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Abstract

In this article, a framework to model and predict the energy performance of an adap-
tive facade is proposed. A case study of a bio-inspired concept, called Stegos, is
considered. This dynamic system manages thermal transfers through the facade by
varying the color and position of rotating flaps. A prototype of this concept that was
incorporated into a test bench was tested at a 1:1 scale and in real weather condi-
tions, while the flaps color and angle were changed manually. The objective of the
article was two-fold. First, using measurements, a reduced order model was identified
by applying the Modal Identification Method (MIM). The training phase was divided
into four consecutive steps. At each step, one day of corresponding experimental data
is used. The reduced model provided reliable predictions of heat flux values induced
by the prototype when the flaps were in a closed or fully open state. Second, a Model
Predictive Control (MPC) was implemented to indicate the optimal configurations
of the prototype for better energy efficiency. Case study used measurements of one
week in winter and determined the color and angle of the flaps, which corresponded
to the optimal solution. Closed black flaps during a day and open flaps during a night
contributed to maximum heat gain.
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1. Introduction

As the building sector accounts for 40% of total energy consumption [1], a shift
towards more efficient and sustainable buildings is required [2]. The envelope as a
separation between the indoor and the outdoor environments, is a system that dra-
matically influences the energy performance and carbon impact of a building. In
response to higher expectations in terms of efficiency and functionality, building en-
velopes adjust in real time to occupants’ needs and climatic fluctuations have emerged
in multi-functional interfaces of a wide variety [3].

Both active or passive approaches may be employed. Active solutions assume a
direct enhancement of systems that operate in a building, such as heating, lighting
or air conditioning using power or control [4] while passive strategies rely on quality
design without renewable harvesting. Overlapped concepts, such as adaptive, kinetics
or responsive envelopes are proposed by various authors [5]. These include systems
such as integrated dynamic insulation [6], dynamic shading [7], wall integrating phase
change materials (PCMs) [8], multi-functional [9] or autoreactive facades.

Modelling adaptive systems is a difficult challenge that might be backboned by
building simulation software. A comprehensive review of various modelling approaches
using state-of-the-art building simulation programs may be found in [10]. Several
adaptive systems, such as PCM-integrated walls [11, 12], adaptive glazed facade [13],
double skin facade [14] have been accurately modeled using common tools such as
EnergyPlus to predict their energy performance. However, most innovative adaptive
envelopes are not suited for the complete descriptive model, based on detailed prior
information, as physical phenomena interact in a specific and unprecedented way.
Therefore, modelling such adaptive systems and performing a control of their states
is rather complex, making it an expensive procedure in terms of computation and
labor.

To decrease the computational effort of a detailed model while maintaining its
accuracy, model reduction techniques can be employed. Several reduced order models
that consider physical phenomena in building walls can be found in the literature [15].
Among them, methods based on modal state-space representation of the system seem
to be a promising approach. The Modal Identification Method (MIM) is a reduction
method developed by Petit et al. [16]. Within this framework, the model assumes
that the field of interest is computed by the sum of the state functions that depend on
time. The coefficients of the model are determined by solving a parameter estimation
problem.
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The MIM was successfully used to solve several heat transfer problems [17, 18].
Moreover, recently the MIM approach was used to model a nonlinear behaviour of
the heat transfer induced by conduction and radiation across gray semi-transparent
media, such as glass and polymers [19]. In [20], the method was used to build a
reduced order model of the heat diffusion process in ancient building walls with the
objective of estimating their thermal diffusivity. In addition, a model-based control
technique, such as model predictive control (MPC), may be performed using a state-
space model, which is obtained by the MIM.

MPC is a robust technique that takes into account uncertainties and disturbances
in the system and handles constraints on the control inputs [21]. An MPC is widely
used for building management. A time-varying MPC controller was used to opti-
mally select an active insulation system [22]. A floor heating system was controlled
using MPC that demonstrated promising energy-saving potential [23]. A successful
implementation of MPC requires a model that accurately describes thermal dynam-
ics of a system as well as its control variables. Building simulation tools are rarely
used due to their computational effort [24, 25]. The flexibility and scalability of
data-driven methods result in their widespread utilization [26, 27]. However, it is
challenging to apply a data-driven model in MPC due to its nonlinearity and noncon-
vexity. Moreover, it is difficult to obtain a robust physical model since it is limited
by conditions for which it is trained. In addition, such models require a long train-
ing period. Resistance–capacity (RC) network is commonly employed in MPC to
lower energy demand of various systems [28, 29, 30]. The development of robust RC
model is a time-consuming process. It requires, first, to establish a simplified physi-
cal model, and then to identify unknown parameters, based on the building geometry
and materials. A reduced order model, obtained through MIM, seems a compromise
between data-driven methods and RC model. The MIM model is computationally
efficient, more flexible in terms of building properties and requires a smaller training
period [31].

The objective of this work was to propose a reduced order model to simulate
the thermal behaviour of an adaptive envelope concept which was developed and
tested using a real monitored prototype. Called Stegos, this concept of a second skin
made of hexagonal flaps manages heat transfers through building facades using two
mechanisms: a manual change of flaps position and a coating [32, 33]. Once the
reduced model was validated, MPC was developed to obtain the optimal values of
control parameters (color and position of flaps) to improve the energy efficiency of
the prototype.

This article is structured as follows: in Section 2 we present the adaptive concept,
the experimental framework and the collected data. Section 3 introduces the method-
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ology that was used to develop a thermal model of Stegos. Section 3 presents the
Modal Identification Method as well as its training and validation phase. Moreover,
the MPC and its specifications are defined. Section 4 discusses the findings. The
first part 4.1 shows the results of the training phase, the aim of which was to identify
unknown parameters of the reduced model from a chosen set of measurements. This
is followed by the validation part 4.2, where the model prediction is compared to the
experimental data. Section 4.3 describes the control techniques used to achieve real-
time energy performance of the system and the findings. Finally, we propose some
conclusions based on this work and discuss some follow up work.

2. Design of an adaptive bio-inspired building envelope

This section presents a description of a bio-inspired concept, its prototype, and
its integration into an experimental setup. A brief analysis of the measurements used
to determine factors that influence the overall performance of the system is provided.

2.1. Bio-inspired concept

The concept called Stegos was designed through a interdisciplinary work of en-
gineers, architects, designers in [33]. It was inspired by the radiative properties of
two animals: the morpho butterfly, which presents emissive adaptability on its wings
to adjust to an increase in body temperature [34]; and the chameleon for its color
changes, thermal regulation and camouflage, through the spatial modification of its
dermal crystalline network [35]. The resulting principle is a rigid lattice to which are
attached a multitude of orientable and thermo-responsive hexagonal flaps. Therefore,
the chosen deployment for the flaps has an influence on both the projected shades
on the facade, and the temperature of the flaps as they can be exposed differently to
solar radiation. Such system could be expected to be a heat collector during winter
and to protect from heat waves in summer: it was mostly designed to be placed as
a second wall skin or cladding, but could be considered for use in front of a glazing
or as an integral envelope with some adjustments. In this article, the prototype was
constructed to be coated with black and white paints successively, which are two
extreme colors in terms of their absorption coefficients, in order to better determine
the contribution of the coating on the Stegos performance. In addition, several flap
positions were considered. The influence of the angle of the flaps on the heat exchange
between a wall and Stegos was studied. The experiments were conducted while the
angle and color of the flaps were manually changed. The prototype is nondeformable,
made with hexagonal aluminium plates, fixed through a 3D-printed plastic notched
system to a solid aluminium frame support as shown in Figure 1.
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(a) (b)

Figure 1: Images of the prototype Stegos. Different states of the system: (a) flaps are closed
and black, and (b) flaps are half-open and white.

