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ABSTRACT: Polymer materials featuring stereocontrolled monomer units often exhibit drastically 

different properties than their stereorandom counterparts. Control over the polymer tacticity thus 

represents a powerful means to access functional polymers of modular thermomechanical properties. In 

the present work, a series of chiral amino(thio)ureas (U1, TU1-TU5) are used in duos with phosphazene 

organic bases for the stereoselective ring-opening polymerization (ROP) of racemic lactide (rac-LA). 

These chiral binary organocatalytic pairs allow for relatively fast, highly chemo- and isoselective ROP of 

rac-LA at room temperature in toluene, yielding semi-crystalline and metal-free stereoblock-like 

materials based on polylactide (PLA), with a melting temperature in the range 138-176 °C. The chiral 

dimethylaminourea, denoted as U1, shows faster ROP reactions relatively to its dimethylaminothiourea 

TU1 analogue, when combined with any of the phosphazene bases, consistent with the formation of less 

stable intermediates from the urea relatively to the more acidic thiourea-containing counterpart. On the 

other hand, the tethered dialkylamino moiety of TU1-TU3 is shown to have a non-innocent role both on 

the catalytic activity and the isoselectivity of the ROP process, whereby decreasing the basicity of this 

group leads to a decrease of the reaction rates. The active mechanism also proves to be dependent on the 

identity of the amino(thio)urea and the phosphazene base, and a mechanistic rationale for the experimental 

results is presented. Thus, the strongest organic base used in conjunction with U1 and TU1-TU5, leading 

to high polymerization rate but lesser stereocontrol, induces an ionic-like mechanism. In contrast, 

organocatalytic pairs based on the least basic phosphazene favor a more associated mechanism involving 

hydrogen-bond interactions, providing slower ROP reactions, but producing highly isotactic PLAs.  
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INTRODUCTION.  

The concept of asymmetric organic catalysis in molecular chemistry, i.e. use of non-metallic catalysts 

for creation of C-C or C-X bond with high stereoselectivity, has truly emerged in the early 2000’s.1-4 These 

developments, which were crowned in 2021 with the award of the Nobel Prize in Chemistry to McMillan 

and List,5 have led to organic catalysts constituting today the third pillar of catalysis, besides enzymes and 

metallic catalysts.1-6 In contrast, adaptation of this concept in polymer synthesis, i.e. stereoselective 

polymerization employing chiral organic catalysts, is more recent and remains underexplored.7-16 In a 

more general way, organic catalysts, whether they are chiral or not, that can provide high stereoselectivity 

and high catalytic activity, in addition to operating under mild conditions, e.g. at room temperature or 

above, are rare.7-22 Yet, the use of small organic molecules for organic catalysis of polymerization is now 

part of the methodological toolbox in macromolecular synthesis.23-29 Depending on the structure of the 

organic catalyst, different mechanisms can operate, and this diversity of mechanistic pathways allows for 

improved polymerization rates, tuning of the selectivity and rationally design of a variety of polymer 

architectures. Organic catalysis of polymerization can offer other advantages over metal-catalyzed 

reactions, such as a reduced toxicity and cost, easier catalyst synthesis and storage, tolerance to functional 

groups, and operation at elevated temperature and in a variety of solvents.23-29 Recent years have 

witnessed new achievements at the crossroads between organocatalysis and macromolecular science, for 

instance, through the use of organic catalysts for photopolymerization or for controlled radical 

polymerization, for chemical recycling and upcycling of synthetic polymers, or for designing covalent 

adaptative networks.30  

The quest for stereocontrol in polymerization is very much inspired by optically active naturally-

occurring polymers, such as proteins, deoxyribonucleic acids or polysaccharides, which exhibit an 

incomparable level of structural control and possess unique functions.31-33 A still thriving research area in 

polymer chemistry is thus the development of stereoselective polymerization methods that can be general 

to monomer structure. Related methods call for custom-designed catalysts that can provide high degree 

of stereoselectivity, while maintaining high catalytic activity and productivity.27,32 Semi-crystalline 
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materials of high tacticity (iso- or syndiotactic) can be obtained in this way, which exhibit enhanced 

physical and thermomechanical properties, when compared to counterparts showing no predominant 

tacticity (atactic). The stereoselective ring-opening polymerization (ROP) of cyclic esters, in particular of 

racemic lactide (rac-LA) leading to isotactic or syndiotactic polylactide (PLA), is emblematic of this 

area.27,34-37 PLA is one of the most widely used degradable and biocompatible polymers in the world.38-39 

