has been described as an inherently rhythmic phenomenon, 422 
in which linguistic information is pseudo-rhythmically transmitted in “packets” (Ghitza, 2014). The 423 
theta timescale (4-8 Hz), associated with the main acoustic modulation and the syllabic rates, has 424 
been highlighted for its main contribution to speech comprehension (Ahissar et al., 2001; Poeppel & 425 
Assaneo, 2020). Moreover, speech-specific temporal organisation is thought to be reflective of an 426 
evolutionary attempt to maximize information transfer given cognitive and neural constraints 427 
(Christiansen & Chater, 2016). Accordingly, recent experimental evidence suggests that despite 428 
multiple differences, languages are highly similar in terms of average rate of transmission of 429 
information (Coupé et al., 2019). Our work is a critical extension of these previous lines of research, 430 
by directly comparing multiple relevant features and timescales for speech comprehension into a 431 
common measurement framework.   432 

We first behaviorally confirmed human impressive ability to cope with highly speeded speech 433 
but also showed a collapse of language comprehension when spoken stimuli presentation rate 434 
exceeds a given threshold, i.e. beyond a compression factor of 3 (Dupoux & Green, 1997; Foulke & 435 
Sticht, 1969; Ghitza, 2014; Nourski et al., 2009). We show that this phenomenon can be explained 436 
as the result of a linear combination of multiple processing bottlenecks along the linguistic hierarchy. 437 
Corroborating previous findings, we show that the syllabic rate is the strongest determinant of speech 438 
comprehension.  439 

Theoretical models propose that speech is sampled in parallel at two timescales, 440 
corresponding to the syllabic and phonemic rates (Giraud & Poeppel, 2012). To date, experimental 441 
evidence only established that specific brain rhythms in the auditory cortex track the acoustic 442 
dynamics during speech perception (Gross et al., 2013; Luo & Poeppel, 2007; Peelle, Gross, & 443 
Davis, 2013). Here we directly extended these results at the perceptual level by testing the impacts 444 
of the acoustic modulation, syllabic and phonemic rates on comprehension with a tightly 445 
orthogonalized setup. Our data reveal that these three features independently constrain speech 446 
comprehension. In particular, we found that channel capacities associated with acoustic modulation 447 
and syllabic rates were at around 15 Hz while the channel capacity associated with the phonemic 448 
rate was at around 35 Hz. These values parallel theoretical considerations and neurophysiological 449 
observations (Giraud & Poeppel, 2012; Giroud et al., 2020) and provide a behavioral validation that 450 
phonemic sampling occurs at such a rate (see also (Marchesotti et al., 2020). While the acoustic 451 
modulation and syllabic rates are often reduced to one another, they are dissociable (see also 452 
(Schmidt et al., 2021), are associated with different processing bottlenecks, but both unfold at around 453 
5 Hz in natural speech and have a channel capacity of around 15 Hz. This result strongly suggests 454 
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that both low-level acoustic and language-specific rhythmic processes contribute to speech 455 
comprehension. The channel capacities estimated for higher-order linguistic features cannot be 456 
compared with anything currently known in the literature. These results provide directly testable 457 
hypotheses for future human neurophysiology experiments. 458 

French has been described as a syllable-timed language or, as Laver rightly nuanced, 459 
syllable-based (Laver, 1994). However, recent corpus-based studies revealed a high variability 460 
(Arvaniti, 2009; Barry, Andreeva, & Koreman, 2009; Jadoul, Ravignani, Thompson, Filippi, & de 461 
Boer, 2016; Wiget et al., 2010) and as a result, the idea of a strict categorical distinction between 462 
stress-timed and syllable-timed languages has now been discredited (Payne, 2021); see also 463 
(Rathcke & Smith, 2015). Critically, experimental works in various languages have highlighted the 464 
fundamental role of the syllable in speech perception, independently of the ‘category’ (syllable- or 465 
stress-based) of the investigated language, the syllabic rate being:  (1) similar across languages 466 
(Coupé et al., 2019; Ding et al., 2017; Varnet et al., 2017); (2) at the foundation of speech 467 
segmentation (Poeppel & Assaneo, 2020; Strauß & Schwartz, 2017); and (3) a strong determinant 468 
of speech comprehension across languages (Ghitza & Greenberg, 2009; Ghitza, 2012; Versfeld & 469 
Dreschler, 2002). Overall, these findings support the view that our results can be generalized to “non 470 
syllable-timed” languages. 471 