2.2. Experimental set-up and protocol

To assess the thermal behaviour of the Stegos prototype, it was incorporated into
a 1 × 1 × 1m 3 test box in real climate conditions. Apart from the tested wall, all
five walls were made of an 80 mm of polyurethane insulation inserted between two
oriented strand board (OSB). For structural purposes, aluminum profiles were added
on their outer sides between insulation and plywood, adding an air gap of 40 mm.
The sixth wall, removable as it was designed to test envelope elements, was made of a
25 mm polyurethane insulation layer, and a 10 mm sheet of plywood. The prototype
properties were a compromise between the time of prototyping, cost and complexity
of construction techniques. Under the same circumstances, the change of flaps coating
and angle positions was manually operated. The configuration of the prototype as a
skin in front of an opaque wall is presented in Figure 2.

Next, various sensors were installed to record measurements. Internal and ex-
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Figure 2: Illustration of the Stegos prototype and sensors used to obtain the experimental
data.

ternal ambient air temperature ( T int and T ext in Figure 2 ) were measured using
resistance temperature detectors (PT100). To monitor weather conditions, a pyra-
nometer (SMP3) for total incident solar irradiance j rad on the tested wall and a cup
wind sensor for wind velocity were installed on top of the test box. To monitor the
performance of the prototype a series of heat flow sensors (j syst) and temperature
sensors (T syst) (copper sensor with tangential gradients and type T thermocouples)
were placed in the tested element and the five other walls of the test bed. To assess
the behaviour of the Stegos system we considered those installed behind the Stegos
system as indicated in Figure 2. An insulation foam was added between the two
assemblies to ensure proper contact and no trapped air. Detailed characteristics of
the devices and their position can be found in [33].

A series of measurements were performed in Talence (Nouvelle Aquitaine, France)
between February and April 2022, with the proposed bio-inspired solution oriented
south. Rotating elements, or flaps, were either in a closed position (vertical, with

a rotation angle of θ = 0), fully open (as caps, at θ =
π

2
rotation angle), or in

between (at θ =
π

4
angle). For each position, the flaps were either white (c = 0)

or black (c = 1). Overall, 6 measurement campaigns were conducted, over at least
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6 days, and data were collected during both sunny and cloudy days.

2.3. Observed physical phenomena

Static building envelopes are commonly characterised using a thermal transmit-
tance noted as U-value (W/(m2 ·K)), and a solar transmittance g-value, defined as
a transmitted fraction of an incident solar energy. However, since the system deals
with time-varying behaviour, this metric would provide limited information on dy-
namic systems. Hence, we chose the measured heat flux density values denoted by
ĵ syst induced by the prototype on the opaque wall as a performance characteristic.
This allows a direct comparison with the measured heat flow and the overall assess-
ment of the system’s energy performance, and it can then be used in co-simulation
approaches.

Before setting up the reduced model methodology, we began by assessing the
driving forces, or input flux, taking into account the physical phenomena that most
influence the energy performance of the Stegos system. Based on the recorded mea-
surements, two main conclusions were drawn. First, the heat flux measured behind the
Stegos prototype correlated strongly with the solar radiation values. The Pearson
correlation coefficient between the aforementioned vector values was 0.86. Figure 3
illustrates the regularized values of the incident solar radiation ĵ rad and the measured
heat flux ĵ syst over 13 days in February. It can be noted that the values of ĵ rad,
divided by 20, correspond to the magnitudes of the system heat flux during daylight
hours.

Second, the conductive heat flux j cond, approximated as a ratio of the difference
between the exterior T̂ ext and interior T̂ int ambient temperatures and the total thermal
resistance R tot of the system, was examined. The computation of the resistance value
is shown in Appendix A. The following expression was used:

j cond(t) ≈ T̂ ext(t)− T̂ int(t)

R tot

. (1)

Figure 4 displays a time variation of the system heat flux observations versus the
calculated conductive heat flux values, showing a contribution of the conductive heat
exchange to the thermal behaviour of Stegos particularly during evening and night
hours.

Based on the aforementioned experimental observations, the solar radiation flux
and conductive heat flux can be considered here as the governing phenomena in this
system. This is further corroborated by a recent data-analysis study which concluded
that solar radiation together with outdoor temperature were the most common exter-
nal factors acting on thermal and visual comfort associated with adaptive facades [36].
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Figure 3: Comparison between experimental measurements of the heat flux, induced by the
Stegos, and the solar radiation values

Therefore, we chose to characterize the Stegos adaptive concept using the heat flux
that it induces on an opaque wall j syst , which in turn is influenced by the radiative
j rad and conductive heat exchanges j cond with the surroundings.

3. Methodology

The construction of the MIM reduced model was carried out in two phases. The
first phase was a training phase to determine the coefficients of the model using a first
set of measurements. The second was a validation process. The idea was to compare
another set of measurements against the model output, which was calculated based
on the estimated coefficients.

3.1. Reduced model formulation

The reduced model is based on a state-space representation defined by:

∂x i

∂t
= F i i xi + G 1i · Q cond ( t , θ , c , v ) + G 2i · Q rad ( t , θ , c , v ) , i = 1 , . . . , N ,

(2a)

j syst ( t ) =
N∑
i=1

H i xi ( t ) , (2b)
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Figure 4: Comparison between experimental measurements of the heat flux, induced by the
Stegos, and the conductive heat flux values

where by definition N is the order of the model, F =
[
F i i

]
∈ RN ×N is a diagonal

state matrix, G =
[
G i j

]
∈ RN × 2 is a matrix associated with the input data, and

H =
[
H i

]
∈ RN is a matrix associated with the output data. Moreover, x i ( t )

is a state variable, which is defined on a domain Ω t : t ∈ [ 0 , τmax ] , where τmax

is the time horizon of the computations. It should be added that the internal states
x i ( t ) do not have physical meaning.

The intermediate inputs of the model are the modified time varying incident solar
radiation flux Q rad ( t ) and the conduction flux Q cond ( t ) induced by the system,
which were modeled as follows:

Q cond ( t ) = K 1 ( θ , c , v ) × j cond ( t ) , (3a)

Q rad ( t ) = K 2 ( θ , c , v ) × j rad ( t ) , (3b)

where functions K 1 ( θ , c , v ) and K 2 ( θ , c , v ) act as regulators of change in sur-
roundings. Thus, the proposed state-space model uses as model inputs the measure-
ments of incident solar radiation heat flux j rad ( t ), the exterior T ext ( t ) and interior
T int ( t ) air temperature, the wind velocity values v ( t ). The output of the model
j syst ( t ) is the heat flux generated by the system.