Another reason why PLA is attractive is because it can be derived from naturally-occurring resources (e.g. 

beet, sugarcane or corn).38-41 Although annual global PLA production remains modest (about 300,000 

tons in 2019) and has not yet reached that of petroleum-based commodity polymers, the physical 

properties of PLA make it a viable alternative for various applications, e.g. in the biomedical, packaging 

and microelectronics fields.27,32,34-43 With appropriate catalysts/initiators, ROP of LA enables to access a 

range of microstructures, not only from the three distinct stereoisomers, namely, D-LA, L-LA-, and DL 

(meso)-LA, but also from the racemic mixture of the D- and the L-LA (rac-LA). Thus, poly(L-LA) 

(PLLA) exhibits a melting temperature (Tm) around 160−180 °C, whereas atactic PLA is amorphous and 

brittle.35,36 Moreover, blending equimolar amounts of PLLA and PDLA increases the Tm value 

dramatically, up to 230−240 °C, due to the formation of a stereocomplex from the two polymeric 

enantiomers that can co-crystallize. Instead of blending the two homopolymers, PLA-based 

stereocomplexes or stereoblocks, i.e. made from the two LA monomer units of opposite configurations, 

may be obtained at lower cost by stereocontrolled ROP of rac-LA, leading to PLA-based materials of 

enhanced properties.35,36 Since the 1990s, and until recent years, 44-49 the stereochemical control of the 

ROP of rac-LA has been intensively investigated using metal catalysts operating by 

coordination−insertion mechanism.35,36 As mentioned, however, specific design and/or storage of 

organometallic complexes can be demanding, in addition to their often-proven cytotoxicity. In that 

respect, organic catalysts have appeared as promising alternatives for the stereoselective ROP of rac-

LA.7-22 

In this context, we have recently developed a new approach to isoselective ROP of rac-LA utilizing 

chiral organocatalytic pairs.15-16 These works have been inspired by the methodology established by the 
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Waymouth group, where a (thio)urea combined with an appropriate (organic or metallic) base generates 

very effective (thio)imidate ion pairs.50-52 Such dual catalytic systems indeed provide both high catalytic 

activity and high selectivity in ROP reactions. This methodology involving interaction of the (thio)urea 

with the base has been leveraged by many other research teams, as reviewed recently.29,53-54 In our case, 

we have developed chiral versions of organocatalytic pairs, associating a chiral dimethylaminothiourea 

and a phosphazene or a N-heterocyclic carbene (NHC) as organic base.15-16 We have found that this mode 

of stereocontrol strongly depends on the extent of interaction between the base and the chiral (thio)urea, 

which eventually enable modulation of both the polymerization rate and the stereoselectivity. Herein we 

wish to discuss the effect of a structural variation of new chiral organocatalytic duos on both the 

stereocontrol and catalytic activity of the ROP of rac-LA. Several chiral amino(thio)ureas used in 

conjunction with different phosphazene bases were thus evaluated to achieve distinct goals of our research 

efforts (Figure 1). Namely, we aimed at i) accessing semi-crystalline and metal-free PLAs at room 

temperature, ii) polymerizing rac-LA in a stereocontrolled manner while maintaining appreciable reaction 

rates, and iii) providing a detailed investigation into the underlying stereocontrol mechanism, as a function 

of the identity of the organocatalytic pair.  
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Figure 1. Isoselective ROP of rac-LA from organic catalytic pairs associating a chiral amino(thio)urea 

(U1 or TU1-TU5) and a phosphazene base (P1-t-Bu, P2-t-Bu or P4-t-Bu); n.k.= not known.  

 

RESULTS AND DISCUSSION.  