Additionally, by developing a normative measurement framework, we bridged speech 472 
perception studies with the domains of psycholinguistics, computational linguistics and natural 473 
language processing. First, our data reveal a mild adversarial effect of information rate at the 474 
phonemic and syllabic scales on speech comprehension. Whether these effects are similar across 475 
languages remains an open question. However, previous experimental evidence supports the view 476 
that the channel capacities that we estimated would reflect the general human cognitive architecture 477 
or the ecological language niche (Coupé et al., 2019; Pellegrino et al., 2011). Second, we show that 478 
the respective impact on comprehension of the syllabic rate, the static lexical surprise rate (derived 479 
from the lexical frequency) and the contextual lexical surprise rate (derived from a deep neural 480 
transformers model) are of the same order of magnitude, but with the syllabic rate having the largest 481 
influence. 482 

Among the seven factors investigated in this study, four pertain to information processing in 483 
the sense of Shannon’s theory of communication. Static and contextual lexical surprises are directly 484 
related to the participants’ linguistic expectations: both unusual words and sentence structures 485 
hinder the capacity to overcome the challenge caused by a high compression rate. Noteworthy is 486 
that phonemic and syllabic information rates also have an impact – albeit more limited – on 487 
comprehension, in addition to the lexical level. Previous studies highlighting the importance of 488 
information rate did not disentangle the syllabic rate from the syllable and lexical information. In the 489 
present study, we investigated the syllabic /phonemic functional loads, viz. the importance of 490 
correctly identifying the presented syllable /phoneme to access the target word. In other words, 491 
misperceiving a high functional load syllable /phoneme may lead to a wrong identification at the word 492 
level. Our study thus reveals the role of these phonemic and syllabic contrastive information once 493 
the lexical linguistic expectations are taken into account. 494 

We also addressed whether in natural speech and at normal speed, the intrinsic statistics 495 
associated with each linguistic feature are already close to their channel capacity. Apart from 496 
contextual information, all other features’ generic statistics are below their respective channel 497 
capacity. Based on those results, we propose that contextual lexical surprise is an important 498 
constraint regarding the rate at which natural speech unfolds. Accordingly, speech production and 499 
perception can be envisioned as a dynamical information processing cycle, in which the speaker and 500 
the listener are two elements in interaction within one closed-loop converging system (Ahissar & 501 
Assa, 2016). While in this study we approach the question from the perception side, to delimitate the 502 
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highest rate at which linguistic inputs can be processed, it would be of great interest to look at the 503 
same phenomenon from the production side and determine whether constraints imposed on speech 504 
comprehension have some equivalents in speech production. Related to this, investigating whether 505 
and which channel capacities can be extended by training could be a powerful way to optimise 506 
rehabilitation strategies in patients suffering from speech impairments. 507 

Artificially compressing speech can lead to a degradation of the quality of the linguistic 508 
information. This can cause comprehension to drop as linguistic features may most efficiently be 509 
represented at their natural rates in the auditory system. However, previous work has repeatedly 510 
demonstrated that limitations in compressed speech comprehension are not due to limited capacities 511 
in acoustic information encoding. Neural activity recorded in the primary auditory cortex can indeed 512 
track the acoustic modulation rate even well outside of the intelligibility range (Nourski et al., 2009; 513 
Pefkou, Arnal, Fontolan, & Giraud, 2017). This feat is putatively rendered possible by the short 514 
temporal integration windows of early auditory areas (Giroud et al., 2020; Lerner et al., 2014; 515 
Poeppel, 2003). Conversely, the degraded comprehension of speeded speech is thought to arise 516 
from limitations of higher order brain areas in their speech-decoding capacities (Vagharchakian et 517 
al., 2012). A further argument in favor of this interpretation is that inserting delays between segments 518 
of highly compressed speech restores comprehension (Ghitza & Greenberg, 2009), highlighting the 519 
fact that is not a problem of stimulus encoding processing but rather a limitation in the time needed 520 
to decode the information present in the acoustic signal (Pefkou et al., 2017). By using time-521 
compressed speech, we artificially increased the amount of information per time unit, leading to a 522 
drop in comprehension as a result of multilevel limited channel capacities, reflecting internal 523 
processes which can not keep up with the overflow of information. This saturation can be considered 524 
as analogous to attentional blink and psychological refractory period phenomena (Pashler, 1984; 525 
Raymond, Shapiro, & Arnell, 1992; Sigman & Dehaene, 2008) or  more complex theoretical 526 
frameworks (S Marti, King, & Dehaene, 2015; Sébastien Marti & Dehaene, 2017), which suggests 527 
that the complexity of an integration operation defines its channel capacity. Our data are in 528 
accordance with this idea, as we showed that multilevel linguistic features predict accelerated 529 
speech comprehension performance. One question we can not answer is whether this is the result 530 
of a serial chain of processes or of competing parallel processes, or both. Further work using time-531 
resolved measurements of comprehension could adjudicate between these concurrent hypotheses. 532 