The model should be able to describe potential time-varying geometrical trans-
formations (the change of angle of rotation of the flaps θ), emissive properties (the
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change of color of the flaps c), and the variation in the wind velocity v which impacts
the heat transfer coefficient at the surface of the flaps. Therefore, it is assumed that
the angle of the flaps θ and the color of the flaps c are continuous variables that are
defined on the following domains:

θ ∈
[
0 ,

π

2

]
, c ∈

[
0 , 1

]
. (4)

Moreover, to consider the aforementioned factors, the functions regulators are mod-
elled empirically as:

K 1 ( θ , c , v ) = 1 + g ( v ) · f 1 ( θ ) , (5a)

K 2 ( θ , c , v ) = γ ( c ) · f 2 ( θ ) + ϑ · f 1 ( θ ) , (5b)

where several hypotheses should be taken into account. First, a function γ ( c ), which
activates the change of color, is considered. It should be noted that this function
modifies only the radiative flux, since the color of the flaps has a large impact on how
Stegos absorbs solar radiation. Thus, the following conditions were imposed on the
function:

γ ( c ) =

{
1 , when c− black ,

1 − γ 0 , when c− white ,

where γ 0 is a scalar that needs to be determined.
Next, functions f 1 ( θ ) and f 2 ( θ ), responsible for the rotation of the flaps, will

be discussed. If all flaps are considered to be closed ( θ = 0 ), the influence of the
wind on the opaque wall may be neglected. However, in the closed state the color of
the flaps strongly interacts with radiative heat exchange. In contrast, if the flaps are

fully open θ =
π

2
, the color does not alter the uptake of solar radiation. However, it

will affect the exchange between the outside air and the system. Thus, the following
limits may be applied:

f 1 ( θ ) =

{
0 , θ = 0 , when closed ,

1 , θ =
π

2
, when fully open ,

f 2 ( θ ) =

{
1 , θ = 0 , when closed ,

0 , θ =
π

2
, when fully open .

(6)

It can be seen that Eq. (6) only provides the values of functions f 1 and f 2 at two
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points. For the
[
0 ,

π

2

]
interval, the following empirical model is proposed:

f 1 ( θ ) = a 2 θ
2 + a 1 θ , (7a)

f 2 ( θ ) = − 2

π
θ + 1 , (7b)

where the coefficients a 2 and a 1 need to be identified. Finally, the expression of the
g ( v ) function, associated with wind velocity v, is suggested as follows:

g ( v ) = β 0 + β 1 · v , (8)

where β 0 and β 1 are the scalar parameters to be determined. The linear approx-
imation may be justified from the correlation between the exterior convective heat
transfer coefficient and wind speed [37].

The differential equations Eq. (2a) and (2b) were solved by using ode15s from
the Matlab™ environment, which is a variable-step, variable-order solver based on the
numerical differentiation formulas of orders 1 to 5 [38].

3.2. Training phase

The reduced MIM model is defined by the coefficients of the F , G and H matrices
and the parameters integrated into the K 1 ( θ , c , v ) and K 2 ( θ , c , v ) functions,
namely γ 0 , ϑ , β 0 , β 1 , a 1 and a 2 . Overall, for a defined order N , a total of
4 × N + 6 parameters need to be identified (N elements of F plus 2 × N of G
plus N of H + six parameters for functions K 1 and K 2 ). The estimation of these
parameters was carried out by solving the following optimization problem:

P opt = argmin
P

JRM (P ) ,

where JRM is the cost function defined by the error between the model predictions
and the experimental observations of the system heat flux ĵ syst ( t ) :

JRM (P ) =
N t∑
m=1

(
j syst (P , tm ) − ĵ syst ( tm )

) 2

, (9)

where tm is a time at which measurements of the heat flux ĵ syst ( t ) induced by the
system are taken, N t the total measurements made during the experimental setup
and P is the vector of the unknown parameters to be retrieved:

P =
(
F i i , G i j , H i , γ 0 , ϑ , β 0 , β 1 , a 1 , a 2

)
, ∀ i = 1 , . . . , N , j = 1 , 2 .

(10)
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Moreover, three constraints are imposed together with the optimization problem and
the hypotheses stated on function regulators K 1 ( θ , c , v ) and K 2 ( θ , c , v ). First,
all the elements of the diagonal matrix F must be real negative. This ensures the
stability of the system. Next, to ensure controllability, G must contain only non-zero
lines. The third condition ensures the observability of the model. To attain it, H
must contain only non-zero elements. The constraints may be formulated as follows:

F i i < 0 , G i ̸= 0 , H i j ̸= 0 , ∀ i = 1 , . . . , N , j = 1 , 2 . (11)

The minimization of the cost function JRM is performed through the ga func-
tion from the Matlab™ environment. This method is based on the genetic algorithm
described in [39], which was inspired by natural selection, the process that drives
biological evolution.

3.3. Validation phase

After the training phase, the set of parameters defining the MIM reduced model
are known. The reliability of the model can then be evaluated. The errors between the
model predictions j syst ( t ) and the experimental observations ĵ syst ( t ) are computed
for a set of data different from the one used for the training phase. Three metrics
are defined for an accurate assessment of the reliability. First metric ε 2 ( t ) computes
residuals between the computed and measured values of the heat flux. Secondly,
the root mean square error (RMSE) ε 2 is calculated. Furthermore, the coefficient of
variation of the root mean square error (CV (RMSE)) ε ∗

2 is computed. According to
ASHRAE Guideline 14–2014 [40], a building model is accurately calibrated if the ε ∗

2

value is below the acceptance threshold of 30%. In addition, the hourly normalized
mean deviation (NMBE), or ε ∗∗

2 is provided. It should be added that values of ε ∗∗
2

within ± 15% indicate a satisfactory calibration of the model [40].

3.4. Model predictive control

Once the reliability of the model has been validated, the MIMmodel can be used to
compute the predictions of the physical phenomena and particularly to perform Model
Predictive Control (MPC). The latter is one of the most popular control methods and
is based on optimal control strategy [41]; it is well suited to the MIM model. The
idea is to use a model of the system to predict its behaviour and then choose the best
control strategy in terms of cost function within certain constraints.

The current Stegos prototype does not have integrated controllable actuators.
Nevertheless, the positions of the flaps can be changed manually, and the measure-
ments show how the heat transmitted by the Stegos system varies depending on the
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Figure 5: A simplified illustration of the implementation of the MPC, when M = 2

positions of the flaps. Therefore, if the Stegos incorporates actuators that would
rotate the flaps all together, it could be turned into a fully automatic system that
manages the solar gains. Predictive feature could be then implemented. Thus, it is
assumed that the angle θ and the color c of the flaps may be changed depending on
the requirements set by engineers or occupants. The continuous control parameters
are:

P =
(
θ , c

)
,

which are defined in Eq. (4). The control is performed over a prediction time horizon
τmax, which could be one day, several days or weeks. The whole time interval was
divided into N τ sampling intervals with a time step ∆ τ , or τmax = N τ · ∆ τ .
Thus, the time variable belongs to the following set:

t ∈
[
τ r , τ r+1

]
, τ r = r ∆τ , r ∈

{
1 , . . . , N τ

}
.