ROP reactions of rac-LA were carried out in toluene at room temperature (RT) using benzyl alcohol 

(BnOH) as initiator, in presence of various organocatalytic pairs. These consist in the combination of an 

organic Brønsted phosphazene base of varied basicity (P1-t-Bu or P2-t-Bu or P4-t-Bu) and a chiral 

amino(thio)urea (U1 or TU1-TU5), as depicted in Figure 1. The phosphazene base and the (thio)urea 

were first introduced in the reaction vessel in this order, followed by BnOH and rac-LA. The reaction 

conditions, including the molar ratios between the different partners, and the results of these ROP 

experiments are summarized in Table 1 (see also ESI). We previously reported that, when used in absence 

of any base, chiral versions of TU1 allowed achieving predominantly isotactic PLAs, owing to the 

occurrence of both chain end control (CEC) and enantiomorphic site control (ESC) mechanisms.11 

However, the catalytic activities observed under such base-free conditions were found to be very low, 

with these reactions requiring several days to reach completion at RT. In contrast, most of organocatalytic 
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Table 1, entry 1 vs. entry 5, entry 2 vs. entries 6-12, entry 3 vs. entries 13,15,21 and entry 4 vs. entries 

14,16,23), highlighting the beneficial effect of combining TU1-TU5 (or U1) with the more basic 

phosphazenes. These conditions also allowed synthesizing semi-crystalline PLAs, in almost all cases, 

presumably owing to a high level of stereocontrol during ROP of rac-LA, as discussed further.  

We first compared the behavior of the chiral dimethylaminothiourea TU1 ‒ known as the Takemoto 

catalyst ‒ with its urea counterpart U1, under strictly identical conditions (runs 5-12). Combinations 

involving TU1 with P1-t-Bu or P2-t-Bu for the ROP of rac-LA were discussed in our previous paper,15 

but not those involving TU1 and P4-t-Bu (see Figure S1), neither catalytic pairs based on U1 (see Figures 

S2-S4). A body of evidence allowed attesting that excellent control of ROP reactions was achieved using 

phosphazene/U1 in duos, including i) the presence of protons due to both benzyloxy and CHOH end 

groups, (Figure 2A) as observed by 1H NMR spectroscopy, ii) a linear increase of the obtained molar 

masses (Mn) with the conversion of rac-LA, iii) inspection of the MALDI-ToF mass spectrum showing a 

main distribution of peaks, with an expected peak-to-peak mass increment of 144 g·mol-1 corresponding 

to the molar mass of one LA monomer unit (Figure 2B). The main structure was attributed to the 

formation of α-benzyloxy,ω-hydroxy PLAs. These data allowed us to confirm the high selectivity of the 

chiral organocatalytic pairs based on phosphazene and U1. On the other hand, U1 led to faster ROP 

reactions relatively to TU1, when combined with both phosphazenes P2-t-Bu and P4-t-Bu (e.g. entry 5 

vs. entry 6; see also Figure 3). This is consistent with ureas being less acidic than thiourea analogues. 

When associated with a phosphazene base, U1 thus generates less stable and more reactive pairs, 

compared to the more acidic TU1 combined with the same phosphazene. Pairing P1-t-Bu with U1, 

however, led to a very sluggish ROP reaction (entry 12), presumably due to a mismatch between the 

acidity of the urea motif of U1 and the too weak basicity of P1-t-Bu. Finally, increasing the U1 to the 

phosphazene molar ratio, i.e. using [rac-LA]0/[BnOH]0/[P1-t-Bu]0/[U1]0 = 200/1/1/3 did not significantly 

affect the apparent polymerization rate (entries 6 to 8 and 9 to 11).  
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Table 1. ROP of rac-LA using chiral catalytic pairs based on (thio)urea (T)U and phosphazene (P) base.a,b 

aPolymerizations were performed in dry toluene at 25 °C with [rac-LA]0 = 0.08 M, in presence of BnOH as 

initiator (I); (T)U and P stand for (thio)urea and phosphazene, respectively. bResults of ROP reactions utilizing 

TU1 in presence of P2 or P1 can be found in ref. 15. cReaction time in hour (h). dMonomer conversion determined 

by 1H NMR in CDCl3 using integrals of the characteristic signals. eMn,calcd.= MLA(144.13 g.mol-

1)*([LA]0/[I]0)*conversion + MBnOH(108.14 g. mol-1). fDetermined by SEC in THF relative to PS standards using 

a correcting factor of 0.58.55 gDetermined by homonuclear decoupled 1H NMR. hMelting point (Tm) and glass 

transition temperature (Tg) determined by DSC. iSee ref. 11.  jSee ref. 16.  