Finally, while we used meaningful sentences and words derived from large databases, due 533 
to experimental conditions, we artificially accelerated the spoken material to carefully control for 534 
speed variations. This controlled experimental task may seem somewhat unnatural but we show that 535 
the compressed speech gating paradigm is sensitive to linguistic features that have been shown to 536 
influence language processing in more classical experimental settings. Importantly this paradigm 537 
allows comparing in a generic framework different linguistic features from previously distinct 538 
subfields in the language domain. While the model approach comparison used in this work only 539 
affords relative conclusions, it undoubtedly paves the way for more thorough investigations of the 540 
effects of multilevel linguistic features on speech comprehension. Thanks to an innovative paradigm 541 
and stimuli selection procedure, our approach unifies a diverse literature under the unique concept 542 
of channel capacity. Our findings highlight the relevance of using both natural speech material 543 
(despite being more methodologically constraining) and a normative measurement framework to 544 
study speech comprehension. We hope that this work will settle the ground for further explorations 545 
of speech comprehension mechanisms at the interface of multiple linguistic research fields.  546 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 10, 2021. ; https://doi.org/10.1101/2021.12.08.471750doi: bioRxiv preprint 

https://doi.org/10.1101/2021.12.08.471750
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

17 

Materials and Methods 547 

Participants.  548 

For experiment 1, 21 native French speakers (12 females, mean age 24.3 y, standard deviation ± 549 
2.6, range [20, 30]) were recruited from Aix-Marseille University. For the second experiment, 21 550 
French participants (11 females, mean age 22 y, standard deviation ± 1.6, range [20, 26]) were 551 
recruited online from Aix-Marseille University’s student group to perform the experiment through the 552 
FindingFive online platform. 20 French participants (12 females, mean age 25.5 y, standard deviation 553 
± 5.7, range [20, 43]) took part in experiment 3. This experiment was also runned online thanks to 554 
the FindingFive platform. All participants reported normal audition and no history of neurological or 555 
psychiatric disorders. They provided informed consent prior to the experimental session. Participants 556 
received financial compensation for their participation. The experiments followed the local ethics 557 
guidelines from Aix-Marseille University. 558 

 559 

Stimuli 560 

Speech stimuli. The stimuli in experiment 1 consisted of 251 monosyllabic French words drawn 561 
from a set of 1,100 monosyllabic words listed in the Lexique database (New et al., 2004). The stimuli 562 
in experiment 2 consisted in 100 seven-word-long French sentences drawn from a set of 14,000 563 
seven-word sentences listed in the Web Inventory of Transcribed and Translated Talks database 564 
(WTI3, Cettolo et al., 2012). For both experiments, the text stimuli were then synthesized in auditory 565 
stimuli using Google Cloud Text-to-Speech (Google, Mountain View, CA, 2020, the female voice, 566 
"fr-FR-Wavenet-C").  567 

Using text-to-speech technology as opposed to naturally-produced speech has the critical advantage 568 
of controlling for the relevant linguistic features. Indeed, naturally produced speech displays 569 
variability across utterances in multiple linguistic characteristics (i.e., prosody, quality of phonetic 570 
pronunciation, phonemic duration, coarticulation, local speech rate, etc) (Miller, Grosjean, & 571 
Lomanto, 1984). On the contrary, synthetic speech remains highly consistent across utterances with 572 
the same sentence being always pronounced the same way. This point is highly important when 573 
assessing channel capacity, as the different words (Experiment 1) or sentences (Experiment 2) must 574 
be pronounced similarly to be able to estimate the impact of linguistic features on comprehension 575 
across stimuli. 576 