The control horizon τM corresponds to the number of sampling periods over which
the control is optimized at each time step. Thus, at the r-th sampling instant, the
optimal parameters P opt

r are obtained from the solution to the following minimization
problem:

P opt
r = arg min

θ r |M , c r |M
JMPC ( θ r |M , c r |M ) , (12)

where vectors θ r |M and c r |M contain the respective M control parameter values:

θ r |M =
(
θ r , θ r+1 , . . . , θ r+M−1

)
,

c r |M =
(
c r , c r+1 , . . . , c r+M−1

)
.
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The following cost function is minimized:

JMPC ( θ r |M , c r |M ) =
N τ∑

r = 1

( ∫ τ r+1

τ r

(
Z ( θ r , c r , t ) − Z trg ( t )

) 2

d t

)
(13)

+ λ ·
M∑

i = 1

(
∆ θ 2

i + ∆ c 2i

)
.

The cost function (13) is composed of two terms. The first part is related to the
objective of controlling the system heat flux j syst ( t ) by evaluating the difference
between the system state Z ( θ r , c r , t ) over the prediction horizon and the target
to be achieved Z trg ( t ) set by the user. The second term in the cost function (13)
penalizes changes between two consecutive states over the control horizon. In other
words, a difference is expressed as:

∆ θ i = θ i+1 − θ i , (14)

∆ c i = c i+1 − c i , i = 1 , . . . , M . (15)

Thus, during a relatively short time interval the variation in color or angle should be
minor. The scalar parameter λ is weight that is set to balance the required objective
and the penalization terms. The simplified step of procedure at r-th sampling instant,
when M = 2 , is described in Figure 5. The step is repeated for subsequent sampling
instants.

It should be added that the target function Z trg ( t ) is non-negative:

Z trg ( t ) ⩾ 0 , ∀ t ∈
[
τ r , τ r+1

]
. (16)

Furthermore, the objective function Z ( θ r , c r , t ) is defined as:

Z ( θ r , c r , t ) = R ( t ) · j syst ( θ r , c r , t ) , (17)

where R ( t ) is a function which is used to control the sign of the objective function
in order to minimize it:

R ( t ) =
T ext ( t )

T int ( t )
− 1 . (18)

When T ext ( t ) < T int ( t ) (in winter or cold nights for instance), i.e. R ( t ) < 0, the
system heat flux j syst ( t ) is expected to be negative (heat flow is directed outward).
Thus, the objective function Z ( t ) is positive, and the difference with the target
value Z trg may be minimized. Similar arguments can be developed when T ext ( t ) >
T int ( t ) (in summer or on hot days for instance).
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Figure 6: Illustration of procedure to identify the reduced order model elements.

4. Results

This section is divided into three main parts. First, the results of the training
phase to construct the Stegos MIM model are shown. Then, the validation of the
proposed model is presented and discussed. Finally, the MPC to control the system
heat flux induced by Stegos using the reduced model is examined.

4.1. Construction of the Stegos MIM model

This section describes the construction of the MIM reduced model for the Stegos
system. The complete procedure, which consists of 4 steps to identify 4 × N + 6
parameters (10), is described in Figure 6. For this study, the order of the MIM model
N was 10 , which will be justified in Section 4.1.5. Since the experimental campaign
was extensive, training was performed with one day of observations for each step.
Then, a preliminary validation was carried out using the rest of the measurements (at
least five days). This reinforces the robustness of the model before a global validation
was conducted after the four steps. The global validation phase was conducted using
the experimental data, which were not used in the previous steps and which were
obtained when flaps were white and fully or half open. The time periods for each
state of the system, along with the chosen training day, are summarized in Table 1.
In addition, a step of the procedure in Figure 6, which employs the corresponding set
of measurements, is indicated.
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States of the system
Dates of the
experiment

Steps in the
MIM model
construction
procedure

Training
day

Validation days

Black, c = 1

Close, θ = 0 02.02 - 13.02 1 06.02.2022 02.02 - 05.02,
07.02 - 13.02

Fully open,

θ =
π

2

14.02 - 28.02 3 18.02.2022 15.02 - 17.02,
19.02 - 28.02

Half-open,

θ =
π

4

01.03 - 07.03 4 01.03.2022 02.03 - 07.03

White, c = 0

Close, θ = 0 15.03 - 21.03 2 15.03.2022 16.03 - 21.03

Fully open,

θ =
π

2

22.03 - 04.04 whole period

Half-open,

θ =
π

4

08.03 - 14.03 whole period

Table 1: Dates of the experiment according to different states of the system, chosen training
day and validation days period.

4.1.1. Training phase: matrices F , G and H

The first step is focused on the estimation of the coefficients of matrices F , G
and H using a reference experimental setup. The choice of the reference case study is
biased. Since the adaptive system varies dynamically, its states can easily be switched
between each other. Thus, a specific starting point may be proposed to identify the
elements of the reduced model. For this study, a scenario, when the Stegos flaps were
closed θ = 0 and black c = 1 was considered as a reference case study.

The measurements of the reference case study were taken over 12 days, between the
2nd and 13th of February. A sunny day, the 6th of February, was chosen as the training
day, since solar radiation greatly influences the heat flux of the system. For the sake
of readability, the estimated matrices are presented in Appendix C. Figure 7 displays
the results of the training phase. Figure 7a presents the experimental measurements
with their uncertainties in grey, and the flux of the system, which was computed
using estimated matrices F , G and H. A good agreement between the model output
and the measured values was observed. The corresponding set of input vectors of the
solar radiation flux and the flux due to conduction are shown in Figure 7b.

In the next step, the remaining set of experimental data was used to validate the
estimation. The measured values for the solar radiation flux, exterior and interior
temperature of 11 days together with the estimated elements of matrices F , G and
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Figure 7: (a) Calculated heat flux of the system (training phase), and (b) the corresponding
input data, derived from the experimental data. (c) Time variation of the observations
versus the computed heat flux and corresponding mean error values (validation phase). The
flaps were closed and black, ( θ = 0 and c = 1 ).
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H were treated as input data for the MIM model. Then, the calculated flux values
were compared to the corresponding observations. Figure 7c shows these findings. It
can be seen that the reduced model outputs had the same order of magnitude as the
measurements, and they represent the physical phenomena. In addition, the residuals
ε 2 ( t ) between the computed outputs and the observations were calculated. It can
be noted that, overall, the error values are between 10%−15% of the measurements,
which can be considered as acceptable for the heat flux sensor.

4.1.2. Training phase: color function γ( c )

This section focuses on the color function γ( c ) , which translates the variation
in the system heat flux with the color of the flaps. As in the previous step, we first
identified the unknown parameter γ 0 using one training day, and then a preliminary
validation was carried out for the rest of available data.