Entry Catalytic 

system 

[M]0/[P]0/ 

[(T)U]0/[I]0 

Timec 

(h) 

Conv.d   

(%) 

𝑴𝒏̅̅ ̅̅ ̅calcd
e 

(kg/mol) 

𝑴𝒏̅̅ ̅̅ ̅exp
f  

(kg/mol) 

 Ðf 

 

Pm 
g Tm

 h 

(°C ) 

Tg
 h 

(°C) 

1 TU1i 200/0/1/1 238 85 24 22 1.06 0.87 152 45 

2 U1j 200/0/1/1 214 93 27 25 1.09 0.85 138 57 

3 TU2 200/0/1/1 260 90 29 23 1.07 0.86 150 58 

4 TU3 200/0/1/1 260 82 23 20 1.04 0.83 127 56 

5 P4/TU1 200/1/1/1 1 >99 28 25 1.20 0.85 145 52 

6 P4/ U1 200/1/1/1 0.25 ≥ 99 28 26 1.16 0.81 127 53 

7 P4/ U1 200/1/2/1 0.25 ≥ 99 28 25 1.20 0.81 139 50 

8 P4/ U1 200/1/3/1 0.25 ≥ 99 28 26 1.18 0.84 154 49 

9 P2/ U1 200/1/1/1 0.75 97 27 25 1.05 0.85 151 52 

10 P2/ U1 200/1/2/1 0.75 98 28 26 1.05 0.85 161 57 

11 P2/ U1 200/1/3/1 0.75 98 28 25 1.04 0.88 168 66 

12 P1/ U1 200/1/1/1 96 37 10 7 1.04 - - - 

13 P4/TU2 200/1/1/1 1 > 99 28 26 1.20 0.78 - 53 

14 P4/TU3 200/1/1/1 4 94 27 24 1.17 0.72 - 51 

15 P2/TU2 200/1/1/1 9 94 27 23 1.08 0.87 155 51 

16 P2/TU3 200/1/1/1 24 90 26 21 1.11 0.79 138 46 

17 P1/TU2 200/1/1/1 120 93 27 25 1.04 0.91 175 57 

18 P1/TU3 200/1/1/1 120 40 11 7 1.04 - - - 

19 P4/TU1 200/1/2/1 1 > 99 28 27 1.17 0.85 160  53 

20 P4/TU1 200/1/3/1 1 > 99 28 26 1.17 0.86 160  50 

21 P4/TU2 200/1/5/1 5 94 27 26 1.08 0.81 145  47 

22 P2/TU2 200/1/5/1 18 83 24 21 1.03 0.89 167 59 

23 P4/TU3 200/1/5/1 9 91 26 23 1.05 0.78 - 53 

24 P2/TU3 200/1/5/1 48 89 25 24 1.04 0.83 148 55 

25 P4/TU4 200/1/1/1 24 ≥ 99 28 26 1.04 0.81 146 47 

26 P4/TU5 200/1/1/1 2 ≥ 99 28 25 1.08 0.78 - 40 

27 P2/TU4 200/1/1/1 48 ≥ 99 28 27 1.07 0.89 168 53 

28 P2/TU5 200/1/1/1 4 ≥ 99 28 26 1.04 0.84 146 49 

29 P1/TU4 200/1/1/1 120 78 22 19 1.04 0.90 172 51 

30 P1/TU5 200/1/1/1 96 ≥ 99 28 25 1.06 0.81 148 46 

31 P2/TU4 200/1/3/1 72 89 25 23 1.04 0.93 176 51 

32 P2/TU5 200/1/3/1 9 92 26 23 1.04 0.87 158 56 

33 P2/TU4 200/1/2/1 48 93 27 25 1.06 0.89 165 50 

34 P2/TU5  200/1/2/1 4 > 99 28 24 1.04 0.83 142 49 
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Figure 2. (A) 1H NMR spectrum (400 MHz, CDCl3); (B) experimental MALDI ToF mass spectrum 

of PLA synthesized from U1/P2-t-Bu (entry 9, Table 1).  
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in our previous work,15 a very high isoselectivity (Pm = 0.96 and Tm = 187 °C), could be reached using 4 

eq. of TU1 combined with 1 eq. of P1-t-Bu. These differentiated reactivities and stereoselectivities 

between U1 and TU1 in association with phosphazene bases can be explained by a different extent of 