Stimuli were selected on the basis of their characteristic linguistic features. For that, each stimulus 577 
at original speed was characterized by a vector composed of five features in experiment 1 and seven 578 
features in experiment 2. These linguistic features characterize the stimuli at different levels of 579 
processing, from acoustic to supra-lexical properties. Importantly, each feature was estimated in a 580 
number of units per second (i.e., in rate, or bit/s) to allow comparing their respective importance on 581 
speech comprehension (Coupé et al., 2019; Pellegrino et al., 2011; Reed & Durlach, 1998). The 582 
features were the following: 583 

Acoustic modulation rate: it corresponds to the main acoustic modulation rate present in the 584 
speech signal. For each stimulus (words or sentences), the wideband envelope of the speech 585 
waveform was estimated (Chandrasekaran, Trubanova, Stillittano, Caplier, & Ghazanfar, 2009; 586 
Smith, Delgutte, & Oxenham, 2002) : the raw speech waveform was band-pass filtered into 32 587 
frequency bands from 80 to 8,500 Hz with a logarithmic spacing, modelling the cochlear frequency 588 
decomposition. The absolute value of the Hilbert transform of each band-passed signal was 589 
extracted and summed across bands. The resulting envelope time-course was downsampled to 590 
1000 Hz. Then, we used Welch’s method (Virtanen et al., 2020) to estimate the power spectral 591 
density of the envelope, resulting in a modulation spectrum between 1 and 215 Hz with a 0.1 Hz 592 
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resolution. This was done for each stimulus. Finally, the center frequency of each spectrum was 593 
extracted by taking the global maximum value of each modulation spectrum. The acoustic 594 
modulation rate was expressed in Hz.  595 

Phonemic rate: it corresponds to the number of phonemes presented per second. It was computed 596 
by dividing the number of phonemes (retrieved from the canonical pronunciation provided in the 597 
Lexique database (New, Pallier, Brysbaert, & Ferrand, 2004)) by the duration of the stimulus. The 598 
phonemic rate was expressed in Hz.  599 

Syllabic rate: same as the phonemic rate but for syllables. It was also expressed in Hz.   600 

Phonemic information rate: it measures how much information, defined by Shannon’s theory of 601 
communication, is carried by each phoneme (n=38). In order to approach this level from a 602 
perspective different from the lexical level described below, we adopted a methodology based on 603 
the contrastive role of the phonemes in keeping the words different in the French lexicon. For each 604 
distinct phoneme, its contrastive role was computed as its relative functional load (Oh, Coupé, 605 
Marsico, & Pellegrino, 2015). The functional load allows calculating the relative importance of a 606 
phoneme for a given language. More specifically, it quantifies its importance in terms of avoiding 607 
homophony keeping the words distinct in the lexicon, given their frequency of usage. The phonemic 608 
information rate is consequently defined for each stimulus as the sum of its phonemic functional 609 
loads divided by its duration. This feature was estimated from written data derived from the Lexique 610 
database. The phonemic information rate was expressed in bits per second.  611 

Syllabic information rate: same as phonemic information rate but for syllables (n=3660). It was 612 
also expressed in bits per second.  613 

Static lexical surprise rate: Derived from the lexical frequency, it measures the unexpectedness of 614 
a word without reference to the surrounding context. It was computed as the negative base 2 615 
logarithm of the unconditional probability of a word -log2P(word), where P(word) is the lexical 616 
frequency of the word. The lexical frequency was the frequency of occurrence in the Lexique 617 
database. In experiment 1, the static lexical surprise was divided by the stimulus duration. In 618 
experiment 2, as stimuli were seven-word sentences, the static lexical surprise of each individual 619 
word composing the sentences was summed before dividing by the duration of the stimulus. The 620 
static lexical surprise was expressed in bits per second.  621 

Contextual lexical surprise rate: Derived from a deep neural transformers model, it measures the 622 
unexpectedness of a word given the sentence context. It was computed as the negative base 2 623 
logarithm of the conditional probability of a word -log2P(word|context), where P(word|context) is the 624 
probability of a word estimated by the french Bidirectional Encoder Representations from 625 
Transformers CamemBERT (Martin et al., 2020). This transformer network is a bidirectional-626 
attention model that uses a series of multi-head attention operations to learn context-sensitive 627 
representations for each word in an input sentence in a self-supervised way by predicting a missing 628 
word given the surrounding contexts in large text corporas. We used the HuggingFace transformers 629 
Python package (Wolf et al., 2020) to access the pre-trained CamemBERT model with no further 630 
fine-tuning. Each individual sentence stimulus was passed through CamemBERT and the pooled 631 
output was averaged over the seven words contained in the sentence. This quantity was finally 632 
divided by the stimulus duration. As a context is needed to estimate the contextual lexical surprise, 633 
it was only computed for experiment 2, where stimuli are sentences. The contextual lexical surprise 634 
was expressed in bits per second.  635 