The experiment, during which the flaps of the system were closed and white, was
held between March 15, 2022 and March 21, 2022, resulting in 6 days of observation.
The measurements recorded during the first day were used as a training set. The
estimated value of the parameter γ opt

0 was 0.75, which is consistent from a physical
point of view, since white reflects light and absorbs less heat. Figure 8 displays the
results. Figure 8a demonstrates a good agreement between the observations and the
outputs obtained with the reduced model during the first 20 hours. However, during
the night there was a difference since the conductive part of heat exchange was high,
as shown in Figure 8b. The remaining experimental data of 5 days were used as input
vectors for the updated reduced model. Figure 8c presents the validation results which
show that the reduced model outputs follow the measurements. In addition, error
values ε 2 ( t ) indicate that the difference between the calculated and measured data
was within the 10%. Furthermore, it should be noted that the heat flux values of
the system during this stage of the experiment were lower than the previous values.
Comparing Figures 7c and 8c shows that during sunny days the heat flux values were
almost twice as small, if the flaps of Stegos were black. Therefore, the parameter γ 0

plays a significant role in the reduced model output. This influence is demonstrated
in Figure 8c, where it can be seen that the reduced model outputs do not follow the
measurements, if γ 0 = 0 is considered.

4.1.3. Training phase: parameters β 0 , β 1 , ϑ .

This part describes how to compute the heat flux of the Stegos, when the flaps are
open. As stated earlier, there are two angle positions of the flaps. In this section, a

fully open position, or θ =
π

2
, is considered. The experiment, during which the flaps

of the system were fully open and black, was held between February 14, 2022 and
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Figure 8: (a) Calculated heat flux of the system (training phase), and (b) the corresponding
input data, derived from the experimental data. (c)Time variation of the observations versus
the computed heat flux and corresponding mean error values (validation phase). The flaps
were closed and white, ( θ = 0 and c = 0 ).
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Figure 9: Time variation of the experimental data versus the computed heat flux and corre-

sponding mean error values (validation phase). The flaps were fully open and black, ( θ =
π

2
and c = 1 ).

February 28, 2022, resulting in 13 days of observation. Since 18th of February was
the first sunny day, it was used as a training day to solve the optimization problem,
which involves 3 parameters. The following optimal values were identified:

β opt
0 = − 0.81 , β opt

1 = 0.025 , ϑ opt
0 = − 0.33 .

Furthermore, for the sake of compactness, we present only the validation part. The
experimental data of the remaining 12 days were used as input vectors for the re-
duced model that employs the aforementioned estimated parameters. Figure 9 shows
the results, which indicate that the reduced model outputs follow the measurements
during first 7 days. However, the remaining 5 days of observation showed a large dif-
ference between the calculated and measured outputs. It can be noted that the model
underestimated the observations during sunny days. Moreover, the ε 2 ( t ) residuals
during these last 5 days were high compared to the first week of observations, when
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the difference between the calculated and measured data was between 10% and 15%
of the nominal values. It can be concluded that the formulation of the reduced order
model may miss some physical phenomena, such as a long-wave radiative heat flux,
due to exchange with the ground, sky and air. In addition, the function g ( v ) may be
formulated as a power function of the wind velocity [42]. Thus, it should be developed
in future work.

Another point, which is investigated in this section, is the influence of wind veloc-
ity on the reduced model outputs. The sensitivity coefficients of the system heat flux
in relation to wind velocity were calculated using sensitivity equations. The approach
assumes the direct differentiation of the governing equations Eq. (2a) and (2b) de-
pending on the parameter of interest v [43]. The corresponding sensitivity equations
are provided in Appendix D. Figure 10 provides the results. It can be noted that the
output of the model was not sensitive to the changes in wind velocity. The values of
the sensitivity coefficients on the 21st and the 27th of February had the same ampli-
tude; however, between the 21th and 22nd of February the weather was windy. Thus,
we concluded that measurements of wind velocity should not be taken into account
in the future development of the model.

4.1.4. Training phase: parameters a 1 and a 2 .

This section identifies modifications of the reduced model when the angle position

of the flaps was transformed from fully open, or θ =
π

2
, to half-open, θ =

π

4
. Under

this condition, and the fact that the flaps were black, the optimization problem takes
into account 2 parameters a 1 and a 2 , which are responsible for changes in the angle
of the flaps. The experiment took place during the first week of March, 2022. The
first observation day was employed as a training day, which allowed us to retrieve the
following values for the coefficients:

a opt
1 = 2.29 , a opt

2 = −1.05 .

As a result, the heat flux of the system was computed using the proposed reduced
model. Figure 11 displays how the heat flux induced by Stegos varied during 6 days
in March. It should be added that the first day was a training day. A difference
can be seen between the calculated and measured values. The reduced model un-
derestimated the observations on cloudy days, and overestimated it on sunny days.
These results may be explained by the fact that the values obtained with the heat
flux sensor, which was placed between the system and the box, did not vary if the
angle of the flaps changed. Figure 12a presents the probability density function of the

corresponding measurements, for both values of the angle θ =
π

4
and θ =

π

2
. The
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Figure 10: Time variation of the computed sensitivity coefficients of the system heat flux
depending on wind velocity and the measured values of wind velocity. The flaps were fully

open and black, ( θ =
π

2
and c = 1 ).

observations overlap, suggesting that the reduced model cannot distinguish between
these states of the system. The same phenomenon was observed with white flaps as
shown in Figure 12b. This is due to the fact that the sensitivity of the heat flux of
the system was too low regarding the two states of open flaps. One possible reason is
a measurement error. However, experiments with different angle positions are need
to be conducted to either confirm the measurement error or to identify an additional
cause. Therefore, it is highly unlikely that the model will provide good results when
the flaps are half-open.

4.1.5. Further comments on the training phase

Before discussing the global validation phase, a few additional points related to
the training phase should be highlighted. First, the order of the model N will be
discussed. As mentioned earlier, the order of the model influences the accuracy of
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the output values as well as the computational cost of the procedure. Higher order
numbers may considerably increase the precision of the results. Thus, a parametric
study was conducted to determine an optimal order value. During the first step of the
construction of the Stegos MIM model, the order of the model N was varied between
1 and 30. Then, the matrices F , G and H were estimated for each value of N , and
the mean error between the computed and the experiment values was calculated. The
results are displayed in Figure 13a. A significant change was observed when N = 10.
Only a minor decrease occurred when the order was higher than 25. Moreover, the
computational time of the reduced model for one day of observation, depending on
the order of the model, was measured and is shown in Figure 13a. The computational
time was proportional to the chosen order, so a compromise might be found when
N = 10 . In addition, a higher model order sharply increases the computational cost
of the optimization problem, since the number of unknown parameters is equal to
4 × N . Thus, to reach a compromise between computational effort and accuracy, the
order was taken as N = 10. In addition, Figure 13b provides a comparison between
the simulated and measured values when the order was 20. This can be compared
with Figure 7, which implies that only the representation of 2 afternoon hours was
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Figure 12: Probability density function of the measured heat flux induced by the system.
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enhanced.
Secondly, we will address the computational time of the numerical implementation.

A computation to process a set of measurements for one day takes around 1 seconds,
since it requires a solution to the system of ordinary differential equations, and due to
the fact that the order of the model is comparatively small, N = 10. Therefore, the
optimization procedures are relatively fast. The longest identification process takes
place in the first step of the training phase, since 4 × N or 40 elements of matrices
need to be found. The genetic algorithm used 90 generations and a population size
of 200 to reach a tolerance of O ( 10−6 ) . However, thanks to parallel computing the
estimation took 1 hour. Once the matrices have been defined, other coefficients can
be retrieved in significantly shorter time.