interaction between the (thio)urea motif and the base. These interactions can be probed by 1H NMR 

spectroscopy from reaction mixtures involving stoichiometric amounts of TU1 (or U1) and each the 

phosphazene, and then with BnOH.15 The deprotonation state of the (thio)urea motif of U1 and TU1 was 

thus found to strongly depend on the phosphazene base (ESI, Figure S4). The strongest base, P4-t-Bu, 

was found to deprotonate U1 similarly to TU1, i.e. forming loose phosphazenium imidate ion pair, which 

upon further introduction of BnOH, resulted in the formation of a phosphazenium benzyloxide ion pair 

(Figure 3 and S4). This could be evidenced by a pronounced deshielding effect of the methylene protons 

of BnOH (A, Figure S4) in the BnOH/U1/P4-t-Bu equimolar mixture, relatively to the free BnOH. Upon 

using the less basic P2-t-Bu phosphazene with U1, this deshielding effect proved weaker. In the latter 

case, a more associated interaction by hydrogen-bonding rather than full deprotonation of the urea can be 

postulated. This result contrasts with our previous findings using TU1/P2-t-Bu, which was found to 

provide an ionic-like mechanism through the formation of an ion pair, while an associated mechanism 

was suggested when using TU1 with the less basic P1-t-Bu phosphazene.15 As highlighted in Figure 3, 

the organocatalytic pair consisting of P2-t-Bu/U1 is thus thought to provide similar hydrogen bonding 

and associated mode than TU1/P1-t-Bu. 
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Figure 3. Overview of the comparative reactivity and stereochemical control between 

urea U1 and thiourea TU1, and underlying activation (associative vs. ionic) mechanisms, 

during the ROP of rac-LA initiated by BnOH, as a function of the phosphazene base; in the 

dashed frames, results of homodecoupled 1H NMR spectra of the methine region are shown 

and correspond to the use of the P2-t-Bu phosphazene base.  
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while the thiourea moiety interacts with the carbonyl group of the lactide. It can be assumed 

that the pKa value of TU1 to TU3 is quite close. The potential differences we want to highlight 

here relate to the decrease of basicity of their dialkylamino function. In general, the rates 

obtained with TU2-TU3 proved very low, requiring more than a week to reach 80-90% 

monomer conversion. The replacement of a dimethyl cyclohexyl amine group (TU1) into a 

cyclohexyl piperidine group (TU2), and then by a diphenyl cyclohexyl amine group (TU3) in 

the structure of the catalyst led to a significant rate reduction (entries 1, 3-4). This could be 

ascribed to a reduced basicity of the dialkylamino group. Despite such slow kinetics, TU1-TU3 

led to isotactic enriched and semi-crystalline PLAs, as evidenced by homonuclear decoupled 

1H NMR spectra and thermograms obtained by DSC (Figure S5). Thus, TU2 and TU3 

produced a PLA with a Pm value of 0.86 and 0.83, and a Tm value of 150 °C and 127 °C, 

respectively (entries 3-4).  

In order to improve the catalytic performance and gain in stereoselectivity, TU2 and TU3 

were associated to P1-t-Bu, P2-t-Bu and P4-t-Bu. The polymerizations were carried out under 

the same conditions as with TU1, i.e. at room temperature in toluene, using initial ratios [rac-

LA]0/[BnOH]0/[phosphazene]0/[TU]0 = 200/1/ 1/1. These new organocatalytic pairs allowed 

significantly improving the reactivity of the ROP reactions of rac-LA (entries 13-34; see also 

Figures S6 to S17), while maintaining good control over the molecular weight and dispersity 

(Đ) of the resulting PLAs (Figure 4). For instance, the P2-t-Bu/TU2 pair catalyzed the ROP of 

rac-LA with 94% conversion in 9 h, producing a PLA with Đ = 1.08 (entry 15). Polymerization 

using TU3 combined with P2-t-Bu was found to be much slower, with a 90% conversion in 24 

h and a Đ value of 1.11 for the obtained PLA (entry 16). Using the weaker phosphazene base, 

P1-t-Bu with TU2, a low-dispersity PLA (Đ = 1.04) was achieved for a 93% conversion after 