 636 

 637 

 638 
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Procedure and Paradigm 639 

Orthogonalisation procedure to select the stimulus sets. In order to avoid collinearity issues due 640 
to correlations between features across stimuli, we developed a custom-made leave-one out iterative 641 
algorithm to select stimuli with low correlation between features. The algorithm starts with the 642 
complete original database (1,100 words in experiment 1 and 14,000 sentences in experiment 2) 643 
and computes the correlation between each pair of features (5-7 features, 10-21 correlations in total 644 
in experiment 1 and 2 respectively). Then, the algorithm performs a leave-one-out procedure: it 645 
removes one stimulus, recomputes the correlation matrix on this reduced set and estimates the 646 
specific contribution of the one stimulus on the original correlation matrix, by comparing the 647 
correlation matrices of the full and reduced stimuli sets. This processing step is repeated until all 648 
items have been removed once. The 10 percent stimuli that led to the most significant increase in 649 
correlation across features are discarded. The algorithm then iterates on this newly selected reduced 650 
stimuli set. The algorithm stops when the number of stimuli is equal to 251 (words) in experiment 1 651 
and 100 (sentences) in experiment 2. A last check ensured that the correlations between features 652 
were all below 0.15. 653 

Representativeness of the selected stimulus sets. The representativeness of the final selected 654 
stimulus sets in comparison to the original datasets was assessed for each feature. This was 655 
performed to ensure that any theoretical conclusions derived from the results obtained from a limited 656 
subset of stimuli could generalize to a larger corpus-based dataset. To do so, we computed the value 657 
of the features for the complete datasets, hence providing a relatively good estimate of the ecological 658 
distribution of each feature. Two indexes were computed to control that each feature’s distribution in 659 
the selected stimulus sets was similar to its distribution of the original datasets: i) the ratio between 660 
the means, ii) the ratio between the variances. A value close to one for both indexes indicates a 661 
good match between the distributions in the original dataset and in the selected stimulus sets. Finally, 662 
the correlation matrices between the features in the selected stimulus sets and the features in the 663 
original datasets were compared. 664 

Time compression. Time compressed versions of each stimulus were created. The audio 665 
waveforms were linearly compressed at rates 1, 2, 2.2, 2.5, 2.9, 3.5, 4.3, 5.6, 8 and 10 of the original 666 
recording in experiment 1, at rates 2, 2.5, 3, 3.5, 4, 4.5 and 5 in experiment 2 and finally at rate of 667 
3.5 for experiment 3. A compression rate of 2 indicates that the duration of the time-compressed 668 
version of the audio file is equal to half of the natural duration. The compression rates in experiment 669 
2 were adjusted on the basis of the results of experiment 1. The PSOLA algorithm implemented in 670 
the Parselmouth Python package based on PRAAT (Boersma, 2001; Jadoul, Thompson, & de Boer, 671 
2018; Moulines & Charpentier, 1990) was used to modify the duration of the audio stimulus without 672 
altering the original pitch contour. Audio stimuli were normalized in amplitude and digitized at 44.1 673 
KHz. This resulted in 2510 audio stimuli (251 words x 10 compression rates) in experiment 1, 700 674 
audio stimuli (100 sentences x 7 compression rates) in experiment 2 and 100 audio stimuli (100 675 
sentences x 1 compression rate) in experiment 3. A manual check was performed to ensure that the 676 
compression procedure did not insert salient quirks.  677 

One necessary prerequisite of our experiment is that across presentation rates all the investigated 678 
acoustic and linguistic factors are uniformly modified (i.e., that time-compression does not impact a 679 
particular feature more than the others). Previous experimental work has shown that artificially time-680 
compressed speech and natural fast speech are qualitatively different. Indeed, in the first case, the 681 
spectral content is exactly similar but the duration of the utterance is reduced. This results in an 682 
uniform modification of all spectral and temporal details. In the second case, due to restrictions on 683 
articulation, the signal is affected non-uniformly (Guiraud et al., 2018; Janse, 2004). In addition, the 684 
idea of using the modified gating paradigm was to present to the participants at each compression 685 
rate exactly the same overall quantity of information, albeit delivered at different speed/rate, so that 686 
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the channel capacity of each factor can be estimated. Hence it was crucial that the material was 687 
exactly similar across compression rates, except for the time dimension. 688 