Furthermore, using several numerical statistics, model prediction errors for dif-
ferent states of the Stegos prototype can be analyzed. The computed values are
presented in Table 2. It should be added that the metrics were calculated without
taking into account the corresponding training days. First, it can be seen that the
model successfully predicted the heat flux values when the flaps of the prototype were
closed. For both colors of flaps, the coefficient of variation ε ∗

2 was below 30%, and the
mean error ε 2 was within 10% of the heat flux observations. Next, when the flaps
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Figure 13: (a) The RMSE values ε 2, indicated as ∗, and the computational time tCPU,
indicated as ×, of the reduced model according to the order of the model N . (b) The
measured and computed values of the system heat flux, for a training day and N = 20.

were fully open, the statistics were at acceptable levels with white flaps but black
flaps. As discussed above, the model calculated values higher than the observations
for one part of the experimental data, as shown in Figure 9. However, the computed
metrics were at the upper limit of the guideline values. Thus, the model is validated
when the flaps were in the fully open state. Finally, the results of half-open flaps did
not align with the measurements since the variation in the error values was high.

4.2. Global validation

The previous section described how the proposed state-space model was con-
structed using the MIM approach. Following that, a global validation phase will
be performed. This section demonstrates how the reduced model represents phenom-
ena using the estimated matrices and coefficients of the function regulators. The
calculated output values will be compared to a whole sequence of heat flow sensor
measurements. For these purposes, there were two sets of experimental data available.

In the first setup we assumed the Stegos flaps were fully open and white, and in
the second - the flaps were white and half-open. Thus, the calculated values and the
measurements could be compared. For the sake of compactness, the validation of the
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States of the system ε 2 ε ∗
2 ε ∗∗

2

Black, c = 1

Close, θ = 0 5 (W ·m−2 ) 28% 7%

Fully open, θ =
π

2
7 (W ·m−2 ) 30% 10%

Half-open, θ =
π

4
4 (W ·m−2 ) 37% 11%

White, c = 0 Close, θ = 0 2 (W ·m−2 ) 25% 8%

Table 2: Numerical metrics of the reduced model according to different states of the system
for the training phase.

first experimental design is presented. Figure 14 displays how the heat flux induced
by Stegos varied during 12 days of observation. A satisfactory agreement between
the computed and measured values was obtained that justifies the reliability of the
Stegos model.

Figure 14: Time variation of the observations versus the computed heat flux. The flaps were

fully open (θ =
π

2
) and white.
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States of the system ε 2 ε ∗
2 ε ∗∗

2

White, c = 0
Fully open, θ =

π

2
4 (W ·m−2 ) 23% 6%

Half-open, θ =
π

4
5 (W ·m−2 ) 39% 10%

Table 3: Numerical metrics of the reduced model, calculated for the global validation case.

In addition, several numerical metrics used to compute error values are presented
in Table 3. As discussed earlier, the system heat flux, calculated with white flaps in
a fully open state, successfully represents the physical phenomena. Consequently, the
corresponding error values were reasonable. However, when the flaps were half-open,
the prediction error was high. This is due to the fact that there was a small difference

between heat flux measurements obtained when the flaps were half-open, or θ =
π

4
,

and fully open, or θ =
π

2
. We therefore assumed that the reduced model represent

the physical phenomena of the prototype, but still needs some improvement.
Based on the results of the global validation phase, it can be concluded that

the reduced order model provides satisfactory results in terms of the prediction of
physical phenomena. The model accurately calculated heat flux values induced by
the Stegos prototype. In addition, the Stegos model, formulated on the state-space
representation, required a low computational effort. Besides, as discussed above, one
of advantages of the adaptive facade system is its flexbility and adjustability to the
surrounding climate conditions. Thus, to regulate the prototype, model-based control
techniques may be applied. By directly using this model, an answer can be provided
to the following question: what states of the flaps at the current time provide an
optimal configuration to reach the energy efficiency objective.

4.3. Model Predictive Control

4.3.1. Description of the case

As demonstrated earlier, the MIM approach provided a reliable reduced order
model, which simulates the behaviour of the Stegos prototype while taking into ac-
count the different potential states of its flaps. This model may be used to predict
the heat flow values of the system as well as to control the system itself. This section
describes how the model was employed in the context of model predictive control
(MPC). First, an energy efficiency target was set, which depends on climatic condi-
tions. As we were considering the winter period, the objective of a building facade
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like Stegos would be to collect potential solar radiation during the day, and to limit
the dissipation of energy at night. Therefore, in terms of heat flux induced by the
Stegos system, the objective may be formulated as follows: to maximize the heat flux
values during sunlight, and to minimize its absolute value in the sundown.

For the case study, the input data of the model, i.e. the solar radiation and
ambient exterior and interior temperatures, are presented in Figure 15. These values
correspond to data obtained during the first week of February. In addition, wind
velocity was not used in this study since it had been shown that it had a small
impact on system heat flux. Furthermore, Figure 15a displays the calculated values
of the temperature ratio R ( t ) during chosen days of the experiment. It should be
noted that the function values were positive during the day and negative at night.
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Figure 15: Input data of (a) exterior and interior ambient temperatures above and the ratio
R(t) below, and (b) solar radiation considered for the MPC.

Then, the target function from Eq. (13) to be reached by the controller is defined.
For the target function, a maximum level of solar radiation during the day and zero
values during the night may be set. In other words, during the day the controller will
force the Stegos system to provide a heat flux corresponding to the maximum level of
solar radiation and during the night, the controller will adapt the system to reduce
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heat loss. Thus, the target value for the objective function is written as:

Z trg =

{
60 (W ·m−2 ) , R(t) > 0 , (day)

0 , R(t) ⩽ 0 , (night)

where the target value 60 (W ·m−2 ) corresponds to the 10% of maximum value of
solar radiation during the studied week, as shown in Figure 15b. It is considered
as the efficiency of Stegos prototype to absorb solar energy. For further studies, the
target value could be defined according to ratio of the maximum received heat flux by
considering a combined effect of short and long-wave radiation and convective fluxes.

Finally, before beginning the optimization procedure, a parametric study was car-
ried out to find an appropriate number of sampling intervals N τ , control horizon
M as well as the penalty parameter λ. A shorter sampling interval enables a better
rejection of unknown disturbances. However, the smaller the sampling period, the
greater is the computational effort. Thus, the optimal choice is a compromise be-
tween performance and computational cost. A low control horizon M also promotes
faster computations. For this case study, the parameters obtained were a time step
∆τ = 15min over a prediction horizon τmax, which is equal to 1 day over 1 week
of observation, using M = 2 control horizon and parameter λ = 0.1. An initial
strategy over a prediction horizon was considered as black and open flaps. It was
chosen since they correspond to an optimal trajectory, starting at night.