120 h (entry 17), while combining P1-t-Bu with TU3 led a conversion of only 40% after 120 

hours (entry 18). Finally, the P4-t-Bu/TU2 pair achieved 99.6% conversion of rac-LA in only 
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1 h, resulting in a PLA of dispersity of 1.22, while a 93% conversion in 4 h was obtained from 

the P4-t-Bu/TU3 (entries 13 and 14, respectively). In other words, for a given phosphazene 

base, thioureas featuring a more basic tertiary amine group enabled higher polymerization rates 

(TU1 > TU2 > TU3), highlighting the non-innocent role of the dialkylamino group on the 

catalytic activity. The evolution of the number average molecular weights (Mn), as determined 

by SEC (values obtained after applying a Mark-Houwink correction factor of 0.58),55 as a 

function of monomer conversion for the ROP of rac-LA catalyzed by the P2-t-Bu/TU2 and P2-

t-Bu/TU3 pair, respectively, is presented in Figure 4A-B. The linear growth of Mn values with 

monomer conversion indicated the absence of transfer reactions and a good control of the ROP 

process. This was supported by analysis by MALDI-ToF mass spectrometry for both pairs, 

showing a main distribution of peaks again corresponding to the expected α-benzyloxy,ω-

hydroxy PLA-type structure (Figures S6-S7).  

 

 

 

 

 

 

 

 

 

 

Figure 4. Experimental data of PLA synthesis using P2-t-Bu combined with TU2 (entry 15) 

or with TU4 (entry 27), respectively: (A) and (D) SEC traces of PLA samples at different 

monomer conversions; (B) and (E) plots of Mn  and Mw/Mn values as a function of monomer 

conversion; (C) and (F) homodecoupled 1H NMR spectrum of the methine region.  
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The stereoselectivity of the ROP process mediated by organocatalytic pairs based on TU2 

and TU3 was again evaluated through the determination of Pm values by decoupled 

homonuclear 1H NMR and 13C NMR spectroscopy. These data evidenced the formation of 

isotactic PLAs, with Pm values in the range 0.78-0.91 (Table 1; Figures S8-S11). The strongest 

P4-t-Bu base combined with either TU2 or TU3 provided moderately isotactic PLAs, with Pm 

values of 0.78 and 0.72, respectively (entries 13 and 14; Figures S8-S9). PLA synthesized 

from the P2-t-Bu/TU2 pair showed a higher degree of stereoselectivity than PLA produced 

from P2-t-Bu/TU3 (Pm = 0.87 and 0.79, respectively; entries 15-16; Figures S8-S9), 

suggesting that the more sterically hindered TU3 does not provide optimal stereocontrol. 

Remarkably, the less hindered and weaker phosphazene base P1-t-Bu combined with TU2 

achieved a Pm value as high as 0.91 (entry 17; Figure S8). As observed previously with the 

Takemoto catalyst TU1 paired with P1-t-Bu, high stereocontrol is promoted, likely via an 

associative mechanism involving hydrogen interactions (see Figure 6).15 Note, however, that 

only 40% of monomer conversion was achieved after several days in the case of the P1-t-

Bu/TU3 catalytic pair, not enabling to precipitate that PLA and analyze its tacticity. Using 5 

equivalents of aminothiourea over phosphazene bases slightly improved the stereoselectivity, 

though at the expense of the reactivity as ROP reactions turned out to be slower (see for instance 

entry 13 vs. 21, entry 15 vs. 22 or entry 16 vs. 24. Thermal properties of PLAs produced from 

these phosphazene/TU catalytic pairs, as investigated by DSC, correlated quite well with the 

extent of stereocontrol and related Pm values observed (Figures S12-S14). These DSC analyses 

indeed revealed the formation of semi-crystalline PLAs with a melting temperature (Tm) in the 

range 145-168 °C, depending on the combination between the phosphazene and the 

aminothiourea (Table 1).  