Paradigm. All three behavioral experiments consisted in a modified version of the gating paradigm 689 
(Grosjean, 1980) using time-compressed speech stimuli.  690 

In experiment 1, participants were presented with 10 time-compressed versions of isolated words. 691 
Each trial consisted in the successive presentation of different time compressed versions of the same 692 
audio stimulus, in an incremental fashion, starting with the most compressed version of the stimulus 693 
(gate n°1) and ending with the least compressed version (either gate n°10). After each audio 694 
presentation, participants were asked to type on the keyboard what they heard and then to press 695 
enter to continue to the next gate. 696 

Experiment 2, was similar to experiment 1, apart from the fact that participants were presented with 697 
7 time-compressed versions of seven-word sentences. Each trial thus ends at gate n°7, following 698 
the presentation of the least compressed version of the sentence. In experiment 2, participants were 699 
required to repeat in the microphone at each gate what they heard and then to press enter to continue 700 
to the next gate.  701 

Experiment 3 was similar to experiment two except that only one time compressed version (x 3.5) of 702 
each sentence was presented per trial.  703 

In all experiments, participants were instructed that each auditory stimulus was meaningful and 704 
difficult to understand at the highest compression rates. In order to get familiarized with the task, 705 
participants completed three practice trials before the experiment. Experiments 1 and 2 were 706 
composed of two sessions of approximately 50 minutes each. The sessions included several breaks 707 
for the participants to stay vigilant and focussed throughout the experiment. Each participant was 708 
presented with the stimuli in a pseudo-randomized order. The experiments were self-paced and 709 
there were no time constraints. The two sessions were performed at most one week apart. 710 
Experiment 3 took 25 minutes to complete. The paradigm used in all experiments incorporated a 711 
transcription task which required participants to explicitly recognise, recall, and either reproduce 712 
each isolated word or each word of the sentence. It provided a fine-grained accuracy measure 713 
associated with focused and extensive linguistic processing. A pilot study was performed to properly 714 
select the multiple compression rates in the first experiment. For the second experiment we adjusted 715 
the compression rate based on the first experiment and another pilot study. Overall, the range of 716 
values of the different compression rates have been appropriately chosen and capture the sigmoid 717 
shape of our psychometric data. 718 

 719 

Experimental setup. Experiment 1 was implemented in Python with the expyriment package 720 
(Krause & Lindemann, 2014) and run on a ASUS UX31 laptop. The program presented the audio 721 
stimuli binaurally at a comfortable hearing level via headphones (Sennheiser HD 250 linear) and 722 
recorded the participants’ written responses. Participants came to the laboratory and performed the 723 
two sessions in an anechoic room. Due to the Covid-19 outbreak, two different sets of participants 724 
undertook experiment 2 and 3 online via the experimental platform FindingFive (FindingFive, 2019). 725 
The procedures were the same except that participants were instructed to record their answers with 726 
a microphone (instead of typing them) to optimize the duration of the experiment. 727 

 728 

Data analyses 729 

Data scoring. Speech comprehension was scored 1 if the response was correct (grammatical errors 730 
were allowed) and 0 if the response was incorrect or if no answer was given. In experiment 2 and 3, 731 
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participants’ audio responses were first transcribed using Google Cloud Speech-to-Text (Google, 732 
Mountain View, CA, 2018) and checked manually for mistakes or inconsistencies. 733 

General linear mixed model (GLMM) analysis. Participant’s responses (0: incorrect, 1: correct) 734 
were analyzed using Generalized Linear Mixed Models (GLMM; (Quené & van den Bergh, 2008) 735 
with a logistic link function using the lme4 package (Bates, Mächler, Bolker, & Walker, 2015) in R 736 
(version 3.5.1,Team, n.d.). The datasets were composed of 52,710 responses in experiment 1 (21 737 
participants x 251 words x 10 compression rates) and 102,900 responses in experiment 2 (21 738 
participants x 100 sentences x 7 words x 7 compression rates).  Acoustic modulation rate, phonemic 739 
rate, syllabic rate, phonemic information rate and static lexical surprise were entered as fixed effects 740 
in experiment 1. Participants and compression rates were entered as random effects. The model 741 
was expressed as follows  in lme4 syntax: 742 

glmer(performance ~ 1 + scale(phonemic rate) + scale(syllabic rate) + scale(phonemic information 743 
rate) + scale(static lexical surprise) + (1 | compression rate) + (1 | participant), family = binomial(link 744 
= logit)) 745 