4.3.2. Results

Figure 16a presents the findings obtained with the optimization procedure. Blue
highlights the optimal values of the heat flux induced by the Stegos prototype, green
- the values of the target function considered to control the system. Black represents
the system heat flux when the flaps were closed and black. Figure 16b displays
corresponding states of flaps, their angle and color. Several observations were made.
In general, to maintain a high gain the flaps should be closed and black during mid-
day, and open and white - during morning and evening hours. However, it should
be noted that the sixth day of case study was different, between 120th and 144th
hours in Figure 16a. During morning hours the optimal position for flaps was closed.
The predictive model allows us to establish a precise hour, when the flaps should be
closed, and when gradually opened as well as the degree of angle. Moreover, we see
shades of grey in the flaps during the day. In perspective, if an electrochromic coating
and/or an electric motor is installed to control the flaps, the optimal angle and color
values can be transmitted to the prototype via an embedded controller, thus, it may
automatically change the state to gain more heat during winter.
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To provide a clearer demonstration, without a loss of generality, a highlight for
the first day of experiment is shown. The results for the optimal system heat flux
and optimal control parameters are presented in Figures 17a and 17b respectively.
Figure 17a displays the states of the flaps. Their color is directly shown in Figure 17a,
while the position of the angle was between closed, when the value was zero, and open
when it was one. Thus, between 10 and 16 hours during the day, we should close
the flaps and switch them to black. By doing this, the system would be able to gain
more heat during the day. However, to maintain a low loss in heat during the night,
the Stegos flaps should be gradually opened. The corresponding system heat flux is
displayed in Figure 17b. As mentioned earlier, values in blue indicate the optimal
system heat flux, which was high during sunlight hours and close to the system heat
flux with completely closed black flaps. Moreover, it can be noted that after 18 hours
the optimal values followed the system heat flux in grey when the flaps were fully
open.

As explained in the methodology, the optimization problem to find the optimal
color and angle of the flaps was solved for each chosen time interval. The genetic
algorithm used 20 generations and a population size of 20 to reach a tolerance of
O ( 10−3 ) . The optimization procedure lasted for about 45 seconds due to the im-
plementation of the reduced model. Therefore, it can be concluded that this MPC
protocol is efficient in terms of computational effort, as it predicts model output for
following 15 minutes. It is worth to mention that an instant MPC may be imple-
mented for this case study, since the MIM model for the current prototype of Stegos
considers only current states. It will significantly reduce the computational time since
the prediction horizon is equal to zero. It should be added that the results were com-
puted using previously obtained measurements. Thus, the MPC was not tested under
real conditions. Moreover, it was formulated for cold days to maximize a heat gain.
Thus, it is important to develop and validate it during summer days to maintain
cooling load.

5. Conclusion

The article considers a bio-inspired facade prototype called Stegos that was set
up in an insulated test box. During an experiment in real climate conditions, the
flaps of the system were changed manually to either black or white coating, and they
were in closed, fully open, or half-open states. The state-space model was proposed
to compute the heat flux, which is induced by the system on the test box. Incident
solar radiation together with exterior and interior air temperature values were used
as input data for the model.
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Figure 16: (a)The optimal heat flux values and (b) optimal control parameter values using
one week of measurements in February.
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Figure 17: (a)The optimal control parameter values and (b) optimal heat flux values during
the first day of observation.

Fist, a brief summary of the results is presented. The reduced order model was
obtained by implementing the MIM approach with experimental data. The procedure
started with a training phase to determine the unknown parameters of the model.
Then, the calculated values were compared with the observations to validate the
reliability of the MIM model. The model obtained was then employed to identify the
optimal control parameters in the context of a control problem through the application
of the MPC approach. The energy efficiency of the system during one week in winter
was set as an objective, while the color and angle of the flaps were used as control
parameters. As a result, an optimal solution was determined, which involved opening
the flaps at night so the system lost less heat. During the day, closed black flaps
contribute to a gain in heating. Opening the flaps might very well limit losses due to
radiative exchange with the sky.

This approach for the modelling of an active facade system has several advantages.
First, it allows us to calibrate a model using experimental data. Each step of the esti-
mation also includes a pre-validation procedure, ensuring the robustness of the model.
Next, the model includes various heat transfer phenomena as input factors. Thus, the
state-space model is flexible in terms of chosen input and output data. Thirdly, since
the sets of equations can be considered as ordinary, the computational time is very
fast, and several numerical methods may be applied. Finally, the state-space model
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might be easily exploited for control techniques. However, several drawbacks should
be acknowledged. The model only partially reproduces the physical phenomena, some
physical processes may be omitted or poorly described. The functions that transform
input data and parameters were chosen empirically.

Furthermore, several recommendations for future research are provided. In the
case study presented here, the function regulators, which influence the radiative and
conductive fluxes, were proposed according to the available experimental data. How-
ever, the experimental data was not sufficient to yield acceptable results with the
coefficients related to the variation in the rotation angle. Besides, a long-wave radia-
tive heat flux, due to exchange with the ground, sky and air, was not included in the
model. The convective part was defined in terms of measured wind velocity, which
had a negligible effect on the system heat flux. To improve the proposed model the ex-
perimental setup should be widened. Additional flap angles that generate a different
set of intermediate positions and multiple flap colors will provide more experimental
data for model training. The development of the MPC was based on calculations and
previously obtained measurements without implementation in real conditions. Thus,
it is important to validate these results by performing several tests with longer control
time step in actual environment.

Looking back at the Stegos prototype in light of the proposed developments, the
authors would like to investigate the use of thermochromic coating for the flaps,
leading to a more ambitious adaptive facade element. This would require an im-
provement of the energy model that could be achieved by changing and identifying
the color function. Considering electrochromic coating, a change of color could be
controlled, justifying the use of the model predictive control described in this paper.
In addition, this reduced model may be used in co-simulation with building simula-
tion programs to predict energy performance of building element associated with the
Stegos prototype.
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Appendix A. Material properties and characteristics

The composition of materials which were used in the experiment to build the
prototype are introduced in Figure 2. As stated before, the Stegos flaps were attached
to an aluminium frame. The test box was made from plywood and insulated inside.
Between the system and the box an insulation foam was applied to enhance the
interface between them. The properties of the materials are detailed in Table A.4.
The last column presents the thermal resistance of each layer as well as the total
resistance of the prototype, between the external and internal environment.

Thickness
[mm ]

Thermal
conductivity

[K ·W−1 ·m−1 ]

Thermal
resistance

[m2 · K ·W−1 ]

Aluminium 1 230 4.36 · 10−6

Foam 4 0.022 0.18

Plywood 10 0.13 0.077

Insulation 25 0.025 0.1

Total 40 0.36

Table A.4: Material properties and its characteristics used to construct the Stegos prototype.

Appendix B. Dimensionless representation

It should be added that for computational purposes, the equations of the reduced
model were implemented using a dimensionless formulation. The governing equa-
tions Eq. (2a) and (2b) of the reduced model were calculated using a dimensionless
formulation. The following unitless variables were set.

j ∗
rad ( t ) =

j rad ( t ) − j 0
rad

∆ j ref
, j ∗

syst ( t ) =
j syst ( t ) − j 0

syst

∆ j ref
, j ∗

cond ( t ) =
j cond ( t ) − j 0

cond

∆ j ref
,

where value of ∆ j ref was chosen so that all the dimensionless variables had the same
magnitude. In this study, the following expression is proposed:

∆ j ref = max
(
j rad ( t )

)
− min

(
j rad ( t )

)
.