As in the previous experiments utilizing U1 and TU1, the interactions involved between 

TU2-TU3, the phosphazene base and BnOH were scrutinized by 1H NMR spectroscopy in 
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toluene-d8, from equimolar amounts of each component, one example being shown in Figure 

5 (see also Figure S15). Based on our findings from the P1-t-Bu/TU1,15 one could assume that 

the weak P1-t-Bu base would promote stereocontrol via an associative mechanism involving 

hydrogen interactions. Stronger bases such as P4-t-Bu or P2-t-Bu would instead lead to faster 

kinetics, but slightly less stereocontrol. Thus, addition of BnOH to the reaction adduct from P4-

t-Bu/TU2 led to the corresponding phosphazenium alkoxide ion pair (Figure 5). This was 

confirmed by a deshielding effect of methylene A protons in the BnOH/TU2/P4-t-Bu (1/1/1) 

mixture. This effect was less manifest in the case of the BnOH/TU3/P4-t-Bu mixture, compared 

to TU2 (δ = 4.68 vs. 4.79 ppm, Figure S15), which was attributed to the more basic amino 

group in TU2 rel. to TU3. Similar observations were made using the weaker phosphazene base 

P2-t-Bu. These results are in agreement with the lower reactivity observed with TU3 rel. to 

TU2, highlighting that the tertiary dialkylamino group plays an important role. Finally, this 

deshielding effect was very mitigated using the weaker phosphazene base, P1-t-Bu, in the case 

of BnOH/TU1 or TU2/ P1-t-Bu mixtures (1/ 1/ 1), compared to free BnOH (δ = 4.38 and 4.32 

vs. 4.26 ppm for free BnOH; red lines, Figure 5).  
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Figure 5. Stacked 1H NMR spectra from equimolar amounts of 

BnOH/ P4-t-Bu/TU2 (green), BnOH/ P2-t-Bu/TU2 (blue), and BnOH/P1-t-Bu /TU2 (red) in 

dry toluene-d8 at room temperature. 

 

A last series of ROP experiments was carried out using chiral thioureas free of 

dialkylamino group, namely, TU4 and TU5 (Figure 1; see also Figure 6 and Figures S16-

S22). Whereas TU4 is a mono-thiourea featuring an additional amide group, TU5 is a bis-

thiourea, which was expected to drastically increase the polymerization rate, as reported by 

Kiesewetter et al. with non-chiral bis- and tris-(thio)ureas.56-57 Both thioureas TU4 and TU5 

were again combined with the phosphazene bases to polymerize rac-LA (entries 25-34, Table 

1). As anticipated, the bis-thiourea TU5 associated with P4-t-Bu caused a clear acceleration of 

the reaction, compared to the monothiourea-based pair TU4/P4-t-Bu, without any loss of 

control being noted (entry 25). The ROP reaction employing TU5/P4-t-Bu went to completion 

in only 2 h, compared to 24 h for the TU4/P4-t-Bu pair. As observed with the other thioureas, 

weaker bases led to slower reaction rates, the TU5/P2-t-Bu pair achieving complete conversion 

within 4 h (entry 28; Figure S16), while TU4/P2-t-Bu required 48 h (entry 27) to reach 
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4C-D). The weakest base in this series, P1-t-Bu, when combined with TU4 and TU5, gave very 

low conversion rates. Thus, the ROP reaction catalyzed by the TU5/P1-t-Bu pair reached full 

conversion after 96 h (entry 30), while the polymerization reached only 78% conversion even 

after 120 h using the TU4/P1-t-Bu pair (entry 29). Overall, we observed that, upon decreasing 

the basicity of the dialkylamino group (from TU1 to TU3), until this donor effect is totally 

removed by introducing an amide group (TU4), led to a decrease in catalytic activity. 

Examination of both the tacticity and related thermal properties of PLAs synthesized from 

TU4 and TU5 by NMR spectroscopy and DSC, respectively, showed some differences 

depending on the phosphazene base employed (Figures S17-S22). Combining TU4 and TU5 

with P4-t-Bu thus produced moderately isotoactive PLAs, with Pm values of 0.81 and 0.78, 

respectively (entries 25-26; Figures S17, S19). On the other hand, the PLA obtained from the 

P2-t-Bu/TU4 showed a slightly higher degree of stereoselectivity than the P2-t-Bu/TU5-

derived sample (Pm = 0.89 and 0.84, respectively; entries 25-26). This might be explained by 

the presence of the chiral cyclohexyl-type central group onto the thiourea motif within the 

structure of TU5, which might decrease the hydrogen bond donor character. This hypothesis 

was indeed put forward by Nagasawa et al. in the case of Morita-Baylis-Hillman reactions 

catalyzed by chiral thioureas.58 By finally pairing the TU5/P1-t-Bu, an isotactic-enriched PLA 

was obtained with a Pm value of 0.81, while the same base associated with TU4, gave a Pm 

value of 0.90, but after a conversion of only 78%, (entries 30 and 29, respectively; Figures 

S17, S19).  