In experiment 2, the model was the same except that syllabic information rate and contextual lexical 746 
surprise were added as fixed effects.  The model was: 747 

glmer(performance ~ 1 + scale(phonemic rate) + scale(syllabic rate) + scale(syllabic information 748 
rate) + scale(phonemic information rate) + scale(static lexical surprise) + scale(contextual lexical 749 
surprise) + (1 | compression rate) + (1 | participant), family = binomial(link = logit)) 750 

No interaction terms were estimated in the models. First, models including all the possible 751 
interactions failed to converge. Second, converging models that included a subset of interactions 752 
only very marginally increased the percentage of variance explained in the behavioral responses 753 
(marginal and conditional R2). These latter are well and best captured by the main effects. 754 

Post-hoc comparisons between the resulting estimates associated with each feature were conducted 755 
using the glht function from the multcomp package in R (Hothorn, Bretz, Westfall, & Heiberger, 756 
2016). All p-values reported were corrected for multiple comparisons using the Holm correction. 757 

Comprehension point determination. For each stimulus, the comprehension point was estimated. 758 
It is defined as the compression rate at which participants reached a 75% correct response 759 
performance, as predicted by a logistic function. Fitting procedures were performed in R using the 760 
glm function from lme4 package (Bates et al., 2015).  761 

Linear mixed model (LMM) analysis. Comprehension points were analyzed using linear mixed 762 
models (LMM). This complementary statistical analysis aimed at characterizing the relationship 763 
between the values of each feature at normal speed and the comprehension points. The rationale 764 
was that if they impact comprehension, the feature values at normal speed are predictors of the 765 
compression rate at which comprehension shifts from incorrect to correct. Whereas, in the GLMM 766 
analysis, all behavioral responses were entered in the model, the current analysis exploits only the 767 
comprehension point in each trial. The final datasets were composed of 5,271 comprehension points 768 
in experiment 1 (21 participants x 251 words) and 2,100 comprehension points in experiment 2 (21 769 
participants x 100 sentences). Acoustic rate, phonemic rate, syllabic rate, phonemic information rate 770 
and static lexical surprise were entered as fixed effects in experiment 1. Participants and 771 
compression rates were entered as random effects. The model was: 772 

lmer(comprehension point ~ 1 + scale(phonemic rate) + scale(syllabic rate) + scale(phonemic 773 
information rate) + scale(static lexical surprise) + (1 | participant)) 774 
 775 

In experiment 2, the model was the same except that syllabic information rate and contextual 776 
lexical surprise were added as fixed effects. The model was: 777 
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 778 
lmer(comprehension point ~ 1 + scale(acoustic modulation rate) + scale(phonemic rate) + 779 
scale(syllabic rate) + scale(phonemic information rate) +  scale(syllabic information rate) + 780 
scale(static lexical surprise) + scale(contextual lexical surprise) + (1 | participant)) 781 

comparison of regressors across experiments 1 and 2 782 

Following the method recommended by (Paternoster, Brame, Mazerolle, & Piquero, 1998), we 783 
statistically assessed the significance of the difference between the multiple regressors across 784 
experiments 1 and 2 in an unbiased way using their standardized estimates and standard error to 785 
the mean. Moreover, after having transformed the resulting Z-scores (standard normal distribution) 786 
into p-values, we additionally applied a Holm-correction for multiple comparisons. From the resulting 787 
statistics, we assessed, for each linguistic feature, potential significant differences between 788 
experiments 1 and 2. 789 

 790 

Determination of channel capacity associated with each linguistic feature. The processing of 791 
each linguistic feature was modeled as a transfer of information through a dedicated channel. 792 
Channel capacity is defined as the maximum rate at which information can be transmitted. For each 793 
feature, it was estimated using the comprehension point and defined as the value of the feature at 794 
the comprehension point. 795 

Overlap between channel capacity and generic features distributions. The overlapping R-796 
package (Pastore, 2018) was used to compute the percentage of overlap between the values of the 797 
channel capacity associated with each feature and their generic distribution in the stimulus set at 798 
normal speed. The method divides the density distribution into intervals and computes the 799 
cumulative sum of minimum values per interval. The result can vary between 0 and 1, where 1 800 
indicates that the two distributions are identical and 0 indicates a complete absence of overlap. The 801 
percentage of overlap between feature distributions reveal which feature is already near the upper 802 
limit of speech comprehension at normal speed, potentially limiting our ability to cope with higher 803 
speed speech. 804 