The values of j 0
rad , j

0
syst and j 0

cond were set so that the unitless variables were reserved
for the zero value as an initial state.
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Appendix C. Values of estimated matrices.

The reduced model used in the article was implemented by applying the following
matrices. These values were estimated at the first stage of the proposed algorithm.
First, a diagonal matrix F opt was presented as:

diag
(
F opt

)
=
[
−6.86 −8.15 −6.34 −5.50 −1.65 −5.15 −8.54 −9.94 −4.97 −7.55

]
Next, the matrix G was defined as follows:

G opt =



1.49 1.77

5.21 −0.45

−0.25 18.2

4.92 15.2

20.6 3.85

−0.43 −19.4

−5.59 6.29

−4.7 −4.63

−0.85 −1.57

3.83 3.21


Finally, the vector H was given as:

H opt =
[
−4.17 3.62 3.74 1.63 1.91 −2.95 −2.35 1.11 7.30 −0.79

]
Appendix D. Computation of the sensitivity coefficient

The sensitivity coefficient
∂j syst ( t )

∂v
of the system heat flux j syst ( t ), depending

on wind velocity v was computed through the direct differentiation of the governing
equations Eq. (2a) and (2b). The sensitivity equations are shown below, where X v

i =
∂x i

∂v
:

∂X v
i

∂t
= F i i X

v
i + G 1i ·

∂K 1 ( θ , c , v )

∂v
· j cond ( t ) + G 2i ·

∂K 2 ( θ , c , v )

∂v
· j rad ( t ) ,

∂j syst ( t )

∂v
=

N∑
i=1

H i X
v
i ( t ) ,
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where the partial derivative of the function regulators K 1 and K 2 were determined
as follows:

∂K 1 ( θ , c , v )

∂v
= β 1 · f 1 ( θ ) ,

∂K 2 ( θ , c , v )

∂v
= 0 .

The obtained system of sensitivity equations was solved using the same numerical
model, which was implemented for the governing equations Eq. (2a) and (2b).
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Nomenclature

Latin letters

J cost function

K regulator function

Q input data

c color

F state matrix

f function of angle

G input data matrix

g function of wind speed

H output data matrix

j heat flux density [W ·m−2 ]

M control horizon

N model order

N τ number of sampling intervals

R thermal resistance [m2 · K ·W−1 ]

T temperature [K ]

t time [ s ]

v wind velocity [m · s−1 ]

x space variable [m ]

Greek letters

γ function of color

τmax prediction horizon

θ angle of rotation ( ◦ )

ε 2 error residual

ε ∗∗
2 NMBE

ε ∗
2 CV (RMSE)

ε 2 RMSE

Subscripts and superscripts

cond conductive

ext exterior

int interior

opt optimal

rad radiative

syst system (prototype)̂ measured values
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skin façades (dsfs) in whole-building energy simulation tools: Validation and
inter-software comparison of a mechanically ventilated single-story dsf, Building
and Environment 199 (2021) 107906.

[15] J. Berger, N. Mendes, S. Guernouti, M. Woloszyn, F. Chinesta, Review of re-
duced order models for heat and moisture transfer in building physics with em-
phasis in pgd approaches, Archives of Computational Methods in Engineering
24 (3) (2017) 655–667.

[16] D. Petit, R. Hachette, D. Veyret, A modal identification method to reduce a high-
order model: Application to heat conduction modelling, International Journal of
Modelling and Simulation 17 (3) (1997) 242–250.

[17] M. Girault, E. Videcoq, D. Petit, Estimation of time-varying heat sources
through inversion of a low order model built with the modal identification method
from in-situ temperature measurements, International Journal of Heat and Mass
Transfer 53 (1) (2010) 206–219.

[18] M. Girault, L. Cordier, E. Videcoq, Parametric low-order models in transient
heat diffusion by mim. estimation of thermal conductivity in a 2d slab, in: Jour-
nal of Physics: Conference Series, Vol. 395, IOP Publishing, 2012, p. 012019.

[19] M. Girault, Y. Liu, Y. Billaud, A. M. Benselama, D. Saury, D. Lemonnier, Re-
duced order models for conduction and radiation inside semi-transparent media
via the modal identification method, International Journal of Heat and Mass
Transfer 168 (2021) 120598.

[20] J. Berger, B. Kadoch, Estimation of the thermal properties of an historic building
wall by combining modal identification method and optimal experiment design,
Building and Environment 185 (2020) 107065. doi:10.1016/j.buildenv.2020.
107065.

[21] M. Killian, M. Kozek, Ten questions concerning model predictive control for
energy efficient buildings, Building and Environment 105 (2016) 403–412.

39

https://doi.org/10.1016/j.buildenv.2020.107065
https://doi.org/10.1016/j.buildenv.2020.107065


[22] B. Cui, J. Dong, S. Lee, P. Im, M. Salonvaara, D. Hun, S. Shrestha, Model pre-
dictive control for active insulation in building envelopes, Energy and Buildings
267 (2022) 112108.

[23] H. Viot, A. Sempey, L. Mora, J. Batsale, J. Malvestio, Model predictive control
of a thermally activated building system to improve energy management of an
experimental building: Part ii - potential of predictive strategy, Energy and
Buildings 172 (2018) 385–396.

[24] C. D. Corbin, G. P. Henze, P. May-Ostendorp, A model predictive control opti-
mization environment for real-time commercial building application, Journal of
Building Performance Simulation 6 (3) (2013) 159–174.

[25] J. Zhao, K. P. Lam, B. E. Ydstie, O. T. Karaguzel, Energyplus model-based
predictive control within design–build–operate energy information modelling in-
frastructure, Journal of Building Performance Simulation 8 (3) (2015) 121–134.

[26] F. Smarra, A. Jain, T. de Rubeis, D. Ambrosini, A. D’Innocenzo, R. Mangharam,
Data-driven model predictive control using random forests for building energy
optimization and climate control, Applied Energy 226 (2018) 1252–1272.

[27] J. Wang, S. Li, H. Chen, Y. Yuan, Y. Huang, Data-driven model predictive
control for building climate control: Three case studies on different buildings,
Building and Environment 160 (2019) 106204.

[28] X. Li, J. Wen, Review of building energy modeling for control and operation,
Renewable and Sustainable Energy Reviews 37 (2014) 517–537.

[29] D. Sturzenegger, D. Gyalistras, M. Morari, R. S. Smith, Model predictive cli-
mate control of a swiss office building: Implementation, results, and cost–benefit
analysis, IEEE Transactions on Control Systems Technology 24 (1) (2015) 1–12.

[30] S. F. Fux, A. Ashouri, M. J. Benz, L. Guzzella, Ekf based self-adaptive thermal
model for a passive house, Energy and Buildings 68 (2014) 811–817.

[31] K. Bouderbala, H. Nouira, M. Girault, E. Videcoq, Experimental thermal regu-
lation of an ultra-high precision metrology system by combining modal identifi-
cation method and model predictive control, Applied Thermal Engineering 104
(2016) 504–515.

40



[32] T. Hubert, Bioinspiration and building envelope: Proposition of a design method
and experimental application, Ph.D. thesis, University of Bordeaux, France
(2022).
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