Additional kinetic investigations involving organocatalytic pairs based on P2-t-Bu and 

TU1-5 (or U1) all revealed a first-order kinetic with two distinct slopes (ESI, Figure S23) due 

to a deceleration phenomenon. This could be consistent with a preferential consumption of one 

particular monomer (D-LA or L-LA) by the chiral amino(thio)urea, suggesting a prevalent 

contribution of the enantiomorphic site control mechanism (ESC) during the ROP of rac-LA 
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mediated by these chiral catalytic pairs.15-16 However, the difference in slopes between the two 

linear variations is quite small, which may indicate that both ESC and chain end control (CEC) 

mechanisms operate concomitantly. On the basis of kinetic studies, we had highlighted the 

occurrence of both mechanisms in our previous work using thiourea TU1 alone.11 We can 

assume that the same is true in the present study. 

As one reviewer noted, some PLA samples having similar Pm values show different Tm 

values (e.g. Table 1, entries 6, 7, 21 and 30). This may be related to the aforementioned 

discussion regarding the co-existence of both ESC and CEC mechanisms. As their relative 

contribution during the ROP reaction can vary from one catalytic pair to the other, the 

differences in stereoerrors generated can impact the crystallinity properties from sample to 

sample, without changing the Pm values so much. It seems however risky here to correlate 

directly the values of Pm and Tm.  

All these results tend to demonstrate that PLAs synthesized at room temperature from the 

phosphazene/chiral (thio)urea catalytic pairs are constituted of stereoblocks resulting from the 

incorporation of the two distinct LA enantiomers in a sequential manner. The presence of some 

microstructural defects, i.e. stereoerrors, in the building blocks would explain why we did not 

observe a melting point above 190°C, these defects limiting the co-crystallization of the blocks.  
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Figure 6. Substituent effect of the thiourea motif on the reactivity and isoselectivity during 

the ROP of rac-LA initiated by BnOH, in presence of organocatalytic pairs based on the 

chiral dialkylamino thioureas TU1-TU5 and the P2-t-Bu phosphazene base. 
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conjunction with urea U1 and thioureas TU1-TU5. In contrast, organocatalytic pairs based on 

the less basic phosphazene, P1-t-Bu, induce a more associated mechanism involving hydrogen-

bond interactions. This can favor the production of highly isotactic PLAs only if P1-t-Bu is 

appropriately paired with a (thio)urea showing an acidity matching the basicity of P1-t-Bu (e.g. 

U1 or TU1-TU2, rather than TU3). However, the high degree of stereocontrol takes place at 

the expense of reactivity, which is moderate with this particular base, leading to substantially 

lower reaction rates. In the end, a good compromise to provide both high reactivity and high 

selectivity can be achieved by using organocatalytic pairs based on P2-t-Bu and some chiral 

amino(thio)ureas, namely, U1, TU1, TU2 and TU5. Whereas the TU1/P2-t-Bu pair operates by 

an ionic-like mechanism involving an ion pair during ROP of rac-LA, an associated-like 

mechanism is thought to take place using P2-t-Bu/U1. On the other hand, through the use of 

TU1 to TU4 combined with phosphazene bases, the dialkylamino moiety was shown to have a 

non-innocent role on the catalytic activity. Decreasing the basicity of this group indeed leads to 

a decrease of the reaction rates.  

Overall, these results open new options for stereoselective polymerization employing chiral 

organocatalytic pairs for the production of well-defined PLA-based stereocomplexes or 

stereoblocks. Among the options to further improve the stereoselectivity of the ROP process, 

one can think that a decrease in temperature would be favorable. However, and conversely, a 

perspective to this work and an ultimate goal sought would be to conduct these ROP reactions 

at high temperature under bulk (solvent-free) conditions, as L-lactide is industrially 

polymerized, e.g. using tin-based catalysts. This work also offers new opportunities for the 

stereocontrolled polymerization of other cyclic monomers (e.g. epoxides) or of polar vinyl 

monomers, such as alkyl methacrylates. Work in this direction is in progress in our team.  
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