Model validation. All models were fitted in R (version 3.5.1, (R core, 2020) ) and implemented in 805 
RStudio (Racine, 2012) using the lme4 package (Bates et al., 2015). Fixed effects were z-806 
transformed to obtain comparable estimates (Schielzeth, 2010). Visual inspection of residual plots 807 
was systematically performed to assess deviations from normality or homoscedasticity. Variance 808 
inflation factors (VIF) were also checked to ensure that collinearity between fixed effects was absent. 809 
Overall, VIF values were generally close to one and no deviations from model assumptions were 810 
detected. We tested the significance of the respective full models as compared to the null models by 811 
using a likelihood ratio test (R function anova). Goodness of fit of the models were evaluated and 812 
reported using both the marginal and conditional R2.  813 

Data availability. Numerical data supporting this study will be available on GitHub: 814 
https://github.com/DCP-INS/ 815 

Code availability. Codes to reproduce the results and figures of this manuscript will be available on 816 
GitHub: https://github.com/DCP-INS/ 817 

 818 
 819 
 820 
 821 
 822 
 823 
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Supplementary Figures 824 

 825 
Figure Supplementary 1. Description of the linguistic features in the original database and selected stimulus set, 826 
for experiments 1 (a-c) and 2 (d-f). a,d) Distribution of the linguistic features in the original database (dark colors) and 827 
selected stimulus set (light colors), at original speed. b,e) Ratios of means (left) and variance (right) across stimuli, between 828 
the selected stimulus set and the database. b) Striped (green) bars highlight an outlier linguistic feature in experiment 1, 829 
for which the selected stimulus set is not representative of the original database. c,f) Correlation matrices between linguistic 830 
features in (left) the original database and (right) selected stimulus set. The selection procedure ensured that low 831 
correlations (all r < 0.15) across stimuli were present between features in the selected stimulus sets (see Methods). AMR: 832 
acoustic modulation rate, PR: phonemic rate, SR: syllabic rate, PIR: phonemic information rate, SIR: syllabic information 833 
rate, SLS: static lexical surprise and CLS: contextual lexical surprise. 834 
 835 
 836 
 837 

 838 
 839 
Figure Supplementary 2. Comparison of experiments 1 and 2. Ratios of the standardised weights estimated from 840 
experiments 1 and 2. P-values are estimated after Paternoster et al. (1998).  *p < 0.05; ***p < 0.001. 841 
 842 
 843 
 844 
 845 
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 846 
 847 
Figure Supplementary 3. Experiment 1. Comprehension performance as a function of the different linguistic 848 
features. Performance is expressed in proportion of correct responses. Upper left panel: Performance sorted as a 849 
function of the compression rate (colorscale) and the syllabic rate (y-axis). Other panels: Performance sorted as a function 850 
of the syllabic rate (colorscale) and the different linguistic features (y-axes). Data were sorted as a function of the syllabic 851 
rate as this feature had the strongest impact on comprehension performance (see Fig. 3) and could thus hide the impact 852 
of the other features in this visualisation. 853 
 854 
 855 
 856 
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 857 
 858 
Figure Supplementary 4. Experiment 2. Comprehension performance as a function of the different linguistic 859 
features. Performance is expressed in proportion of correct responses. Upper left panel: Performance sorted as a 860 
function of the compression rate (colorscale) and the syllabic rate (y-axis). Other panels: Performance sorted as a function 861 
of the syllabic rate (colorscale) and the different linguistic features (y-axes). Data were sorted as a function of the syllabic 862 
rate as this feature had the strongest impact on comprehension performance (see Fig. 3) and could thus hide the impact 863 
of the other features in this visualisation. 864 
 865 
 866 
 867 
 868 
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 869 
 870 
Figure Supplementary 5. Experiment 1 (words). Overlap between the linguistic channel capacities and their 871 
generic distribution in the stimulus set. Distribution of the linguistic features in the selected stimulus set at original 872 
speed (non-compressed, lighter color) and at the different compression rates (in grey). Superimposed is the corresponding 873 
estimated channel capacity (see Fig. 5; darker color). Lower right (grey panel): Overlap ratio between the channel 874 
capacity associated to each linguistic feature and its distribution at original speed. Error bars indicate standard error of the 875 
mean across participants.  876 
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